JP5102484B2 - Thermal conductivity material - Google Patents

Thermal conductivity material Download PDF

Info

Publication number
JP5102484B2
JP5102484B2 JP2006344162A JP2006344162A JP5102484B2 JP 5102484 B2 JP5102484 B2 JP 5102484B2 JP 2006344162 A JP2006344162 A JP 2006344162A JP 2006344162 A JP2006344162 A JP 2006344162A JP 5102484 B2 JP5102484 B2 JP 5102484B2
Authority
JP
Japan
Prior art keywords
heat conductive
heat
polymer gel
conductive material
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006344162A
Other languages
Japanese (ja)
Other versions
JP2008156406A (en
Inventor
和敏 原口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawamura Institute of Chemical Research
Original Assignee
Kawamura Institute of Chemical Research
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawamura Institute of Chemical Research filed Critical Kawamura Institute of Chemical Research
Priority to JP2006344162A priority Critical patent/JP5102484B2/en
Publication of JP2008156406A publication Critical patent/JP2008156406A/en
Application granted granted Critical
Publication of JP5102484B2 publication Critical patent/JP5102484B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、水膨潤性粘土鉱物を含む高分子ゲルを構成成分とする熱伝導材に関する。電子機器部材、工業機械部材、医療関連部材、エネルギー関連部材など、熱伝導を必要とする分野において有用である。   The present invention relates to a heat conductive material comprising a polymer gel containing a water-swellable clay mineral as a constituent component. It is useful in fields requiring heat conduction, such as electronic equipment members, industrial machine members, medical-related members, and energy-related members.

近年、熱伝導の重要性はますます大きくなっており、特に、精密機器分野、とりわけ、ディスプレイ、コンピューター、携帯電話などを初めとする電子機器分野では、性能の向上、装置の小型化に伴い、機器内部で発生する熱を如何に外部に放出するかが重要な技術課題となっている。また、その他の工業機械、医療関連機器・部材、エネルギー関連部材などにおいても、優れた熱伝導材が求められている。これまで、熱伝導部材の一つとして、発熱源と放熱板の間に、密着性とクッション性を有するゴム状の熱伝導材が用いられてきた。通常、ゴム状の有機高分子は低い熱伝導性しか有さないため、多くの場合、ゴム状有機高分子の中に熱伝導性微粒子、例えば、金属微粒子や繊維、熱伝導性セラミック微粒子や繊維、炭素系微粒子や繊維などを出来るだけ高充填したものが用いられてきた。しかし、かかる微粒子を高充填するとゴム状有機高分子の柔らかさが失われ、その結果、発熱源および放熱板との密着性が失われて熱伝導性が低下する問題を有していた。一方、熱伝導性液体の使用は良好な熱伝導性を有することから望まれているが、液体であるため密封する必要があり、密封状態が何らかの理由で失われた場合、液漏れが生じ、事故につながる可能性があることから、安全上の問題を抱えていた。   In recent years, the importance of heat conduction has become more and more important, especially in the field of precision equipment, especially in the field of electronic equipment such as displays, computers, mobile phones, etc. An important technical issue is how to release the heat generated inside the equipment to the outside. In addition, excellent heat conductive materials are also required for other industrial machines, medical-related devices / members, energy-related members, and the like. Until now, a rubber-like heat conductive material having adhesion and cushioning properties has been used as a heat conductive member between a heat generation source and a heat radiating plate. Usually, rubber-like organic polymers have low thermal conductivity, so in many cases, rubber-like organic polymers contain thermally conductive fine particles such as metal fine particles and fibers, thermally conductive ceramic fine particles and fibers. In this case, a material filled with carbon fine particles or fibers as high as possible has been used. However, when such fine particles are highly filled, the softness of the rubbery organic polymer is lost, and as a result, the adhesion between the heat source and the heat radiating plate is lost and the thermal conductivity is lowered. On the other hand, the use of a heat conductive liquid is desired because it has good heat conductivity, but it needs to be sealed because it is a liquid, and if the sealed state is lost for some reason, liquid leakage occurs, He had a safety problem because it could lead to an accident.

これまでに本発明者らは、水溶性高分子と層状粘土鉱物とが複合化して形成された三次元網目を有する高分子ゲルが、優れた溶媒吸収性や吸収速度、また高い伸張性や強度などの優れた力学物性を有することについて報告した(例えば特許文献1参照)。しかし、この技術は高分子ヒドロゲルに関するものであり、上記の従来の技術における問題を解決する材料について提案するものではない。   So far, the present inventors have shown that a polymer gel having a three-dimensional network formed by combining a water-soluble polymer and a layered clay mineral has excellent solvent absorbability and absorption rate, as well as high extensibility and strength. It reported about having the outstanding mechanical properties, such as (refer patent document 1). However, this technique relates to a polymer hydrogel, and does not propose a material that solves the problems in the conventional techniques described above.

特開2002−53629号公報JP 2002-53629 A

本発明が解決しようとする課題は、良好な熱伝導性を有すると共に、圧縮性や基材への密着性に優れ、液漏れを生じない安全性の高い熱伝導材を提供することにある。   The problem to be solved by the present invention is to provide a highly safe thermal conductive material that has good thermal conductivity, is excellent in compressibility and adhesion to a substrate, and does not cause liquid leakage.

本発明者らは、上記課題を解決すべく鋭意研究に取り組んだ結果、層状剥離した水膨潤性粘土鉱物と有機高分子が三次元網目を形成し、その中に熱伝導性媒体を含む高分子ゲル部材と放熱部材とからなる熱伝導材が、優れた熱伝導性、圧縮性、基材への密着性、液漏れを生じない安全性を有することを見出し、本発明を完成するに至った。   As a result of diligent research to solve the above problems, the present inventors have formed a three-dimensional network of delaminated water-swellable clay mineral and organic polymer, and a polymer containing a thermally conductive medium therein The present inventors have found that a heat conductive material composed of a gel member and a heat radiating member has excellent heat conductivity, compressibility, adhesion to a base material, and safety that does not cause liquid leakage, and completed the present invention. .

すなわち、本発明は、(A)高分子ゲル部材と(B)放熱部材とが接合した構造を備えた熱伝導材であり、該高分子ゲル部材が、(C)水膨潤性粘土鉱物と、(D)(メタ)アクリルアミド系化合物の重合体とが複合化して形成された三次元網目中に、(E)熱伝導性媒体を含有することを特徴とする熱伝導材を提案するものである。   That is, the present invention is a heat conductive material having a structure in which (A) a polymer gel member and (B) a heat radiating member are joined, and the polymer gel member includes (C) a water-swellable clay mineral, (D) The present invention proposes a heat conductive material characterized in that (E) a heat conductive medium is contained in a three-dimensional network formed by combining a polymer of a (meth) acrylamide compound. .

本発明の熱伝導材は、(C)水膨潤性粘土鉱物と、(D)(メタ)アクリルアミド系化合物の重合体とが複合化して形成された三次元網目中に、(E)熱伝導性媒体を含有する高分子ゲル部材を使用しているため、優れた熱伝導性、圧縮性、基材への密着性、液漏れを生じない安全性を有し、電子機器部材、工業機械部材、医療関連部材、エネルギー関連部材など、熱伝導を必要とする分野において有用である。   The heat conductive material of the present invention comprises (E) a heat conductive material in a three-dimensional network formed by combining (C) a water-swellable clay mineral and (D) a polymer of a (meth) acrylamide compound. Since the polymer gel member containing the medium is used, it has excellent thermal conductivity, compressibility, adhesion to the base material, safety that does not cause liquid leakage, electronic equipment member, industrial machine member, It is useful in fields requiring heat conduction, such as medical-related members and energy-related members.

本発明は、(A)高分子ゲル部材と(B)放熱部材とが接合した構造を備えた熱伝導材であり、該高分子ゲル部材が、(C)水膨潤性粘土鉱物と、(D)(メタ)アクリルアミド系化合物の重合体とが複合化して形成された三次元網目中に、(E)熱伝導性媒体を含有することを特徴とする熱伝導材である。   The present invention is a heat conductive material having a structure in which (A) a polymer gel member and (B) a heat dissipation member are joined, and the polymer gel member includes (C) a water-swellable clay mineral, and (D And (E) a heat conductive medium containing a (E) heat conductive medium in a three-dimensional network formed by complexing with a polymer of a (meth) acrylamide compound.

本発明における(D)(メタ)アクリルアミド系化合物の重合体としては、層状剥離した(C)水膨潤性粘土鉱物と三次元網目を形成し、且つ、その中に(E)熱伝導性媒体を含むことができるものである。具体的には、(メタ)アクリルアミド系化合物の単独重合物や、(メタ)アクリルアミド系化合物と他のモノマーの共重合物が最も有効に用いられる。   As the polymer of (D) (meth) acrylamide compound in the present invention, a layer-exfoliated (C) water-swellable clay mineral and a three-dimensional network are formed, and (E) a heat conductive medium is contained therein. It can be included. Specifically, homopolymers of (meth) acrylamide compounds and copolymers of (meth) acrylamide compounds and other monomers are most effectively used.

(A)(メタ)アクリルアミド系化合物としては、下記式(1)で表される化合物、及びジアセトンアクリルアミド、N−アクリロイルピロリディン、N−アクリロイルピペリディン、N−アクリロイルメチルホモピペラディン、N−アクリロイルメチルピペラディン等が例示される。   (A) As the (meth) acrylamide compound, a compound represented by the following formula (1), diacetone acrylamide, N-acryloylpyrrolidine, N-acryloylpiperidine, N-acryloylmethyl homopiperazine, N -Acryloylmethyl piperazine and the like are exemplified.

また、式1で表される化合物の例としては、アクリルアミド、N−メチルアクリルアミド、N−エチルアクリルアミド、N−シクロプロピルアクリルアミド、N−イソプロピルアクリルアミド、メタクリルアミド、N−メチルメタクリルアミド、N−シクロプロピルメタクリルアミド、N−イソプロピルメタクリルアミド、N,N−ジメチルアクリルアミド、N−メチル−N−エチルアクリルアミド、N−メチル−N−イソプロピルアクリルアミド、N−メチル−N−n−プロピルアクリルアミド、N,N−ジエチルアクリルアミド、N−(ヒドロキシメチル)アクリルアミド、等がある。これらの化合物は単独で、あるいは二種以上を併用して用いることができる。   Examples of the compound represented by Formula 1 include acrylamide, N-methylacrylamide, N-ethylacrylamide, N-cyclopropylacrylamide, N-isopropylacrylamide, methacrylamide, N-methylmethacrylamide, N-cyclopropyl. Methacrylamide, N-isopropylmethacrylamide, N, N-dimethylacrylamide, N-methyl-N-ethylacrylamide, N-methyl-N-isopropylacrylamide, N-methyl-Nn-propylacrylamide, N, N-diethyl Examples include acrylamide, N- (hydroxymethyl) acrylamide, and the like. These compounds can be used alone or in combination of two or more.

Figure 0005102484
(式中、Rは水素原子又はメチル基、R及びRは、それぞれ独立的にヒドロキシ基で置換されていても良い炭素数が1〜6のアルキル基を表す。)
Figure 0005102484
(Wherein R 1 represents a hydrogen atom or a methyl group, and R 2 and R 3 each independently represent an alkyl group having 1 to 6 carbon atoms which may be substituted with a hydroxy group.)

本発明に用いられる、(C)水膨潤性粘土鉱物としては、粘土鉱物のうち水に微細、且つ均一に分散可能で、水に溶解もしくは膨潤する性質を有するものであり、特に水中で分子状(単一層状)又はそれに近いレベルで均一分散可能な層状粘土鉱物であることが好ましい。より好ましくは1〜10層程度のナノメーターレベル(の厚み)で分散しているもの、特に好ましくは1又は2層程度の厚みで分散しているものである。例えば、水膨潤性スメクタイトや水膨潤性雲母などが用いられる。具体的には、ナトリウムを層間イオンとして含んだ水膨潤性ヘクトライト、水膨潤性モンモリロナイト、水膨潤性サポナイト、水膨潤性合成雲母などが挙げられる。   The (C) water-swellable clay mineral used in the present invention is a clay mineral that is finely and uniformly dispersible in water and has the property of being dissolved or swollen in water. It is preferably a lamellar clay mineral that can be uniformly dispersed at a level close to (single layer). More preferably, it is dispersed at a nanometer level (thickness) of about 1 to 10 layers, and particularly preferably is dispersed at a thickness of about 1 or 2 layers. For example, water-swellable smectite or water-swellable mica is used. Specific examples include water-swellable hectorite containing sodium as an interlayer ion, water-swellable montmorillonite, water-swellable saponite, and water-swellable synthetic mica.

本発明に用いられる高分子ゲルに含まれる(メタ)アクリルアミド系化合物の重合体と粘土鉱物の割合は上記性質が達成されれば良く、また用いる(メタ)アクリルアミド系化合物の重合体や水膨潤性粘土鉱物の種類によっても異なり必ずしも限定されないが、好ましくは粘土鉱物/(メタ)アクリルアミド系化合物の重合体の質量比が0.01〜10、より好ましくは0.03〜2.0、特に好ましくは0.05〜1.0である。   The ratio of the polymer of the (meth) acrylamide compound and the clay mineral contained in the polymer gel used in the present invention only needs to achieve the above properties, and the polymer of the (meth) acrylamide compound used and the water swellability It varies depending on the kind of clay mineral and is not necessarily limited, but preferably the mass ratio of clay mineral / (meth) acrylamide compound polymer is 0.01 to 10, more preferably 0.03 to 2.0, particularly preferably. 0.05 to 1.0.

粘土鉱物/(メタ)アクリルアミド系化合物の重合体の質量比が0.01未満では本発明の目的とする高分子ゲルが出来ないか、圧縮に対する応答性が悪く、10を越えると高分子ゲルが脆かったり、熱伝導性が不良となる問題が生じてくる。   If the mass ratio of the clay mineral / (meth) acrylamide compound polymer is less than 0.01, the polymer gel targeted by the present invention cannot be obtained, or the response to compression is poor, and if it exceeds 10, the polymer gel is There arises a problem that it is brittle or has poor thermal conductivity.

本発明に使用する(A)高分子ゲル部材の形状は、フィルムまたはシート状の形状が好ましく、厚さは使用する機器により変化して用いることができ、必ずしも限定されないが、好ましくは0.1〜300mmであり、0.5〜50mmであることがより好ましい。   The shape of the polymer gel member (A) used in the present invention is preferably a film or sheet shape, and the thickness can be changed depending on the equipment used, and is not necessarily limited, but preferably 0.1 It is -300mm, and it is more preferable that it is 0.5-50mm.

本発明に用いられる(B)放熱部材を例示すれば、伝熱性に優れた無機および有機材料で(A)高分子ゲル部材と密着性に優れたものが用いられる。具体的には、銅、アルミ、鉄、ステンレスなどの金属、窒化アルミニウム、炭化珪素などのセラミック、グラファイト、非晶質炭素などの炭素材、熱伝導性粒子を充填した有機高分子が例示され、これらのフィルムまたはシートが用いられる。(B)放熱部材の厚さは、放熱効果が得られればよく、特に限定されるものではないが、0.01〜50mmであることが好ましく、0.05〜10mmであることがより好ましい。   As an example of the (B) heat radiating member used in the present invention, inorganic and organic materials having excellent heat conductivity and (A) a polymer gel member having excellent adhesion are used. Specific examples include metals such as copper, aluminum, iron, and stainless steel, ceramics such as aluminum nitride and silicon carbide, carbon materials such as graphite and amorphous carbon, and organic polymers filled with thermally conductive particles. These films or sheets are used. (B) The thickness of the heat dissipating member is not particularly limited as long as a heat dissipating effect is obtained, but is preferably 0.01 to 50 mm, and more preferably 0.05 to 10 mm.

本発明に用いられる(E)熱伝導性媒体としては、熱伝導性を有する液状媒体であって、(C)と(D)とからなる三次元網目の中に安定して含まれるものが用いられる。ここで、安定して含まれるとは圧縮などの変形によっても媒体が三次元網目から遊離しないで含まれることを意味する。例えば、水または水と混和する液体またはそれらの混合物が挙げられる。具体的には、水、メタノール、エタノール、プロパノール、ブタノール、メチルエチルケトン、メチルセルソルブ、グリセリン、ジグリセリン、エチレングリコール、プロピレングリコールおよびこれらの混合物等が例示される。その他、炭化水素系オイルやシリコーンオイルと水が乳化したものなども挙げられる。   As the (E) heat conductive medium used in the present invention, a liquid medium having heat conductivity, which is stably contained in the three-dimensional network composed of (C) and (D) is used. It is done. Here, being stably contained means that the medium is contained without being separated from the three-dimensional network even by deformation such as compression. For example, water or a liquid miscible with water or a mixture thereof can be mentioned. Specific examples include water, methanol, ethanol, propanol, butanol, methyl ethyl ketone, methyl cellosolve, glycerin, diglycerin, ethylene glycol, propylene glycol, and mixtures thereof. In addition, hydrocarbon oils, silicone oils and water emulsified are also included.

本発明において、熱伝導性を向上させるために、更に(F)熱伝導性粒子を含ませることも可能である。熱伝導性粒子としては、金属、セラミック、炭素系を中心としたものが良好に用いられ、特に(E)熱伝導性媒体中に分散するものが好ましい。具体的には、銅、アルミなどの金属微粒子または繊維、窒化アルミ、窒化珪素などのセラミック微粒子または繊維、黒鉛、カーボンブラック、フラーレン、カーボンナノチューブ、炭素繊維などの炭素微粒子または繊維が例示される。熱伝導性粒子の添加量としては、熱伝導性を向上し、好ましくは高分子ゲルの圧縮性などを大きく低減しない範囲で選択することが好ましいが、用いる熱伝導性粒子の種類や形状により異なり、一概に規定されない。一般的には、熱伝導性媒体に対する質量比として0.01〜2、好ましくは0.03〜0.1、特に好ましくは0.05〜0.5が用いられる。   In the present invention, in order to improve thermal conductivity, (F) thermal conductive particles can be further included. As the thermally conductive particles, those mainly made of metal, ceramic, and carbon are preferably used, and (E) those dispersed in a thermally conductive medium are particularly preferable. Specific examples include metal fine particles or fibers such as copper and aluminum, ceramic fine particles or fibers such as aluminum nitride and silicon nitride, and carbon fine particles or fibers such as graphite, carbon black, fullerene, carbon nanotubes, and carbon fibers. The amount of thermally conductive particles added is preferably selected within a range that improves the thermal conductivity and preferably does not significantly reduce the compressibility of the polymer gel, but varies depending on the type and shape of the thermally conductive particles used. It is not generally defined. Generally, a mass ratio of 0.01 to 2, preferably 0.03 to 0.1, particularly preferably 0.05 to 0.5 is used as a mass ratio with respect to the heat conductive medium.

本発明における熱伝導材は、(A)高分子ゲル部材と(B)放熱部材が強く密着していることが必須であり、より好ましくは、(A)と(B)が一体化しているものである。(A)と(B)の密着が不十分だと熱伝導が低下する。   In the heat conductive material in the present invention, it is essential that (A) the polymer gel member and (B) the heat radiating member are in close contact, and more preferably, (A) and (B) are integrated. It is. If the close contact between (A) and (B) is insufficient, the heat conduction is lowered.

また、本発明における熱伝導材は、(A)高分子ゲル部材が密封された構造を有することが好ましく、揮発性の高い熱伝導性媒体を用いた場合は密封された構造を有することが特に好ましい。密封方法は、高分子フィルム、金属フィルム、金属蒸着フィルムおよびそれらを組み合わせて用いることができ、好ましくは、薄い、及び/または熱伝導性の高いフィルムやシートを用いることが有効である。特に、前記の(B)放熱部材を密封容器の一部として用いることは特に有効である。以上の密封された高分子ゲル部材は、密封が何らかの理由で破壊されても、熱伝導性媒体が液体として流出することは無く、更に圧縮等の外部刺激によっても液状に遊離してくることはない。従って、熱伝導性の高い液状媒体を用いているにもかかわらず、本発明においては、事故の場合の安全性に優れている特徴を有する。   In addition, the heat conductive material in the present invention preferably has a structure in which (A) the polymer gel member is sealed, and particularly has a sealed structure when a highly volatile heat conductive medium is used. preferable. As the sealing method, a polymer film, a metal film, a metal vapor-deposited film, and a combination thereof can be used. Preferably, it is effective to use a thin film and / or a sheet having high thermal conductivity. In particular, it is particularly effective to use the heat radiation member (B) as a part of the sealed container. Even if the sealed polymer gel member is broken for some reason, the thermally conductive medium does not flow out as a liquid, and it can be released into a liquid state by external stimuli such as compression. Absent. Therefore, in spite of the use of a liquid medium having high thermal conductivity, the present invention has a feature that is excellent in safety in case of an accident.

本発明における高分子ゲルは、良好な機械的性質を示し、例えば圧縮や引っ張り又は曲げ変形に対して耐えるタフネスを有する。特に、圧縮に対しては、80%以下の繰り返し圧縮に対して破壊せず、且つ、可逆的な変形応答をすることが特徴である。80%を超えると残留歪みによる非可逆的変形が増加してくる。   The polymer gel in the present invention exhibits good mechanical properties, and has toughness that can withstand, for example, compression, tension, or bending deformation. In particular, the compression is characterized by a reversible deformation response without breaking against repeated compression of 80% or less. If it exceeds 80%, irreversible deformation due to residual strain increases.

本発明において用いる高分子ゲルは、例えば、上記の(メタ)アクリルアミド系化合物を層状剥離した水膨潤性粘土鉱物の共存下、水溶液中でラジカル重合反応を行わせることにより得られる。開始反応には、過酸化物の存在及び/又は紫外線照射等の公知の方法が用いられ、加熱又は紫外線照射により加速することもできる。また、必要に応じて、有機架橋剤(例えば、N,N’−メチレンビスアクリルアミド、N,N’−プロピレンビスアクリルアミド、ジ(アクリルアミドメチル)エーテル、1,2−ジアクリルアミドエチレングリコール、1,3−ジアクリロイルエチレンウレア、エチレンジアクリレート、N,N’−ジアリルタータルジアミド、N,N’−ビスアクリリルシスタミンなどの二官能性化合物や、トリアリルシアヌレート、トリアリルイソシアヌレートなどの三官能性化合物)を少量添加しておくことも可能である。更に、反応溶液に予め熱伝導性粒子を共存させておくこと、重合容器の一部として放熱部材として働く熱伝導性フィルムまたはシートを用いることも有効である。   The polymer gel used in the present invention can be obtained, for example, by performing a radical polymerization reaction in an aqueous solution in the presence of a water-swellable clay mineral obtained by laminating the above (meth) acrylamide compound. For the initiation reaction, a known method such as the presence of peroxide and / or ultraviolet irradiation is used, and it can be accelerated by heating or ultraviolet irradiation. If necessary, an organic crosslinking agent (for example, N, N′-methylenebisacrylamide, N, N′-propylenebisacrylamide, di (acrylamidomethyl) ether, 1,2-diacrylamide ethylene glycol, 1,3 -Bifunctional compounds such as diacryloyl ethylene urea, ethylene diacrylate, N, N'-diallyl tartaramide, N, N'-bisacrylyl cystamine, and triaryl cyanurate, triallyl isocyanurate It is also possible to add a small amount of a functional compound). Furthermore, it is also effective to make heat conductive particles coexist in the reaction solution in advance, and to use a heat conductive film or sheet serving as a heat radiating member as a part of the polymerization container.

次いで本発明を実施例により、より具体的に説明するが、もとより本発明は、以下に示す実施例にのみ限定されるものではない。   EXAMPLES Next, although an Example demonstrates this invention more concretely, this invention is not limited only to the Example shown below from the first.

(実施例1)
20℃の水浴中に設置した内部を窒素置換したガラス容器に、溶存酸素を除去した純水56.88gを入れ、攪拌しながら0.914gの水膨潤性粘土鉱物(合成ヘクトライト:商標ラポナイトXLG)を加え、無色透明の溶液を調製した。これにアクリルアミド系化合物(ジメチルアクリルアミド:DMAA)を加え無色透明溶液を得た。次いで、触媒としてN,N,N’,N’−テトラメチルエチレンジアミン(TMED)48μlを、開始剤として、ペルオキソ二硫酸カリウム(KPS)の10%水溶液3.18gを攪拌して加え無色透明溶液を得た。該溶液を、厚み1mmのアルミシート(内表面梨地仕上げ:100×100mm:放熱部材)とそれと一体化されたポリプロピレン袋(厚み20ミクロン)に充填して、20℃で12時間重合させ、120×120×10mmの放熱部材と密封された高分子ゲル部材からなる複合材料(熱伝導材)を調製した。ここで、高分子ゲルの一面はアルミシート(梨地仕上げ面)と強く結合し完全に一体になっていた。得られた熱伝導材の高分子ゲル(ポリプロピレンフィルム)側を60℃の発熱体の上に密着して置き、上から、放熱部材、高分子ゲル部材、発熱部となるように設置した。ここで発熱部は定常的に60℃になるようにし、放熱部材の表面温度の時間変化を測定した。その結果、放熱部材表面温度が3分後に50℃、6分後に55℃に到達し、優れた熱伝導性を有することが明らかとなった。また、放熱部材の上から機械的に20%の繰り返し圧縮を加えた所、高分子ゲルは破壊することなく可逆的な変形を示した。
Example 1
In a glass container placed inside a water bath at 20 ° C. and purged with nitrogen, 56.88 g of pure water from which dissolved oxygen has been removed is put, and 0.914 g of water-swellable clay mineral (synthetic hectorite: trade name Laponite XLG) with stirring. ) Was added to prepare a colorless and transparent solution. An acrylamide compound (dimethylacrylamide: DMAA) was added thereto to obtain a colorless transparent solution. Next, 48 μl of N, N, N ′, N′-tetramethylethylenediamine (TMED) as a catalyst and 3.18 g of a 10% aqueous solution of potassium peroxodisulfate (KPS) as an initiator were added with stirring to give a colorless transparent solution. Obtained. The solution was filled in an aluminum sheet having a thickness of 1 mm (inner surface finish: 100 × 100 mm: heat radiating member) and a polypropylene bag (thickness 20 μm) integrated therewith and polymerized at 20 ° C. for 12 hours, and 120 × A composite material (thermal conductive material) consisting of a 120 × 10 mm heat dissipating member and a sealed polymer gel member was prepared. Here, one surface of the polymer gel was strongly bonded to the aluminum sheet (satin finish surface) and was completely integrated. The polymer gel (polypropylene film) side of the obtained heat conducting material was placed in close contact with a heating element at 60 ° C., and was placed from above so as to become a heat radiating member, a polymer gel member, and a heat generating part. Here, the heat generating portion was constantly set to 60 ° C., and the time change of the surface temperature of the heat dissipation member was measured. As a result, the surface temperature of the heat radiating member reached 50 ° C. after 3 minutes and reached 55 ° C. after 6 minutes, and it was revealed that the heat dissipation member had excellent thermal conductivity. Further, when 20% repeated compression was mechanically applied from above the heat dissipation member, the polymer gel showed reversible deformation without breaking.

(実施例2)
アルミシートの代わりに銅シート(厚み1mm)を用いること、形状が120×120×3mmであることを除くと実施例1と同様にして複合材料(熱伝導材)を合成した。実施例1と同様にして測定した、放熱部材表面温度は30秒後に58℃に達した。
(Example 2)
A composite material (thermal conductive material) was synthesized in the same manner as in Example 1 except that a copper sheet (thickness 1 mm) was used instead of the aluminum sheet and the shape was 120 × 120 × 3 mm. The surface temperature of the heat dissipating member measured in the same manner as in Example 1 reached 58 ° C. after 30 seconds.

(実施例3)
アルミシートの形状が30×30×1mm、ゲル形状が30×30×50mmであることを除くと実施例1と同様にして熱伝導材を調製した。繰り返し70%の圧縮歪みを加えた所、高分子ゲルは破壊することなく可逆的な変形を示した。
(Example 3)
A heat conductive material was prepared in the same manner as in Example 1 except that the shape of the aluminum sheet was 30 × 30 × 1 mm and the gel shape was 30 × 30 × 50 mm. When a compression strain of 70% was repeatedly applied, the polymer gel showed reversible deformation without breaking.

(実施例4)
反応液中に、酸処理したカーボンナノチューブ(マルチウオール:直径30nm、長さ100ミクロン)をDMAAの5質量%を加える以外は、実施例1と同様にして、カーボンナノチューブが高分子ゲル中に分散して含まれた熱伝導材を調製した。実施例1と同様にして測定した放熱部材の温度変化は2分後に51℃、3分後に56℃であった。
Example 4
The carbon nanotubes were dispersed in the polymer gel in the same manner as in Example 1 except that 5% by mass of DMAA was added to the reaction solution with acid-treated carbon nanotubes (multiwall: diameter 30 nm, length 100 microns). The heat conductive material contained was prepared. The temperature change of the heat radiating member measured in the same manner as in Example 1 was 51 ° C. after 2 minutes and 56 ° C. after 3 minutes.

(比較例1、2)
高分子ゲルの代わりに、シリコンゴム(130×130×10mm)(比較例1)、およびハードポリウレタンゴム(130×130×10mm)(比較例2)を用い、実施例1と同様に厚み1mmのアルミ放熱板を用いてその表面温度の時間変化を実施例1と同様にして測定した。比較例1では、32℃(3分後)、36.5℃(6分後)であった。比較例2では、29℃(3分後)、31℃(30分後)であった。
(Comparative Examples 1 and 2)
In place of the polymer gel, silicon rubber (130 × 130 × 10 mm) (Comparative Example 1) and hard polyurethane rubber (130 × 130 × 10 mm) (Comparative Example 2) were used. The time change of the surface temperature was measured in the same manner as in Example 1 using an aluminum heat sink. In Comparative Example 1, they were 32 ° C. (after 3 minutes) and 36.5 ° C. (after 6 minutes). In Comparative Example 2, they were 29 ° C. (after 3 minutes) and 31 ° C. (after 30 minutes).

Claims (4)

(A)高分子ゲル部材と(B)放熱部材とが接合した構造を備えた熱伝導材であり、該高分子ゲル部材が、(C)水膨潤性粘土鉱物と、(D)(メタ)アクリルアミド系化合物の重合体とが複合化して形成された三次元網目中に、(E)熱伝導性媒体を含有することを特徴とする熱伝導材。 (A) A heat conductive material having a structure in which a polymer gel member and (B) a heat dissipation member are joined, and the polymer gel member comprises (C) a water-swellable clay mineral, (D) (meta) A heat conductive material comprising (E) a heat conductive medium in a three-dimensional network formed by complexing with a polymer of an acrylamide compound. (A)高分子ゲル部材が密封された構造である請求項1記載の熱伝導材。 (A) The heat conductive material according to claim 1, wherein the polymer gel member is sealed. (A)高分子ゲル部材が、80%の圧縮に対して破壊せず、且つ、可逆的な変形応答をするものである請求項1または2に記載の熱伝導材。 (A) The heat conductive material according to claim 1 or 2, wherein the polymer gel member does not break against 80% compression and has a reversible deformation response. 前記(E)熱伝導性媒体中に(F)熱伝導性粒子が含まれている請求項1〜3のいずれかに記載の熱伝導材。 The heat conductive material in any one of Claims 1-3 in which the (F) heat conductive particle is contained in the said (E) heat conductive medium.
JP2006344162A 2006-12-21 2006-12-21 Thermal conductivity material Expired - Fee Related JP5102484B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006344162A JP5102484B2 (en) 2006-12-21 2006-12-21 Thermal conductivity material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006344162A JP5102484B2 (en) 2006-12-21 2006-12-21 Thermal conductivity material

Publications (2)

Publication Number Publication Date
JP2008156406A JP2008156406A (en) 2008-07-10
JP5102484B2 true JP5102484B2 (en) 2012-12-19

Family

ID=39657701

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006344162A Expired - Fee Related JP5102484B2 (en) 2006-12-21 2006-12-21 Thermal conductivity material

Country Status (1)

Country Link
JP (1) JP5102484B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5415804B2 (en) * 2009-03-31 2014-02-12 Dic株式会社 Method for producing organic-inorganic composite hydrogel
US20120128869A1 (en) * 2010-09-29 2012-05-24 Empire Technology Development Llc Phase change energy storage in ceramic nanotube composites

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4759165B2 (en) * 2000-05-29 2011-08-31 一般財団法人川村理化学研究所 Organic / inorganic composite hydrogel and method for producing the same
JP2002053762A (en) * 2000-05-29 2002-02-19 Kawamura Inst Of Chem Res Organic and inorganic composite hydrogel and its producing method
JP3712943B2 (en) * 2001-02-08 2005-11-02 富士高分子工業株式会社 Thermal softening heat dissipation sheet and heat dissipation sheet using the same
JP2002270741A (en) * 2001-03-12 2002-09-20 Nitto Shinko Kk Heat radiating sheet and method for sticking electronic component to the heat radiating sheet
JP4776187B2 (en) * 2004-07-21 2011-09-21 Dic株式会社 Organic / inorganic composite polymer gel and method for producing the same
JP2006095470A (en) * 2004-09-30 2006-04-13 Kurita Water Ind Ltd Water-absorbing medium, and method for concentrating suspension using it
JP2006165154A (en) * 2004-12-06 2006-06-22 Matsushita Electric Ind Co Ltd Thermally conductive member

Also Published As

Publication number Publication date
JP2008156406A (en) 2008-07-10

Similar Documents

Publication Publication Date Title
Feng et al. Recent advances in polymer-based thermal interface materials for thermal management: A mini-review
Jiang et al. Highly flexible and self-healable thermal interface material based on boron nitride nanosheets and a dual cross-linked hydrogel
Shen et al. Multilayer graphene enables higher efficiency in improving thermal conductivities of graphene/epoxy composites
Ying et al. Tailoring highly ordered graphene framework in epoxy for high-performance polymer-based heat dissipation plates
Jung et al. High through-plane thermal conduction of graphene nanoflake filled polymer composites melt-processed in an L-shape kinked tube
JP5101862B2 (en) Sheet-forming monomer composition, thermally conductive sheet and process for producing the same
Taha-Tijerina et al. Electrically insulating thermal nano-oils using 2D fillers
WO2015087620A1 (en) Heat-storage composition
KR102408879B1 (en) Heat-conductive sheet
Tong et al. Preparation and characterization of poly (ethyl acrylate)/bentonite nanocomposites by in situ emulsion polymerization
TW200825138A (en) Heat conductive silicone grease composition and cured product thereof
JP2010165868A (en) Gel-like composition
JPWO2016111139A1 (en) Thermal storage heat conduction sheet
WO2014083890A1 (en) Heat-conducting foam sheet for electronic instruments and heat-conducting laminate for electronic instruments
JP2009102577A (en) Thermal conductive composition
Kim et al. Improvement of insulating and thermal properties of SiO2-coated copper nanowire composites
Tian et al. Synthesis of sandwich-like nanostructure fillers and their use in different types of thermal composites
Meng et al. Noncovalent modification of boron nitrite nanosheets for thermally conductive, mechanically resilient epoxy nanocomposites
Shi et al. Reinforcement of mechanical properties of silicone rubber foam by functionalized graphene using supercritical CO2 foaming technology
Yegin et al. Metal–organic–inorganic nanocomposite thermal interface materials with ultralow thermal resistances
Zhao et al. High-performance liquid metal/polyborosiloxane elastomer toward thermally conductive applications
JP5102484B2 (en) Thermal conductivity material
WO2013047145A1 (en) Thermally conductive pressure-sensitive adhesive composition, thermally conductive pressure-sensitive adhesive sheet-like molded body, method for producing thermally conductive pressure-sensitive adhesive composition, method for producing thermally conductive pressure-sensitive adhesive sheet-like molded body, and electronic component
Wertz et al. Thermally conductive-silicone composites with thermally reversible cross-links
Romo‐Uribe Polymers in 2D confinement: A nanoscale mechanism for thermo‐mechanical reinforcement

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120919

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120925

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120928

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151005

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees