JP2006095470A - Water-absorbing medium, and method for concentrating suspension using it - Google Patents

Water-absorbing medium, and method for concentrating suspension using it Download PDF

Info

Publication number
JP2006095470A
JP2006095470A JP2004286787A JP2004286787A JP2006095470A JP 2006095470 A JP2006095470 A JP 2006095470A JP 2004286787 A JP2004286787 A JP 2004286787A JP 2004286787 A JP2004286787 A JP 2004286787A JP 2006095470 A JP2006095470 A JP 2006095470A
Authority
JP
Japan
Prior art keywords
water
absorbing medium
suspension
polymer gel
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004286787A
Other languages
Japanese (ja)
Inventor
Shusuke Hamabe
秀典 浜辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2004286787A priority Critical patent/JP2006095470A/en
Publication of JP2006095470A publication Critical patent/JP2006095470A/en
Pending legal-status Critical Current

Links

Landscapes

  • Processes Of Treating Macromolecular Substances (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a new water-absorbing medium and a method for concentrating a suspension using it. <P>SOLUTION: The water-absorbing medium is a cross-linked polymer cross-linked with a layered clay mineral, includes a thermosensitive polymer gel having hydrophilicity/hydrophobicity reversibly changing at the phase transition point. In the method for concentrating the suspension, the water-absorbing medium and the suspension are brought into contact with each other in a temperature zone in which the thermosensitive polymer gel shows hydrophilicity, so that the suspension is concentrated. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、特に、懸濁液の濃縮方法に好適な、感温性高分子ゲルを用いた吸水媒体に関する。   The present invention particularly relates to a water-absorbing medium using a thermosensitive polymer gel suitable for a suspension concentration method.

半導体工場やガラス工場などからは、研磨材などの無機系の微細粒子が懸濁している廃液が排出される。これらの廃液は、通常、各種の無機または有機凝集剤を用いた凝集沈澱処理を行って当該廃液を濃縮するか、または、直接産業廃棄物として処理されている。
しかしながら、この凝集沈澱処理の場合、凝集剤などの薬品コストの負担が大きく、また多量の汚泥が発生するためその処理コストも嵩むという問題がある。
Waste liquids in which inorganic fine particles such as abrasives are suspended are discharged from semiconductor factories and glass factories. These waste liquids are usually subjected to a coagulation-precipitation treatment using various inorganic or organic flocculants to concentrate the waste liquid, or directly processed as industrial waste.
However, in the case of this coagulation-precipitation treatment, there is a problem that the cost of chemicals such as the coagulant is large, and a large amount of sludge is generated, so that the treatment cost increases.

また、例えばインクジェット記録シートの製造の際にインク受理層として塗工されるシリカ微細粒子の懸濁液など、無機系の微細粒子を含む溶液の製造工程では、膜を用いた溶液の濃縮や、蒸発濃縮などが行われている。
しかしながら、上記した膜を用いた濃縮では、溶液に懸濁している微細粒子による膜閉塞が起こることもあり、また、蒸発濃縮の場合は、イニシアルコストとランニングコストが嵩み、その経済的負担が大きいという問題がある。
Further, in the production process of a solution containing inorganic fine particles, such as a suspension of fine silica particles coated as an ink receiving layer in the production of an ink jet recording sheet, for example, concentration of the solution using a film, Evaporation concentration is performed.
However, in the concentration using the above-mentioned membrane, membrane clogging may occur due to fine particles suspended in the solution, and in the case of evaporation concentration, the initial cost and running cost increase, and the economic burden is increased. There is a problem of being big.

このようなことから、無機系の微細粒子が懸濁する懸濁液を脱水して濃縮することに関しては、操作が簡便で、処理コストも安価な処理方法が求められている。
一方、例えば金属帯板の表面に付着している水分を効率よく脱水するために、相転移点を境にして親水性と疎水性が可逆的に変化する高分子化合物、具体的にはポリビニルメチルエーテル、メチルセルロース、ポリエチレンオキシド、ポリ−N−イソプロピルアクリルアミド、ポリ酢酸ビニル部分鹸化物などを吸水媒体として用いる水切り法が知られている(特許文献1を参照)。
For this reason, there is a need for a processing method that is simple in operation and low in processing cost for dehydrating and concentrating a suspension in which inorganic fine particles are suspended.
On the other hand, for example, in order to efficiently dehydrate moisture adhering to the surface of a metal strip, a polymer compound that reversibly changes hydrophilicity and hydrophobicity at the phase transition point, specifically, polyvinylmethyl A draining method using ether, methylcellulose, polyethylene oxide, poly-N-isopropylacrylamide, partially saponified polyvinyl acetate or the like as a water-absorbing medium is known (see Patent Document 1).

この先行技術では、吸水媒体が親水性を示す温度域(低温)で当該吸水媒体と金属帯板を接触させて金属帯板に付着する水分を脱水し、次いで吸水媒体を疎水性を示す温度域(高温)に搬送し、そこで吸水した水分を放水させるという処置を反復することにより金属帯板の水切りを行っている。
特公平6−46134号公報
In this prior art, in the temperature range where the water absorbing medium is hydrophilic (low temperature), the water absorbing medium and the metal strip are brought into contact with each other to dehydrate the water adhering to the metal strip, and then the temperature range where the water absorbing medium is hydrophobic. The metal strip is drained by repeating the treatment of transporting to (high temperature) and discharging the water absorbed there.
Japanese Patent Publication No. 6-46134

しかしながら、特許文献1が開示するような感温性を備えた吸水媒体を用いて懸濁液の水を吸水して当該懸濁液を濃縮するという事例は、現在までのところ報告されていない。
このようなことを踏まえて、本発明者は、懸濁液の濃縮に際し、上記したような吸水媒体を用いることにより、例えば蒸発濃縮法と対比して加熱のための熱的エネルギーが格段に少なく、加圧ろ過のためのポンプ駆動等の機械的エネルギーも不要となり、そのためランニングコストの低減が可能になるとの着想を抱いた。
However, there has been no report to date of a case where water in a suspension is absorbed using a water-absorbing medium having temperature sensitivity as disclosed in Patent Document 1 to concentrate the suspension.
In light of the above, the present inventor uses a water-absorbing medium as described above when concentrating a suspension, so that, for example, the thermal energy for heating is significantly less than that in the evaporation concentration method. The idea is that mechanical energy such as driving a pump for pressure filtration is also unnecessary, and therefore the running cost can be reduced.

そしてその場合に用いる吸水媒体としては、その吸水速度ができるだけ大きく、また懸濁液と混合したときに崩壊しない程度の機械的強度(形態保持力)を備えることが好適であろうとの観点に立ち、それを満たすべき吸水媒体について鋭意研究を重ねて、後述する本発明の新規な吸水媒体を開発するに至ったのである。
すなわち、本発明は、吸水速度が大きく、また適切な機械的強度も備えている新規な吸水媒体と、その吸水媒体を用いた懸濁液の濃縮方法の提供を目的とする。
In this case, it is preferable that the water-absorbing medium has a water absorption speed as high as possible and that it should have a mechanical strength (shape holding force) that does not collapse when mixed with a suspension. The inventors have made extensive studies on the water-absorbing medium that should satisfy the requirements, and have developed a novel water-absorbing medium of the present invention described later.
That is, an object of the present invention is to provide a novel water-absorbing medium having a high water-absorbing speed and appropriate mechanical strength, and a suspension concentration method using the water-absorbing medium.

上記した目的を達成するために、請求項1に記載の本発明においては、層状粘土鉱物で架橋された高分子架橋体であり、相転移点を境にして親水性と疎水性が可逆的に変化する感温性高分子ゲルを含むことを特徴とする吸水媒体が提供される。
前記層状粘土鉱物は、特に限定しないがスメクタイトが好適であり(請求項2)、また前記感温性高分子ゲルが、アクリルアミド誘導体およびメタクリルアミド誘導体から選ばれる1種または2種以上の高分子架橋体であることを好適とする(請求項3)。アクリルアミド誘導体およびメタクリルアミド誘導体のうち、特に、N−イソプロピルアクリルアミドが好適である(請求項4)。
In order to achieve the above object, the present invention according to claim 1 is a crosslinked polymer crosslinked with a lamellar clay mineral, and the hydrophilicity and hydrophobicity are reversibly bordered on the phase transition point. A water-absorbing medium comprising a temperature-sensitive polymer gel that changes is provided.
Although the layered clay mineral is not particularly limited, smectite is suitable (Claim 2), and the thermosensitive polymer gel is one or more polymer cross-links selected from acrylamide derivatives and methacrylamide derivatives. It is preferable that it is a body (Claim 3). Of the acrylamide derivatives and methacrylamide derivatives, N-isopropylacrylamide is particularly preferred (Claim 4).

また、前記感温性高分子ゲルとしては、前記アクリルアミド誘導体およびメタクリルアミド誘導体から選ばれる1種または2種以上に、水溶性ビニル系ノニオンモノマーおよび/または水溶性ビニル系アニオンモノマーを共重合させた高分子架橋体が好適である(請求項5)。
また、請求項6に記載の本発明においては、上記感温性高分子ゲルを含む吸水媒体と懸濁液とを、前記感温性高分子ゲルが親水性を示す温度域で接触させて前記懸濁液を濃縮することを特徴とする懸濁液の濃縮方法が提供される。
In addition, as the thermosensitive polymer gel, a water-soluble vinyl-based nonionic monomer and / or a water-soluble vinyl-based anionic monomer are copolymerized with one or more selected from the acrylamide derivatives and methacrylamide derivatives. A polymer cross-linked product is preferred (Claim 5).
Further, in the present invention according to claim 6, the water-absorbing medium containing the temperature-sensitive polymer gel and a suspension are brought into contact with each other in a temperature range in which the temperature-sensitive polymer gel exhibits hydrophilicity. There is provided a method for concentrating a suspension, characterized by concentrating the suspension.

この吸水媒体は、それを構成する感温性高分子ゲル(高分子架橋体)の合成時に架橋剤として用いられる層状粘土鉱物が感温性高分子ゲルにおける架橋密度を均一化してその機械的強度(形態保持力)を高めるので、懸濁液と接触させたときに崩壊せず、反復使用に耐えることができる。
吸水媒体が親水性を示す温度域でその吸水媒体と懸濁液を接触させると、吸水媒体は懸濁液から水を選択的にしかも自動的に吸水する。その結果、懸濁液は濃縮される。そして、その吸水媒体を、疎水性を示す温度に加熱すれば、吸蔵されていた水は自動的に放出され、当該吸水媒体は吸水可能な状態に復元する。
In this water-absorbing medium, the layered clay mineral used as a cross-linking agent when synthesizing the thermosensitive polymer gel (polymer cross-linked product) is made uniform in the crosslink density in the thermosensitive polymer gel and its mechanical strength Since (form retention power) is increased, it does not collapse when it is brought into contact with the suspension, and can withstand repeated use.
When the water-absorbing medium is brought into contact with the suspension in a temperature range where the water-absorbing medium is hydrophilic, the water-absorbing medium selectively absorbs water from the suspension automatically. As a result, the suspension is concentrated. When the water absorbing medium is heated to a temperature exhibiting hydrophobicity, the stored water is automatically released, and the water absorbing medium is restored to a water absorbing state.

この過程では、例えば蒸発濃縮法に比べて、必要とする熱的、機械的エネルギーは大幅に減少するので、濃縮に必要なランニングコストは大幅に低減する。   In this process, for example, compared with the evaporation concentration method, the thermal and mechanical energy required is greatly reduced, so the running cost required for concentration is greatly reduced.

本発明の吸水媒体は、基本的には、相転移点(温度)を境にして親水性と疎水性が可逆的に変化する感温性高分子ゲルで構成されている。
そして、この感温性高分子ゲルは、後述する層状粘土鉱物を用いて架橋された高分子架橋体であることを特徴とする。
感温性高分子ゲルとしては、上記した相転移点を境にして親水性と疎水性が可逆的に変化する感温性を備えていて、かつ後述する層状粘土鉱物を架橋剤として用いることによって合成された高分子架橋体であれば特に制限を受けるものではない。
The water-absorbing medium of the present invention is basically composed of a temperature-sensitive polymer gel in which hydrophilicity and hydrophobicity reversibly change with a phase transition point (temperature) as a boundary.
And this thermosensitive polymer gel is characterized by being a crosslinked polymer crosslinked using a lamellar clay mineral described later.
As a thermosensitive polymer gel, it has a temperature sensitivity in which hydrophilicity and hydrophobicity reversibly change at the above-described phase transition point, and a lamellar clay mineral described later is used as a crosslinking agent. There is no particular limitation as long as it is a crosslinked polymer.

このような感温性高分子ゲルのうち、本発明においては、例えば、アクリルアミド誘導体の架橋体、メタクリルアミド誘導体の架橋体、またはアクリルアミド誘導体とメタクリルアミド誘導体の共重合体などを好適例としてあげることができる。
その場合、アクリルアミド誘導体としては、例えばN−メチルアクリルアミド、N−メチル−N−エチルアクリルアミド、N−アクリロイルピロリジン、N−ジクロロプロピルアクリルアミド、N−イソプロピルアクリルアミド、N,N−ジエチルアクリルアミド、N−メチル−N−イソプロピルアクリルアミド、N−ノルマルプロピルアクリルアミド、N−メチル−N−ノルマルアクリルアミド、N−アクリロイルピペリジンなどを用いることができる。
Among such thermosensitive polymer gels, in the present invention, for example, a cross-linked product of an acrylamide derivative, a cross-linked product of a methacrylamide derivative, or a copolymer of an acrylamide derivative and a methacrylamide derivative is given as a preferred example. Can do.
In this case, examples of the acrylamide derivative include N-methylacrylamide, N-methyl-N-ethylacrylamide, N-acryloylpyrrolidine, N-dichloropropylacrylamide, N-isopropylacrylamide, N, N-diethylacrylamide, N-methyl- N-isopropylacrylamide, N-normalpropyl acrylamide, N-methyl-N-normal acrylamide, N-acryloylpiperidine, and the like can be used.

また、メタクリルアミド誘導体としては、例えばN−シクロプロピルメタクリルアミド、N−エチルメタクリルアミド、N−イソプロピルメタクリルアミド、N−ノルマルプロピルメタクリルアミドなどを用いることができる。
これら誘導体のうち、N−イソプロピルアクリルアミドは重合速度が大きく、高分子量化が可能であることや、他のモノマーとの共重合性が良好であるという点で好適である。
Moreover, as a methacrylamide derivative, N-cyclopropyl methacrylamide, N-ethyl methacrylamide, N-isopropyl methacrylamide, N-normal propyl methacrylamide, etc. can be used, for example.
Among these derivatives, N-isopropylacrylamide is preferable in that it has a high polymerization rate, can have a high molecular weight, and has good copolymerizability with other monomers.

上記したアクリルアミド誘導体の1種または2種以上を適宜選択し、それを架橋することによりアクリルアミド誘導体の高分子架橋体を得ることができ、上記したメタクリルアミド誘導体の1種または2種以上を適宜選択し、それらを架橋することによりメタクリルアミド誘導体の高分子架橋体を得ることもできる。
また、上記したアクリルアミド誘導体の1種または2種以上を適宜選択し、上記したメタクリル誘導体の1種または2種以上を適宜選択し、両者を共重合させることにより、アクリルアミド誘導体とメタクリルアミド誘導体の共重合体を含む高分子架橋体を得ることもできる。
By selecting one or more of the above acrylamide derivatives as appropriate and crosslinking them, a polymer cross-linked product of the acrylamide derivative can be obtained, and one or more of the above methacrylamide derivatives are selected as appropriate. In addition, a crosslinked polymer of methacrylamide derivatives can be obtained by crosslinking them.
In addition, one or more of the above acrylamide derivatives are appropriately selected, one or more of the above methacrylic derivatives are appropriately selected, and both are copolymerized, whereby the acrylamide derivative and the methacrylamide derivative are co-polymerized. A crosslinked polymer containing a polymer can also be obtained.

なお、本発明の感温性高分子ゲルは、アクリルアミド誘導体やメタクリルアミド誘導体の架橋体に、さらに、アクリルアミドやメタクリルアミドのような水溶液ビニル系ノニオンモノマーまたは/およびアクリル酸やメタクリル酸のような水溶液ビニル系アニオンモノマーを共重合させた高分子架橋体であることが好ましい。
これら水溶性ビニル系ノニオンモノマーや水溶性ビニル系アニオンモノマーを共重合させることにより、合成された感温性高分子ゲルの相転移点の高低や吸水・放水速度の大小を制御することができる。
The temperature-sensitive polymer gel of the present invention includes an acrylamide derivative or a methacrylamide derivative crosslinked, an aqueous vinyl nonionic monomer such as acrylamide or methacrylamide, and / or an aqueous solution such as acrylic acid or methacrylic acid. A crosslinked polymer obtained by copolymerizing a vinyl anionic monomer is preferred.
By copolymerizing these water-soluble vinyl-based nonionic monomers and water-soluble vinyl-based anionic monomers, it is possible to control the level of the phase transition point of the synthesized thermosensitive polymer gel and the magnitude of the water absorption / discharge rate.

上記した水溶性ビニル系ノニオンモノマーまたは/および水溶性ビニル系アニオンモノマーを共重合させる場合は、感温性高分子ゲルの感温性を維持することが必要であること、吸水・放水速度のバランスを保つこと、および適度な相転移点に制御することなどの点からすると、用いるアクリルアミド誘導体やメタクリルアミド誘導体に対して、0.1〜30質量%導入することが好ましい。   When copolymerizing the above water-soluble vinyl-based nonionic monomer and / or water-soluble vinyl-based anionic monomer, it is necessary to maintain the temperature sensitivity of the thermosensitive polymer gel, and the balance between water absorption and water discharge rate From the standpoints of maintaining an appropriate phase transition point, and the like, it is preferable to introduce 0.1 to 30% by mass with respect to the acrylamide derivative or methacrylamide derivative used.

なお、用いるアクリルアミド誘導体やメタクリルアミド誘導体の種類、または共重合させる水溶液ビニル系ノニオンモノマーや水溶液ビニル系アニオンモノマーの種類やその共重合比などが変わると、合成された感温性高分子ゲルの相転移点も変化するので、感温性高分子ゲルの使用温度との関係で、上記した各成分の種類などを適宜に選択することが必要になる。   If the type of acrylamide derivative or methacrylamide derivative used, or the type of aqueous vinyl nonionic monomer or aqueous vinyl anion monomer to be copolymerized or the copolymerization ratio thereof are changed, the phase of the synthesized thermosensitive polymer gel is changed. Since the transition point also changes, it is necessary to appropriately select the type of each component described above in relation to the use temperature of the thermosensitive polymer gel.

また、これらの高分子架橋体としては、通常、分子量が10〜2000万程度のものを用いることができるが、分子量の大きいものほど架橋密度を小さくすることができるので、吸水・放水速度が大きくなり、最大吸水速度も大きくなるという特徴を有しているので、本発明では、分子量が200万以上のものを用いることが好ましい。ただし、分子量が2000万を超えると、高分子架橋体におけるポリマー鎖の絡み合いによって、応答速度が低下するなどの問題が生じてくる。   In addition, as these polymer cross-linked products, those having a molecular weight of about 10 to 20 million can be used normally, but the higher the molecular weight, the lower the cross-linking density, so the water absorption / discharge rate is large. Therefore, in the present invention, it is preferable to use one having a molecular weight of 2 million or more. However, when the molecular weight exceeds 20 million, problems such as a decrease in response speed occur due to entanglement of polymer chains in the polymer crosslinked product.

これらの高分子架橋体は、上記した誘導体の架橋時に、層状粘土鉱物を架橋剤として用いることにより製造される。
この層状粘土鉱物としては、特に限定されないが例えば2−8面体型スメクタイトや3−8面体型スメクタイトなどのスメクタイトがあげられ、これらは、特性として膨潤型(Na+を交換性陽イオンとして持つ)、有機物をインターカレート(層間に取り込む)できる性質を備える。これら層状粘土鉱物を架橋剤として用いることにより、合成された高分子架橋体(感温性高分子ゲル)の架橋密度が均一化してその機械的強度(形態保持力)は高くなり、また吸水・放水速度も大きくなるという効果が得られる。なお、懸濁液に接触させて使用する吸水媒体としては感温性高分子ゲルの機械的強度が高いことは特に必要となる。
These polymer crosslinked products are produced by using a layered clay mineral as a crosslinking agent at the time of crosslinking of the above-described derivatives.
The layered clay mineral is not particularly limited, and examples thereof include smectites such as 2-octahedral smectite and 3-8-hedron smectite, and these have swelling properties (having Na + as an exchangeable cation). The organic substance can be intercalated (taken between layers). By using these layered clay minerals as cross-linking agents, the cross-link density of the synthesized polymer cross-linked product (temperature-sensitive polymer gel) becomes uniform, and its mechanical strength (form retention) increases. The effect of increasing the water discharge speed can be obtained. The water-absorbing medium used in contact with the suspension is particularly required to have a high mechanical strength of the thermosensitive polymer gel.

スメクタイトは、感温性高分子ゲルに上記した効果を有効に付与することができるという点で有用である。
2−8面体型スメクタイトとしては、モンモリロナイトやバイデライトがあげられ、3−8面体型スメクタイトとしては、サホナイト、ヘクトナイト、ソーコナイトなどがあげられる。これらスメクタイトには、天然物も合成されたものもあるが、架橋密度を均一化して合成した感温性高分子ゲルを高強度化でき、また吸水・放水速度を大きくすることが可能であるという点で、粒径10nm〜1μm程度に整粒されている合成スメクタイトが好適である。
Smectite is useful in that the above-described effects can be effectively imparted to the thermosensitive polymer gel.
Examples of the 2-octahedral smectite include montmorillonite and beidellite, and examples of the 3-8-hedral type smectite include saphonite, hectorite, and soconite. Some of these smectites have been synthesized as natural products, but it is possible to increase the strength of the thermosensitive polymer gel synthesized by homogenizing the crosslink density and to increase the water absorption / discharge rate. In this respect, synthetic smectite having a particle size of about 10 nm to 1 μm is preferable.

高分子架橋体の合成時における層状粘土鉱物の使用量が少なすぎると、架橋点が少なくなるので機械的強度の高い架橋体が得られず、また使用量が多すぎると、架橋体の強度は高くなるとはいえ、その架橋体の吸水・放水速度が小さくなる傾向を示すので、層状粘土鉱物の使用量は、架橋対象のアクリルアミド誘導体やメタクリルアミド誘導体のモノマーの使用量に対し、1〜50質量%であることが好ましい。   If the amount of layered clay mineral used in the synthesis of the polymer crosslinked product is too small, the number of crosslinking points will be reduced, so a crosslinked product with high mechanical strength cannot be obtained, and if the amount used is too large, the strength of the crosslinked product will be Although it increases, the water absorption / discharge rate of the crosslinked product tends to decrease, so the amount of layered clay mineral used is 1 to 50 mass relative to the amount of monomer of the acrylamide derivative or methacrylamide derivative to be crosslinked. % Is preferred.

本発明の感温性高分子ゲルは、上記した各成分を含む反応系に対するラジカル重合方法で製造される。
光重合方法の場合には、更に、ベンゾイン、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテルなどを光重合開始剤とし、反応系に波長365nmの紫外線を照射して製造可能である。
The temperature-sensitive polymer gel of the present invention is produced by a radical polymerization method for a reaction system containing the above-described components.
In the case of a photopolymerization method, it can be further produced by using benzoin, benzoin ethyl ether, benzoin isopropyl ether or the like as a photopolymerization initiator and irradiating the reaction system with ultraviolet light having a wavelength of 365 nm.

重合促進法の場合には、重合促進剤として、例えば、N,N,N,N−テトラメチルエチレンジアミンを用い、または重合開始剤として過硫酸アンモニウム、過硫酸ナトリウム、過硫酸カリウムなどを用いて製造可能である。
これらのラジカル重合方法においては、用いる各薬品の量、照射する紫外線の強度、重合温度などを制御することにより、合成される感温性高分子ゲルの重合度や分子量を調節することができる。
In the case of the polymerization acceleration method, it can be produced using, for example, N, N, N, N-tetramethylethylenediamine as a polymerization accelerator, or using ammonium persulfate, sodium persulfate, potassium persulfate, or the like as a polymerization initiator. It is.
In these radical polymerization methods, the degree of polymerization and the molecular weight of the synthesized thermosensitive polymer gel can be adjusted by controlling the amount of each chemical used, the intensity of the irradiated ultraviolet rays, the polymerization temperature, and the like.

本発明では、上記した感温性高分子ゲルを吸水媒体として用いることにより、懸濁液が濃縮される。
具体的には、相転移点以下の温度で、親水性を示す温度域において、懸濁液にこの吸水媒体を投入して懸濁液と吸水媒体を接触させる。懸濁液の水分は吸水媒体に吸蔵されるので、当該懸濁液が濃縮される。
In the present invention, the suspension is concentrated by using the above-described thermosensitive polymer gel as a water-absorbing medium.
Specifically, the water-absorbing medium is introduced into the suspension and brought into contact with the suspension at a temperature below the phase transition point and in a temperature range showing hydrophilicity. Since the water in the suspension is stored in the water-absorbing medium, the suspension is concentrated.

このとき、吸水媒体の使用量を適宜に選択することにより、懸濁液の濃縮度を調節することができる。
そして、懸濁液と吸水媒体を分離したのち、吸水媒体を、相転移点より高温で、疎水性を示す温度域で加熱する。その結果、吸水媒体に吸蔵されていた水分が放出される。加熱手段としては、例えば温水、熱風、ヒータ手段など適宜な手段を用いればよい。
At this time, the concentration of the suspension can be adjusted by appropriately selecting the amount of the water-absorbing medium used.
Then, after separating the suspension and the water-absorbing medium, the water-absorbing medium is heated at a temperature higher than the phase transition point and exhibiting hydrophobicity. As a result, the moisture stored in the water absorbing medium is released. As the heating means, for example, appropriate means such as hot water, hot air, and heater means may be used.

放水後の吸水媒体は、例えば大気冷却して相転移点以下の親水性を示す温度域まで冷却することにより、再度、懸濁液の濃縮工程に戻して再利用することができる。
なお、用いる吸水媒体の形状は任意に選択して使用することができる。例えば濃縮工程を連続方式で行う場合には、吸水媒体を板状にして、それをベルトコンベアの表面に配置した状態で、懸濁液の槽内を移動させることができる。また濃縮工程をバッチ方式で行う場合には、吸水媒体を顆粒状にして使用することができる。
The water-absorbing medium after water discharge can be returned to the suspension concentration step and reused again by cooling to the air and cooling to a temperature range that exhibits hydrophilicity below the phase transition point.
In addition, the shape of the water absorption medium to be used can be arbitrarily selected and used. For example, when the concentration step is performed in a continuous manner, the water-absorbing medium can be moved in a suspension tank in a state where the water-absorbing medium is formed in a plate shape and disposed on the surface of the belt conveyor. Moreover, when performing a concentration process by a batch system, a water absorption medium can be used in a granular form.

(試料作製)
脱イオン水90gに、N−イソプロピルアクリルアミド10gと、合成スメクタイトであるヘクトライト(Rockwood社製、粒径72〜148nm)3gを添加して成る溶液に、ベンゾインイソプロピルエーテル(光重合開始剤)10mgをアセトン0.1gに溶解させた溶液を添加したのち、ここに、100mL/minの流量で窒素ガスを2時間送入して充分に撹拌し、ついで、透明なガラス製のふたで密閉された幅10cm、長さ20cm、高さ5cmのステンレス鋼製の容器に流し込んだ。
(Sample preparation)
To 90 g of deionized water, 10 g of N-isopropylacrylamide and 3 g of synthetic smectite hectorite (Rockwood, particle size 72 to 148 nm) were added to 10 mg of benzoin isopropyl ether (photopolymerization initiator). After adding a solution dissolved in 0.1 g of acetone, nitrogen gas was fed at a flow rate of 100 mL / min for 2 hours, and the mixture was sufficiently stirred, and then sealed with a transparent glass lid. It was poured into a stainless steel container 10 cm long, 20 cm long and 5 cm high.

ついで、ふたの上から、波長365nmの紫外線を2時間に亘って照射して光重合を進めて感温性高分子ゲルを合成した。これを実施例試料1とする。
脱イオン水90gに、N−イソプロピルアクリルアミド9.9gと合成スメクタイト3gを添加して成る溶液に、ベンゾインイソプロピルエーテル10mgをアクリル酸(水溶性ビニル系アニオンモノマー)0.1gに溶解させた溶液を添加したのち、更に水酸化ナトリウムを添加して中和し、ここに、100mL/minの流量で窒素ガスを2時間送入し、ついでガラス製のふたで密閉された前記ステンレス鋼製の容器に流し込んだ。
Next, ultraviolet rays having a wavelength of 365 nm were irradiated for 2 hours from the top of the lid, and photopolymerization was advanced to synthesize a thermosensitive polymer gel. This is designated as Example Sample 1.
To a solution obtained by adding 9.9 g of N-isopropylacrylamide and 3 g of synthetic smectite to 90 g of deionized water, a solution obtained by dissolving 10 mg of benzoin isopropyl ether in 0.1 g of acrylic acid (water-soluble vinyl anionic monomer) is added. Then, sodium hydroxide was further added to neutralize, and nitrogen gas was fed into the container at a flow rate of 100 mL / min for 2 hours, and then poured into the stainless steel container sealed with a glass lid. It is.

ついで、ふたの上から、波長365nmの紫外線を2時間に亘って照射して光重合を進めた。得られた感温性高分子ゲルを実施例試料2とする。
合成スメクタイトの代わりに、エチレンビスアクリルアミドを架橋剤として用いたことを除いては実施例試料1の場合と同じ条件下で感温性高分子ゲルを合成した。これを比較例試料とする。
(試料の機械的強度、吸水速度)
以上、3種類の感温性高分子ゲルの性能を調査したところ、実施例試料1は、架橋密度が均一であり、そのため、全体は透明で、機械的強度は高く、そして吸水速度は4g/g-ゲル・hrであった。
Then, photopolymerization proceeded by irradiating ultraviolet rays having a wavelength of 365 nm for 2 hours from the top of the lid. The obtained thermosensitive polymer gel is referred to as Example Sample 2.
A thermosensitive polymer gel was synthesized under the same conditions as in Example Sample 1 except that ethylene bisacrylamide was used as a cross-linking agent instead of synthetic smectite. This is a comparative sample.
(Mechanical strength of sample, water absorption speed)
As described above, the performance of the three types of thermosensitive polymer gels was investigated. As a result, Example Sample 1 had a uniform cross-linking density, so that the whole was transparent, the mechanical strength was high, and the water absorption rate was 4 g / g-gel · hr.

また、実施例試料2の場合は、その吸水速度が50g/g-ゲル・hrと著しく大きくなっていた。これは、明らかに、N−イソプロピルアクリルアミドの架橋時にアクリル酸(水溶性ビニル系アニオンモノマー)を共重合させたことの効果である。
一方、架橋剤として合成スメクタイトを使用していない比較例試料は、架橋密度が不均一であり、そのため、全体は白濁しており、少しの外力を加えても脆く崩壊してしまい、そして吸水速度も0.4g/g-ゲル・hrと極めて小さい値であった。
Further, in the case of Example Sample 2, the water absorption rate was remarkably large at 50 g / g-gel · hr. This is clearly the effect of copolymerizing acrylic acid (water-soluble vinyl anionic monomer) during the crosslinking of N-isopropylacrylamide.
On the other hand, the comparative sample that does not use synthetic smectite as a cross-linking agent has a non-uniform cross-link density, and therefore the whole is cloudy, and even if a little external force is applied, it collapses brittlely, and the water absorption rate Also, it was a very small value of 0.4 g / g-gel · hr.

ここで実施例試料1と比較例試料を対比すると、架橋剤として合成スメクタイトを使用することの有用性が明白である。そして、架橋剤として合成スメクタイトを使用した場合、実施例試料1と実施例試料2を対比して明らかなように、アクリルアミド誘導体に水溶性ビニル系アニオンモノマーを共重合させることの有用性が明白である。
(懸濁液の濃縮テスト)
実施例試料2を用いて次のようにして懸濁液の濃縮を行った。
Here, when Example Sample 1 is compared with Comparative Example Sample, the usefulness of using synthetic smectite as a crosslinking agent is obvious. When synthetic smectite is used as the cross-linking agent, the effectiveness of copolymerizing a water-soluble vinyl-based anionic monomer with an acrylamide derivative is clear, as is clear by comparing Example Sample 1 and Example Sample 2. is there.
(Suspension concentration test)
Using Example Sample 2, the suspension was concentrated as follows.

ケイ酸微粒子が濃度13%で懸濁する懸濁液300mLに、5g(乾燥重量として)の実施例試料2を添加して1時間放置したのち、実施例試料2の吸水量と懸濁液濃度を調べた。
吸水量は150mLであった。懸濁液は濃度26.0%に濃縮された。
実施例試料2を濃縮液から取り出し、温度60℃で30分間加熱して放水させたのち、上記と同じ濃縮処理に供したところ、その濃縮性能に変化は認められなかった。
5 g (as dry weight) of Example Sample 2 was added to 300 mL of a suspension in which silicate fine particles were suspended at a concentration of 13%, and left for 1 hour. I investigated.
The amount of water absorption was 150 mL. The suspension was concentrated to a concentration of 26.0%.
Example Sample 2 was taken out from the concentrated solution, heated at a temperature of 60 ° C. for 30 minutes and allowed to drain, and then subjected to the same concentration treatment as described above. As a result, no change was observed in the concentration performance.

また、研磨剤微粒子が濃度6%で懸濁する懸濁液300mLに、3g(乾燥重量として)の実施例試料2を添加して1時間放置したのち、実施例試料2の吸水量と懸濁液濃度を調べた。
吸水量は150mLであった。懸濁液は濃度12.0%に濃縮された。
実施例試料2を濃縮液から取り出し、温度60℃で30分間加熱して放水させたのち、上記と同じ濃縮処理に供したところ、その濃縮性能に変化は認められなかった。
In addition, 3 g (as dry weight) of Example Sample 2 was added to 300 mL of suspension in which abrasive fine particles were suspended at a concentration of 6% and left for 1 hour, and then the water absorption and suspension of Example Sample 2 were suspended. The liquid concentration was examined.
The amount of water absorption was 150 mL. The suspension was concentrated to a concentration of 12.0%.
Example Sample 2 was taken out from the concentrated solution, heated at a temperature of 60 ° C. for 30 minutes and allowed to drain, and then subjected to the same concentration treatment as described above. As a result, no change was observed in the concentration performance.

この吸水媒体は、架橋剤として層状粘土鉱物を用いて合成されているので、形態保持力が大きく、そのため、懸濁液に接触させても崩壊せず形態を保持することができるので繰り返しの使用が可能である。そして、相転移点以下の温度域で吸水し、相転移点以上の温度域で放水する性質を備えているので、懸濁液と接触させるだけで当該懸濁液の水分を吸水して濃縮させることができる。   Since this water-absorbing medium is synthesized using a layered clay mineral as a cross-linking agent, it has a large form-retaining power, so it can retain its form without collapsing even when contacted with a suspension. Is possible. And since it has the property of absorbing water in the temperature range below the phase transition point and discharging water in the temperature range above the phase transition point, it simply absorbs and concentrates the water content of the suspension just by contacting with the suspension. be able to.

そのため、これを用いた懸濁液の濃縮方法は、従来の懸濁液の濃縮方法に比べて、熱的、機械的エネルギーの使用量は少なくなり、またランニングコストは大幅に低減されるので、工業的に有用である。   For this reason, the suspension concentration method using this method uses less thermal and mechanical energy than the conventional suspension concentration method, and the running cost is greatly reduced. Industrially useful.

Claims (6)

層状粘土鉱物で架橋された高分子架橋体であり、相転移点を境にして親水性と疎水性が可逆的に変化する感温性高分子ゲルを含むことを特徴とする吸水媒体。   A water-absorbing medium, which is a crosslinked polymer obtained by crosslinking with a layered clay mineral and includes a temperature-sensitive polymer gel that reversibly changes its hydrophilicity and hydrophobicity with a phase transition point as a boundary. 前記層状粘土鉱物が、スメクタイトである請求項1の吸水媒体。   The water-absorbing medium according to claim 1, wherein the layered clay mineral is smectite. 前記感温性高分子ゲルが、アクリルアミド誘導体およびメタクリルアミド誘導体から選ばれる1種または2種以上の高分子架橋体である請求項1または2の吸水媒体。   The water-absorbing medium according to claim 1 or 2, wherein the temperature-sensitive polymer gel is one or two or more kinds of crosslinked polymers selected from acrylamide derivatives and methacrylamide derivatives. 前記感温性高分子ゲルが、N−イソプロピルアクリルアミドの単独またはこれを含む高分子架橋体である請求項3の吸水媒体。   The water-absorbing medium according to claim 3, wherein the thermosensitive polymer gel is N-isopropylacrylamide alone or a polymer crosslinked product containing the same. 前記感温性高分子ゲルが、前記アクリルアミド誘導体またはメタクリルアミド誘導体から選ばれる1種または2種以上に、水溶性ビニル系ノニオンモノマーおよび/または水溶ビニル系アニオンモノマーを共重合させた高分子架橋体である請求項3または4の吸水媒体。   A crosslinked polymer in which the thermosensitive polymer gel is obtained by copolymerizing one or more selected from the acrylamide derivative or the methacrylamide derivative with a water-soluble vinyl nonionic monomer and / or a water-soluble vinyl anionic monomer. The water-absorbing medium according to claim 3 or 4, wherein 請求項1〜5のいずれかに記載の吸水媒体と懸濁液とを、前記吸水媒体の感温性高分子ゲルが親水性を示す温度域で接触させて前記懸濁液を濃縮することを特徴とする懸濁液の濃縮方法。   The water-absorbing medium and the suspension according to any one of claims 1 to 5 are brought into contact with each other in a temperature range where the temperature-sensitive polymer gel of the water-absorbing medium exhibits hydrophilicity to concentrate the suspension. A method for concentrating a suspension.
JP2004286787A 2004-09-30 2004-09-30 Water-absorbing medium, and method for concentrating suspension using it Pending JP2006095470A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004286787A JP2006095470A (en) 2004-09-30 2004-09-30 Water-absorbing medium, and method for concentrating suspension using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004286787A JP2006095470A (en) 2004-09-30 2004-09-30 Water-absorbing medium, and method for concentrating suspension using it

Publications (1)

Publication Number Publication Date
JP2006095470A true JP2006095470A (en) 2006-04-13

Family

ID=36235787

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004286787A Pending JP2006095470A (en) 2004-09-30 2004-09-30 Water-absorbing medium, and method for concentrating suspension using it

Country Status (1)

Country Link
JP (1) JP2006095470A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008156406A (en) * 2006-12-21 2008-07-10 Kawamura Inst Of Chem Res Heat-conducting material
EP2209552A1 (en) * 2007-09-27 2010-07-28 Sca Hygiene Products AB Claylinked polymer gels
GB2493933A (en) * 2011-08-23 2013-02-27 Univ Sheffield Hallam Composite hydrogel
JP2015098596A (en) * 2014-12-17 2015-05-28 Dic株式会社 Temperature responsive porous body and manufacturing method therefor
WO2022255329A1 (en) * 2021-06-04 2022-12-08 Sdpグローバル株式会社 Water-absorbing resin composition, and absorbent object and absorbent article both obtained using same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008156406A (en) * 2006-12-21 2008-07-10 Kawamura Inst Of Chem Res Heat-conducting material
EP2209552A1 (en) * 2007-09-27 2010-07-28 Sca Hygiene Products AB Claylinked polymer gels
EP2209552A4 (en) * 2007-09-27 2010-12-08 Sca Hygiene Prod Ab Claylinked polymer gels
GB2493933A (en) * 2011-08-23 2013-02-27 Univ Sheffield Hallam Composite hydrogel
WO2013027051A1 (en) 2011-08-23 2013-02-28 Sheffield Hallam University Composite hydrogel-clay particles
GB2493933B (en) * 2011-08-23 2016-02-17 Univ Sheffield Hallam Composite hydrogel
US9526815B2 (en) 2011-08-23 2016-12-27 Sheffield Hallam University Composite hydrogel-clay particles
JP2015098596A (en) * 2014-12-17 2015-05-28 Dic株式会社 Temperature responsive porous body and manufacturing method therefor
WO2022255329A1 (en) * 2021-06-04 2022-12-08 Sdpグローバル株式会社 Water-absorbing resin composition, and absorbent object and absorbent article both obtained using same

Similar Documents

Publication Publication Date Title
EP1297039B1 (en) Structurally-modified polymer flocculants
KR970009231B1 (en) Process for the preparation of water-absorptive resin
RU2534679C2 (en) Underground formations plugging process
EP1454928B1 (en) Process for production of water-soluble (meth)acrylic polymers, water-soluble (meth)acrylic polymers, and use thereof
CA2568911A1 (en) Method for producing molecularly imprinted polymers
JPH07242709A (en) Preparation of water-absorbent resin
JPH10147606A (en) Production of hydrophilic polymer having rapid rate dissolving or swelling into water
AU776422C (en) Polymerisation process
US6410610B1 (en) Method for producing cationic polyelectrolytes
JP2006095470A (en) Water-absorbing medium, and method for concentrating suspension using it
JP5137227B2 (en) Hollow water absorbent resin
BR102015023698B1 (en) process for the production of water-absorbing polymer particles
JPH07179504A (en) Fine particle polymer and its production
EP1440984A1 (en) Method of manufacturing water-absorbing shaped body
JP4454735B2 (en) Method for producing water-absorbing polymer
JP4545448B2 (en) Method for producing water-absorbent molded body
JPH01249808A (en) Production of salt-resistant water-absorbable resin particle
JP2004002728A (en) Preparation of macroreticular polymer
JPH11240903A (en) Production of water absorbing resin and device therefor
JPH11302306A (en) Production of water absorbing resin
JP4198265B2 (en) Method for producing water absorbent resin
JP2013520539A (en) Method for producing water-absorbing polymer particles
JP5647934B2 (en) Polyacrylamide water-absorbing polymer and method for producing the same
JP2017100111A (en) Cross-linking type polymer coagulant, manufacturing method of the same and waste water treating method using the same
JPH11181005A (en) Production of water-absorbing resin