JP5415804B2 - Method for producing organic-inorganic composite hydrogel - Google Patents

Method for producing organic-inorganic composite hydrogel Download PDF

Info

Publication number
JP5415804B2
JP5415804B2 JP2009085496A JP2009085496A JP5415804B2 JP 5415804 B2 JP5415804 B2 JP 5415804B2 JP 2009085496 A JP2009085496 A JP 2009085496A JP 2009085496 A JP2009085496 A JP 2009085496A JP 5415804 B2 JP5415804 B2 JP 5415804B2
Authority
JP
Japan
Prior art keywords
water
bag
organic
inorganic composite
reaction solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009085496A
Other languages
Japanese (ja)
Other versions
JP2010235781A (en
Inventor
正紀 宮本
和敏 原口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawamura Institute of Chemical Research
DIC Corp
Original Assignee
Kawamura Institute of Chemical Research
DIC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawamura Institute of Chemical Research, DIC Corp filed Critical Kawamura Institute of Chemical Research
Priority to JP2009085496A priority Critical patent/JP5415804B2/en
Publication of JP2010235781A publication Critical patent/JP2010235781A/en
Application granted granted Critical
Publication of JP5415804B2 publication Critical patent/JP5415804B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、重合性ビニル基を有する水溶性有機モノマーの重合体と粘土鉱物からなる有機無機複合ヒドロゲルシートの製造方法に関する。   The present invention relates to a method for producing an organic-inorganic composite hydrogel sheet comprising a polymer of a water-soluble organic monomer having a polymerizable vinyl group and a clay mineral.

アクリルアミド系ヒドロゲルは優れた水膨潤性を示し、その特徴を生かして医療材料、吸排水材料、土壌改良材料などに用いることが可能である。特に、優れた力学物性を示すナノコンポジット材料として、粘土鉱物が有機高分子中に均一に分散した有機無機複合ヒドロゲルが本発明の考案者らによって開示されている(例えば特許文献1)。この報告によれば、水媒体中に水膨潤性粘土鉱物を分散させ、その後、アクリルアミド誘導体やメタクリルアミド誘導体のモノマーを添加して、重合開始剤及び触媒の存在下で該モノマーをラジカル重合させることにより、力学物性の良い有機無機複合ヒドロゲルを製造できることが記載されている。   Acrylamide-based hydrogels exhibit excellent water swellability, and can be used for medical materials, water-absorbing and drainage materials, soil improvement materials and the like by taking advantage of their characteristics. In particular, as a nanocomposite material exhibiting excellent mechanical properties, an organic-inorganic composite hydrogel in which a clay mineral is uniformly dispersed in an organic polymer has been disclosed by the inventors of the present invention (for example, Patent Document 1). According to this report, a water-swellable clay mineral is dispersed in an aqueous medium, and then a monomer of an acrylamide derivative or a methacrylamide derivative is added, and the monomer is radically polymerized in the presence of a polymerization initiator and a catalyst. Describes that an organic-inorganic composite hydrogel having good mechanical properties can be produced.

かかる有機無機複合ヒドロゲルの製造方法においては、有機無機複合ヒドロゲルの力学物性、安全性等を確保するために、酸素の混入によるラジカル重合反応の阻害を極力防止することが重要である。また、これまでに知られている有機無機複合ヒドロゲルの製造方法においては、目的の形状にゲルを成形するため、目的とする形状の容器内で重合反応を行なっていた。例えば、シート状物を得るためには平板状の容器中に薄い膜厚になるように反応溶液を仕込み、その状態を保持しながら重合反応を行っていた。そして、製造時にはその反応溶液を仕込んだ容器全体を極低酸素環境下に置かなければならなかった。   In such a method for producing an organic-inorganic composite hydrogel, it is important to prevent inhibition of radical polymerization reaction due to oxygen contamination as much as possible in order to ensure the mechanical properties and safety of the organic-inorganic composite hydrogel. Moreover, in the manufacturing method of the organic inorganic composite hydrogel known until now, in order to shape | mold a gel in the target shape, the polymerization reaction was performed within the container of the target shape. For example, in order to obtain a sheet-like product, a reaction solution was charged in a flat container so as to have a thin film thickness, and a polymerization reaction was performed while maintaining the state. At the time of production, the entire container charged with the reaction solution had to be placed in an extremely low oxygen environment.

また、これまで公知の製造方法では、汎用樹脂製またはガラス製または金属製のキャスト容器で重合・成型を行っていた。しかしながら、この方法では、多量のキャスト容器が必要になり、コスト上の問題、多量の容器の取扱、再利用時の洗浄及び検査等、大量生産時の問題があった。   In addition, in the conventional production methods, polymerization and molding are performed using a general-purpose resin, glass, or metal cast container. However, this method requires a large amount of cast containers, and has problems in mass production, such as cost problems, handling of large quantities of containers, cleaning and inspection during reuse, and the like.

一方、大量生産時の問題以外に、上記のキャスト容器を用いて製造された有機無機複合ヒドロゲルは、例えば、ステンレス製の容器からの剥離性が悪く、また、樹脂製の容器を用いたゲルは重合不良による溶出物が多くなる等の不良が発生しやすかった。   On the other hand, in addition to the problems at the time of mass production, the organic-inorganic composite hydrogel produced using the above cast container is, for example, poorly peelable from a stainless steel container, and the gel using a resin container is Defects such as increased amount of eluate due to poor polymerization were likely to occur.

特開2002−53762JP2002-53762

本発明が解決しようとする課題は、有機無機複合ヒドロゲルの大量生産に適した製造方法を提供することにある。また、特に、本発明が解決しようとする他の課題は、大量生産に適し、且つ、重合不良によるヒドロゲルからの溶出物量を低減できる有機無機複合ヒドロゲルの製造方法を提供することにある。   The problem to be solved by the present invention is to provide a production method suitable for mass production of an organic-inorganic composite hydrogel. In particular, another object of the present invention is to provide a method for producing an organic-inorganic composite hydrogel that is suitable for mass production and can reduce the amount of eluate from the hydrogel due to poor polymerization.

本発明者等は、有機無機複合ヒドロゲルの大量生産に適した製造方法を種々検討した結果、有機無機複合ヒドロゲルを製造するための反応溶液を樹脂フィルム中に充填し、重合させることにより量産性が優れた製造方法を実現することが可能であることを見出した。   As a result of various investigations on production methods suitable for mass production of organic-inorganic composite hydrogels, the present inventors have filled a reaction solution for producing organic-inorganic composite hydrogels into a resin film and polymerized it, so that mass production is possible. It has been found that an excellent manufacturing method can be realized.

更に、本発明者等は、酸素透過率がある値以下の樹脂フィルムを用いると、重合が阻害されること無く、重合不良に由来する可塑ゲル等の溶出物量を低減できることを見出した。   Furthermore, the present inventors have found that when a resin film having an oxygen permeability of a certain value or less is used, the amount of eluate such as plastic gel derived from poor polymerization can be reduced without inhibiting polymerization.

種々の樹脂フィルムの袋の中で有機無機複合ヒドロゲルの反応溶液を重合させてヒドロゲルを製造すると、樹脂フィルムの相違によりヒドロゲルの表面にベタつきを有する層が生成することが観察された。袋中に酸素が存在しない密封状態で反応溶液を重合してもこの現象は現れた。その原因を追究したところ、酸素透過率が高い樹脂フィルムほどベタつく層が生成することがわかった。これは、酸素透過率が高い樹脂フィルムでは、酸素を極力除去して重合を開始しても、重合中に袋の外部から樹脂フィルムを通して酸素が浸入して、袋の内部の表面に接する反応溶液の重合挙動に影響を与え、その結果、ゲルの表面に可塑ゲル等の層を生成させているものと推察している。   When a hydrogel was produced by polymerizing a reaction solution of an organic-inorganic composite hydrogel in various resin film bags, it was observed that a sticky layer was formed on the surface of the hydrogel due to the difference in the resin film. This phenomenon appeared even when the reaction solution was polymerized in a sealed state where no oxygen was present in the bag. As a result of investigating the cause, it was found that a resin film having a higher oxygen permeability produces a sticky layer. This is because in the case of a resin film having a high oxygen permeability, even when the polymerization is started by removing oxygen as much as possible, oxygen enters through the resin film from the outside of the bag during the polymerization and comes into contact with the inner surface of the bag. It is presumed that the polymerization behavior is influenced, and as a result, a layer such as a plastic gel is formed on the surface of the gel.

即ち、本発明は、ラジカル重合性の水溶性有機モノマーと水の混合液に水膨潤性粘土鉱物を分散させ、さらに重合開始剤を混合して調製した反応溶液を、酸素透過率が100ml/m2・day・MPa以下の樹脂フィルム製の袋状容器内に充填し、実質的に酸素が存在しない条件下で前記水溶性有機モノマーを重合することを特徴とする有機無機複合ヒドロゲルの製造方法を提供するものである。 That is, the present invention provides a reaction solution prepared by dispersing a water-swellable clay mineral in a mixture of a radical polymerizable water-soluble organic monomer and water and further mixing a polymerization initiator, and has an oxygen permeability of 100 ml / m. 2. A method for producing an organic-inorganic composite hydrogel comprising filling a bag-like container made of a resin film of 2 · day · MPa or less and polymerizing the water-soluble organic monomer under conditions in which oxygen is not substantially present. It is to provide.

本発明の製造方法によれば、樹脂フィルム製の袋状容器を使用するため専用のキャスト容器を必要としない。したがって、ヒドロゲルの量産時に多量のキャスト容器を準備するコストや、多量の容器を取り扱い、これを繰り返し使用する際に洗浄し、検査したりする手間を省くことができる。   According to the manufacturing method of the present invention, a dedicated cast container is not required because a bag-like container made of a resin film is used. Accordingly, it is possible to save the cost of preparing a large amount of cast containers at the time of mass production of the hydrogel, and the trouble of handling and cleaning and inspecting a large number of containers when they are used repeatedly.

また、酸素透過率の低い樹脂フィルム製の袋状容器を使用することによりヒドロゲルの表面不良を防止できる。その結果、製造後のヒドロゲルの溶出物を低減でき、安全性の高いヒドロゲルを提供できる。   Moreover, the surface defect of a hydrogel can be prevented by using the bag-shaped container made from a resin film with low oxygen permeability. As a result, the eluate of the hydrogel after manufacture can be reduced, and a highly safe hydrogel can be provided.

反応溶液を袋状容器に充填し、厚み調節板に挟んだ状態の概略図であり、上側の図はその側面図であり、下側の図はそれを上部から見た図である。It is the schematic of the state which filled the reaction solution into the bag-shaped container, and was pinched | interposed into the thickness control board, the upper figure is the side view, and the lower figure is the figure which looked at it from the upper part.

以下に本発明の有機無機複合ヒドロゲルの製造方法の実施形態について説明する。この実施の形態は、発明の好ましい形態を示すものであり、この発明はこれに限定されるものではない。   Hereinafter, embodiments of the method for producing the organic-inorganic composite hydrogel of the present invention will be described. This embodiment shows a preferable form of the invention, and the invention is not limited to this.

本発明の好ましい実施形態は、
(1)重合性ビニル基を有する水溶性有機モノマーと水膨潤性粘土鉱物とをインライン攪拌機を用いて連続的に水中に分散させ、反応液を製造する工程、
(2)重合開始剤及び触媒を振動式攪拌機により前記反応液中に連続的に混合させる工程、
(3)前記重合開始剤が混合した反応液中の前記水溶性有機モノマーを袋状容器に充填し、重合させる工程を順次行なう有機無機複合ヒドロゲルの製造方法である。
Preferred embodiments of the present invention are:
(1) a step of producing a reaction solution by continuously dispersing a water-soluble organic monomer having a polymerizable vinyl group and a water-swellable clay mineral in water using an in-line stirrer;
(2) a step of continuously mixing the polymerization initiator and the catalyst into the reaction solution with a vibration stirrer,
(3) A method for producing an organic-inorganic composite hydrogel, in which a bag-like container is filled with the water-soluble organic monomer in a reaction solution mixed with the polymerization initiator and polymerized.

(有機無機複合ヒドロゲル)
本発明で製造する有機無機複合ヒドロゲルは、水溶性有機高分子と水に均一分散可能な水膨潤性粘土鉱物と水とを必須の構成成分とし、水溶性有機高分子と水膨潤性粘土鉱物が分子レベルで複合化された三次元網目の中に水を取り込んだヒドロゲルである。
(Organic inorganic composite hydrogel)
The organic-inorganic composite hydrogel produced by the present invention comprises a water-swellable organic polymer, a water-swellable clay mineral that can be uniformly dispersed in water, and water as essential constituents, and the water-soluble organic polymer and the water-swellable clay mineral comprise It is a hydrogel that incorporates water in a three-dimensional network complexed at the molecular level.

(重合性ビニル基を有する水溶性有機モノマー)
本発明で使用する重合性ビニル基を有する水溶性有機モノマーは、水に溶解する性質を有し、水に均一分散可能な水膨潤性粘土鉱物と相互作用を有し、非共有結合を形成できるものが好ましく、例えば、粘土鉱物と水素結合、イオン結合、配位結合、共有結合等を形成できる官能基を有するものが好ましい。これらの官能基を有する水溶性有機モノマーとしては、具体的には、アミド基、アミノ基、エステル基、水酸基、テトラメチルアンモニウム基、シラノール基、エポキシ基などを有する重合性不飽和基含有水溶性有機モノマーが挙げられ、なかでもアミド基やエステル基を有する重合性不飽和基含有水溶性有機モノマーが好ましい。特にアクリルアミド系モノマーが好ましい。なお、本発明で使用する水としては、水単独以外に、水と混和する有機溶媒との混合溶媒であり、水を主成分とするものが含まれる。
(Water-soluble organic monomer having a polymerizable vinyl group)
The water-soluble organic monomer having a polymerizable vinyl group used in the present invention has a property of dissolving in water, interacts with a water-swellable clay mineral that can be uniformly dispersed in water, and can form a noncovalent bond. Those having a functional group capable of forming a hydrogen bond, an ionic bond, a coordination bond, a covalent bond and the like with a clay mineral are preferable. Specific examples of water-soluble organic monomers having these functional groups include water-soluble polymerizable unsaturated groups having amide groups, amino groups, ester groups, hydroxyl groups, tetramethylammonium groups, silanol groups, epoxy groups, and the like. Examples thereof include organic monomers. Among them, a polymerizable unsaturated group-containing water-soluble organic monomer having an amide group or an ester group is preferable. Particularly preferred are acrylamide monomers. In addition, as water used by this invention, it is a mixed solvent with the organic solvent mixed with water other than water alone, and the thing which has water as a main component is contained.

アミド基を有する重合性ビニル基含有水溶性モノマーの具体例としては、N−アルキルアクリルアミド、N,N−ジアルキルアクリルアミド、アクリルアミド等のアクリルアミド類、または、N−アルキルメタクリルアミド、N,N−ジアルキルメタクリルアミド、メタクリルアミド等のメタクリルアミド類が挙げられる。ここでアルキル基としては炭素数が1〜4のものが特に好ましく選択される。またエステル基を有する重合性ビニル基含有水溶性有機モノマーの具体例としては、メトキシエチルアクリレート、エトキシエチルアクリレート、メトキシエチルメタクリレート、エトキシエチルメタクリレートなどがあげられる。   Specific examples of the polymerizable vinyl group-containing water-soluble monomer having an amide group include acrylamides such as N-alkylacrylamide, N, N-dialkylacrylamide, and acrylamide, or N-alkylmethacrylamide, N, N-dialkylmethacrylate. And methacrylamides such as amide and methacrylamide. Here, an alkyl group having 1 to 4 carbon atoms is particularly preferably selected. Specific examples of the polymerizable vinyl group-containing water-soluble organic monomer having an ester group include methoxyethyl acrylate, ethoxyethyl acrylate, methoxyethyl methacrylate, and ethoxyethyl methacrylate.

またかかる水溶性有機モノマーの重合体としては、単一の(メタ)アクリルアミド系モノマーの重合体や(メタ)アクリル酸エステル系モノマーの重合体の他、これらから選ばれる複数の異なる水溶性有機モノマーを重合して得られる共重合体を用いることも有効である。また上記の水溶性有機モノマーとそれ以外の有機溶媒可溶性の重合性不飽和基含有有機モノマーとの共重合体も、得られた重合体が水溶性や親水性を示すものであれば使用することができる。   Examples of the polymer of the water-soluble organic monomer include a single (meth) acrylamide monomer polymer and a (meth) acrylate monomer polymer, and a plurality of different water-soluble organic monomers selected from these. It is also effective to use a copolymer obtained by polymerizing. Also, a copolymer of the above water-soluble organic monomer and other organic solvent-soluble polymerizable unsaturated group-containing organic monomer should be used as long as the obtained polymer exhibits water solubility or hydrophilicity. Can do.

水と混和する有機溶剤としては、メタノール、エタノール、プロパノール、グリセリン、ジグリセリン、ポリグリセリン、エチレングリコール、ジエチレングリコール、ポリエチレングリコール、プロピレングリコール、アセトン、メチルエチルケトン、メチルイソブチルケトン、テトラヒドロフラン、ジメチルアセトアミド、ジメチルホルムアミド、ジメチルスルホキシド及びそれらの混合溶媒が挙げられる。   Examples of organic solvents miscible with water include methanol, ethanol, propanol, glycerin, diglycerin, polyglycerin, ethylene glycol, diethylene glycol, polyethylene glycol, propylene glycol, acetone, methyl ethyl ketone, methyl isobutyl ketone, tetrahydrofuran, dimethylacetamide, dimethylformamide, Examples thereof include dimethyl sulfoxide and a mixed solvent thereof.

(水膨潤性粘土鉱物)
本発明で用いる水膨潤性粘土鉱物は、水に膨潤し、好ましくは水によって層間が膨潤する性質を有するものが用いられる。より好ましくは少なくとも一部が水中で層状に剥離して分散できるものであり、特に好ましくは水中で1ないし10層以内の厚みの層状に剥離して均一分散できる層状粘土鉱物である。例えば、水膨潤性スメクタイトや水膨潤性雲母などが用いられ、より具体的には、ナトリウムを層間イオンとして含む水膨潤性ヘクトライト、水膨潤性モンモリロナイト、水膨潤性サポナイト、水膨潤性合成雲母などが挙げられる。中でも水膨潤性ヘクトライトや水膨潤性サポナイトを用いると有機無機複合ヒドロゲルの透明性が優れ、好ましい。
(Water-swelling clay mineral)
As the water-swellable clay mineral used in the present invention, those having a property of swelling in water and preferably swelling between layers by water are used. More preferably, it is a layered clay mineral that can be at least partially exfoliated and dispersed in layers in water, and particularly preferably a lamellar clay mineral that can be exfoliated and dispersed uniformly in water with a thickness of 1 to 10 layers. For example, water-swellable smectite or water-swellable mica is used. More specifically, water-swellable hectorite containing sodium as an interlayer ion, water-swellable montmorillonite, water-swellable saponite, water-swellable synthetic mica, etc. Is mentioned. Among them, the use of water-swellable hectorite or water-swellable saponite is preferable because the transparency of the organic-inorganic composite hydrogel is excellent.

(重合開始剤および重合触媒)
本発明で使用される重合開始剤および触媒としては、慣用のラジカル重合開始剤および触媒のうちから適宜選択して用いることができる。好ましくは水に分散性を有し、系全体に均一に含まれるものが用いられる。特に好ましくは層状に剥離した粘土鉱物と強い相互作用を有するカチオン系ラジカル重合開始剤である。具体的には、重合開始剤として水溶性の過酸化物、例えばペルオキソ二硫酸カリウムやペルオキソ二硫酸アンモニウム、水溶性のアゾ化合物、例えば、和光純薬工業株式会社製のVA−044、V−50、V−501などが好ましく用いられる。その他、ポリエチレンオキシド鎖を有する水溶性のラジカル開始剤なども用いられる。
(Polymerization initiator and polymerization catalyst)
The polymerization initiator and catalyst used in the present invention can be appropriately selected from conventional radical polymerization initiators and catalysts. Preferably, those having dispersibility in water and uniformly contained in the entire system are used. Particularly preferred is a cationic radical polymerization initiator having a strong interaction with the clay mineral exfoliated in layers. Specifically, a water-soluble peroxide as a polymerization initiator, such as potassium peroxodisulfate or ammonium peroxodisulfate, a water-soluble azo compound, for example, VA-044, V-50 manufactured by Wako Pure Chemical Industries, Ltd. V-501 or the like is preferably used. In addition, a water-soluble radical initiator having a polyethylene oxide chain is also used.

また触媒としては、3級アミン化合物であるN,N,N’,N’−テトラメチルエチレンジアミンやβ−ジメチルアミノプロピオニトリルなどが用いられる。重合温度は、用いる水溶性有機高分子、重合触媒および開始剤の種類などに合わせて0℃〜100℃の範囲に設定する。   As the catalyst, tertiary amine compounds such as N, N, N ′, N′-tetramethylethylenediamine and β-dimethylaminopropionitrile are used. The polymerization temperature is set in the range of 0 ° C. to 100 ° C. according to the type of water-soluble organic polymer, polymerization catalyst and initiator used.

(製造方法)
本発明の有機無機複合ヒドロゲルの製造方法においては、水溶性有機モノマーは、活性アルミナカラムを用いて重合禁止剤を取り除いてから使用することが好ましく、重合開始剤は約2%の濃度に純水で希釈し、水溶液にして使用することが好ましく、水は、イオン交換水を蒸留した純水を用い、高純度窒素を予めバブリングさせ、含有酸素を除去してから使用することが好ましい。
(Production method)
In the method for producing the organic-inorganic composite hydrogel of the present invention, the water-soluble organic monomer is preferably used after removing the polymerization inhibitor using an activated alumina column, and the polymerization initiator is pure water at a concentration of about 2%. It is preferable to use it after diluting with an aqueous solution and using pure water obtained by distilling ion-exchanged water, bubbling high-purity nitrogen in advance, and removing oxygen contained therein.

(工程1)
内部を窒素置換したタンクに純水を加え、水膨潤性粘土鉱物をタンクに循環するように配管されたインライン混合機を用いて添加・撹拌することにより、水膨潤性粘土鉱物が水に分散した溶液を製造する。その後、DMAA(N,N−ジメチルアクリルアミド)を添加撹拌し、無色透明の溶液を調製する。
(Process 1)
The water-swellable clay mineral was dispersed in the water by adding pure water to the tank that had been purged with nitrogen and adding and stirring the water-swellable clay mineral using an in-line mixer that was circulated through the tank. A solution is produced. Thereafter, DMAA (N, N-dimethylacrylamide) is added and stirred to prepare a colorless and transparent solution.

水溶性有機モノマーの重合物と水膨潤性粘土鉱物の量比は、水または水と有機溶媒との混合液からなる溶媒の中で両者が三次元網目を形成する範囲が好ましく、水膨潤性粘土鉱物/水溶性有機モノマーの重合物の質量比として好ましくは0.01〜3、より好ましくは0.1〜3、特に好ましくは0.3〜2.5である。その質量比が0.01未満では、有効な三次元網目を形成することが困難となり、一方、3を越えると水均一な膨潤性粘土鉱物の層状剥離した分散が困難となる場合が多い。   The amount ratio of the polymer of the water-soluble organic monomer and the water-swellable clay mineral is preferably within a range in which both form a three-dimensional network in a solvent composed of water or a mixture of water and an organic solvent. The mass ratio of the mineral / water-soluble organic monomer polymer is preferably 0.01 to 3, more preferably 0.1 to 3, and particularly preferably 0.3 to 2.5. When the mass ratio is less than 0.01, it is difficult to form an effective three-dimensional network, while when it exceeds 3, it is often difficult to disperse the water-like swellable clay mineral in a layered manner.

(工程2)
次に、工程1で調製した水溶性有機モノマーと水膨潤性粘土鉱物とが水に均一分散した溶液を振動式撹拌機に送液し、振動式撹拌機に設けられた2つの添加剤投入口から触媒溶液と重合開始剤溶液を添加・撹拌する。
(Process 2)
Next, a solution in which the water-soluble organic monomer and water-swellable clay mineral prepared in Step 1 are uniformly dispersed in water is fed to a vibration stirrer, and two additive inlets provided in the vibration stirrer Add and stir the catalyst solution and the polymerization initiator solution.

本発明で使用する振動式撹拌機としては、本発明の効果を得られるものであれば公知の振動式攪拌機を用いることができる。公知の振動攪拌装置としては、バイブロミキサー(冷化工業社製)がある。   As the vibration stirrer used in the present invention, a known vibration stirrer can be used as long as the effects of the present invention can be obtained. As a known vibration stirrer, there is a Vibro mixer (manufactured by Chilling Industries Co., Ltd.).

水溶性有機モノマーの重合物と重合開始剤の量比は、重合開始剤/水溶性有機モノマーの重合物の質量比として好ましくは0.001〜0.10、より好ましくは0.005〜0.01である。その質量比が0.001未満では、有効な三次元網目を形成することが困難となり、一方、0.10を越えるとモノマー/クレイ溶液中での重合開始剤の分散が困難となる場合が多い。   The amount ratio of the polymer of the water-soluble organic monomer and the polymerization initiator is preferably 0.001 to 0.10, more preferably 0.005 to 0.00 as the mass ratio of the polymerization initiator / polymer of the water-soluble organic monomer. 01. If the mass ratio is less than 0.001, it is difficult to form an effective three-dimensional network, while if it exceeds 0.10, it is often difficult to disperse the polymerization initiator in the monomer / clay solution. .

連続的に排出される反応溶液を、例えば熱シールにより密閉できる袋状容器に連続充填し、任意の厚みになるように厚み調節板に挟み込み、20〜100℃の恒温槽中で重合を行なう。反応溶液を袋状容器に充填し、厚み調節板に挟んだ状態を図1に示す。また、特に酸素の影響を低減させるために、恒温槽中を脱酸素した窒素雰囲気下または、脱酸素処理をした水槽中で重合することも有効である。重合開始から1〜30時間で袋状容器内に有機高分子と粘土鉱物からなる弾力性、強靭性のある無色透明で均一なシート状の有機無機複合ヒドロゲルが生成する。なお、これらの溶液調製から充填までの操作は、全て酸素を遮断した窒素雰囲気下で行うことが好ましい。   The continuously discharged reaction solution is continuously filled into a bag-like container that can be sealed by, for example, heat sealing, sandwiched between thickness adjusting plates so as to have an arbitrary thickness, and polymerization is performed in a constant temperature bath of 20 to 100 ° C. FIG. 1 shows a state where the reaction solution is filled in a bag-like container and sandwiched between thickness adjusting plates. In particular, in order to reduce the influence of oxygen, it is also effective to perform polymerization in a nitrogen atmosphere in which the inside of the thermostat is deoxygenated or in a water tank that has been subjected to deoxygenation treatment. Within 1 to 30 hours from the start of polymerization, a colorless, transparent, and uniform sheet-like organic-inorganic composite hydrogel consisting of organic polymer and clay mineral is formed in a bag-like container. In addition, it is preferable to perform all these operations from solution preparation to filling in nitrogen atmosphere which interrupted | blocked oxygen.

本発明において酸素を遮断した状態とは、本発明で使用する反応溶液の重合が阻害されず、本発明の効果である製造後のヒドロゲルの溶出物を低減でき、安全性の高いヒドロゲルを提供できる状態であれば良く、本明細書における「実質的に酸素が存在しない条件下」とはそのような状態をいう。   In the present invention, the state in which oxygen is blocked means that the polymerization of the reaction solution used in the present invention is not inhibited, the eluate of the hydrogel after production, which is the effect of the present invention, can be reduced, and a highly safe hydrogel can be provided. Any state may be used, and “a condition in which substantially no oxygen is present” in this specification refers to such a state.

(袋状容器)
重合反応に用いる袋状容器は、本発明の効果を得ることができる形態、材質であれば特に限定されるものではないが、例えば、少なくとも二種類以上の層構成を有するラミネートフィルムを用いることができる。そのようなフィルムとしては次のようなものを用いることが好ましい。すなわち、本発明では、袋状容器の外側には酸素透過性の低いフィルムを、内側には製袋物へ加工するため又は反応溶液を密閉するための、熱圧着によりフィルム同士を融着して袋状容器とすることができるシーラントフィルムを用いることが好ましい。
(Bag-like container)
The bag-like container used for the polymerization reaction is not particularly limited as long as it is a form and material capable of obtaining the effects of the present invention. For example, a laminate film having at least two kinds of layer configurations may be used. it can. It is preferable to use the following as such a film. That is, in the present invention, a bag having a low oxygen permeability is formed on the outside of the bag-like container, and the film is fused to each other by thermocompression bonding for processing into a bag product or sealing the reaction solution on the inside. It is preferable to use a sealant film that can be used as a container.

酸素透過性の低いフィルムには、延伸ポリビニルアルコール(PVA)やエチレン/ビニルアルコール共重合(EVOH)樹脂、延伸ナイロン(ONy)、ポリビニリデンクロライド(PVDC)が挙げられ、好ましくはより酸素透過性が低い延伸ポリエチレンテレフタレート(PET)や延伸ナイロン(Ny)基材にアルミニウムやシリカやアルミナ、またはこれらの混合物を真空蒸着した高酸素バリアー性フィルム等を用いることができる。   Examples of the film having low oxygen permeability include stretched polyvinyl alcohol (PVA), ethylene / vinyl alcohol copolymer (EVOH) resin, stretched nylon (ONy), and polyvinylidene chloride (PVDC). A high-oxygen barrier film obtained by vacuum-depositing aluminum, silica, alumina, or a mixture thereof on a low-stretched polyethylene terephthalate (PET) or stretched nylon (Ny) base material can be used.

シーラントフィルムには、一般的な低密度ポリエチレン(LDPE)や無延伸ポリプロピレン(CPP)を重合温度に対する耐熱性に考慮して選択することができる。また、必要に応じてこれらの二層のラミネート材の中間に、耐突き裂け性能を向上させるために延伸ナイロン等のフィルムをラミネートしても良い。   As the sealant film, general low density polyethylene (LDPE) or unstretched polypropylene (CPP) can be selected in consideration of heat resistance against the polymerization temperature. Further, if necessary, a film such as stretched nylon may be laminated between these two layers of laminate material in order to improve the tear resistance.

(袋状容器の酸素透過率)
本発明で使用する袋状容器の酸素透過度は100ml/m2・day・MPa以下であり、20ml/m2・day・MPa以下であることが好ましく、15ml/m2・day・MPa以下であることがより好ましい。
(Oxygen permeability of bag-like container)
The oxygen permeability of the bag-like container used in the present invention is 100 ml / m 2 · day · MPa or less, preferably 20 ml / m 2 · day · MPa or less, and 15 ml / m 2 · day · MPa or less. More preferably.

(反応溶液の充填)
工程2で調製した反応溶液の袋状容器への充填方法は、予め袋状に熱圧着によって作製した複数の袋状容器に充填するか、または、液体製袋充填包装機を使用してロール状のフィルムを反応液充填直前に製袋ながら連続的に充填する方法が可能である。
(Reaction solution filling)
The method of filling the reaction solution prepared in Step 2 into the bag-like container is to fill a plurality of bag-like containers prepared in advance in a bag shape by thermocompression bonding, or roll using a liquid bag filling and packaging machine. The film can be continuously filled while making a bag immediately before filling the reaction solution.

前者は酸素の減圧置換が可能なため超低酸素条件が可能であり、後者は高速充填が可能なことから短時間で大量の処理ができる。   The former allows ultra-low oxygen conditions because oxygen can be replaced under reduced pressure, and the latter allows high-speed filling, so that a large amount of processing can be performed in a short time.

各フィルムの酸素透過度の測定は、酸素透過率測定装置(モダンコントロール社製、OX−TRAN100)を用いて23℃、90%RHにて、JIS K7126に準拠して行った。   The oxygen permeability of each film was measured at 23 ° C. and 90% RH in accordance with JIS K7126 using an oxygen permeability measuring device (OX-TRAN100, manufactured by Modern Control).

(実施例1)
内部を窒素置換した溶液タンクに純水9.5Lを仕込み、320gのラポナイトXLG(水膨潤性合成ヘクトライト:ROCKWOOD社製)を溶液タンクに循環するように配管されたインライン混合機(IKA社製)を用いて均一分散させた。980gのDMAA(N,N−ジメチルアクリルアミド)を添加撹拌し、無色透明の溶液を調製した。
Example 1
9.5 L of pure water was charged into the solution tank whose inside was replaced with nitrogen, and 320 g of Laponite XLG (water swellable synthetic hectorite: manufactured by ROCKWOOD) was circulated in the solution tank. ) And uniformly dispersed. 980 g of DMAA (N, N-dimethylacrylamide) was added and stirred to prepare a colorless and transparent solution.

次に上記溶液を、連続的に振動式撹拌機へ0.75L/分で移送し、35mL/分で供給されるKPS(ペルオキソ二硫酸カリウム:関東化学株式会社製)水溶液と混合を行った。振動式撹拌機から連続的に排出された反応溶液を、予め窒素置換した24cm×35cmの樹脂フィルム製ラミネート袋(ラミネート構成:透明蒸着PET12μm/Ny15μm/CPP60μm)に連続充填し、2mmの厚みになるように厚み調節板に挟み込み、50℃の恒温槽中で18時間静置して重合を行った。なお、これらの溶液調製から充填までの操作は、全て酸素を遮断した窒素雰囲気下で行った。樹脂フィルム製ラミネート袋内に有機高分子と粘土鉱物からなる弾力性、強靭性のある無色透明で均一なシート状の高分子ゲルが生成した。合成された高分子ゲルは水含有率([水/ゲル乾燥物]×100=)が760質量%のヒドロゲルであった。得られたヒドロゲルの10cm×10cmに対し、37℃の蒸留水(500g)で6時間振とうし、上清を凍結乾燥した。凍結乾燥後に得られた固形分残渣を計量したところ、0.03gであった。固形分に対する残渣の回収率は、1%であった。   Next, the above solution was continuously transferred to a vibration stirrer at 0.75 L / min, and mixed with an aqueous solution of KPS (potassium peroxodisulfate: manufactured by Kanto Chemical Co., Inc.) supplied at 35 mL / min. The reaction solution continuously discharged from the vibration type stirrer is continuously filled into a 24 cm × 35 cm resin film laminated bag (lamination configuration: transparent vapor-deposited PET 12 μm / Ny15 μm / CPP 60 μm) that has been previously purged with nitrogen to a thickness of 2 mm. Thus, the film was sandwiched between thickness adjusting plates and allowed to stand in a thermostatic bath at 50 ° C. for 18 hours for polymerization. The operations from preparation of the solution to filling were all performed in a nitrogen atmosphere in which oxygen was blocked. A colorless, transparent, and uniform sheet-like polymer gel consisting of an organic polymer and clay mineral was formed in a resin film laminate bag. The synthesized polymer gel was a hydrogel having a water content ([water / gel dried product] × 100 =) of 760% by mass. The obtained hydrogel was shaken with distilled water (500 g) at 37 ° C. for 6 hours with respect to 10 cm × 10 cm, and the supernatant was freeze-dried. The solid residue obtained after lyophilization was weighed to be 0.03 g. The recovery rate of the residue with respect to the solid content was 1%.

(実施例2)
実施例1で調製した反応溶液を、予め窒素置換した24cm×35cmの樹脂フィルム製ラミネート袋(ラミネート構成:バリアONy18μm/ONy15μm/LLDPE70μm)に連続充填し、2mmの厚みになるように厚み調節板に挟み込み、50℃の恒温槽中で18時間静置して重合を行った。なお、これらの溶液調製から充填までの操作は、全て酸素を遮断した窒素雰囲気下で行った。樹脂フィルム製ラミネート袋内に有機高分子と粘土鉱物からなる弾力性、強靭性のある無色透明で均一なシート状の高分子ゲルが生成した。合成された高分子ゲルは水含有率([水/ゲル乾燥物]×100=)が760質量%のヒドロゲルであった。得られたヒドロゲルの10cm×10cmに対し、37℃の蒸留水(500g)で6時間振とうし、上清を凍結乾燥した。凍結乾燥後に得られた固形分残渣を計量したところ、0.05gであった。固形分に対する残渣の回収率は、1.5%であった
(Example 2)
The reaction solution prepared in Example 1 was continuously filled into a 24 cm × 35 cm resin film laminated bag (laminate configuration: barrier ONy 18 μm / ONy15 μm / LLDPE 70 μm), which had been previously purged with nitrogen, and applied to a thickness adjusting plate so as to have a thickness of 2 mm. The mixture was sandwiched and allowed to stand in a thermostatic bath at 50 ° C. for 18 hours for polymerization. The operations from preparation of the solution to filling were all performed in a nitrogen atmosphere in which oxygen was blocked. A colorless, transparent, and uniform sheet-like polymer gel consisting of an organic polymer and clay mineral was formed in a resin film laminate bag. The synthesized polymer gel was a hydrogel having a water content ([water / gel dried product] × 100 =) of 760% by mass. The obtained hydrogel was shaken with distilled water (500 g) at 37 ° C. for 6 hours with respect to 10 cm × 10 cm, and the supernatant was freeze-dried. The solid residue obtained after lyophilization was weighed and weighed 0.05 g. The recovery rate of the residue with respect to the solid content was 1.5%.

(実施例3)
実施例1で調製した反応溶液を、窒素置換しないで24cm×35cmの樹脂フィルム製ラミネート袋(ラミネート構成:バリアONy18μm/ONy15μm/LLDPE70μm)に連続充填し、2mmの厚みになるように厚み調節板に挟み込み、50℃の恒温槽中で18時間静置して重合を行った。なお、これらの溶液調製から充填までの操作は、全て酸素を遮断した窒素雰囲気下で行った。樹脂フィルム製ラミネート袋内に有機高分子と粘土鉱物からなる弾力性、強靭性のある無色透明で均一なシート状の高分子ゲルが生成した。合成された高分子ゲルは水含有率([水/ゲル乾燥物]×100=)が760質量%のヒドロゲルであった。得られたヒドロゲルの10cm×10cmに対し、37℃の蒸留水(500g)で6時間振とうし、上清を凍結乾燥した。凍結乾燥後に得られた固形分残渣を計量したところ、0.15gであった。固形分に対する残渣の回収率は、5%であった
(Example 3)
The reaction solution prepared in Example 1 was continuously filled into a 24 cm × 35 cm resin film laminate bag (laminate configuration: barrier ONy 18 μm / ONy 15 μm / LLDPE 70 μm) without replacing with nitrogen, and the thickness was adjusted to 2 mm. The mixture was sandwiched and allowed to stand in a thermostatic bath at 50 ° C. for 18 hours for polymerization. The operations from preparation of the solution to filling were all performed in a nitrogen atmosphere in which oxygen was blocked. A colorless, transparent, and uniform sheet-like polymer gel consisting of an organic polymer and clay mineral was formed in a resin film laminate bag. The synthesized polymer gel was a hydrogel having a water content ([water / gel dried product] × 100 =) of 760% by mass. The obtained hydrogel was shaken with distilled water (500 g) at 37 ° C. for 6 hours with respect to 10 cm × 10 cm, and the supernatant was freeze-dried. The solid residue obtained after lyophilization was weighed to be 0.15 g. The recovery rate of the residue with respect to the solid content was 5%.

(比較例1)
実施例1で調製した反応溶液を、予め窒素置換した24cm×35cmの低密度ポリエチレン製袋(LDPE;厚み200μm)に連続充填し、2mmの厚みになるように厚み調節板に挟み込み、50℃の恒温槽中で18時間重合を行った。なお、これらの溶液調製から充填までの操作は、全て酸素を遮断した窒素雰囲気下で行った。低密度ポリエチレン袋内に有機高分子と粘土鉱物からなる弾力性、強靭性のある無色透明で均一なシート状の高分子ゲルが生成した。合成された高分子ゲルは水含有率([水/ゲル乾燥物]×100=)が760質量%のヒドロゲルであった。得られたヒドロゲルの10cm×10cmに対し、37℃の蒸留水(500g)で6時間振とうし、上清を凍結乾燥した。凍結乾燥後に得られた固形分残渣を計量したところ、0.42gであった。固形分に対する残渣の回収率は、14%であった
(Comparative Example 1)
The reaction solution prepared in Example 1 was continuously filled into a 24 cm × 35 cm low density polyethylene bag (LDPE; thickness 200 μm) previously substituted with nitrogen, and sandwiched between thickness adjusting plates so as to have a thickness of 2 mm. Polymerization was carried out for 18 hours in a thermostatic bath. The operations from preparation of the solution to filling were all performed in a nitrogen atmosphere in which oxygen was blocked. A colorless, transparent, and uniform sheet-like polymer gel consisting of organic polymer and clay mineral was formed in a low-density polyethylene bag. The synthesized polymer gel was a hydrogel having a water content ([water / gel dried product] × 100 =) of 760% by mass. The obtained hydrogel was shaken with distilled water (500 g) at 37 ° C. for 6 hours with respect to 10 cm × 10 cm, and the supernatant was freeze-dried. The solid residue obtained after lyophilization was weighed to be 0.42 g. The recovery rate of the residue with respect to the solid content was 14%.

(比較例2)
実施例1で調製した反応溶液を、予め窒素置換した24cm×35cmの無延伸ポリプロピレン製袋(CPP;厚み40μm)に連続充填し、50℃の恒温槽中で18時間重合を行った。なお、これらの溶液調製から充填までの操作は、全て酸素を遮断した窒素雰囲気下で行った。CPP製袋内に有機高分子と粘土鉱物からなる弾力性、強靭性のある無色透明で均一なシート状の高分子ゲルが生成した。合成された高分子ゲルは水含有率([水/ゲル乾燥物]×100=)が760質量%のヒドロゲルであった。得られたヒドロゲルの10cm×10cmに対し、37℃の蒸留水(500g)で6時間振とうし、上清を凍結乾燥した。凍結乾燥後に得られた固形分残渣を計量したところ、0.48gであった。固形分に対する残渣の回収率は、16%であった
(Comparative Example 2)
The reaction solution prepared in Example 1 was continuously filled in a 24 cm × 35 cm unstretched polypropylene bag (CPP; thickness: 40 μm) previously substituted with nitrogen, and polymerization was carried out in a thermostatic bath at 50 ° C. for 18 hours. The operations from preparation of the solution to filling were all performed in a nitrogen atmosphere in which oxygen was blocked. A colorless, transparent, and uniform sheet-like polymer gel composed of an organic polymer and clay mineral was formed in a CPP bag. The synthesized polymer gel was a hydrogel having a water content ([water / gel dried product] × 100 =) of 760% by mass. The obtained hydrogel was shaken with distilled water (500 g) at 37 ° C. for 6 hours with respect to 10 cm × 10 cm, and the supernatant was freeze-dried. The solid residue obtained after lyophilization was weighed to be 0.48 g. The recovery rate of the residue relative to the solid content was 16%.

(比較例3)
実施例1で調製した反応溶液を、予め窒素置換した24cm×35cmの無延伸PET製袋(厚み100μm)に連続充填し、50℃の恒温水槽恒温槽中で18時間重合を行った。なお、これらの溶液調製から重合充填までの操作は、全て酸素を遮断した窒素雰囲気下で行った。無延伸PET製袋内に有機高分子と粘土鉱物からなる弾力性、強靭性のある無色透明で均一なシート状の高分子ゲルが生成した。合成された高分子ゲルは水含有率([水/ゲル乾燥物]×100=)が760質量%のヒドロゲルであった。得られたヒドロゲルの10cm×10cmに対し、37℃の蒸留水(500g)で6時間振とうし、上清を凍結乾燥した。凍結乾燥後に得られた固形分残渣を計量したところ、0.27gであった。固形分に対する残渣の回収率は、9%であった
(Comparative Example 3)
The reaction solution prepared in Example 1 was continuously filled into a 24 cm × 35 cm unstretched PET bag (thickness: 100 μm) previously substituted with nitrogen, and polymerization was carried out in a thermostatic bath at 50 ° C. for 18 hours. The operations from preparation of these solutions to polymerization filling were all performed in a nitrogen atmosphere in which oxygen was blocked. A colorless, transparent, and uniform sheet-like polymer gel composed of an organic polymer and clay mineral was formed in an unstretched PET bag. The synthesized polymer gel was a hydrogel having a water content ([water / gel dried product] × 100 =) of 760% by mass. The obtained hydrogel was shaken with distilled water (500 g) at 37 ° C. for 6 hours with respect to 10 cm × 10 cm, and the supernatant was freeze-dried. The solid residue obtained after lyophilization was weighed to be 0.27 g. The recovery rate of the residue relative to the solid content was 9%

Figure 0005415804
Figure 0005415804

1:袋状容器押さえ板
2:補強用アングル
3:スペーサー
4:締付け用ボルト
5:袋状容器
1: Bag-shaped container holding plate 2: Reinforcing angle 3: Spacer 4: Tightening bolt 5: Bag-shaped container

Claims (3)

ラジカル重合性の水溶性有機モノマーと水の混合液に水膨潤性粘土鉱物を分散させ、さらに重合開始剤を混合して調製した反応溶液を、酸素透過率が100ml/m2・day・MPa以下の樹脂フィルム製の袋状容器内に充填し、酸素を遮断した条件下で前記水溶性有機モノマーを重合することを特徴とする有機無機複合ヒドロゲルの製造方法。 A reaction solution prepared by dispersing a water-swellable clay mineral in a mixed solution of a radical polymerizable water-soluble organic monomer and water and further mixing a polymerization initiator, has an oxygen permeability of 100 ml / m 2 · day · MPa or less. A method for producing an organic-inorganic composite hydrogel, characterized in that the water-soluble organic monomer is polymerized under a condition of filling a resin film bag-like container and blocking oxygen . 前記反応溶液が充填された袋状容器を2枚の平板で挟持し、その状態を保持しながら前記水溶性有機モノマーを重合する請求項1記載の有機無機複合ヒドロゲルの製造方法。 The method for producing an organic-inorganic composite hydrogel according to claim 1, wherein the bag-shaped container filled with the reaction solution is sandwiched between two flat plates and the water-soluble organic monomer is polymerized while maintaining the state. 前記袋状容器の内表面を予め脱酸素処理した後に、前記反応溶液を充填する請求項1又は2記載の有機無機複合ヒドロゲルの製造方法。 The method for producing an organic-inorganic composite hydrogel according to claim 1 or 2, wherein the reaction solution is filled after deoxidizing the inner surface of the bag-like container in advance.
JP2009085496A 2009-03-31 2009-03-31 Method for producing organic-inorganic composite hydrogel Active JP5415804B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009085496A JP5415804B2 (en) 2009-03-31 2009-03-31 Method for producing organic-inorganic composite hydrogel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009085496A JP5415804B2 (en) 2009-03-31 2009-03-31 Method for producing organic-inorganic composite hydrogel

Publications (2)

Publication Number Publication Date
JP2010235781A JP2010235781A (en) 2010-10-21
JP5415804B2 true JP5415804B2 (en) 2014-02-12

Family

ID=43090418

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009085496A Active JP5415804B2 (en) 2009-03-31 2009-03-31 Method for producing organic-inorganic composite hydrogel

Country Status (1)

Country Link
JP (1) JP5415804B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016186028A (en) * 2015-03-27 2016-10-27 日本合成化学工業株式会社 Method for producing (meth) acrylic resin
WO2018135928A1 (en) * 2017-01-23 2018-07-26 주식회사 엘지화학 Super absorbent polymer and preparation method therefor
KR102192638B1 (en) 2017-01-23 2020-12-17 주식회사 엘지화학 Superabsorbent polymers and method for preparing the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002053762A (en) * 2000-05-29 2002-02-19 Kawamura Inst Of Chem Res Organic and inorganic composite hydrogel and its producing method
JP4861681B2 (en) * 2005-11-04 2012-01-25 一般財団法人川村理化学研究所 Polymer gel laminate and method for producing the same
JP5102484B2 (en) * 2006-12-21 2012-12-19 一般財団法人川村理化学研究所 Thermal conductivity material

Also Published As

Publication number Publication date
JP2010235781A (en) 2010-10-21

Similar Documents

Publication Publication Date Title
JP4759165B2 (en) Organic / inorganic composite hydrogel and method for producing the same
Zhao et al. Mechanically strong and thermosensitive macromolecular microsphere composite poly (N-isopropylacrylamide) hydrogels
Carlsson et al. Nano-hybrid self-crosslinked PDMA/silica hydrogels
RU2411262C2 (en) Hydrophilic polymers with reversed phase and use thereof in water-swellable elastomeric compositions
JP4776187B2 (en) Organic / inorganic composite polymer gel and method for producing the same
Soheilmoghaddam et al. Regenerated cellulose nanocomposites reinforced with exfoliated graphite nanosheets using BMIMCL ionic liquid
JP5415804B2 (en) Method for producing organic-inorganic composite hydrogel
WO2015112303A1 (en) Nanocomposite microgels, methods of manufacture, and uses thereof
Gonzalez-Matheus et al. Film formation from Pickering stabilized waterborne polymer dispersions
Yüce et al. Influence of titania on the morphological and mechanical properties of 1, 3-butanediol dimethacrylate based polyHIPE composites
EP2607404A1 (en) Composition and preparation of hydrogel nanocomposites with improved mechanical properties and use thereof.
JP2002053762A (en) Organic and inorganic composite hydrogel and its producing method
Faucheu et al. Properties of polymer/clay interphase in nanoparticles synthesized through in-situ polymerization processes
Zhang et al. A mechanically strong polyvinyl alcohol/poly (2-(N, N′-dimethyl amino) ethyl methacrylate)-poly (acrylic acid) hydrogel with pH-responsiveness
Bat Hydroxyethyl methacrylate based nanocomposite hydrogels with tunable pore architecture
JP5200213B2 (en) Polymer gel and method for producing the same
JP2007204527A (en) Polymer-composited gel and its production method
JP2010254800A (en) Organic/inorganic composite
JP5834482B2 (en) Method for producing organic-inorganic composite electrolyte layer for battery
JP5598833B2 (en) Method for producing organic / inorganic composite hydrogel
JP5456344B2 (en) Organic-inorganic composite hydrogel and method for producing the same
JP2009062478A (en) Continuous production method of organic-inorganic composite hydrogel
JP2005290073A (en) Method for producing polymer hydrogel
Tokuda et al. Preparation of poly (ionic liquid) composite particles and function modification with anion exchange
JP5654208B2 (en) Organic inorganic composite gel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120308

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130911

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130917

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131114

R150 Certificate of patent or registration of utility model

Ref document number: 5415804

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250