JP4218240B2 - Optical head device - Google Patents

Optical head device Download PDF

Info

Publication number
JP4218240B2
JP4218240B2 JP2001383198A JP2001383198A JP4218240B2 JP 4218240 B2 JP4218240 B2 JP 4218240B2 JP 2001383198 A JP2001383198 A JP 2001383198A JP 2001383198 A JP2001383198 A JP 2001383198A JP 4218240 B2 JP4218240 B2 JP 4218240B2
Authority
JP
Japan
Prior art keywords
optical
light
diffraction
wavelength
head device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001383198A
Other languages
Japanese (ja)
Other versions
JP2003185819A (en
JP2003185819A5 (en
Inventor
光生 大澤
浩一 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2001383198A priority Critical patent/JP4218240B2/en
Publication of JP2003185819A publication Critical patent/JP2003185819A/en
Publication of JP2003185819A5 publication Critical patent/JP2003185819A5/ja
Application granted granted Critical
Publication of JP4218240B2 publication Critical patent/JP4218240B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Diffracting Gratings Or Hologram Optical Elements (AREA)
  • Optical Head (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、回折素子および光ヘッド装置に関し、特に光ヘッド装置については光ディスクの情報の記録および再生を行う光ヘッド装置に関する。
【0002】
【従来の技術】
光を回折する回折格子やホログラム素子は、通常ガラスやプラスチックの基板表面に断面形状が周期的な凹凸格子を設けることにより作する。このような回折素子では波長に依存する回折効率はほぼ格子の深さのみで決まる。このため、複数の波長の光に対して回折効率を自由に制御することができない問題があった。
【0003】
また、光ディスクの情報の再生や記録を行う光ヘッド装置においては、光ディスクの多様化により用いるレーザ光の波長は、790nm(CD系)、650nm(DVD系)および405nm(次世代DVD系)3種類の波長が検討されている。これら光ディスクの情報を同一の光ヘッド装置で再生するためには複数の波長の半導体レーザを搭載する必要がある。
【0004】
一方光ヘッド装置において用いられる回折素子としては、トラッキング用の3ビーム発生用の回折素子、光ディスクにより反射した戻り光を光検出器に導くために光路を変えるホログラム素子など、さまざまな用途で用いられる。
【0005】
このような複数波長の光で用いる光ヘッド装置において、各波長により回折効率を最適化することのニーズは多い。しかしながら、前述のように通常の回折素子では回折効率の波長依存性は、格子の深さのみでほぼ決まるため所望の回折効率を各波長ごとに得ることは困難であった。
【0006】
【発明が解決しようとする課題】
本発明の目的は、上記従来技術の欠点を解決し、回折効率の波長依存性を制御できる回折素子を提供することにある。また、本発明の回折素子を複数波長を用いた光ヘッド装置に用いることにより上記従来技術の欠点を解決し、設計の自由度を広げた光ヘッド装置を提供することにある。
【0007】
【課題を解決するための手段】
本発明は、光源と、前記光源からの出射光を光記録媒体へ集光するための対物レンズと、集光され光記録媒体によって反射された出射光を検出するための光検出器とを備える光ヘッド装置において、前記光源と前記対物レンズとの間の光路中に回折素子が配置され、前記回折素子は、透明基板上に形成された周期的な凹凸部を有する回折格子を含み、前記回折格子の前記凹凸部の凸部は、前記透明基板面に平行に配された光学多層膜を備えるとともに、凹部は固体または液体からなる充填材によって充填されており、前記回折格子は、前記透明基板面に垂直に入射する前記光源からの出射光の波長が790nmにおいて1次回折効率が発現せずにほぼ透過し、波長が60〜670nmにおいて1次回折効率が約6%となる光ヘッド装置を提供する。
【0008】
また、前記光学多層膜が、交互に重ねられたSiO膜およびTiO膜を備えている上記の光ヘッド装置を提供する。
【0010】
【発明の実施の形態】
本発明の回折素子の一例の概念的断面図を図1に示す。図1において、1は光学多層膜であり、透明基板3上に基板面に平行に形成された複数の層からなり凸部を構成する。図1では簡単のために2種の材料による5層の膜となっているが、膜の材料、種類および層数は所望の回折効率が得られるように設計すればよい。2は透明基板とは屈折率の異なる充填材であり、透明基板3上の光学多層膜1による凸部の間すなわち凹部を充填してもよいし、凹部のみならず凸部にも充填してもよい(図2参照。符号の意味は、図1と同じ。)。
【0011】
充填材は固体または液体からなり、例えばAu、Alなどの金属材料、SiO、ZrO、MgFなどの酸化物およびフッ化物材料、HOなどの無機物材料や、アクリル樹脂、エポキシ樹脂などの有機物材料、さらに、液晶などの複屈折性材料などが使用できる。また、透明基板としては、ガラス、プラスチックなどの基板を使用できる。
【0012】
光学多層膜の材料としては、SiO、SiON、ZrO,TiO、Al、CeO、MgO、MgFなどの無機物材料を用いることができる。また、有機物材料であってもよい。多層膜の形成方法としては、真空蒸着法、スパッタ法などを挙げることができる。
【0013】
また、透過波面収差を改善するために、図3および図4に示すようにガラスまたは樹脂製の表面がフラットなカバー4を回折素子の充填材側に設けることが好ましい。
【0014】
図5には、本発明の回折素子を透明基板3の表面と裏面との両面に形成した例を示す。11は第2の光学多層膜であり、12は第2の充填材である。ここでは、両面に形成する回折素子の回折効率の波長依存性や、格子ピッチなどを変化させることによる回折方向の調整など、設計の自由度を増加できて好ましい。
【0015】
また、この回折素子と他の光学素子とを積層して一体化してもよい。他の光学素子としては、例えば、波長板、通常の回折格子、偏光性回折格子、液晶を用いた光学素子、位相制御素子などである。これらの光学素子と本発明の回折素子とを一体化して一体化回折素子とすることにより、ひとつの一体化回折素子でありながら複数の機能を有するとともに、光ヘッド装置に組み込んだ場合光学部品点数を削減できて好ましい。
【0016】
本発明の回折素子における光学多層膜の構成材料の第1設計例を表1に示す。
【0017】
【表1】

Figure 0004218240
【0018】
例えばガラスからなる透明基板上に、最下層と最上層のAl膜を除いて、SiO膜とTiO膜とが13層交互に重ねられ、Al膜を加えると合計15層の光学多層膜とされ、光学多層膜は周期的な凹凸形状に加工されて、格子が作製した後、屈折率1.93の充填材により格子の凹部が充填され回折素子が構成された(図1を参照)。
【0019】
この回折素子における1次の回折効率の波長依存性の例を図6に示す。図6には、比較例として従来の表面凹凸型の回折格子の1次の回折効率も示した。このように、本発明の光学多層膜により凹凸状の回折格子を形成したものは、波長350nmから900nmまでの光に対してほぼ理論限界の40%近い回折効率を示すことがわかる。なお、表1に用いたSiO膜、TiO膜、Al膜の屈折率は、それぞれ異なり順に1.47、2.27、1.56であった。ただし成膜条件により屈折率が設計値と若干異なる場合には、膜厚を調整する。
【0020】
本発明の回折素子における光学多層膜の構成材料の第2設計例を表2に示す。
【0021】
【表2】
Figure 0004218240
【0022】
上記と同様例えばガラスからなる透明基板上に、SiO膜とTiO膜とが交互に重ねられ29層の光学多層膜とされ、光学多層膜は周期的な凹凸形状に加工されて、格子作製した後、屈折率1.51の充填材により格子の凹部が充填され回折素子が構成された(図2を参照)。
【0023】
この回折素子における1次の回折効率の波長依存性の例を図7に示す。図7には比較例として従来の表面凹凸型の回折格子の回折効率も示した。このように、本発明の光学多層膜に凹凸状の回折格子を形成したものは、波長790nmの光はほとんど回折せず透過し、波長650nmの光は約6%回折することが分かる。さらに、600nmから670nmまでの広い波長帯域にわたり回折効率の変化がほとんどないことが分かる。なお、表2に用いたSiO膜、TiO膜の屈折率は、それぞれ異なり順に1.48、2.32であった。ただし上記と同様、成膜条件により屈折率が設計と若干異なる場合には、膜厚を調整する。
【0024】
上記の回折素子を、例えばDVD系(波長650nm)とCD系(波長790nm)光ディスク用の光源を有する光ヘッド装置に搭載した場合について説明する。例えば、図8に示すようにコリメートレンズ24と光源21、22との間に、本発明の回折素子23を配置する。
【0025】
この回折素子を図5を参考にして説明する。例えば第1の光学多層膜1および第1の充填材2よりなる第1の回折部分(透明基板3の上側)は、波長650nmの光を約6%回折し、波長790nmの光をほぼ100%透過するように設計し、第2の多層膜11および第2の充填材12よりなる第2の回折部分(透明基板3の下側)は、波長790nmの光を約6%回折し、波長650nmの光をほぼ100%透過するように設計する。これにより、回折素子23は各波長の3ビームを効率よく発生できる。
【0026】
回折素子23によって3ビームに分割された各光源からの光は、コリメートレンズ24、ビームスプリッタ25を透過し、対物レンズ26により光記録媒体27に集光される。光記録媒体27にて反射された光は、対物レンズ26、ビームスプリッタ25の順にもどり光検出光学系28により検出される。回折素子23により得られた各波長の光の3ビームは、トラッキングに使用できる。
【0027】
また、光通信に使用される波長950nm〜1700nmの近赤外光に対しても本発明の回折素子を使用でき、特に波長1550nm帯の光を使用する波長分割多重通信の構成部品として使用できる。例えば広い波長帯域で回折効率が一定の回折素子を使用したビームスプリッタや、回折効率の波長分散を調整したゲインイコライザなどを挙げることができる。
【0028】
【実施例】
本実施例を図9に基づいて説明する。透明基板である石英ガラス基板31の一方の表面にフォトリソグラフィとエッングの技術によりレリーフ型の第1の回折格子32を作製した。格子ピッチは20μm、デューティ比は1/2、深さは約1.4μmとし、波長650nmの光は回折せず透過し、波長780nmの光は、10%程度回折するようにした。
【0029】
また、レリーフ型の回折格子の凹凸部上に真空蒸着法により波長650nmおよび波長790nmの光に対する反射防止膜を形成した。このレリーフ型の回折格子は、波長650nmの光をほとんど回折せず0次光の回折効率(すなわち透過率)が約90%、一方波長790nmの光を1次回折光として約10%回折し、0次光の回折効率が約55%であった。
【0030】
この石英ガラス基板31のレリーフ型の回折格子32を作製した面とは反対側の面には、真空蒸着法により表2に示した光学多層膜である誘電体多層膜を成膜した。上記と同様にして、フォトリソグラフィとエッチングの技術により、誘電体多層膜凸部33を有する第2の回折格子を作製した。格子ピッチは20μm、デューティ比は1/2とし、エッチングは基板の石英ガラスが露出した段階で止め、誘電体多層膜のみ凹凸になるようにした。
【0031】
ガラス基板の一方の面に、真空蒸着法により波長650nmおよび波長790nmの光に対する反射防止膜を形成してカバーガラス35を作した。第2の回折格子の凹部に屈折率1.51のアクリル系の接着剤34を充填材として充填し、上記カバーガラス35をこの上に重ねて接着剤34によりカバーガラス35を接着して、図9に示したような回折素子を作製した。
【0032】
この回折素子の透過率および回折効率を調べたところ、波長650nmの光に対しては、0次光の回折効率が約70%、1次光の回折効率が約6%、一方波長790nmの光に対しては0次光の回折効率が約54%、1次光の回折効率が約9%であった。そして、いずれの波長の光についても効率よく3ビームを得ることができた。
【0033】
この回折素子を、図8に示した光ヘッド装置中の回折素子23の位置に搭載した。光源21として、DVD用の光源である波長650nmのLD、光源22としてCD用の光源である波長790nmのLDを使用したところ、790nmの光、および650nmの光を効率よく各々3ビームに分けることができ、さらに光ヘッド装置の光利用効率を高めことができた。そして、この3ビームは光ヘッド装置のトラッキングに使用され、光ディスクからの情報の再生時に良質の再生特性が得られた。
【0034】
【発明の効果】
以上説明したように、本発明の回折素子は透明基板上に周期的に重ねた酸化物などの光学多層膜を用いて凹凸状の回折格子を形成したものであり、この回折素子は回折効率の波長依存性をほとんど一定にするなど、回折効率を制御できる。
【0035】
また本発明の回折素子を複数波長の光を用いる光ヘッド装置に搭載することで設計自由度が高く、かつ光利用効率の高い光ヘッド装置を得ることができる。
【図面の簡単な説明】
【図1】本発明の回折素子の一例を示す側方断面図。
【図2】本発明の回折素子の他の例を示す側方断面図。
【図3】図1の回折素子に透明基板を重ねた、本発明の回折格子を示す側方断面図。
【図4】図2の回折素子に透明基板を重ねた、本発明の回折格子を示す側方断面図。
【図5】本発明の回折素子の別の例を示す側方断面図。
【図6】表1に示した光学多層膜の設計例により得られる回折素子における、1次の回折効率の波長依存性を示すグラフ。
【図7】表2に示した光学多層膜の設計例により得られる回折素子における、1次の回折効率の波長依存性を示すグラフ。
【図8】本発明の回折素子を搭載した光ヘッド装置一例を示す概略的側面図。
【図9】実施例における回折素子の概略的側方断面図。
【符号の説明】
1、11:光学多層膜
2、12:充填材
3:透明基板
4:カバー
21、22:光源
23:回折素子
24:コリメートレンズ
25:ビームスプリッタ
26:対物レンズ
27:光記録媒体
28:光検出光学系
31:石英ガラス基板
32:回折格子
33:誘電体多層膜凸部
34:接着剤
35:カバーガラス[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a diffraction element and an optical head device, and more particularly to an optical head device that records and reproduces information on an optical disk.
[0002]
[Prior art]
A diffraction grating or a hologram element for diffracting light, the usual substrate surface of glass or plastic sectional shape made work by providing a periodic concavo-convex grid. In such a diffraction element, the diffraction efficiency depending on the wavelength is almost determined only by the depth of the grating. For this reason, there has been a problem that the diffraction efficiency cannot be freely controlled for light of a plurality of wavelengths.
[0003]
Further, in an optical head device for reproducing and recording information on an optical disk, the wavelengths of laser light used for diversification of optical disks are 790 nm (CD system), 650 nm (DVD system), and 405 nm (next-generation DVD system). Wavelengths of In order to reproduce the information on these optical disks with the same optical head device, it is necessary to mount semiconductor lasers having a plurality of wavelengths.
[0004]
On the other hand, the diffraction element used in the optical head device is used for various purposes such as a diffraction element for generating three beams for tracking and a hologram element for changing the optical path in order to guide the return light reflected by the optical disk to the photodetector. .
[0005]
In such an optical head device used for light of a plurality of wavelengths, there are many needs for optimizing the diffraction efficiency for each wavelength. However, as described above, in a normal diffraction element, the wavelength dependence of the diffraction efficiency is almost determined only by the grating depth, and it is difficult to obtain a desired diffraction efficiency for each wavelength.
[0006]
[Problems to be solved by the invention]
An object of the present invention is to provide a diffractive element that solves the above-mentioned drawbacks of the prior art and can control the wavelength dependence of diffraction efficiency. Another object of the present invention is to provide an optical head device that solves the above-mentioned drawbacks of the prior art by using the diffractive element of the present invention in an optical head device using a plurality of wavelengths and widens the degree of design freedom.
[0007]
[Means for Solving the Problems]
The present invention comprises a light source, an objective lens for condensing the light emitted from the light source onto an optical recording medium, and a photodetector for detecting the light emitted and reflected by the optical recording medium. In the optical head device, a diffractive element is disposed in an optical path between the light source and the objective lens, and the diffractive element includes a diffraction grating having a periodic uneven portion formed on a transparent substrate, and the diffractive element The convex part of the concavo-convex part of the grating includes an optical multilayer film arranged in parallel to the transparent substrate surface, the concave part is filled with a filler made of solid or liquid, and the diffraction grating is the transparent substrate. wavelength of light emitted from said light source incident perpendicular to the plane is substantially transmits without expression 1-order diffraction efficiency at 790 nm, Oite first-order diffraction efficiency on the wavelength is 6 4 0~670n m is about 6% Optical head device Subjected to.
[0008]
In addition, the above-mentioned optical head device is provided in which the optical multilayer film includes alternately stacked SiO 2 films and TiO 2 films.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
A conceptual cross-sectional view of an example of the diffraction element of the present invention is shown in FIG. In FIG. 1, reference numeral 1 denotes an optical multilayer film, which comprises a plurality of layers formed on a transparent substrate 3 in parallel with the substrate surface, and constitutes a convex portion. In FIG. 1, for simplicity, the film has five layers of two materials, but the material, type, and number of layers of the film may be designed so as to obtain a desired diffraction efficiency. 2 is a filler having a refractive index different from that of the transparent substrate, and may be filled between the convex portions by the optical multilayer film 1 on the transparent substrate 3, that is, filled with the concave portions. (See FIG. 2. The meaning of the reference numerals is the same as in FIG. 1.)
[0011]
The filler is made of solid or liquid, for example, metal materials such as Au and Al, oxide and fluoride materials such as SiO 2 , ZrO 2 and MgF 2 , inorganic materials such as H 2 O, acrylic resins, epoxy resins, etc. Organic materials, and birefringent materials such as liquid crystals can be used. As the transparent substrate, a substrate such as glass or plastic can be used.
[0012]
As the material of the optical multilayer film, inorganic materials such as SiO 2 , SiON, ZrO 2 , TiO 2 , Al 2 O 3 , CeO 2 , MgO, and MgF 2 can be used. Moreover, an organic material may be sufficient. Examples of the method for forming the multilayer film include a vacuum deposition method and a sputtering method.
[0013]
In order to improve the transmitted wavefront aberration, it is preferable to provide a cover 4 having a flat surface made of glass or resin on the filler side of the diffraction element as shown in FIGS.
[0014]
FIG. 5 shows an example in which the diffraction element of the present invention is formed on both the front surface and the back surface of the transparent substrate 3. 11 is a 2nd optical multilayer film, 12 is a 2nd filler. Here, it is preferable because the degree of freedom in design can be increased, such as the wavelength dependency of the diffraction efficiency of the diffraction elements formed on both sides, and adjustment of the diffraction direction by changing the grating pitch.
[0015]
Moreover, this diffraction element and another optical element may be laminated and integrated. Examples of other optical elements include a wave plate, a normal diffraction grating, a polarizing diffraction grating, an optical element using liquid crystal, a phase control element, and the like. By integrating these optical elements and the diffractive element of the present invention into an integrated diffractive element, a single integrated diffractive element has multiple functions and the number of optical components when incorporated in an optical head device. This is preferable.
[0016]
A first design example of the constituent material of the light Gakuo layer film in the diffraction element of the present invention shown in Table 1.
[0017]
[Table 1]
Figure 0004218240
[0018]
For example, 13 layers of SiO 2 films and TiO 2 films are alternately stacked on a transparent substrate made of glass except for the lowermost layer and the uppermost Al 2 O 3 film, and when an Al 2 O 3 film is added, a total of 15 After the optical multilayer film is processed into a periodic uneven shape and a grating is produced, the concave portion of the grating is filled with a filler having a refractive index of 1.93 to form a diffraction element ( (See FIG. 1).
[0019]
An example of the wavelength dependence of the first-order diffraction efficiency in this diffraction element is shown in FIG. FIG. 6 also shows the first-order diffraction efficiency of a conventional surface uneven-type diffraction grating as a comparative example. Thus, it can be seen that the concavo-convex diffraction grating formed by the optical multilayer film of the present invention exhibits a diffraction efficiency close to the theoretical limit of 40% for light with a wavelength of 350 nm to 900 nm. The refractive indexes of the SiO 2 film, the TiO 2 film, and the Al 2 O 3 film used in Table 1 were 1.47, 2.27, and 1.56, respectively, in order. However, if the refractive index is slightly different from the designed value depending on the film forming conditions, the film thickness is adjusted.
[0020]
The second design example of the constituent material of the light Gakuo layer film in the diffraction element of the present invention shown in Table 2.
[0021]
[Table 2]
Figure 0004218240
[0022]
As described above, SiO 2 films and TiO 2 films are alternately stacked on a transparent substrate made of glass, for example, to form an 29-layer optical multilayer film. The optical multilayer film is processed into a periodic concavo-convex shape to form a lattice . After fabrication, the grating recesses were filled with a filler having a refractive index of 1.51 to form a diffraction element (see FIG. 2).
[0023]
An example of the wavelength dependence of the first-order diffraction efficiency in this diffraction element is shown in FIG. FIG. 7 also shows the diffraction efficiency of a conventional surface uneven diffraction grating as a comparative example. Thus, it can be seen that when the concave and convex diffraction grating is formed on the optical multilayer film of the present invention, light with a wavelength of 790 nm is transmitted without being diffracted, and light with a wavelength of 650 nm is diffracted by about 6%. Furthermore, it can be seen that there is almost no change in diffraction efficiency over a wide wavelength band from 600 nm to 670 nm. Note that the refractive indexes of the SiO 2 film and the TiO 2 film used in Table 2 were 1.48 and 2.32, respectively, in different order. However, similarly to the above, when the refractive index is slightly different from the design depending on the film forming conditions, the film thickness is adjusted.
[0024]
The case where the above-described diffraction element is mounted on an optical head device having a light source for DVD (wavelength 650 nm) and CD (wavelength 790 nm) optical disks, for example, will be described. For example, as shown in FIG. 8, the diffraction element 23 of the present invention is disposed between the collimating lens 24 and the light sources 21 and 22.
[0025]
This diffraction element will be described with reference to FIG. For example, the first diffractive portion (upper side of the transparent substrate 3) made of the first optical multilayer film 1 and the first filler 2 diffracts light having a wavelength of 650 nm by about 6%, and light having a wavelength of 790 nm is almost 100%. The second diffractive portion (the lower side of the transparent substrate 3) that is designed to transmit light and includes the second multilayer film 11 and the second filler 12 diffracts light having a wavelength of 790 nm by about 6%, and has a wavelength of 650 nm. Is designed to transmit almost 100% of the light. Thereby, the diffraction element 23 can generate | occur | produce three beams of each wavelength efficiently.
[0026]
The light from each light source divided into three beams by the diffraction element 23 passes through the collimating lens 24 and the beam splitter 25 and is condensed on the optical recording medium 27 by the objective lens 26. The light reflected by the optical recording medium 27 returns in the order of the objective lens 26 and the beam splitter 25 and is detected by the light detection optical system 28. Three beams of light of each wavelength obtained by the diffraction element 23 can be used for tracking.
[0027]
Further, the diffraction element of the present invention can also be used for near infrared light with a wavelength of 950 nm to 1700 nm used for optical communication, and in particular, it can be used as a component for wavelength division multiplex communication using light with a wavelength of 1550 nm band. For example, a beam splitter using a diffraction element having a constant diffraction efficiency in a wide wavelength band, a gain equalizer that adjusts the wavelength dispersion of the diffraction efficiency, and the like can be given.
[0028]
【Example】
This embodiment will be described with reference to FIG. To prepare a first diffraction grating 32 of the relief by one surface to the photolithography and edge switch ing technology quartz glass substrate 31 is a transparent substrate. The grating pitch was 20 μm, the duty ratio was ½, the depth was about 1.4 μm, light with a wavelength of 650 nm was transmitted without being diffracted, and light with a wavelength of 780 nm was diffracted by about 10%.
[0029]
Further, an antireflection film for light having a wavelength of 650 nm and a wavelength of 790 nm was formed on the concavo-convex portion of the relief type diffraction grating by a vacuum deposition method. This relief type diffraction grating hardly diffracts light having a wavelength of 650 nm and has a diffraction efficiency (that is, transmittance) of 0th order light of about 90%, while light having a wavelength of 790 nm is diffracted by about 10% as first order diffracted light. The diffraction efficiency of the next light was about 55%.
[0030]
A dielectric multilayer film, which is an optical multilayer film shown in Table 2, was formed on the surface of the quartz glass substrate 31 opposite to the surface on which the relief-type diffraction grating 32 was produced by vacuum deposition. In the same manner as described above, the second diffraction grating having the dielectric multilayer film convex portion 33 was produced by photolithography and etching techniques. The lattice pitch was 20 μm, the duty ratio was 1/2, and the etching was stopped when the quartz glass of the substrate was exposed, so that only the dielectric multilayer film was uneven.
[0031]
On one surface of a glass substrate, a cover glass 35 was created made by forming an antireflection film with respect to light having a wavelength of 650nm and wavelength 790nm by vacuum evaporation. The concave portion of the second diffraction grating is filled with an acrylic adhesive 34 having a refractive index of 1.51 as a filler, the cover glass 35 is overlaid thereon, and the cover glass 35 is adhered by the adhesive 34. A diffraction element as shown in FIG.
[0032]
When the transmittance and diffraction efficiency of this diffractive element were examined, for light with a wavelength of 650 nm, the diffraction efficiency of the 0th order light was about 70%, the diffraction efficiency of the first order light was about 6%, while the light with a wavelength of 790 nm In contrast, the diffraction efficiency of the zero-order light was about 54%, and the diffraction efficiency of the first-order light was about 9%. And it was possible to obtain three beams efficiently for light of any wavelength.
[0033]
This diffractive element was mounted at the position of the diffractive element 23 in the optical head device shown in FIG. When an LD with a wavelength of 650 nm, which is a light source for DVD, is used as the light source 21, and an LD with a wavelength of 790 nm, which is a light source for CD, is used as the light source 22, the light of 790 nm and the light of 650 nm are efficiently divided into three beams. In addition, the light utilization efficiency of the optical head device could be improved. These three beams were used for tracking of the optical head device, and good reproduction characteristics were obtained when reproducing information from the optical disk.
[0034]
【The invention's effect】
As described above, the diffractive element of the present invention has a diffractive diffraction grating formed by using an optical multilayer film such as an oxide periodically stacked on a transparent substrate. The diffraction efficiency can be controlled by making the wavelength dependence almost constant.
[0035]
Further, by mounting the diffraction element of the present invention on an optical head device using light of a plurality of wavelengths, an optical head device having a high degree of design freedom and high light utilization efficiency can be obtained.
[Brief description of the drawings]
FIG. 1 is a side sectional view showing an example of a diffraction element of the present invention.
FIG. 2 is a side sectional view showing another example of the diffraction element of the present invention.
3 is a side sectional view showing a diffraction grating of the present invention, in which a transparent substrate is superimposed on the diffraction element of FIG.
4 is a side sectional view showing the diffraction grating of the present invention, in which a transparent substrate is superimposed on the diffraction element of FIG.
FIG. 5 is a side sectional view showing another example of the diffraction element of the present invention.
6 is a graph showing the wavelength dependence of first-order diffraction efficiency in a diffraction element obtained by the design example of the optical multilayer film shown in Table 1. FIG.
7 is a graph showing the wavelength dependence of first-order diffraction efficiency in a diffraction element obtained by the design example of the optical multilayer film shown in Table 2. FIG.
FIG. 8 is a schematic side view showing an example of an optical head device equipped with the diffraction element of the present invention.
FIG. 9 is a schematic side cross-sectional view of a diffraction element in an example.
[Explanation of symbols]
1,11: Light Gakuo layer film 2, 12: filler 3: transparent substrate 4: Cover 21,22: light source 23: the diffraction element 24: collimating lens 25: beam splitter 26: objective lens 27: optical recording medium 28: Optical detection optical system 31: quartz glass substrate 32: diffraction grating 33: dielectric multilayer film convex portion 34: adhesive 35: cover glass

Claims (2)

光源と、前記光源からの出射光を光記録媒体へ集光するための対物レンズと、集光され光記録媒体によって反射された出射光を検出するための光検出器とを備える光ヘッド装置において、前記光源と前記対物レンズとの間の光路中に回折素子が配置され、
前記回折素子は、透明基板上に形成された周期的な凹凸部を有する回折格子を含み、
前記回折格子の前記凹凸部の凸部は、前記透明基板面に平行に配された光学多層膜を備えるとともに、凹部は固体または液体からなる充填材によって充填されており、
前記回折格子は、前記透明基板面に垂直に入射する前記光源からの出射光の波長が790nmにおいて1次回折効率が発現せずにほぼ透過し、波長が60〜670nmにおいて1次回折効率が約6%となる光ヘッド装置。
In an optical head device comprising a light source, an objective lens for condensing the light emitted from the light source onto an optical recording medium, and a photodetector for detecting the emitted light collected and reflected by the optical recording medium A diffractive element is disposed in the optical path between the light source and the objective lens;
The diffraction element includes a diffraction grating having periodic irregularities formed on a transparent substrate,
The convex part of the concave-convex part of the diffraction grating includes an optical multilayer film arranged in parallel to the transparent substrate surface, and the concave part is filled with a filler made of solid or liquid,
The diffraction grating, the wavelength of the light emitted from the light source incident perpendicularly to the transparent substrate surface is substantially transmitted without expression 1-order diffraction efficiency at 790 nm, Oite 1 wavelength 6 4 0~670n m An optical head device having a next diffraction efficiency of about 6%.
前記光学多層膜が、交互に重ねられたSiO膜およびTiO膜を備えている請求項1記載の光ヘッド装置。The optical head device according to claim 1, wherein the optical multilayer film includes SiO 2 films and TiO 2 films alternately stacked.
JP2001383198A 2001-12-17 2001-12-17 Optical head device Expired - Fee Related JP4218240B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001383198A JP4218240B2 (en) 2001-12-17 2001-12-17 Optical head device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001383198A JP4218240B2 (en) 2001-12-17 2001-12-17 Optical head device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2007298562A Division JP5082792B2 (en) 2007-11-16 2007-11-16 Optical head device

Publications (3)

Publication Number Publication Date
JP2003185819A JP2003185819A (en) 2003-07-03
JP2003185819A5 JP2003185819A5 (en) 2005-07-28
JP4218240B2 true JP4218240B2 (en) 2009-02-04

Family

ID=27593320

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001383198A Expired - Fee Related JP4218240B2 (en) 2001-12-17 2001-12-17 Optical head device

Country Status (1)

Country Link
JP (1) JP4218240B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005258053A (en) * 2004-03-11 2005-09-22 Nippon Sheet Glass Co Ltd Transmission type diffraction grating
TW200638101A (en) * 2005-02-02 2006-11-01 Asahi Glass Co Ltd The devices of light flux changing and projected display apparatus
KR100924876B1 (en) 2005-10-28 2009-11-02 미쓰비시덴키 가부시키가이샤 Diffractive optical element and optical head apparatus
JP5082792B2 (en) * 2007-11-16 2012-11-28 旭硝子株式会社 Optical head device
JP2013077374A (en) * 2013-01-28 2013-04-25 Asahi Glass Co Ltd Diffraction element and optical head unit
KR102159166B1 (en) 2014-05-09 2020-09-23 삼성전자주식회사 Color separation device and image sensor including the color separation device
US10302826B1 (en) * 2018-05-30 2019-05-28 Applied Materials, Inc. Controlling etch angles by substrate rotation in angled etch tools

Also Published As

Publication number Publication date
JP2003185819A (en) 2003-07-03

Similar Documents

Publication Publication Date Title
US20070002447A1 (en) Diffraction grating, method of fabricating diffraction optical element, optical pickup device, and optical disk drive
JP5146317B2 (en) Diffraction element and optical head device provided with the same
JP2006073042A (en) Diffraction element and optical head device
JP4560906B2 (en) Optical head device
JP4518009B2 (en) Three-wavelength diffraction element, three-wavelength diffraction element with phase plate, and optical head device
JP4218240B2 (en) Optical head device
JP4300784B2 (en) Optical head device
JP2011187139A (en) Grating element and method for manufacturing the same, and optical pickup device using the grating element
WO2010052863A1 (en) Grating element, optical pickup optical system, and grating element designing method
JP2004240297A (en) Optical polarizing beam splitter
JP5082792B2 (en) Optical head device
JP5234151B2 (en) Diffraction element and optical head device
JP2003288733A (en) Aperture-limiting element and optical head device
JP4314480B2 (en) Diffraction element and optical head device
JP4416917B2 (en) Optical element and optical apparatus using the same
JP2013077374A (en) Diffraction element and optical head unit
EP1562186A1 (en) Double-wavelength light source unit and optical head device
JP2008217954A (en) Diffraction grating and optical head device using the same
JP4281187B2 (en) Optical head device
JP4404189B2 (en) Diffraction element and optical head device
JP3915527B2 (en) Aperture limiting element and optical head device
JP2004341471A (en) Diffraction element and optical head system
JP4432255B2 (en) Optical head device
JP4284927B2 (en) Aperture limiting element and optical head device
JP4877375B2 (en) Optical head device

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041213

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070904

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070918

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071116

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080715

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080811

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080926

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081021

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081103

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4218240

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121121

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121121

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121121

Year of fee payment: 4

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121121

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131121

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees