JP5411585B2 - Multi-layer surface-treated galvanized steel sheet - Google Patents

Multi-layer surface-treated galvanized steel sheet Download PDF

Info

Publication number
JP5411585B2
JP5411585B2 JP2009136634A JP2009136634A JP5411585B2 JP 5411585 B2 JP5411585 B2 JP 5411585B2 JP 2009136634 A JP2009136634 A JP 2009136634A JP 2009136634 A JP2009136634 A JP 2009136634A JP 5411585 B2 JP5411585 B2 JP 5411585B2
Authority
JP
Japan
Prior art keywords
group
steel sheet
layer
film
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009136634A
Other languages
Japanese (ja)
Other versions
JP2010280972A (en
Inventor
英宏 山口
典克 武政
賢輔 水野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Parkerizing Co Ltd
Original Assignee
Nihon Parkerizing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Parkerizing Co Ltd filed Critical Nihon Parkerizing Co Ltd
Priority to JP2009136634A priority Critical patent/JP5411585B2/en
Publication of JP2010280972A publication Critical patent/JP2010280972A/en
Application granted granted Critical
Publication of JP5411585B2 publication Critical patent/JP5411585B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Coating With Molten Metal (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Laminated Bodies (AREA)
  • Chemical Treatment Of Metals (AREA)

Description

本発明は、耐食性、密着性、防汚性、造膜性、耐紫外線性、耐アルカリ性、耐酸性及び耐黒変性に優れる複層表面処理亜鉛系めっき鋼板に関する。   The present invention relates to a multilayer surface-treated zinc-based plated steel sheet excellent in corrosion resistance, adhesion, antifouling property, film-forming property, ultraviolet resistance, alkali resistance, acid resistance and blackening resistance.

亜鉛系めっき鋼板は耐食性に優れるという観点から建材、家電、自動車用途などに幅広く使用されている。建材や家電の用途では一部無塗装で使用されるため、優れた耐食性はもちろんのこと、紫外線の照射や酸性雨、汚染物質の吸着などよって、めっき鋼板の表面が侵されることなく、めっき色調を活かした美麗な外観を維持させることが要求されている。加えて、長時間の海上輸送に代表される高温多湿環境に曝されても変色することなく、表面色調が変化しないようにする必要がある。また、上塗り塗装が施される場合には、上塗り塗装との十分な密着性が要求される。上塗りする塗装との密着性が不十分であると、耐食性、耐酸性、耐アルカリ性が発揮されない。   Zinc-based galvanized steel sheets are widely used for building materials, home appliances, automobiles and the like from the viewpoint of excellent corrosion resistance. Because it is used unpainted for building materials and home appliances, it has not only excellent corrosion resistance, but also the color of the plated steel sheet without being affected by ultraviolet irradiation, acid rain, or adsorption of contaminants. It is required to maintain a beautiful appearance that takes advantage of In addition, it is necessary that the surface color tone does not change without being discolored even when exposed to a high-temperature and high-humidity environment typified by long-time sea transportation. In addition, when top coating is applied, sufficient adhesion with the top coating is required. If the adhesion with the overcoating is insufficient, corrosion resistance, acid resistance and alkali resistance are not exhibited.

従来、金属材料表面に耐食性や加工性などを付与する技術として、金属材料表面に、有機樹脂と、クロム酸、重クロム酸もしくはそれらの塩とを主成分として含有する処理液による樹脂クロメート処理を施す方法が一般的であったが、現在はクロムを他の架橋性金属へ代替した環境対応型ノンクロメート有機樹脂皮膜処理などが実用に供されている。   Conventionally, as a technology for imparting corrosion resistance, workability, etc. to the surface of metal materials, resin chromate treatment with a treatment liquid containing organic resin and chromic acid, dichromic acid or salts thereof as main components is carried out on the surface of metal materials. Although the application method has been common, at present, environmentally friendly non-chromate organic resin film treatment in which chromium is replaced with another crosslinkable metal has been put to practical use.

ノンクロメート有機樹脂皮膜処理技術としては、特許文献1に、少なくとも(メタ)アクリル酸エステルとジアルキル(メタ)アクリルアミドと界面活性剤とを含有するモノマー組成物を乳化重合することを特徴とする高耐候性エマルジョン製造方法が開示されている。しかしながら、前記方法で製造された高耐候性エマルジョンは、鋼板上に皮膜を形成させ無塗装用途で使用した場合には、十分な耐食性を有さないばかりか、該皮膜に上塗り塗装を行っても十分な密着性が得られないため、耐酸性、耐アルカリ性が要求性能に応えられない。   As a non-chromate organic resin film treatment technology, Patent Document 1 discloses a high weather resistance characterized by emulsion polymerization of a monomer composition containing at least a (meth) acrylic acid ester, a dialkyl (meth) acrylamide, and a surfactant. A method for producing a reactive emulsion is disclosed. However, the high weather resistance emulsion produced by the above method does not have sufficient corrosion resistance when a film is formed on a steel sheet and used for non-coating purposes, and even if the film is overcoated. Since sufficient adhesion cannot be obtained, acid resistance and alkali resistance cannot meet the required performance.

ノンクロメート有機樹脂皮膜処理技術としては、また、特許文献2に、少なくとも(メタ)アクリル酸エステルと、該(メタ)アクリル酸エステルに対し0.1〜20質量%のスチレンと、界面活性剤とを含有するモノマー組成物を乳化重合することを特徴とする微粒子エマルジョン製造方法が開示されている。しかしながら、前記方法で製造された微粒子エマルジョンにはスチレンが含有されているため、紫外線照射により皮膜が劣化し、変色するため、屋外での無塗装用途には不向きである。   As a non-chromate organic resin film treatment technique, Patent Document 2 discloses at least (meth) acrylic acid ester, 0.1 to 20% by mass of styrene with respect to the (meth) acrylic acid ester, and a surfactant. Disclosed is a method for producing a fine particle emulsion, which comprises emulsion polymerization of a monomer composition comprising However, since the fine particle emulsion produced by the above method contains styrene, the film deteriorates and discolors when irradiated with ultraviolet rays, so that it is unsuitable for outdoor non-painting applications.

ノンクロメート有機樹脂皮膜処理技術としては、さらに、特許文献3に、水溶性ジルコニウム化合物、水溶性もしくは水分散性アクリル樹脂及び水溶性もしくは水分散性熱硬化型架橋剤を含有する金属表面処理剤であって、前記水溶性ジルコニウム化合物の濃度がジルコニウムとして質量基準で500〜15000ppmであり、前記アクリル樹脂の固形分酸価が150〜740mgKOH/gで固形分水酸基価が24〜240であり、前記アクリル樹脂の濃度が固形分として質量基準で500〜30000ppmであり、前記熱硬化型架橋剤の濃度が、固形分として質量基準で125〜7500ppmであることを特徴とする金属表面処理剤が開示されている。しかしながら、熱硬化型架橋剤は皮膜を硬化させるため加工性に欠ける。さらに、熱硬化型架橋剤として挙げられているメラミン樹脂やフェノール樹脂は紫外線照射により皮膜が劣化し、変色するため、無塗装用途には不向きである。   As a non-chromate organic resin film treatment technique, Patent Document 3 further discloses a metal surface treatment agent containing a water-soluble zirconium compound, a water-soluble or water-dispersible acrylic resin, and a water-soluble or water-dispersible thermosetting crosslinking agent. The concentration of the water-soluble zirconium compound is 500 to 15000 ppm on a mass basis as zirconium, the solid content acid value of the acrylic resin is 150 to 740 mg KOH / g, the solid content hydroxyl value is 24 to 240, and the acrylic resin Disclosed is a metal surface treatment agent characterized in that the concentration of the resin is 500 to 30000 ppm on a mass basis as a solid content, and the concentration of the thermosetting crosslinking agent is 125 to 7500 ppm on a mass basis as a solid content. Yes. However, the thermosetting crosslinking agent lacks workability because it cures the film. Furthermore, melamine resins and phenol resins listed as thermosetting crosslinking agents are not suitable for non-coating applications because the film deteriorates and discolors when irradiated with ultraviolet rays.

ノンクロメート有機樹脂皮膜処理技術としては、さらに、特許文献4に、(A)カルボキシル基と酸アミド結合を有する水系樹脂、(B)Al、Mg、Ca、Zn、Ni、Co、Fe、Zr、Ti、V、W、Mn及びCeの金属化合物から選ばれる1種もしくは2種以上の金属化合物、及び(C)ケイ素化合物を含有することを特徴とするクロムを含有しない金属板材用表面処理剤が開示されている。しかしながら、酸アミド結合を有する水系樹脂は金属化合物やケイ素化合物との反応性が強いため、貯蔵安定性に欠ける。   As the non-chromate organic resin film treatment technology, Patent Document 4 further discloses (A) an aqueous resin having a carboxyl group and an acid amide bond, (B) Al, Mg, Ca, Zn, Ni, Co, Fe, Zr, What is claimed is: 1. A surface treatment agent for a metal plate material containing no chromium, comprising one or more metal compounds selected from metal compounds of Ti, V, W, Mn and Ce, and (C) a silicon compound. It is disclosed. However, an aqueous resin having an acid amide bond is poor in storage stability because of its strong reactivity with metal compounds and silicon compounds.

ノンクロメート有機樹脂皮膜技術としては、さらに、特許文献5に、(A)エポキシ基、酸基、水酸基及び加水分解性シリル基のいずれも含有しない重合性不飽和モノマー(スチレン系モノマーなど)(a)と、エポキシ基を有する重合性不飽和モノマー(b)と、酸基含有重合性不飽和モノマー(c)と、水酸基含有重合性不飽和モノマー(d)と、加水分解性シリル基を有する重合性不飽和モノマー(e)とからなる不飽和単量体混合物が乳化重合された共重合体樹脂エマルジョンを含む水分散性樹脂組成物と、(B)ジルコニウム化合物と、(C)シランカップリング剤からなる金属表面用水分散性樹脂処理剤が開示されている。しかしながら、前記金属表面用水分散性樹脂処理剤で形成された皮膜中の共重合体樹脂は、スチレン系モノマーとエポキシ基を有する重合性不飽和モノマーに由来する成分を含有するため、紫外線照射により皮膜が劣化し変色するばかりか、防汚性にも欠けるため、屋外での無塗装用途には不向きである。さらに、エポキシ基を有する重合性不飽和モノマー(b)と酸基含有重合性不飽和モノマー(c)の反応性が強いため、該水分散性樹脂処理剤は貯蔵安定性に欠ける。   As a non-chromate organic resin film technology, Patent Document 5 further describes (A) a polymerizable unsaturated monomer (such as a styrenic monomer) containing no epoxy group, acid group, hydroxyl group or hydrolyzable silyl group (a ), An epoxy group-containing polymerizable unsaturated monomer (b), an acid group-containing polymerizable unsaturated monomer (c), a hydroxyl group-containing polymerizable unsaturated monomer (d), and a polymer having a hydrolyzable silyl group Water dispersible resin composition containing a copolymer resin emulsion obtained by emulsion polymerization of an unsaturated monomer mixture comprising a polymerizable unsaturated monomer (e), (B) a zirconium compound, and (C) a silane coupling agent A water-dispersible resin treatment agent for metal surfaces is disclosed. However, since the copolymer resin in the film formed with the water-dispersible resin treatment agent for metal surface contains components derived from a styrene monomer and a polymerizable unsaturated monomer having an epoxy group, the film is irradiated by ultraviolet irradiation. Since it deteriorates and discolors, it also lacks antifouling properties and is unsuitable for outdoor non-painting applications. Furthermore, since the polymerizable unsaturated monomer (b) having an epoxy group and the acid group-containing polymerizable unsaturated monomer (c) are highly reactive, the water-dispersible resin treatment agent lacks storage stability.

ノンクロメート有機樹脂皮膜技術としては、さらに、特許文献6に、構成する単量体の合計に対して、0.1〜30質量%の特定の窒素含有ラジカル重合性不飽和単量体(a)、1〜20質量%のカルボキシル基含有ラジカル重合性不飽和単量体(b)、及び50〜98.9質量%のその他のラジカル重合性不飽和単量体(c)を含有する単量体混合物をラジカル重合反応させることによって得られる樹脂成分(A)、及び樹脂成分(A)の固形分100質量部に対して、有機酸触媒(C)を0.01〜10質量部含有する水性塗料が開示されている。しかしながら、前記水性塗料で形成した皮膜は耐食性が不十分であり、要求性能に応えられるものではない。   As the non-chromate organic resin film technology, Patent Document 6 further describes 0.1 to 30% by mass of a specific nitrogen-containing radically polymerizable unsaturated monomer (a) based on the total amount of constituent monomers. 1 to 20% by mass of a carboxyl group-containing radically polymerizable unsaturated monomer (b), and 50 to 98.9% by mass of another radically polymerizable unsaturated monomer (c) Water-based paint containing 0.01 to 10 parts by mass of the organic acid catalyst (C) with respect to 100 parts by mass of the solid content of the resin component (A) and the resin component (A) obtained by radical polymerization reaction of the mixture Is disclosed. However, the film formed of the water-based paint has insufficient corrosion resistance and cannot meet the required performance.

なお、多環脂環式炭化水素環を含有する重合性単量体の重合体を含む水性樹脂組成物が特許文献7に開示されている。   In addition, Patent Document 7 discloses an aqueous resin composition containing a polymer of a polymerizable monomer containing a polycyclic alicyclic hydrocarbon ring.

特開2000−327704号公報JP 2000-327704 A 特開2000−327722号公報JP 2000-327722 A 特開2002−275648号公報JP 2002-275648 A 特開2003−201579号公報JP 2003-201579 A 特開2006−52348号公報JP 2006-52348 A 特開2006−152056号公報JP 2006-152056 A 特開2000−336232号公報JP 2000-336232 A

このように、前記したいずれの方法及び表面処理剤も要求性能に応えられるものではなく、樹脂クロメート皮膜の代替として使用できるような性能を有し、耐食性、密着性、防汚性、造膜性、耐紫外線性、耐アルカリ性、耐酸性及び耐黒変性に優れた表面処理鋼板の開発が強く要望されている。
本発明は、従来技術の有する前記問題点を解決して、耐食性、密着性、防汚性、造膜性、耐紫外線性、耐アルカリ性、耐酸性及び耐黒変性に優れた表面処理亜鉛系めっき鋼板を提供することを目的とするものである。
As described above, none of the above-described methods and surface treatment agents can meet the required performance, and have performance that can be used as a substitute for the resin chromate film, and have corrosion resistance, adhesion, antifouling properties, and film-forming properties. Therefore, there is a strong demand for the development of a surface-treated steel sheet excellent in ultraviolet resistance, alkali resistance, acid resistance and blackening resistance.
The present invention solves the above-mentioned problems of the prior art, and is a surface-treated zinc-based plating excellent in corrosion resistance, adhesion, antifouling properties, film-forming properties, ultraviolet resistance, alkali resistance, acid resistance and blackening resistance. The object is to provide a steel sheet.

本発明者らはこれらの問題を解決すべく鋭意検討を重ねてきた結果、亜鉛系めっき鋼板の少なくとも片面に特定の金属のイオン及び/又は原子を含有する下地処理層と、特定の重合単位を有し、特有のフィルム物性を示すアクリル樹脂を含有する上層処理層からなる2層の表面処理層を有する表面処理亜鉛系めっき鋼板が、耐食性、密着性、防汚性、造膜性、耐紫外線性、耐アルカリ性、耐酸性及び耐黒変性に優れることを見出し、本発明を完成した。   As a result of intensive studies to solve these problems, the present inventors have found that a base treatment layer containing specific metal ions and / or atoms on at least one surface of a galvanized steel sheet, and a specific polymerization unit are provided. The surface-treated galvanized steel sheet that has two surface treatment layers consisting of an upper treatment layer containing an acrylic resin that exhibits unique film properties has corrosion resistance, adhesion, antifouling properties, film-forming properties, and ultraviolet resistance. The present invention has been completed by finding that it is excellent in water resistance, alkali resistance, acid resistance and blackening resistance.

すなわち本発明は、亜鉛系めっき鋼板の少なくとも片面に下地処理層(X)と下地処理層(X)を被覆する上層処理層(Y)からなる2層の表面処理層を有する複層表面処理亜鉛系めっき鋼板であって、下地処理層(X)がZr、Ti、Hf、Ce、La及びBiよりなる群から選ばれる少なくとも1種の金属のイオン及び/又は原子である金属イオン及び/又は原子(A)を含有する無機皮膜層であり、上層処理層(Y)が下記一般式(I)で表される(メタ)アクリル酸エステル(b1)からの重合単位、下記一般式(III)で表されるケイ素含有モノマー(b2)からの重合単位、α,β−エチレン性不飽和脂肪族カルボン酸(b3)からの重合単位、他の脂肪族系(メタ)アクリル酸エステル(b4)からの重合単位及び脂肪族系反応性乳化剤(b5)からの重合単位を重合単位として有し、分子中にカルボニル基以外の不飽和結合を含有せず、ガラス転移温度が0〜70℃であり、及び酸価が5〜40mgKOH/gであるアクリル樹脂(B)及び造膜助剤(C)を含有し、最低造膜温度が−5〜40℃である水系アクリル樹脂分散液である表面処理剤(P)を下地処理層(X)上に塗布後乾燥させて得られる樹脂層である複層表面処理亜鉛系めっき鋼板に関する。 That is, the present invention provides a multi-layer surface-treated zinc having two surface treatment layers consisting of a base treatment layer (X) and an upper treatment layer (Y) covering the ground treatment layer (X) on at least one surface of a zinc-based plated steel sheet. A metal ion and / or atom in which the base treatment layer (X) is an ion and / or atom of at least one metal selected from the group consisting of Zr, Ti, Hf, Ce, La and Bi. It is an inorganic coating layer containing (A), and the upper treatment layer (Y) is a polymer unit from (meth) acrylic acid ester (b1) represented by the following general formula (I), represented by the following general formula (III) A polymerized unit from a silicon-containing monomer (b2), a polymerized unit from an α, β-ethylenically unsaturated aliphatic carboxylic acid (b3), from another aliphatic (meth) acrylic acid ester (b4) Polymerized units and aliphatic reactions It has a polymerization unit from the reactive emulsifier (b5) as a polymerization unit, does not contain an unsaturated bond other than a carbonyl group in the molecule, has a glass transition temperature of 0 to 70 ° C., and an acid value of 5 to 40 mgKOH / The surface treatment agent (P), which is an aqueous acrylic resin dispersion containing the acrylic resin (B) and the film-forming auxiliary (C), which are g, and having a minimum film-forming temperature of −5 to 40 ° C. X) It relates to a multi-layer surface-treated zinc-based plated steel sheet which is a resin layer obtained by drying after coating on.

[式中、R1は水素原子またはメチル基を表し、R2は一般式(II) [Wherein R1 represents a hydrogen atom or a methyl group, and R2 represents a compound represented by the general formula (II)

(式中、R3、R4及びR5は互いに独立に、水素原子、水酸基又は炭素数1〜3のアルキル基を表す)で表される基を表す] (Wherein R3, R4 and R5 each independently represents a hydrogen atom, a hydroxyl group or an alkyl group having 1 to 3 carbon atoms)

[式中、R6、R7及びR8は互いに独立に、水素原子、水酸基、炭素数1〜3のアルキル基、炭素数1〜3のアルコキシル基、又は炭素数1〜3のアルコキシル基で置換された炭素数1〜3のアルコキシル基を表し、R9は一般式(IV) [Wherein R6, R7 and R8 are each independently substituted with a hydrogen atom, a hydroxyl group, an alkyl group having 1 to 3 carbon atoms, an alkoxyl group having 1 to 3 carbon atoms, or an alkoxyl group having 1 to 3 carbon atoms. Represents an alkoxyl group having 1 to 3 carbon atoms, and R9 represents the formula (IV)

又は一般式(V) Or general formula (V)

(式中、R10は水素原子又はメチル基を表し、R11は炭素数1〜12のアルキレン基を表す)で表される基を表す] (Wherein R10 represents a hydrogen atom or a methyl group, and R11 represents an alkylene group having 1 to 12 carbon atoms).

本発明において、表面処理剤(P)はジルコニウム化合物(D1)及び金属酸化物ゾル(D2)よりなる群から選ばれる少なくとも1種である金属成分(D)を含有することが好ましい。ここで、金属酸化物ゾル(D2)は酸化ケイ素ゾル、酸化セリウムゾル、酸化イットリウムゾル、酸化ネオジムゾル及び酸化ランタンゾルよりなる群から選ばれる少なくとも1種であることが好ましい。表面処理剤(P)は、また、加水分解性シリル化合物(E)を含有することが好ましい。表面処理剤(P)は、また、ジルコニウム化合物(D1)及び金属酸化物ゾル(D2)よりなる群から選ばれる少なくとも1種である金属成分(D)及び加水分解性シリル化合物(E)を含有し、金属成分(D)が含有する金属の合計質量Mと、成分(E)が含有するケイ素の質量Si1及びケイ素含有モノマー(b2)が含有するケイ素の質量Si2の合計質量との質量比率〔M/(Si1+Si2)〕が0.1〜50であり、Si1/Si2が0.15〜250であることが好ましい。表面処理剤(P)に含有される造膜助剤(C)は2,2,4−トリメチル−1,3ペンタンジオールモノイソブチレート、ジエチレングリコールモノブチルエーテルアセテート、エチレングリコールモノブチルエーテル、メチルエチルケトン、N−メチルピロリドン及びジプロピレングリコールn−ブチルエーテルよりなる群から選ばれる少なくとも1種であることが好ましい。   In the present invention, the surface treating agent (P) preferably contains a metal component (D) that is at least one selected from the group consisting of a zirconium compound (D1) and a metal oxide sol (D2). Here, the metal oxide sol (D2) is preferably at least one selected from the group consisting of silicon oxide sol, cerium oxide sol, yttrium oxide sol, neodymium oxide sol, and lanthanum oxide sol. It is preferable that the surface treatment agent (P) also contains a hydrolyzable silyl compound (E). The surface treatment agent (P) also contains a metal component (D) and a hydrolyzable silyl compound (E) which are at least one selected from the group consisting of a zirconium compound (D1) and a metal oxide sol (D2). The mass ratio of the total mass M of the metal contained in the metal component (D) and the total mass of the silicon mass Si1 contained in the component (E) and the silicon mass Si2 contained in the silicon-containing monomer (b2) [ M / (Si1 + Si2)] is preferably 0.1-50, and Si1 / Si2 is preferably 0.15-250. The film-forming aid (C) contained in the surface treatment agent (P) is 2,2,4-trimethyl-1,3-pentanediol monoisobutyrate, diethylene glycol monobutyl ether acetate, ethylene glycol monobutyl ether, methyl ethyl ketone, N- It is preferably at least one selected from the group consisting of methyl pyrrolidone and dipropylene glycol n-butyl ether.

本発明においては、また、(メタ)アクリル酸エステル(b1)からの重合単位の割合が、アクリル樹脂(B)100質量部に対して、0.1〜50質量部であることが好ましい。
本発明においては、また、下地処理層(X)中の金属イオン及び/又は原子(A)の含有量が0.5〜100mg/mであることが好ましい。
In this invention, it is preferable that the ratio of the polymerization unit from (meth) acrylic acid ester (b1) is 0.1-50 mass parts with respect to 100 mass parts of acrylic resins (B).
In the present invention, the content of metal ions and / or atoms (A) in the base treatment layer (X) is preferably 0.5 to 100 mg / m 2 .

本発明の複層表面処理亜鉛系めっき鋼板は、従来技術の有する前記問題点を解決するものであり、耐食性、密着性、防汚性、造膜性、耐紫外線性、耐アルカリ性、耐酸性及び耐黒変性に優れる。   The multilayer surface-treated zinc-based plated steel sheet of the present invention solves the above-mentioned problems of the prior art, and is corrosion resistance, adhesion, antifouling property, film-forming property, ultraviolet resistance, alkali resistance, acid resistance and Excellent blackening resistance.

本発明の複層表面処理亜鉛系めっき鋼板は、亜鉛系めっき鋼板の少なくとも片面に下地処理層(X)と下地処理層(X)を被覆する上層処理層(Y)からなる2層の表面処理層を有することが必要である。   The multi-layer surface-treated zinc-based plated steel sheet of the present invention is a two-layer surface treatment consisting of a base-treated layer (X) and an upper-layer treated layer (Y) covering the ground-treated layer (X) on at least one surface of the zinc-based plated steel sheet. It is necessary to have a layer.

下地処理層(X)は、がZr、Ti、Hf、Ce、La及びBiよりなる群から選ばれる少なくとも1種の金属のイオン及び/又は原子である金属イオン及び/又は原子(A)を含有する必要がある。下地処理層(X)は、亜鉛系めっき鋼板の表面に不均一に形成された酸化物膜の欠陥部を被覆し、さらに全体を均一な皮膜で覆うことで、亜鉛系めっき鋼板表面の反応性を均一にし、鋼板表面上でのマイクロ電池形成による酸化変色や腐食を抑制する働きがある。金属イオン及び/又は原子(A)の供給源としては、金属、酸化物、水酸化物、フッ化物、硫酸塩、炭酸塩、リン酸塩、硝酸塩等の無機酸塩、有機酸塩などが挙げられる。これらの中で、Zr、Ti、Ce及びLaの酸化物、水酸化物及び炭酸塩と、Biの酸化物、水酸化物及び金属が特に好ましい。
なお、「金属イオン及び/又は原子(A)」なる用語について説明を付け加えると、下地処理層(X)を形成させるのに使用する下地処理液、すなわち後述の処理液(1)、(2)及び(3)中では、Zr、Ti、Hf、Ce、La及びBiよりなる群から選ばれる少なくとも1種の金属はイオンとして存在しているが、下地処理層(X)中ではイオンとして存在する場合もあるし、共有結合した原子として存在する場合もあり、両者が混在する場合もあり、それらを考慮した表現とした。該金属が下地処理層(X)中でいずれの形態を取ろうとも効果に変わりはない。
The base treatment layer (X) contains metal ions and / or atoms (A) which are ions and / or atoms of at least one metal selected from the group consisting of Zr, Ti, Hf, Ce, La and Bi. There is a need to. The surface treatment layer (X) covers the defect part of the oxide film formed unevenly on the surface of the zinc-based plated steel sheet, and further covers the entire surface with a uniform film, thereby reacting the surface of the zinc-based plated steel sheet. And suppresses oxidation discoloration and corrosion due to micro battery formation on the steel sheet surface. Examples of the source of metal ions and / or atoms (A) include metals, oxides, hydroxides, fluorides, sulfates, carbonates, phosphates, nitrates, and other inorganic acid salts, organic acid salts, and the like. It is done. Among these, oxides, hydroxides and carbonates of Zr, Ti, Ce and La, and oxides, hydroxides and metals of Bi are particularly preferable.
In addition, when the term “metal ion and / or atom (A)” is added, a base treatment liquid used to form the base treatment layer (X), that is, treatment liquids (1) and (2) described later. In (3), at least one metal selected from the group consisting of Zr, Ti, Hf, Ce, La, and Bi exists as an ion, but exists as an ion in the base treatment layer (X). In some cases, it may exist as a covalently bonded atom, or in some cases, both of them coexist. The effect remains the same regardless of the form of the metal in the base treatment layer (X).

また、下地処理層(X)中の金属イオン及び/又は原子(A)の含有量は、0.5〜100mg/mであることが好ましく、1〜38mg/mがより好ましく、2〜31mg/mであることがより一層好ましい。金属イオン及び/又は原子(A)の含有量が0.5mg/m未満であると、金属イオン及び/又は原子(A)量が少なすぎて、下地処理層(X)の効果が発現せず、100mg/mを超えると、下地処理層(X)が厚くなりすぎ、処理層内で凝集破壊を生じやすくなり、その場合、耐食性や耐黒変性が得られなくなる。 The content of metal ions and / or atoms in the ground processing layer (X) (A) is preferably from 0.5 to 100 mg / m 2, more preferably 1~38mg / m 2, 2~ More preferably, it is 31 mg / m 2 . When the content of metal ions and / or atoms (A) is less than 0.5 mg / m 2, the amount of metal ions and / or atoms (A) is too small, and the effect of the base treatment layer (X) is manifested. However, if it exceeds 100 mg / m 2 , the ground treatment layer (X) becomes too thick and cohesive failure tends to occur in the treatment layer, and in this case, corrosion resistance and blackening resistance cannot be obtained.

下地処理層(X)を形成する方法としては、特に限定するものではないが、塗布(様態1)、自己析出(様態2)及び電解析出(様態3)などの方法が挙げられる。   A method for forming the ground treatment layer (X) is not particularly limited, and examples thereof include coating (mode 1), self-deposition (mode 2), and electrolytic deposition (mode 3).

様態1は、下地処理層(X)を形成する後述の処理液(1)を鋼板表面に接触させ、鋼板表面の処理液付着量を調整し、水洗することなく乾燥させる方法である。以下、特に限定されるものではないが、使用できる処理方法を例示する。鋼板表面に前記処理液を接触させる方法としては、ロールコート、スプレー処理、浸漬処理などが挙げられる。処理液が鋼板表面と接触している時間は特に限定されるものではない。また鋼板表面の処理液付着量の調整方法としては、ロール絞り、エアーナイフなどが挙げられ、乾燥方法としては、ドライヤー、オーブン、高周波加熱、赤外線加熱などが挙げられる。乾燥時の到達板温度は、好ましくは50〜250℃、より好ましは70〜150℃、より一層好ましは100〜140℃である。付着量の調整と乾燥により、本発明の下地処理層(X)に金属イオン及び/又は原子(A)が好適の範囲で含有されればよく、乾燥温度は特に限定されるものではない。   Aspect 1 is a method in which a treatment liquid (1), which will be described later, for forming the base treatment layer (X) is brought into contact with the steel sheet surface, the treatment liquid adhesion amount on the steel sheet surface is adjusted, and drying is performed without washing. Hereinafter, although not specifically limited, the processing method which can be used is illustrated. Examples of the method for bringing the treatment liquid into contact with the steel sheet surface include roll coating, spray treatment, and immersion treatment. The time during which the treatment liquid is in contact with the steel sheet surface is not particularly limited. In addition, examples of the method for adjusting the treatment liquid adhesion amount on the steel sheet surface include a roll squeezing and an air knife, and examples of the drying method include a dryer, an oven, high-frequency heating, and infrared heating. The ultimate plate temperature at the time of drying is preferably 50 to 250 ° C, more preferably 70 to 150 ° C, and still more preferably 100 to 140 ° C. By adjusting the amount of adhesion and drying, the base treatment layer (X) of the present invention may contain metal ions and / or atoms (A) in a suitable range, and the drying temperature is not particularly limited.

様態1で用いる処理液(1)は、Zr、Ti、Hf、Ce、La及びBiよりなる群から選ばれる少なくとも1種の金属のイオンである金属イオン(A)を含有していればよい。金属イオン(A)の供給源としては、炭酸塩、硝酸塩、硫酸塩、フッ化物、塩化物等の無機酸塩、有機酸塩又は有機キレート錯体などが挙げられるが、これらの中で、炭酸塩、有機酸塩及び有機キレート錯体が好ましい。これらの供給源は各単独で又は複数組み合わせて使用することができる。金属イオン(A)における金属としてはZr及びTiが好ましい。金属イオン(A)の好適な供給源としては、塩基性炭酸ジルコニウム、乳酸ジルコニウム、酢酸ジルコニウム、チタンラクテート、チタンアセテート、チタンアセチルアセトネートなどが例示される。処理液(1)は、鋼板表面への濡れ性改善のための界面活性剤や溶剤成分を含有することができる。処理液(1)はまた、鋼板表面のエッチング性などの効果を付与する場合は、本発明の効果を損なわない範囲で添加成分を含有することができる。処理液(1)のpHは特に制限されず、通常、2.0〜13.0程度でよい。   The treatment liquid (1) used in Embodiment 1 only needs to contain metal ions (A) that are ions of at least one metal selected from the group consisting of Zr, Ti, Hf, Ce, La, and Bi. Examples of the supply source of the metal ion (A) include carbonates, nitrates, sulfates, fluorides, chlorides, and other inorganic acid salts, organic acid salts, or organic chelate complexes. Among these, carbonates Organic acid salts and organic chelate complexes are preferred. These sources can be used alone or in combination. Zr and Ti are preferable as the metal in the metal ion (A). Examples of suitable sources of the metal ion (A) include basic zirconium carbonate, zirconium lactate, zirconium acetate, titanium lactate, titanium acetate, titanium acetylacetonate and the like. The treatment liquid (1) can contain a surfactant and a solvent component for improving wettability to the steel sheet surface. The treatment liquid (1) can also contain an additive component within a range that does not impair the effects of the present invention when imparting effects such as etching properties of the steel sheet surface. The pH of the treatment liquid (1) is not particularly limited, and may usually be about 2.0 to 13.0.

様態2は、電解処理などの外部からの処理を必要とせず、下地処理層(X)を形成する後述の処理液(2)と鋼板表面とを接触させ、自己析出反応を生じさせ、水洗及び乾燥を経て、下地処理層(X)を形成する方法である。以下、特に限定するものではないが、使用できる処理方法を例示する。鋼板表面に処理液(2)を接触させる方法としては、ロールコート、スプレー処理、浸漬処理などが挙げられる。処理液が鋼板表面と接触している時間は0.5〜5秒が好ましい。この範囲であれば、十分な自己析出反応と鋼板のエッチング反応のバランスが良好となる。水洗方法としては、浸漬及びスプレーが挙げられ、水洗後に鋼板表面に接触している処理液中の金属イオン(A)の濃度が水洗前の10%以下となっている限り、条件等は特に限定するものではない。乾燥方法としては、ドライヤー、オーブン、高周波加熱、赤外線加熱などが挙げられる。   Aspect 2 does not require an external treatment such as an electrolytic treatment, and a treatment liquid (2), which will be described later, that forms the base treatment layer (X) is brought into contact with the steel sheet surface to cause an autoprecipitation reaction, This is a method of forming a base treatment layer (X) through drying. Hereinafter, although it does not specifically limit, the processing method which can be used is illustrated. Examples of the method for bringing the treatment liquid (2) into contact with the steel sheet surface include roll coating, spray treatment, and immersion treatment. The time for which the treatment liquid is in contact with the steel sheet surface is preferably 0.5 to 5 seconds. If it is this range, the balance of sufficient autoprecipitation reaction and the etching reaction of a steel plate will become favorable. Examples of the water washing method include dipping and spraying, and the conditions and the like are particularly limited as long as the concentration of the metal ion (A) in the treatment liquid in contact with the steel plate surface after water washing is 10% or less before water washing. Not what you want. Examples of the drying method include a dryer, an oven, high-frequency heating, and infrared heating.

本発明で使用する表面処理剤(P)の1態様である、様態2で用いる処理液(2)は、Zr、Ti、Hf、Ce、La及びBiよりなる群から選ばれる少なくとも1種の金属のイオンである金属イオン(A)を含有していればよい。金属イオン(A)の供給源は、特に限定されないが、該金属の炭酸塩、硝酸塩、硫酸塩、フッ化物、塩化物等の無機酸塩、金属イオン(A)を含有するフルオロ酸及びそのNa塩、K塩等のアルカリ金属塩、該金属の有機酸塩及び有機キレート錯体などが挙げられる。これらの中で、硝酸塩、フッ化物、塩化物及びフルオロ酸が好ましく、具体的な供給源としては、硝酸ジルコニウム、ジルコニウムフッ化水素酸、チタンフッ化水素酸、ハフニウムフッ化水素酸、塩化セリウム、硝酸セリウム、塩化ランタンなどが例示される。金属イオン(A)における金属としてはZr、Ti、Hf、Ce及びLaが好ましい。   The treatment liquid (2) used in the embodiment 2, which is one embodiment of the surface treatment agent (P) used in the present invention, is at least one metal selected from the group consisting of Zr, Ti, Hf, Ce, La and Bi. What is necessary is just to contain the metal ion (A) which is ion of this. The source of the metal ion (A) is not particularly limited, but the metal carbonate, nitrate, sulfate, fluoride, chloride and other inorganic acid salts, the metal ion (A) -containing fluoro acid and its Na Examples thereof include alkali metal salts such as salts and K salts, organic acid salts and organic chelate complexes of the metals. Of these, nitrates, fluorides, chlorides and fluoro acids are preferred. Specific sources include zirconium nitrate, zirconium hydrofluoric acid, titanium hydrofluoric acid, hafnium hydrofluoric acid, cerium chloride, nitric acid. Examples include cerium and lanthanum chloride. As the metal in the metal ion (A), Zr, Ti, Hf, Ce and La are preferable.

様態3は、下地処理層(X)を形成する後述の処理液(3)と鋼板表面とを接触させ、電解反応を生じさせ、水洗及び乾燥を経て、下地処理層(X)を形成する方法である。以下、特に限定するものではないが、使用できる処理方法を例示する。鋼板表面に処理液(3)を接触させる方法は浸漬である必要がある。電解条件としては、対極(陽極)としてステンレスかPb系合金を用い、温度を常温〜40℃、電流密度を0.5〜30A/dmとすることが好ましい。電解時間は、下地処理層(X)に含まれる金属原子の必要量に応じて設定されるが、この電解により形成する皮膜は通常2〜50mg/mの金属原子を含有することが好ましいので、例えば電流密度を3A/dm
とした場合0.5〜3秒間程度が適当である。水洗方法としては、浸漬、スプレーなどが挙げられ、水洗後に鋼板表面に接触している処理液中の金属イオン(A)の濃度が水洗前の10%以下となっている限り、水洗条件は特に限定されない。乾燥方法としては、ドライヤー、オーブン、高周波加熱、赤外線加熱などが挙げられる。
Aspect 3 is a method in which a treatment liquid (3), which will be described later, for forming the base treatment layer (X) is brought into contact with the surface of the steel sheet to cause an electrolytic reaction, followed by washing and drying to form the base treatment layer (X). It is. Hereinafter, although it does not specifically limit, the processing method which can be used is illustrated. The method of bringing the treatment liquid (3) into contact with the steel plate surface needs to be immersion. As electrolysis conditions, it is preferable to use stainless steel or a Pb-based alloy as the counter electrode (anode), set the temperature to room temperature to 40 ° C., and set the current density to 0.5 to 30 A / dm 2 . The electrolysis time is set according to the required amount of metal atoms contained in the base treatment layer (X), but it is preferable that the film formed by this electrolysis usually contains 2 to 50 mg / m 2 of metal atoms. For example, the current density is 3 A / dm 2
In this case, about 0.5 to 3 seconds is appropriate. Examples of the water washing method include dipping, spraying, etc. The water washing conditions are particularly as long as the concentration of the metal ion (A) in the treatment liquid in contact with the steel plate surface after water washing is 10% or less before water washing. It is not limited. Examples of the drying method include a dryer, an oven, high-frequency heating, and infrared heating.

本発明で使用する表面処理剤(P)の1態様である、様態3で用いる処理液(3)は、Zr、Ti、Hf、Ce、La及びBiよりなる群から選ばれる少なくとも1種の金属のイオンである金属イオン(A)を含有していればよい。金属イオン(A)の供給源は、特に限定されず、該金属の炭酸塩、硝酸塩、硫酸塩、フッ化物、塩化物等の無機酸塩、金属イオン(A)を含有するフルオロ酸及びそのNa塩、K塩等のアルカリ金属塩、該金属の有機酸塩及び有機キレート錯体などが挙げられる。これらの中で、硫酸塩、フッ化物、塩化物及びフルオロ酸が好ましく、具体的な供給源としては、硫酸ジルコニウム、ジルコニウムフッ化水素酸、チタンフッ化水素酸、ハフニウムフッ化水素酸、塩化セリウム、硝酸セリウム、塩化ランタンなどが例示される。金属イオン(A)における金属としてはZr、Ti、Ce及びLaが好ましい。   The treatment liquid (3) used in the embodiment 3, which is one embodiment of the surface treatment agent (P) used in the present invention, is at least one metal selected from the group consisting of Zr, Ti, Hf, Ce, La and Bi. What is necessary is just to contain the metal ion (A) which is ion of this. The source of the metal ion (A) is not particularly limited, and the metal carbonate, nitrate, sulfate, fluoride, chloride and other inorganic acid salts, the metal ion (A) -containing fluoro acid and its Na Examples thereof include alkali metal salts such as salts and K salts, organic acid salts and organic chelate complexes of the metals. Of these, sulfates, fluorides, chlorides and fluoro acids are preferred, and specific sources include zirconium sulfate, zirconium hydrofluoric acid, titanium hydrofluoric acid, hafnium hydrofluoric acid, cerium chloride, Examples include cerium nitrate and lanthanum chloride. Zr, Ti, Ce and La are preferred as the metal in the metal ion (A).

金属イオン(A)の使用量は、態様1では1〜100g/Lが好適であり、態様2及び3では0.05〜30g/Lが好適である。   The amount of the metal ion (A) used is preferably 1 to 100 g / L in aspect 1, and 0.05 to 30 g / L in aspects 2 and 3.

処理液(2)及び処理液(3)は、さらに、フッ化水素酸、硝酸、硫酸及びリン酸並びにこれらの塩よりなる群から選ばれる少なくとも1つである酸成分(F)を含有することが好ましい。酸成分(F)は金属イオン(A)を溶解状態に保つ、処理液の導電性を上げるなどの効果を得るため好適である。塩としてはアルカリ金属塩(ナトリウム塩、カリウム塩等)、アンモニウム塩などが挙げられる。酸成分(F)の使用量は0.1〜50g/Lが好適である。   The treatment liquid (2) and the treatment liquid (3) further contain an acid component (F) that is at least one selected from the group consisting of hydrofluoric acid, nitric acid, sulfuric acid, phosphoric acid, and salts thereof. Is preferred. The acid component (F) is suitable for obtaining effects such as keeping the metal ion (A) in a dissolved state and increasing the conductivity of the treatment liquid. Examples of the salt include alkali metal salts (sodium salt, potassium salt, etc.), ammonium salts and the like. 0.1-50 g / L is suitable for the usage-amount of an acid component (F).

処理液(2)及び処理液(3)は、また、Mg、Al、Zn、Cu及びCeよりなる群から選ばれる少なくとも1種の金属のイオンである金属イオン(G)を含有することが好ましい。金属イオン(G)は自己析出反応を促進する。金属イオン(G)の供給源としては硝酸塩、硫酸塩、炭酸塩及び塩化物が好適である。金属イオン(G)の使用量は0.1〜10g/Lが好適である。   The treatment liquid (2) and the treatment liquid (3) preferably also contain metal ions (G) that are ions of at least one metal selected from the group consisting of Mg, Al, Zn, Cu, and Ce. . The metal ion (G) promotes the autodeposition reaction. Nitrate, sulfate, carbonate and chloride are preferred as the source of metal ions (G). 0.1-10 g / L is suitable for the usage-amount of a metal ion (G).

処理液(2)及び処理液(3)の金属イオン(A)がフッ化物で供給される場合、処理液中の遊離フッ素イオン(カウンターイオンとしてプロトン(H)を有するフッ素イオン(F))濃度は1〜30mg/Lであることが好ましい。また、金属イオン(G)を含有する場合は、金属イオン(G)の質量濃度hと、金属イオン(A)の質量濃度aとの比であるh/aが1〜200であり、pHが2.0以上であり、さらに、pH≦−0.02×h/a+6を満たすことが好ましい。
これらの条件をすべて満たすときに極めて短時間で、耐食性及び基材との密着性に優れた皮膜を形成できる。遊離フッ素イオンは市販のイオン電極を用いて測定することができる。
When the metal ions (A) of the treatment liquid (2) and the treatment liquid (3) are supplied as fluorides, free fluorine ions in the treatment liquid (fluorine ions (F ) having protons (H + ) as counter ions) ) The concentration is preferably 1 to 30 mg / L. Moreover, when containing metal ion (G), h / a which is ratio of mass concentration h of metal ion (G) and mass concentration a of metal ion (A) is 1-200, and pH is 2.0 or more, and it is preferable to satisfy pH ≦ −0.02 × h / a + 6.
When all these conditions are satisfied, a film excellent in corrosion resistance and adhesion to the substrate can be formed in a very short time. Free fluorine ions can be measured using a commercially available ion electrode.

上記遊離フッ素イオン濃度は、金属イオン(G)の質量濃度hを調整することで1〜30mg/Lに調整することができる。また、処理液(1)、処理液(2)及び処理液(3)のpHは、酸成分(F)の含有量及びアルカリ性物質の添加によって調整することができる。このアルカリ性物質は特に制限されず、本発明の表面処理剤の性能を大きく劣化させずにpHを調整することができるものであればいずれのものでもよい。このようなアルカリ性物質として、アンモニア、炭酸ナトリウム、有機アミン類(ジエタノールアミン、トリエチルアミン等)、アルカリ金属水酸化物(水酸化ナトリウム、水酸化カリウム等)などを好ましく例示することができる。   The free fluorine ion concentration can be adjusted to 1 to 30 mg / L by adjusting the mass concentration h of the metal ion (G). Moreover, pH of a process liquid (1), a process liquid (2), and a process liquid (3) can be adjusted with content of an acid component (F), and addition of an alkaline substance. The alkaline substance is not particularly limited, and any alkaline substance can be used as long as the pH can be adjusted without greatly degrading the performance of the surface treatment agent of the present invention. Preferred examples of such an alkaline substance include ammonia, sodium carbonate, organic amines (diethanolamine, triethylamine, etc.), alkali metal hydroxides (sodium hydroxide, potassium hydroxide, etc.) and the like.

上層処理層(Y)は、前記一般式(I)で表される(メタ)アクリル酸エステル(b1)からの重合単位、前記一般式(III)で表されるケイ素含有モノマー(b2)からの重合単位、α,β−エチレン性不飽和脂肪族カルボン酸(b3)からの重合単位、他の脂肪族系(メタ)アクリル酸エステル(b4)からの重合単位及び脂肪族系反応性乳化剤(b5)からの重合単位を重合単位として有し、分子中に芳香環を含有せず、ガラス転移温度が0〜70℃、及び酸価が5〜40mgKOH/gであるアクリル樹脂(B)と造膜助剤(C)を含有し、最低造膜温度が−5〜40℃である水系アクリル樹脂分散液である表面処理剤(P)を下地処理層(X)上に塗布後乾燥させて得られる樹脂層である。上記水系アクリル樹脂分散液にいう「分散液」はエマルジョン及び懸濁液を包含し、そのいずれでもよいが、エマルジョンであることが好ましい。   The upper treatment layer (Y) is a polymerization unit from the (meth) acrylic acid ester (b1) represented by the general formula (I), from the silicon-containing monomer (b2) represented by the general formula (III). Polymerized unit, polymerized unit from α, β-ethylenically unsaturated aliphatic carboxylic acid (b3), polymerized unit from other aliphatic (meth) acrylic acid ester (b4) and aliphatic reactive emulsifier (b5 ) Acrylic resin (B) having a polymerization unit as a polymerization unit, containing no aromatic ring in the molecule, a glass transition temperature of 0 to 70 ° C., and an acid value of 5 to 40 mgKOH / g and film formation Obtained by applying a surface treatment agent (P), which is an aqueous acrylic resin dispersion containing an auxiliary agent (C) and having a minimum film-forming temperature of −5 to 40 ° C., and then drying it on the base treatment layer (X). It is a resin layer. The “dispersion” referred to in the aqueous acrylic resin dispersion includes an emulsion and a suspension, and any of them may be used, but an emulsion is preferable.

アクリル樹脂(B)のガラス転移温度は0〜70℃である必要があり、それにより耐アルカリ性、耐酸性、加工性及び皮膜透明性を良好に保つことができる。上記観点から、該ガラス転移温度は10〜60℃であることが好ましく、20〜50℃であることがより好ましい。ガラス転移温度が0℃未満であると、耐アルカリ性及び耐酸性が著しく低下するだけでなく、加工時に必要な皮膜硬度を得ることができない。逆に70℃を超えると、貯蔵安定性及び加工時に必要な皮膜追従性が著しく低下する。ガラス転移温度は、例えば動的粘弾性測定装置(レオログラフソリッドS 東洋精機製作所製)を使用して測定することができる。   The glass transition temperature of the acrylic resin (B) needs to be 0 to 70 ° C., whereby the alkali resistance, acid resistance, workability and film transparency can be kept good. From the above viewpoint, the glass transition temperature is preferably 10 to 60 ° C, and more preferably 20 to 50 ° C. When the glass transition temperature is less than 0 ° C., not only the alkali resistance and acid resistance are remarkably lowered, but also the film hardness required during processing cannot be obtained. On the other hand, when it exceeds 70 ° C., the storage stability and the film followability required during processing are significantly reduced. The glass transition temperature can be measured using, for example, a dynamic viscoelasticity measuring apparatus (Rheograph Solid S manufactured by Toyo Seiki Seisakusho).

アクリル樹脂(B)は分子中に炭素−炭素不飽和結合及び炭素−窒素不飽和結合を有さない。これらの不飽和結合を有すると、紫外線によりラジカル反応が起こり、発色団や助色団が形成されるため、耐紫外線劣化性が著しく低下する。   The acrylic resin (B) does not have a carbon-carbon unsaturated bond and a carbon-nitrogen unsaturated bond in the molecule. When these unsaturated bonds are present, a radical reaction occurs due to ultraviolet rays, and a chromophore or an auxiliary chromophore is formed, so that the ultraviolet ray resistance is significantly lowered.

(メタ)アクリル酸エステル(b1)からの重合単位が上層処理層(Y)ひいては複層表面処理亜鉛系めっき鋼板に与える効果は、ガラス転移温度の上昇に伴う耐アルカリ性、耐酸性及び加工性の向上である。一般式(II)中のR3、R4及びR5の定義に関し、炭素数1〜3のアルキル基はメチル基、エチル基、プロピル基及びイソプロピル基を包含する。   The effect of polymerized units from (meth) acrylic acid ester (b1) on the upper layer treated layer (Y) and thus on the multilayer surface-treated zinc-coated steel sheet is that of alkali resistance, acid resistance and workability with increasing glass transition temperature. It is an improvement. Regarding the definitions of R3, R4 and R5 in the general formula (II), the alkyl group having 1 to 3 carbon atoms includes a methyl group, an ethyl group, a propyl group and an isopropyl group.

(メタ)アクリル酸エステル(b1)としては、特に限定されるものではないが、ボルニルアクリレート、イソボルニルアクリレート、ボルニルメタクリレート、イソボルニルメタクリレートなどが挙げられる。なお、一般式(II)で表される基中、R3、R4及びR5が水素原子であるものはボルニル基であり、R3及びR4が水素原子で、R5がメチル基であるものはイソボルニル基である。 The (meth) acrylic acid ester (b1) is not particularly limited, and examples thereof include bornyl acrylate, isobornyl acrylate, bornyl methacrylate, and isobornyl methacrylate. Of the groups represented by formula (II), those in which R3, R4 and R5 are hydrogen atoms are bornyl groups, those in which R3 and R4 are hydrogen atoms and R5 is a methyl group are isobornyl groups. is there.

ケイ素含有モノマー(b2)からの重合単位は、アクリル樹脂(B)と被処理金属表面との密着力を強化し加工性を向上させると共に、耐アルカリ性や耐酸性を向上させる。一般式(III)中のR6、R7及びR8の定義に関し、炭素数1〜3のアルキル基はメチル基、エチル基、プロピル基及びイソプロピル基を包含し、炭素数1〜3のアルコキシル基はメトキシル基、エトキシル基、プロポキシル基及びイソプロポキシル基を包含し、炭素数1〜3アルコキシル基で置換された炭素数1〜3アルコキシル基はメトキシエトキシル基等を包含する。一般式(V)中のR11は炭素数1〜6のアルキレン基であることが好ましく、炭素数1〜4のアルキレン基であることがより好ましい。一般式(V)中のR11の定義に関し、アルキレン基としては、メチレン基、エチレン基、トリメチレン基、プロピレン基、テトラメチレン基、ヘキサメチレン基、オクタメチレン基、デカメチレン基、ドデカメチレン基などが挙げられる。   The polymerized unit from the silicon-containing monomer (b2) enhances the adhesion between the acrylic resin (B) and the surface of the metal to be processed to improve workability, and improves alkali resistance and acid resistance. Regarding the definitions of R6, R7 and R8 in the general formula (III), the alkyl group having 1 to 3 carbon atoms includes methyl group, ethyl group, propyl group and isopropyl group, and the alkoxyl group having 1 to 3 carbon atoms is methoxyl. A C1-C3 alkoxyl group substituted with a C1-C3 alkoxyl group includes a methoxyethoxyl group and the like, including a group, an ethoxyl group, a propoxyl group and an isopropoxyl group. R11 in the general formula (V) is preferably an alkylene group having 1 to 6 carbon atoms, and more preferably an alkylene group having 1 to 4 carbon atoms. Regarding the definition of R11 in the general formula (V), examples of the alkylene group include a methylene group, an ethylene group, a trimethylene group, a propylene group, a tetramethylene group, a hexamethylene group, an octamethylene group, a decamethylene group, and a dodecamethylene group. It is done.

ケイ素含有モノマー(b2)としては、特に限定されるものではないが、ビニルトリメトキシシラン、ビニルトリエトキシシラン、3−アクリロキシプロピルトリメトキシシラン、3−メタクリロキシプロピルメチルジメトキシシラン、3−メタクリロキシプロピルトリメトキシシラン、3−メタクリロキシプロピルメチルジエトキシシラン、3−メタクリロキシプロピルトリエトキシシランなどが挙げられる。   The silicon-containing monomer (b2) is not particularly limited, but vinyltrimethoxysilane, vinyltriethoxysilane, 3-acryloxypropyltrimethoxysilane, 3-methacryloxypropylmethyldimethoxysilane, 3-methacryloxy Examples include propyltrimethoxysilane, 3-methacryloxypropylmethyldiethoxysilane, and 3-methacryloxypropyltriethoxysilane.

α,β−エチレン性不飽和脂肪族カルボン酸(b3)からの重合単位は、被処理金属表面との密着をより強固にし、耐酸性及び加工性を向上させる。α,β−エチレン性不飽和脂肪族カルボン酸(b3)としては、特に限定されるものではないが、アクリル酸、メタクリル酸、マレイン酸、イタコン酸、フマル酸、クロトン酸などが挙げられる。   Polymerized units from the α, β-ethylenically unsaturated aliphatic carboxylic acid (b3) make the adhesion to the surface of the metal to be treated more firm and improve acid resistance and workability. The α, β-ethylenically unsaturated aliphatic carboxylic acid (b3) is not particularly limited, and examples thereof include acrylic acid, methacrylic acid, maleic acid, itaconic acid, fumaric acid, and crotonic acid.

アクリル樹脂(B)は、(メタ)アクリル酸エステル(b1)、ケイ素含有モノマー(b2)からの重合単位、α,β−エチレン性不飽和カルボン酸(b3)からの重合単位、下記に述べる脂肪族系反応性乳化剤(b5)からの重合単位を必須構成単位として含み、それらの重合単位を除いた残りの構成単位として、その全てが芳香環を含有しないアルキル(メタ)アクリレート、シクロアルキル(メタ)アクリレート及びヒドロキシアルキル(メタ)アクリレートから選ばれる少なくとも1種の(メタ)アクリル酸エステルである他の脂肪族系(メタ)アクリル酸エステル(b4)からの重合単位を含む。上記アルキル基の炭素数は1〜10であることが好ましく、1〜8であることがより好ましい。上記シクロアルキル基の炭素数は5又は6であることが好ましい。また、上記ヒドロキシアルキル基の炭素数は2〜6であることが好ましく、2〜4であることがより好ましい。   Acrylic resin (B) comprises (meth) acrylic acid ester (b1), polymerized units from silicon-containing monomer (b2), polymerized units from α, β-ethylenically unsaturated carboxylic acid (b3), fat described below As the remaining structural units except for the polymerized units from the group-based reactive emulsifier (b5) as essential structural units, all of them contain no alkyl ring (meth) acrylate or cycloalkyl (meta ) And other aliphatic (meth) acrylate ester (b4) which is at least one (meth) acrylate ester selected from acrylate and hydroxyalkyl (meth) acrylate. The alkyl group preferably has 1 to 10 carbon atoms, and more preferably 1 to 8 carbon atoms. The cycloalkyl group preferably has 5 or 6 carbon atoms. Moreover, it is preferable that carbon number of the said hydroxyalkyl group is 2-6, and it is more preferable that it is 2-4.

他の脂肪族系(メタ)アクリル酸エステル(b4)として具体的には、メチル(メタ)アクリレート、エチルアクリレート、プロピル(メタ)アクリレート、イソプロピル(メタ)アクリレート、ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、s−ブチル(メタ)アクリレート、t−ブチル(メタ)アクリレート、n−ヘキシル(メタ)アクリレート、オクチル(メタ)アクリレート、イソオクチル(メタ)アクリレート、2−エチルヘキシル(メタ)アクリレート、デシル(メタ)アクリレート等の(メタ)アクリル酸と炭素数1〜10、特に1〜8のアルカノールとのエステル;シクロヘキシルアクリレート、シクロヘキシルメタクリレート等の(メタ)アクリル酸と炭素数5もしくは6のシクロアルカノールとのエステル;2−ヒドロキシエチル(メタ)アクリレート、3−ヒドロキシプロピル(メタ)アクリレート等の(メタ)アクリル酸と炭素数2〜6、特に2〜4のアルカンジオールとのエステルなどが挙げられる。   Specific examples of other aliphatic (meth) acrylic acid esters (b4) include methyl (meth) acrylate, ethyl acrylate, propyl (meth) acrylate, isopropyl (meth) acrylate, butyl (meth) acrylate, and isobutyl (meth) ) Acrylate, s-butyl (meth) acrylate, t-butyl (meth) acrylate, n-hexyl (meth) acrylate, octyl (meth) acrylate, isooctyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, decyl (meth) ) Esters of (meth) acrylic acid such as acrylate and alkanols having 1 to 10 carbon atoms, particularly 1 to 8 carbon atoms; Ets of (meth) acrylic acid such as cyclohexyl acrylate and cyclohexyl methacrylate and cycloalkanols having 5 or 6 carbon atoms. Ether; 2-hydroxyethyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, etc. (meth) acrylic acid with 2 to 6 carbon atoms, and the like, particularly 2 to 4 esters of alkanediols.

脂肪族系反応性乳化剤(b5)からの重合体単位は表面処理剤(P)中のアクリル樹脂(B)の乳化安定性に寄与する。脂肪族系反応性乳化剤(b5)としては、特に限定するものではないが、ビニルスルホン酸塩、スチレンスルホン酸塩、スルホエチルメタクリレート塩、アルキルアリルスルホコハク酸塩、アルケニルスルホコハク酸塩、α−スルホ−ω−(1−(アルコキシ)メチル−2−(2−プロペニルオキシ)エトキシ)−ポリ(オキシ−1,2−エタンジイル)塩等のスルホン酸基を有する脂肪族系反応性乳化剤、ポリオキシアルキレンアルケニルエーテル硫酸塩、ポリオキシエチレンアルキルプロペニルフェニルエーテル硫酸エステル塩、ポリオキシエチレン−1−(アリルオキシメチル)アルキルエーテル硫酸エステル塩等の硫酸エステル基を有する脂肪族系反応性乳化剤、ポリオキシアルキレンアルケニルエーテル、ポリオキシエチレンアルキルプロペニルフェニルエーテル、α−[1−{(アリルオキシ)メチル}−2−(ノニルフェノキシ)エチル]−ω−ヒドロキシポリオキシエチレン等のエーテル基を有する脂肪族系反応性乳化剤などが挙げられる。   The polymer unit from the aliphatic reactive emulsifier (b5) contributes to the emulsion stability of the acrylic resin (B) in the surface treatment agent (P). The aliphatic reactive emulsifier (b5) is not particularly limited, but vinyl sulfonate, styrene sulfonate, sulfoethyl methacrylate, alkylallyl sulfosuccinate, alkenyl sulfosuccinate, α-sulfo- aliphatic reactive emulsifiers having sulfonic acid groups such as ω- (1- (alkoxy) methyl-2- (2-propenyloxy) ethoxy) -poly (oxy-1,2-ethanediyl) salt, polyoxyalkylene alkenyl Aliphatic reactive emulsifiers having a sulfate group such as ether sulfate, polyoxyethylene alkylpropenyl phenyl ether sulfate, polyoxyethylene-1- (allyloxymethyl) alkyl ether sulfate, polyoxyalkylene alkenyl ether , Polyoxyethylene alkyl Examples include an aliphatic reactive emulsifier having an ether group such as lupropenyl phenyl ether and α- [1-{(allyloxy) methyl} -2- (nonylphenoxy) ethyl] -ω-hydroxypolyoxyethylene.

(メタ)アクリル酸エステル(b1)の配合量に関して、(メタ)アクリル酸エステル(b1)からの重合体単位の割合はアクリル樹脂(B)100質量部に対して、0.1〜50質量部であることが好ましく、0.5〜45質量部であることがより好ましく、3.0〜35質量部であることがより一層好ましい。上記割合が、0.1質量部未満であると、(メタ)アクリル酸エステル(A)の添加効果が発現しにくくなり、50質量部を超えると、貯蔵安定性が保ちにくくなる。   Regarding the blending amount of the (meth) acrylic acid ester (b1), the proportion of the polymer unit from the (meth) acrylic acid ester (b1) is 0.1 to 50 parts by mass with respect to 100 parts by mass of the acrylic resin (B). It is preferable that it is 0.5-45 mass parts, and it is still more preferable that it is 3.0-35 mass parts. When the ratio is less than 0.1 parts by mass, the effect of adding the (meth) acrylic acid ester (A) is hardly exhibited, and when it exceeds 50 parts by mass, the storage stability is difficult to maintain.

ケイ素含有モノマー(b2)の配合量に関して、ケイ素含有モノマー(b2)からの重合体単位の割合はアクリル樹脂(B)100質量部に対して、0.5〜2.0質量部であることが好ましく、0.7〜2.0質量部であることがより好ましく、1.0〜2.0質量部であることがより一層好ましい。上記割合が0.5質量部未満であると、ケイ素含有モノマー(b2)の添加効果が発現しにくくなり、2.0質量部を超えると、貯蔵安定性が低下する傾向となる。   Regarding the compounding amount of the silicon-containing monomer (b2), the ratio of the polymer unit from the silicon-containing monomer (b2) is 0.5 to 2.0 parts by mass with respect to 100 parts by mass of the acrylic resin (B). Preferably, it is 0.7-2.0 mass parts, More preferably, it is 1.0-2.0 mass parts. When the ratio is less than 0.5 parts by mass, the effect of adding the silicon-containing monomer (b2) is hardly exhibited, and when it exceeds 2.0 parts by mass, the storage stability tends to decrease.

α,β−エチレン性不飽和脂肪族カルボン酸(b3)の配合量に関して、α,β−エチレン性不飽和脂肪族カルボン酸(b3)からの重合体単位に由来するアクリル樹脂(B)の酸価が5〜40mgKOH/gであることが好ましく、10〜35mgKOH/gであることがより好ましく、15〜30mgKOH/gであることがより一層好ましい。該酸価が5〜40mgKOH/gであると、密着性(基材密着性及び塗装密着性)及び耐アルカリ性が良好となる。該酸価が5mgKOH/g未満であると、α,β−エチレン性不飽和脂肪族カルボン酸(b3)の添加効果が発現しにくくなる。逆に40mgKOH/gを超えると、アクリル樹脂(B)の水溶性が強くなり、貯蔵安定性が低下するだけでなく、耐アルカリ性及び耐酸性が低下する傾向となる。なお、酸価はアクリル樹脂(B)等のアクリル樹脂に含まれるカルボン酸を中和するのに、該アクリル樹脂の固形分1gあたり必要となる水酸化カリウムのmg数を表す。   Regarding the blending amount of the α, β-ethylenically unsaturated aliphatic carboxylic acid (b3), the acid of the acrylic resin (B) derived from the polymer unit from the α, β-ethylenically unsaturated aliphatic carboxylic acid (b3) The value is preferably 5 to 40 mgKOH / g, more preferably 10 to 35 mgKOH / g, and still more preferably 15 to 30 mgKOH / g. When the acid value is 5 to 40 mg KOH / g, adhesion (substrate adhesion and coating adhesion) and alkali resistance are improved. When the acid value is less than 5 mgKOH / g, the effect of adding the α, β-ethylenically unsaturated aliphatic carboxylic acid (b3) is hardly exhibited. Conversely, when it exceeds 40 mgKOH / g, the water-solubility of the acrylic resin (B) becomes strong, and not only the storage stability is lowered, but also the alkali resistance and acid resistance tend to be lowered. The acid value represents the number of mg of potassium hydroxide required per 1 g of the solid content of the acrylic resin to neutralize the carboxylic acid contained in the acrylic resin such as the acrylic resin (B).

脂肪族系反応性乳化剤(b5)の配合量に関して、脂肪族系反応性乳化剤(b5)からの重合体単位の割合はアクリル樹脂(B)100質量部に対して、0.5〜5質量部であることが好ましく、1〜3質量部であることがより好ましい。上記割合が0.5質量部未満であると、表面処理剤(P)の貯蔵安定性が得られにくくなり、5質量部を超えると、耐水性が低下する傾向となる。   Regarding the blending amount of the aliphatic reactive emulsifier (b5), the proportion of the polymer unit from the aliphatic reactive emulsifier (b5) is 0.5 to 5 parts by mass with respect to 100 parts by mass of the acrylic resin (B). It is preferable that it is 1 to 3 parts by mass. When the ratio is less than 0.5 parts by mass, the storage stability of the surface treatment agent (P) is difficult to obtain, and when it exceeds 5 parts by mass, the water resistance tends to decrease.

アクリル樹脂(B)の製造方法は特に限定されず、例えば、重合開始剤、水、乳化剤及びモノマーを一括混合して重合する方法;モノマー滴下法;プレエマルジョン法等の従来公知の方法を用いて製造することができる。また、シード重合、コア・シェル重合、パワーフィード重合等の多段重合を行って粒子の異相構造化を行うことも可能である。重合温度は通常0〜100℃で、好ましくは40〜95℃であり、重合時間は1〜10時間が適している。   The production method of the acrylic resin (B) is not particularly limited, and for example, a conventionally known method such as a polymerization method in which a polymerization initiator, water, an emulsifier and a monomer are mixed at once; a monomer dropping method; a pre-emulsion method or the like is used. Can be manufactured. It is also possible to carry out multi-stage polymerization such as seed polymerization, core-shell polymerization, power feed polymerization, etc. to make the particles have a different phase structure. The polymerization temperature is usually 0 to 100 ° C., preferably 40 to 95 ° C., and the polymerization time is suitably 1 to 10 hours.

重合開始剤は特に限定されず、例えば過硫酸アンモニウム、過硫酸カリウム、過硫酸ナトリウム、過酸化水素、ベンゾイルパーオキサイド、t−ブチルパーオキシベンゾエート、ラウロイルパーオキサイド、t−ブチルハイドロパーオキサイドなど従来公知の重合開始剤を用いることができる。
上記重合によってアクリル樹脂(B)分散液が得られる。
The polymerization initiator is not particularly limited. For example, ammonium persulfate, potassium persulfate, sodium persulfate, hydrogen peroxide, benzoyl peroxide, t-butyl peroxybenzoate, lauroyl peroxide, t-butyl hydroperoxide and the like are conventionally known. A polymerization initiator can be used.
An acrylic resin (B) dispersion is obtained by the polymerization.

次に、アクリル樹脂(B)の備えるべき物性について述べる。アクリル樹脂(B)のガラス転移温度は0〜70℃である必要があり、10〜60℃であることが好ましく、20〜50℃であることがより好ましい。ガラス転移温度が0〜70℃であると、温度変化に対する耐久性が向上し、優れた耐食性及び加工性が発揮される。ガラス転移温度が0℃未満であると、加工時に必要な皮膜硬度を得ることができないばかりか、耐食性も低下する傾向になり、70℃を超えると、加工時の皮膜追従性が低下し、密着性不良や皮膜のワレが生じる傾向になる。   Next, physical properties that the acrylic resin (B) should have are described. The glass transition temperature of the acrylic resin (B) needs to be 0 to 70 ° C, preferably 10 to 60 ° C, and more preferably 20 to 50 ° C. When the glass transition temperature is 0 to 70 ° C., durability against temperature change is improved, and excellent corrosion resistance and workability are exhibited. If the glass transition temperature is less than 0 ° C, not only the film hardness required at the time of processing cannot be obtained, but also the corrosion resistance tends to decrease. Tend to cause defect and cracking of the film.

アクリル樹脂(B)のガラス転移温度Tgについては、重合に使用される各モノマーのガラス転移温度Tgi(i=1,2,…,i)と質量分率Xi(i=1,2,…,i)を用いて、1/Tg=Σ(Xi/Tgi)の式から、ガラス転移温度Tgの良好な近似値が算出することができる。   Regarding the glass transition temperature Tg of the acrylic resin (B), the glass transition temperature Tgi (i = 1, 2,..., I) and the mass fraction Xi (i = 1, 2,. Using i), a good approximate value of the glass transition temperature Tg can be calculated from the equation 1 / Tg = Σ (Xi / Tgi).

アクリル樹脂(B)の分子量は、重量平均分子量として、10,000〜200,000であることが好ましく、50,000〜150,000であることがより好ましい。該分子量が10,000〜200,000である場合には、良好な貯蔵安定性及び造膜性が得られる。   The molecular weight of the acrylic resin (B) is preferably 10,000 to 200,000, more preferably 50,000 to 150,000, as a weight average molecular weight. When the molecular weight is 10,000 to 200,000, good storage stability and film-forming property can be obtained.

アクリル樹脂(B)分散液に造膜助剤(C)を加えて水系アクリル樹脂分散液としての表面処理剤(P)を調製する。表面処理剤(P)は適切な造膜性を示す指標としての適切な最低造膜温度を有している必要があり、造膜助剤(C)はそのためのものである。表面処理剤(P)の最低造膜温度は−5〜40℃である必要があり、0〜30℃であることが好ましく、5〜20℃であることがより好ましい。最低造膜温度が−5〜40℃の範囲内にある場合には、耐食性、耐アルカリ性、耐酸性及び加工性が改善されると共に、皮膜の透明性が高まる。改善最低造膜温度が−5℃未満であると表面処理剤(P)の貯蔵安定性が得られなくなる傾向になり、40℃を超えると造膜性が不十分となり、耐食性、耐アルカリ性及び耐酸性が低下する傾向になる。なお、アクリル樹脂(B)の最低造膜温度はアクリル樹脂(B)を形成するモノマーの組成によって変化し、アクリル樹脂(B)分散液の段階で測定することができるが、造膜助剤(C)を配合する場合には、その配合量によって最低造膜温度を変化させることができる。すなわち、造膜助剤(C)の配合量を増やすことによって最低造膜温度を低下させることができる。アクリル樹脂(B)の最低造膜温度は、公知の方法にて測定することができる。本発明においては、温度勾配試験装置(最低造膜測定装置、三洋貿易(株)社製)のステンレス板上に0.2mmの厚さに試料としての表面処理剤(P)又は比較用表面処理剤を塗布し密閉し、乾燥した後、一様な連続皮膜部分と白濁している部分の境界部の温度を読み取り、最低造膜温度とした。   A film-forming aid (C) is added to the acrylic resin (B) dispersion to prepare a surface treatment agent (P) as an aqueous acrylic resin dispersion. The surface treatment agent (P) needs to have an appropriate minimum film-forming temperature as an index indicating an appropriate film-forming property, and the film-forming aid (C) is for that purpose. The minimum film forming temperature of the surface treatment agent (P) needs to be −5 to 40 ° C., preferably 0 to 30 ° C., and more preferably 5 to 20 ° C. When the minimum film-forming temperature is within the range of -5 to 40 ° C, the corrosion resistance, alkali resistance, acid resistance and processability are improved, and the transparency of the film is increased. If the improved minimum film-forming temperature is less than −5 ° C., the storage stability of the surface treatment agent (P) tends to be not obtained, and if it exceeds 40 ° C., the film-forming property becomes insufficient, and the corrosion resistance, alkali resistance and acid resistance Tend to decrease. The minimum film-forming temperature of the acrylic resin (B) varies depending on the composition of the monomer forming the acrylic resin (B) and can be measured at the stage of the acrylic resin (B) dispersion. When blending C), the minimum film-forming temperature can be changed depending on the blending amount. That is, the minimum film-forming temperature can be lowered by increasing the blending amount of the film-forming auxiliary (C). The minimum film forming temperature of the acrylic resin (B) can be measured by a known method. In the present invention, a surface treatment agent (P) or a comparative surface treatment as a sample having a thickness of 0.2 mm on a stainless steel plate of a temperature gradient test device (minimum film-forming measuring device, manufactured by Sanyo Trading Co., Ltd.) After applying the agent, sealing, and drying, the temperature at the boundary between the uniform continuous film portion and the clouded portion was read to obtain the minimum film-forming temperature.

造膜助剤(C)としては、エチレングリコール、ジエチレングリコール、プピレングリコール又はジプロピレングリコールの炭素数2〜4のアルキルエーテル又は炭素数2〜4のアルカン酸エステル、例えばエチレングリコールモノブチルエーテル、ジエチレングリコールモノブチルエーテルアセテート(通称:ブチルカルビトールアセテート)、ジプロピレングリコールn−ブチルエーテル等;2,2,4−トリメチル−1,3ペンタンジオールモノイソブチレート;メチルエチルケトン;N−メチルピロリドンなどが挙げられる。これらの中で、分子中に1つのエステル結合及び/又は1つもしくは2つのエーテル結合を有するもの、すなわち、エチレングリコール、ジエチレングリコール、プピレングリコール又はジプロピレングリコールの炭素数2〜4のアルキルエーテル又は炭素数2〜4のアルカン酸エステル、及び2,2,4−トリメチル−1,3ペンタンジオールモノイソブチレートが好ましく、ジエチレングリコールモノブチルエーテルアセテート及び2,2,4−トリメチル−1,3ペンタンジオールモノイソブチレートがより一層好ましい。造膜助剤(C)は分散粒子の表面を溶解し、粒子間の融着を助長することによって最低造膜温度を低下させるが、エステル結合及び/又はエーテル結合、特にエステル結合及びエーテル結合を有すると、その作用が向上する。   Examples of the film-forming aid (C) include ethylene glycol, diethylene glycol, propylene glycol or dipropylene glycol alkyl ethers having 2 to 4 carbon atoms or alkanoic acid esters having 2 to 4 carbon atoms such as ethylene glycol monobutyl ether and diethylene glycol mono Examples include butyl ether acetate (common name: butyl carbitol acetate), dipropylene glycol n-butyl ether and the like; 2,2,4-trimethyl-1,3-pentanediol monoisobutyrate; methyl ethyl ketone; N-methylpyrrolidone and the like. Among these, those having one ester bond and / or one or two ether bonds in the molecule, that is, an alkyl ether having 2 to 4 carbon atoms of ethylene glycol, diethylene glycol, propylene glycol or dipropylene glycol, or C2-C4 alkanoic acid ester and 2,2,4-trimethyl-1,3-pentanediol monoisobutyrate are preferable, and diethylene glycol monobutyl ether acetate and 2,2,4-trimethyl-1,3-pentanediol monoiso Isobutyrate is even more preferred. The film-forming auxiliary (C) lowers the minimum film-forming temperature by dissolving the surface of the dispersed particles and promoting fusion between the particles. However, the film-forming auxiliary (C) reduces ester bonds and / or ether bonds, particularly ester bonds and ether bonds. When it has, the effect | action improves.

造膜助剤(C)の配合量は、アクリル樹脂(B)100質量部に対して、0.5〜50質量部であることが好ましく、2〜45質量部であることがより好ましく、5〜40質量部であることがより一層好ましい。前記配合量が0.5質量部未満であると造膜助剤(C)の添加効果が発現しにくくなり、その結果、良好な増膜性が得られにくくなり、また、皮膜の良好な透明性が得らにくくなる。また、50質量部を超えると、貯蔵安定性が低下する傾向となる。なお、造膜とは膜化していることを言い、ミクロ的には、乾燥後のアクリル樹脂(B)の粒子同士が融着している状態を言う。造膜段階において、造膜助剤(C)はアクリル樹脂(B)の造膜助剤として作用し粒子同士の融着を促進する。その結果、入射光の乱反射が抑制されて皮膜の透明性が高まると共に耐アルカリ性及び耐酸性が改善され、また、皮膜の凝集力が向上するため加工性が改善される。   The blending amount of the film-forming auxiliary (C) is preferably 0.5 to 50 parts by mass, more preferably 2 to 45 parts by mass with respect to 100 parts by mass of the acrylic resin (B). It is still more preferable that it is -40 mass parts. When the blending amount is less than 0.5 parts by mass, the effect of adding the film-forming aid (C) is hardly exhibited, and as a result, it is difficult to obtain a good film-forming property, and the film has a good transparency. It becomes difficult to obtain the sex. Moreover, when it exceeds 50 mass parts, it will become the tendency for storage stability to fall. The term “film formation” refers to film formation, and microscopically refers to a state where particles of the acrylic resin (B) after drying are fused together. In the film-forming stage, the film-forming aid (C) acts as a film-forming aid for the acrylic resin (B) and promotes the fusion of the particles. As a result, irregular reflection of incident light is suppressed, the transparency of the film is increased, alkali resistance and acid resistance are improved, and workability is improved because the cohesive force of the film is improved.

上層処理層(Y)はアクリル樹脂(B)及び造膜助剤の他に、ジルコニウム化合物(D1)及び金属酸化物ゾル(D2)よりなる群から選ばれる少なくとも1種の金属成分(D)を含有することが好ましい。   The upper treatment layer (Y) contains at least one metal component (D) selected from the group consisting of a zirconium compound (D1) and a metal oxide sol (D2) in addition to the acrylic resin (B) and the film-forming aid. It is preferable to contain.

ジルコニウム化合物(D1)は皮膜中で積層状となり、形成された皮膜の酸素透過性や水蒸気透過性を抑え、非常に優れたバリア効果を発揮するため、耐食性を向上させる。また、ジルコニウムはアルカリ性物質に対する耐久性が高いため、ジルコニウム化合物(D1)は耐アルカリ性を向上させる。ジルコニウム化合物(D1)としては、ジルコンフッ化水素酸、ジルコンフッ化アンモニウム、硝酸ジルコニウム、酢酸ジルコニウム、酸化ジルコニウム、水酸化ジルコニウム、炭酸ジルコニウムアンモニウム、炭酸ジルコニウムカリウム、塩基性炭酸ジルコニウム、ステアリン酸ジルコニウム、オクチル酸ジルコニウム、ジルコニウムテトラアセチルアセトネート、ジルコニウムトリブトキシモノアセチルアセトネート、ジルコニウムテトラアセチルアセトネート、ジルコニウムテトラノルマルプロポキシ、ジルコニウムテトラノルマルブトキシ、ジルコニウムトリブトキシモノステアレートなどが挙げられる。   The zirconium compound (D1) is laminated in the film and suppresses oxygen permeability and water vapor permeability of the formed film and exhibits a very excellent barrier effect, thereby improving the corrosion resistance. Since zirconium has high durability against alkaline substances, the zirconium compound (D1) improves alkali resistance. Examples of the zirconium compound (D1) include zircon hydrofluoric acid, ammonium zircon fluoride, zirconium nitrate, zirconium acetate, zirconium oxide, zirconium hydroxide, ammonium zirconium carbonate, potassium zirconium carbonate, basic zirconium carbonate, zirconium stearate, zirconium octylate. Zirconium tetraacetylacetonate, zirconium tributoxy monoacetylacetonate, zirconium tetraacetylacetonate, zirconium tetranormal propoxy, zirconium tetranormal butoxy, zirconium tributoxy monostearate and the like.

金属酸化物ゾル(D2)は皮膜中で積層状となり、形成された皮膜の酸素透過性や水蒸気透過性を抑え、非常に優れたバリア効果を発揮するため、耐食性を向上させる。金属酸化物ゾル(D2)としては、酸化マグネシウムゾル、酸化アルミニウムゾル、酸化ケイ素ゾル、酸化カルシウムゾル、酸化スカンジウムゾル、酸化チタンゾル、酸化バナジウムゾル、酸化マンガンゾル、酸化ガリウムゾル、酸化ゲルマニウムゾル、酸化イットリウムゾル、酸化ジルコニウムゾル、酸化アンチモンゾル、酸化ランタンゾル、酸化セリウムゾル、酸化ネオジムゾル、酸化ハフニウムゾルなどが挙げられる。これらの中で、酸化ケイ素ゾル、並びに希土類酸化物ゾル、すなわち酸化スカンジウムゾル、酸化イットリウムゾル、酸化ランタンゾル、酸化セリウムゾル及び酸化ネオジムゾルは紫外線遮断作用を有するので好ましく、紫外線照射によるアクリル樹脂(B)の紫外線劣化を抑制することができる。これらの中で、紫外線遮断効果に特に優れた酸化ケイ素ゾル、酸化セリウムゾル、酸化イットリウムゾル、酸化ネオジムゾルがより好ましい。   The metal oxide sol (D2) is laminated in the film and suppresses oxygen permeability and water vapor permeability of the formed film and exhibits a very excellent barrier effect, thereby improving the corrosion resistance. As the metal oxide sol (D2), magnesium oxide sol, aluminum oxide sol, silicon oxide sol, calcium oxide sol, scandium oxide sol, titanium oxide sol, vanadium oxide sol, manganese oxide sol, gallium oxide sol, germanium oxide sol, yttrium oxide sol Zirconium oxide sol, antimony oxide sol, lanthanum oxide sol, cerium oxide sol, neodymium oxide sol, hafnium oxide sol, and the like. Among these, silicon oxide sol and rare earth oxide sol, ie, scandium oxide sol, yttrium oxide sol, lanthanum oxide sol, cerium oxide sol and neodymium oxide sol are preferable because they have an ultraviolet blocking effect, and acrylic resin (B) by ultraviolet irradiation. UV degradation can be suppressed. Among these, silicon oxide sol, cerium oxide sol, yttrium oxide sol, and neodymium oxide sol, which are particularly excellent in the ultraviolet blocking effect, are more preferable.

上層処理層(Y)は、さらに、加水分解性シリル化合物(E)を含有することが好ましい。加水分解性シリル化合物(E)は、形成された皮膜と基材又は皮膜と上塗り塗装との密着性を高めるため、耐食性、耐アルカリ性及び耐酸性を向上させる。本発明において加水分解性シリル化合物(E)は、次の一般式(VI)で表される化合物をさす。   The upper treatment layer (Y) preferably further contains a hydrolyzable silyl compound (E). The hydrolyzable silyl compound (E) improves the corrosion resistance, alkali resistance and acid resistance in order to improve the adhesion between the formed film and the base material or the film and the top coat. In the present invention, the hydrolyzable silyl compound (E) refers to a compound represented by the following general formula (VI).

(式中、R12は、水素原子、水酸基、メチル基、エチル基、イソプロピル基等の炭素数1〜3のアルキル基又はメトキシル基、エトキシル基、イソプロポキシル基等の炭素数1〜3のアルコキシル基を表し、R13及びR14は互いに独立に水素原子、メチル基、エチル基、イソプロピル基等炭素数1〜3のアルキル基を表し、Yは水酸基、アミノ基、N−アミノエチルアミノ基、グリシジルオキシ基もしくはメルカプト基で置換された炭素数1〜6の鎖状もしくは環状アルキル基、又はビニル基を表す)。 (In the formula, R12 represents a hydrogen atom, a hydroxyl group, a methyl group, an ethyl group, an isopropyl group or the like, or an alkyl group having 1 to 3 carbon atoms or a methoxyl group, an ethoxyl group, an isopropoxyl group or the like, or an alkoxyl group having 1 to 3 carbon atoms. R13 and R14 independently represent a hydrogen atom, a methyl group, an ethyl group, an isopropyl group or the like, and an alkyl group having 1 to 3 carbon atoms, and Y represents a hydroxyl group, an amino group, an N-aminoethylamino group, a glycidyloxy group. A linear or cyclic alkyl group having 1 to 6 carbon atoms substituted with a group or a mercapto group, or a vinyl group).

加水分解性シリル化合物(E)として具体的には、N−(アミノエチル)−3−アミノプロピルトリメトキシシラン、3−アミノプロピルトリエトキシシラン、3−グリシドキシプロピルトリメトキシシラン、3−グリシドキシプロピルメチルジメトキシシラン、2−(3,4エポキシシクロヘキシル)エチルトリメトキシシラン、ビニルトリエトキシシラン、3−メルカプトプロピルトリメトキシシラン、3−メタクリロキシプロピルトリメトキシシランなどが挙げられる。   Specific examples of the hydrolyzable silyl compound (E) include N- (aminoethyl) -3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-glycidoxypropyltrimethoxysilane, and 3-glycol. Sidoxypropylmethyldimethoxysilane, 2- (3,4 epoxy cyclohexyl) ethyltrimethoxysilane, vinyltriethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-methacryloxypropyltrimethoxysilane and the like.

次に、金属成分(D)及び加水分解性シリル化合物(E)が主として関与する成分間使用比率について述べる。金属成分(D)が含有する金属の合計質量Mと、加水分解性シリル化合物(E)が含有するケイ素の質量Si1とケイ素含有モノマー(b2)が含有するケイ素の質量Si2の質量比率〔M/(Si1+Si2)〕は0.1〜50であることが好ましく、1〜20であることがより好ましく、2〜10であることがより一層好ましい。該質量比率が0.1〜50の範囲にあると、耐食性が向上する。該質量比率が0.1未満であると、バリア効果の向上ひいては耐食性の向上が望めず、50を超えると、造膜性の低下と、皮膜と下地処理層(X)又は皮膜と上塗り塗装との密着性が低下し、耐食性、耐アルカリ性及び耐酸性が低下する傾向になる。   Next, the use ratio between components in which the metal component (D) and the hydrolyzable silyl compound (E) are mainly involved will be described. Mass ratio of total mass M of metal contained in metal component (D), mass Si1 of silicon contained in hydrolyzable silyl compound (E) and mass of silicon Si2 contained in silicon-containing monomer (b2) [M / (Si1 + Si2)] is preferably from 0.1 to 50, more preferably from 1 to 20, and even more preferably from 2 to 10. When the mass ratio is in the range of 0.1 to 50, the corrosion resistance is improved. When the mass ratio is less than 0.1, improvement of the barrier effect and consequently improvement of corrosion resistance cannot be expected, and when it exceeds 50, the film forming property is deteriorated, and the film and the base treatment layer (X) or the film and the top coat are applied. The adhesion of the resin tends to decrease, and the corrosion resistance, alkali resistance and acid resistance tend to decrease.

また、加水分解性シリル化合物(E)が含有するケイ素の質量Si1とケイ素含有モノマー(c2)が含有するケイ素の質量Si2の質量比率Si1/Si2は0.15〜250であることが好ましく、0.3〜100であることがより好ましく、0.5〜50であることがより一層好ましい。該質量比率が0.15〜250の範囲にあると、下地処理層(X)との密着性が向上する。該質量比率Si1/Si2が0.15未満であると、下地処理層(X)との密着性が得られにくくなり、またそのため耐食性の向上が望めず、250を超えると、該水系金属表面処理剤の貯蔵安定性が得られなくなる傾向になる。   The mass ratio Si1 / Si2 of the silicon mass Si1 contained in the hydrolyzable silyl compound (E) and the silicon mass Si2 contained in the silicon-containing monomer (c2) is preferably 0.15 to 250, 3 to 100 is more preferable, and 0.5 to 50 is even more preferable. When the mass ratio is in the range of 0.15 to 250, the adhesion with the base treatment layer (X) is improved. When the mass ratio Si1 / Si2 is less than 0.15, it becomes difficult to obtain adhesion with the base treatment layer (X), and therefore, improvement in corrosion resistance cannot be expected. The storage stability of the agent tends not to be obtained.

アクリル樹脂(B)の配合量は、本発明の水系金属表面処理剤の全固形分に対して40〜98質量%であることが好ましく、50〜98質量%であることがより好ましく、70〜98質量%であることがより一層好ましい。該配合量が40質量%未満であると、アクリル樹脂(B)によってもたらされる良好な加工性や上塗り塗料密着性が得られなくなり、98質量%を超えると、金属成分(D)及び加水分解性シリル化合物(E)を配合しても配合効果が得られなくなる。   The blending amount of the acrylic resin (B) is preferably 40 to 98% by mass, more preferably 50 to 98% by mass with respect to the total solid content of the aqueous metal surface treatment agent of the present invention, and 70 to It is still more preferable that it is 98 mass%. When the blending amount is less than 40% by mass, good processability and top coating adhesion provided by the acrylic resin (B) cannot be obtained, and when it exceeds 98% by mass, the metal component (D) and hydrolyzability are not obtained. Even if the silyl compound (E) is blended, the blending effect cannot be obtained.

上層処理層(Y)は、また、耐薬品性及び/又は耐食性を向上させる目的で、アクリル樹脂(B)以外の他の樹脂であって、炭素−炭素二重結合等の炭素−炭素不飽和結合も炭素−窒素二重結合等の炭素−窒素不飽和結合を有さないものを含有することができる。かかる他の樹脂としては、いずれもこれらの不飽和結合を有さないアクリル樹脂、エポキシ樹脂、ウレタン樹脂等が挙げられる。他の樹脂としては、特に制限はなく、水系金属表面処理剤において常用されるものを用いることができ、アクリル樹脂としては、例えば、ポリ(メタ)アクリル酸メチル、ポリ(メタ)アクリル酸ブチル、ポリアクリル酸2−エチルヘキシル等を、エポキシ樹脂としては、例えば、水添ビスフェノールA型エポキシ樹脂等を、ウレタン樹脂としては、例えば、ヘキサメチレンジイソシアネート、イソホロンジイソシアネート等の脂肪族系ジイソシアネートとポリエーテルポリオール(ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール等)又はポリエステルポリオール(アジピン酸とエチレングリコールとの縮合物であって、両末端水酸基のもの等)との重縮合物を用いることができる。   The upper treatment layer (Y) is a resin other than the acrylic resin (B) for the purpose of improving chemical resistance and / or corrosion resistance, and is carbon-carbon unsaturated such as a carbon-carbon double bond. A bond can also contain what does not have carbon-nitrogen unsaturated bonds, such as a carbon-nitrogen double bond. Examples of such other resins include acrylic resins, epoxy resins, and urethane resins that do not have these unsaturated bonds. Other resins are not particularly limited, and those commonly used in aqueous metal surface treatment agents can be used. Examples of acrylic resins include poly (meth) acrylate methyl, poly (meth) acrylate butyl, Polyethyl acrylate 2-ethylhexyl, etc., epoxy resin, for example, hydrogenated bisphenol A type epoxy resin, etc., urethane resin, for example, aliphatic diisocyanate such as hexamethylene diisocyanate, isophorone diisocyanate and polyether polyol ( Polyethylene glycol, polypropylene glycol, polytetramethylene glycol, etc.) or polyester polyols (condensates of adipic acid and ethylene glycol, such as hydroxyl groups at both terminals) can be used.

他の樹脂の配合量は、アクリル樹脂(B)100質量部に対して、アクリル樹脂の場合は70質量部以下であるのが好ましく、60質量部以下であるのがより好ましく、50質量部以下であるのがより一層好ましく;エポキシ樹脂の場合は90質量部以下であるのが好ましく、80質量部以下であるのがより好ましく、70質量部以下であるのがより一層好ましく;ウレタン樹脂の場合は90質量部以下であるのが好ましく、80質量部以下であるのがより好ましく、70質量部以下であるのがより一層好ましい。それぞれ好ましい範囲を超えて使用すると、アクリル樹脂(B)に由来する耐紫外線劣化性、耐アルカリ性、耐酸性、加工性及び皮膜透過性が得られにくくなる。   The blending amount of the other resin is preferably 70 parts by mass or less, more preferably 60 parts by mass or less, and 50 parts by mass or less with respect to 100 parts by mass of the acrylic resin (B). In the case of an epoxy resin, it is preferably 90 parts by mass or less, more preferably 80 parts by mass or less, and even more preferably 70 parts by mass or less; in the case of a urethane resin. Is preferably 90 parts by mass or less, more preferably 80 parts by mass or less, and even more preferably 70 parts by mass or less. If each is used in excess of the preferred range, it becomes difficult to obtain the UV resistance, alkali resistance, acid resistance, processability and film permeability derived from the acrylic resin (B).

表面処理剤(P)は、本発明の効果を損なわない範囲で、塗工性を向上させるためのレベリング剤、皮膜の乾燥性を改善するための水溶性溶剤、防錆顔料、着色顔料、潤滑性を向上させるワックスなどの添加剤を含有することできる。レベリング剤としては、ノニオン性もしくはカチオン性の界面活性剤を用いることができ、ポリアセチレングリコールのポリエチレンオキサイドもしくはポリプロピレンオキサイド付加物やアセチレングリコール化合物などが挙げられ、水溶性溶剤としてはエタノール、イソプロピルアルコール、t−ブチルアルコール、プロピレングリコール等のアルコール類、酢酸エチル、酢酸ブチル等のエステル類、アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン類などが挙げられる。   The surface treatment agent (P) is a leveling agent for improving the coating property, a water-soluble solvent for improving the drying property of the film, a rust preventive pigment, a color pigment, and a lubrication, as long as the effects of the present invention are not impaired. Additives such as waxes that improve the properties can be included. As the leveling agent, a nonionic or cationic surfactant can be used, and examples thereof include polyethylene oxide or polypropylene oxide adduct of polyacetylene glycol and acetylene glycol compound, and water-soluble solvents include ethanol, isopropyl alcohol, t -Alcohols such as butyl alcohol and propylene glycol, esters such as ethyl acetate and butyl acetate, and ketones such as acetone, methyl ethyl ketone and methyl isobutyl ketone.

表面処理剤(P)の製造方法については、表面処理剤(P)を安定に製造し得る方法であれば、特に制限されない。本発明の処理剤は、一般的には、上記重合によって得られる、アクリル樹脂(B)の分散液に、造膜助剤(C)、並びに、必要に応じて金属成分(D)、加水分解性シリル化合物(E)及び/又は他の任意成分を添加し、攪拌することにより製造することができる。   About the manufacturing method of a surface treating agent (P), if it is a method which can manufacture a surface treating agent (P) stably, it will not restrict | limit in particular. The treatment agent of the present invention generally comprises a dispersion of acrylic resin (B) obtained by the above polymerization, a film-forming aid (C), and optionally a metal component (D), hydrolysis. It can manufacture by adding a stirring silyl compound (E) and / or other arbitrary components, and stirring.

表面処理剤(P)の固形分濃度は特に制限されないが、3〜50質量%であることが好ましく、5〜35質量%であることがより好ましい。該固形分濃度が3質量%未満であると、塗布性に問題が生じる恐れがあり、また処理剤コストが高くなる。50質量%を超えると表面処理剤(P)の貯蔵安定性が低下する傾向になる。   The solid content concentration of the surface treatment agent (P) is not particularly limited, but is preferably 3 to 50% by mass, and more preferably 5 to 35% by mass. If the solid content concentration is less than 3% by mass, there may be a problem in applicability, and the cost of the treatment agent increases. If it exceeds 50% by mass, the storage stability of the surface treatment agent (P) tends to decrease.

表面処理剤(P)を亜鉛系めっき鋼板上に施された下地処理層(X)上に塗布し、好ましくは50〜250℃、より好ましは70〜150℃、より一層好ましは100〜140℃の到達温度(到達金属材料温度)で乾燥することによって、上層処理層(Y)を形成させる。到達温度が50℃未満であると、表面処理剤(P)の溶媒が完全に揮発せず、250℃より高いと、表面処理剤(P)により形成された皮膜の一部が分解する恐れがある。乾燥後の皮膜質量は0.05〜5g/mであることが好ましく、0.2〜3g/mであることがより好ましく、0.5〜2.5g/mであることがより一層好ましい。皮膜質量が0.05g/m未満であると、該金属材料の表面を十分に被覆できないため、各性能を発現させることができず、5g/mより大きいと、加工時にカスが生じ、操業性が低下する。 The surface treatment agent (P) is applied on the base treatment layer (X) applied on the galvanized steel sheet, preferably 50 to 250 ° C., more preferably 70 to 150 ° C., and still more preferably 100 to The upper treatment layer (Y) is formed by drying at an ultimate temperature of 140 ° C. (an ultimate metal material temperature). If the ultimate temperature is less than 50 ° C., the solvent of the surface treatment agent (P) does not completely evaporate, and if it is higher than 250 ° C., there is a possibility that a part of the film formed by the surface treatment agent (P) is decomposed. is there. Preferably the coating weight after drying is 0.05-5 g / m 2, more preferably from 0.2 to 3 g / m 2, and more to be 0.5 to 2.5 g / m 2 Even more preferred. When coating mass is less than 0.05 g / m 2, can not sufficiently cover the surface of the metal material, it is impossible to express the performance, larger than 5 g / m 2, dregs generated during machining, The operability is reduced.

本発明の複層表面処理を適用する亜鉛系めっき鋼板は、特に制限されず、亜鉛めっき鋼板、亜鉛−ニッケルめっき鋼板、亜鉛−鉄めっき鋼板、亜鉛−クロムめっき鋼板、亜鉛−アルミニウムめっき鋼板、亜鉛−チタンめっき鋼板、亜鉛−マグネシウムめっき鋼板、亜鉛−マンガンめっき鋼板、亜鉛−アルミニウム−マグネシウムめっき鋼板、亜鉛−アルミニウム−マグネシウム−シリコンめっき鋼板等が挙げられ、さらにはこれらのめっき鋼板であって、そのめっき層に、意図的に添加した少量の異種金属もしくは不純物異種金属として、コバルト、モリブデン、タングステン、ニッケル、チタン、クロム、アルミニウム、マンガン、鉄、マグネシウム、鉛、ビスマス、アンチモン、錫、銅、カドミウム、ヒ素等を含有するものや、そのめっき層に、シリカ、アルミナ、チタニア等の無機物を分散させたものも用い得る。さらには、上記したような亜鉛系めっきと他の種類のめっき、例えば鉄めっき、鉄−リンめっき、ニッケルめっき、コバルトめっき等と組み合わせた複層亜鉛系めっき鋼板にも適用可能である。めっき方法は特に限定されず、公知の電気めっき法、溶融めっき法、蒸着めっき法、分散めっき法、真空めっき法等のいずれの方法も使用可能である。   The zinc-based plated steel sheet to which the multilayer surface treatment of the present invention is applied is not particularly limited, and is galvanized steel sheet, zinc-nickel plated steel sheet, zinc-iron plated steel sheet, zinc-chromium plated steel sheet, zinc-aluminum plated steel sheet, zinc -Titanium-plated steel sheet, zinc-magnesium-plated steel sheet, zinc-manganese-plated steel sheet, zinc-aluminum-magnesium-plated steel sheet, zinc-aluminum-magnesium-silicon-plated steel sheet, etc. Cobalt, molybdenum, tungsten, nickel, titanium, chromium, aluminum, manganese, iron, magnesium, lead, bismuth, antimony, tin, copper, cadmium , Arsenic, etc. The layer of silica, alumina, it may also be used those obtained by dispersing inorganic substances titania. Furthermore, the present invention can also be applied to a multilayered zinc-based plated steel sheet in combination with the above-described zinc-based plating and other types of plating such as iron plating, iron-phosphorus plating, nickel plating, cobalt plating and the like. The plating method is not particularly limited, and any known method such as an electroplating method, a hot dipping method, a vapor deposition plating method, a dispersion plating method, or a vacuum plating method can be used.

以下に実施例及び比較例を挙げて本発明を具体的に説明するが、本発明はこれらにより限定されるものではない。試験板の調製、実施例及び比較例、及び表面処理剤の塗布の方法について説明する。   EXAMPLES The present invention will be specifically described below with reference to examples and comparative examples, but the present invention is not limited thereto. Preparation of the test plate, examples and comparative examples, and a method for applying the surface treatment agent will be described.

〔下地処理層(X)〕
下地処理層(X)の処理条件及び構成成分を表1に示す。
[Undercoat layer (X)]
Table 1 shows the processing conditions and components of the ground treatment layer (X).

〔上層処理層(Y)〕
表面処理剤(P)及び比較用表面処理剤である上層処理用表面処理剤に使用した、(メタ)アクリル酸エステル(b1)、ケイ素含有モノマー(b2)、α,β−エチレン性不飽和脂肪族カルボン酸(b3)及び他の脂肪族系(メタ)アクリル酸エステル(b4)、並びに比較用モノマーを表2に示す。脂肪族系反応性乳化剤(b5)としてはエレミノールJS−2(三洋化成製、アルキルアリルスルホコハク酸塩)を用いた。これらのモノマーの合計使用量を100質量部とした場合の各モノマーの使用量(質量部)及び得られたアクリル樹脂の物性値を表3に示す。なお、脂肪族系反応性乳化剤(b5)の使用量はすべての上層処理用表面処理剤において、0.5質量部とした。
[Upper layer (Y)]
(Meth) acrylic acid ester (b1), silicon-containing monomer (b2), α, β-ethylenically unsaturated fat used for surface treatment agent (P) and surface treatment agent for upper layer treatment which is a surface treatment agent for comparison Table 2 shows the aliphatic carboxylic acid (b3), other aliphatic (meth) acrylic acid ester (b4), and a comparative monomer. As the aliphatic reactive emulsifier (b5), Eleminol JS-2 (manufactured by Sanyo Chemical Industries, alkylallylsulfosuccinate) was used. Table 3 shows the used amount (parts by mass) of each monomer and the physical properties of the resulting acrylic resin when the total used amount of these monomers is 100 parts by mass. In addition, the usage-amount of the aliphatic reactive emulsifier (b5) was 0.5 mass part in all the surface treatment agents for upper-layer processes.

アクリル樹脂(B)分散液の製造例
攪拌機、還流冷却器、滴下ロート及び温度計を取り付けた4つ口フラスコに、内部空気を窒素ガスにて置換後、イオン交換水120質量部及びエレミノールJS−2 0.5質量部を投入し、水溶液とした。滴下ロートにイソボルニルメタクリレート10.0質量部、メチルメタクリレート52.0質量部、2−エチルヘキシルアクリレート16.0質量部、n−ブチルメタクリレート18.0質量部、ビニルトリ(メトキシエトキシ)シラン1.0質量部及びメタクリル酸2.5質量部を入れて混合し、混合モノマーとした。ついで該水溶液の温度を70℃に上げた後、混合モノマーの10質量%をフラスコ中に投入し、ついで過硫酸アンモニウム0.3質量部を投入した。重合反応終了後、残りの混合モノマー90質量%を3時間かけて滴下した。滴下終了後混合物温度を75℃にして1時間保った。40℃に冷却後、アンモニア水でpH7に調整した。本製造例で得られたアクリル樹脂は表3におけるアクリル樹脂(B2)である。
同様にして、アクリル樹脂(B1)及びアクリル樹脂(B3)〜(B13)を製造した。これらのうち、アクリル樹脂(B1)〜(B8)は本発明の必須要件を満たすが、アクリル樹脂(B9)〜(B13)は本発明の必須要件中少なくとも1つを欠いている。
Production Example of Acrylic Resin (B) Dispersion After replacing the internal air with nitrogen gas in a four-necked flask equipped with a stirrer, reflux condenser, dropping funnel and thermometer, 120 parts by mass of ion-exchanged water and Eleminol JS- 2 0.5 parts by mass was added to make an aqueous solution. To the dropping funnel, 10.0 parts by weight of isobornyl methacrylate, 52.0 parts by weight of methyl methacrylate, 16.0 parts by weight of 2-ethylhexyl acrylate, 18.0 parts by weight of n-butyl methacrylate, 1.0 of vinyltri (methoxyethoxy) silane Part by mass and 2.5 parts by mass of methacrylic acid were added and mixed to obtain a mixed monomer. Next, after the temperature of the aqueous solution was raised to 70 ° C., 10% by mass of the mixed monomer was charged into the flask, and then 0.3 part by mass of ammonium persulfate was charged. After the completion of the polymerization reaction, the remaining 90% by mass of the mixed monomer was added dropwise over 3 hours. After completion of dropping, the mixture temperature was raised to 75 ° C. and maintained for 1 hour. After cooling to 40 ° C., the pH was adjusted to 7 with aqueous ammonia. The acrylic resin obtained in this production example is the acrylic resin (B2) in Table 3.
Similarly, acrylic resin (B1) and acrylic resins (B3) to (B13) were produced. Among these, acrylic resins (B1) to (B8) satisfy the essential requirements of the present invention, but acrylic resins (B9) to (B13) lack at least one of the essential requirements of the present invention.

表面処理剤(P)(Y1〜Y44)及び比較用表面処理剤(Y45〜Y52)の成分構成を表4及び表5に示す。   Tables 4 and 5 show the components of the surface treatment agent (P) (Y1 to Y44) and the comparative surface treatment agents (Y45 to Y52).

実施例Y1〜Y2及びY39〜44、並びに比較例Y45〜Y50及びY52の表面処理剤の調製方法
室温にて、蒸留水中に、アクリル樹脂(B)分散液及び造膜助剤(C)を表4及び表5に示す割合で添加して表面処理剤を調製した。なお、表面処理剤の固形分濃度は10質量%とした。
Preparation method of surface treating agent of Examples Y1-Y2 and Y39-44 and Comparative Examples Y45-Y50 and Y52 At room temperature, an acrylic resin (B) dispersion and a film-forming aid (C) are represented in distilled water. 4 and the ratio shown in Table 5 were added to prepare a surface treatment agent. The solid concentration of the surface treatment agent was 10% by mass.

実施例Y3〜Y37及び比較例Y51の表面処理剤の調製方法
室温にて、蒸留水中に、ジルコニウム化合物(D1)、金属酸化物ゾル(D2)、加水分解性シリル化合物(E)、及びアクリル樹脂(B)の分散液、造膜助剤(C)を表4及び表5に示す割合で添加して表面処理剤を調製した。なお、表面処理剤の固形分濃度は10質量%とした。
Preparation Method of Surface Treatment Agents of Examples Y3 to Y37 and Comparative Example Y51 Zirconium compound (D1), metal oxide sol (D2), hydrolyzable silyl compound (E), and acrylic resin in distilled water at room temperature A surface treatment agent was prepared by adding the dispersion of (B) and the film-forming aid (C) in the proportions shown in Tables 4 and 5. The solid concentration of the surface treatment agent was 10% by mass.

実施例Y38の表面処理剤の調製方法
表4の表面処理剤Y2において、アクリル樹脂(B)の固形分割合中30質量%分をポリエステルポリオール型ウレタン樹脂に変更した。ポリエステルポリオール型ウレタン樹脂は、テトラメチレングリコール及びアジピン酸から得られるポリエステルポリオール170質量部、1,6−ヘキサメチレンジイソシアネート30質量部、2,2−ジメチロールプロピオン酸25質量部及びN−メチル−2−ピロリドン100質量部を反応させることにより得られるプレポリマーを、トリエチルアミンを用いて脱イオン水に分散させることにより得られたガラス転移温度が100℃、かつ最低造膜温度が0℃以下である水性ウレタン樹脂である。
Preparation Method of Surface Treatment Agent of Example Y38 In the surface treatment agent Y2 of Table 4, 30% by mass in the solid content ratio of the acrylic resin (B) was changed to a polyester polyol type urethane resin. Polyester polyol type urethane resin is 170 parts by mass of polyester polyol obtained from tetramethylene glycol and adipic acid, 30 parts by mass of 1,6-hexamethylene diisocyanate, 25 parts by mass of 2,2-dimethylolpropionic acid and N-methyl-2. An aqueous solution having a glass transition temperature of 100 ° C. and a minimum film-forming temperature of 0 ° C. or less obtained by dispersing a prepolymer obtained by reacting 100 parts by mass of pyrrolidone in deionized water using triethylamine It is a urethane resin.

試験材料を下記する。板厚は全て0.8mmとした。
GI 溶融亜鉛めっき鋼板 目付量=60/60g/m
EG 電気亜鉛めっき鋼板 目付量=25/25g/m
GL 溶融亜鉛−55%アルミニウム合金めっき鋼板
目付量=120/120g/m
Test materials are listed below. The plate thickness was all 0.8 mm.
GI hot dip galvanized steel sheet basis weight = 60/60 g / m 2
EG Electrogalvanized steel sheet basis weight = 25 / 25g / m 2
GL Hot-dip zinc-55% aluminum alloy plated steel sheet Weight per unit area = 120/120 g / m 2

表面処理工程を下記する。
(1)脱脂工程
シリケート系アルカリ脱脂剤であるファインクリーナー4336(登録商標:日本パーカライジング(株)製)を水に濃度20g/Lで溶解し、得られた溶液で試験材料を温度60℃の条件で2分間スプレー処理し、純水で30秒間水洗した後に乾燥した。
(2)下地処理
表1に示す実施例としての表面処理液の1つを脱脂処理後の素材に、所定の方法にて、所定の皮膜量になるように表面処理し、最高到達板温度80℃で乾燥した。
(3)上層処理
表4及び表5に示す実施例としての表面処理液(Y1〜Y44)及び比較例としての表面処理液(Y45〜Y52)の1つを下地処理後の試験材料に、バーコートにて、乾燥後の皮膜量が1.5g/mになるように塗布し、最高到達板温度80℃で乾燥し、試験板とした。
The surface treatment process is described below.
(1) Degreasing process Fine cleaner 4336 (registered trademark: manufactured by Nihon Parkerizing Co., Ltd.), which is a silicate-based alkaline degreasing agent, is dissolved in water at a concentration of 20 g / L. Sprayed for 2 minutes, washed with pure water for 30 seconds and dried.
(2) Substrate treatment One of the surface treatment liquids as an example shown in Table 1 is subjected to a surface treatment so that a predetermined film amount is obtained on a material after degreasing treatment by a predetermined method, and a maximum reached plate temperature of 80 Dried at ℃.
(3) Upper layer treatment One of the surface treatment liquids (Y1 to Y44) as examples and the surface treatment liquids (Y45 to Y52) as comparative examples shown in Tables 4 and 5 is used as a test material after the base treatment. The coating was applied by coating so that the coating amount after drying was 1.5 g / m 2 and dried at a maximum reached plate temperature of 80 ° C. to obtain a test plate.

[評価方法]
(1)耐食性
JASO M609に従い、塩水噴霧(35±2℃で2時間)、乾燥(60±1℃で4時間)、湿潤(50±1℃で2時間)を1サイクルとした複合サイクル試験を行い、168サイクルでの無加工部、クロスカット部、端面部の白錆発生状況を確認した。
<評価基準>
無加工部:無加工部の白錆の発生面積を目視で評価した。
◎:白錆発生なし
○:白錆発生面積率が全面積の10%以下
△:白錆発生面積率が全面積の10%超、30%以下
×:白錆発生面積率が全面積の30%超
クロスカット部:カッターで表面処理鋼板の表面にクロスカットを施し、クロスカット部から発生する白錆の幅を測定した。
◎:白錆幅が2mm以下
○:白錆幅が2mm超、5mm以下
△:白錆幅が5mm超、8mm以下
×:白錆幅が8mm超
端面部:表面処理鋼板の端部を切り落とし、金属材料が剥き出しになった部分から発生する白錆の幅を測定した。
◎:白錆幅が5mm以下
○:白錆幅が5mm超、10mm以下
△:白錆幅が10mm超、15mm以下
×:白錆幅が15mm超
[Evaluation method]
(1) Corrosion resistance According to JASO M609, a combined cycle test in which salt spray (35 ± 2 ° C. for 2 hours), drying (60 ± 1 ° C. for 4 hours), and wetness (50 ± 1 ° C. for 2 hours) is one cycle. This was confirmed by confirming the occurrence of white rust in the unprocessed part, the cross cut part and the end face part in 168 cycles.
<Evaluation criteria>
Unprocessed part: The area where white rust was generated in the unprocessed part was visually evaluated.
◎: No white rust occurrence ○: White rust occurrence area ratio is 10% or less of the total area Δ: White rust occurrence area ratio is more than 10% of the total area, 30% or less ×: White rust occurrence area ratio is 30 of the total area % Super cross cut part: The surface of the surface-treated steel sheet was cross cut with a cutter, and the width of white rust generated from the cross cut part was measured.
◎: White rust width is 2 mm or less ○: White rust width is more than 2 mm, 5 mm or less Δ: White rust width is more than 5 mm, 8 mm or less ×: White rust width is more than 8 mm End face part: The edge part of the surface-treated steel sheet is cut off, The width of white rust generated from the part where the metal material was exposed was measured.
◎: White rust width 5 mm or less ○: White rust width 5 mm or more, 10 mm or less Δ: White rust width 10 mm or more, 15 mm or less ×: White rust width 15 mm or less

(2)上塗り塗装密着性(上塗密着性)
表面処理鋼板に、バーコーターを用いて、メラミンアルキッド樹脂塗料を乾燥膜厚が25μmとなるように塗布し、炉温130℃で20分間焼き付けた。次に、カッターで1mm、100マスの碁盤目を施し、更にその部位を7mm押し出しでエリクセン加工を施した。加工を施した部分のテープ剥離試験を実施し、メラミンアルキッド樹脂層の残存数を評価した。
<評価基準>
◎:100個
○:98個以上100個未満
△:50個以上98個未満
×:50個未満
(2) Top coat adhesion (top coat adhesion)
A melamine alkyd resin paint was applied to the surface-treated steel sheet using a bar coater so that the dry film thickness was 25 μm, and baked at a furnace temperature of 130 ° C. for 20 minutes. Next, a grid of 1 mm and 100 squares was applied with a cutter, and the part was further subjected to Erichsen processing by extruding 7 mm. A tape peeling test was performed on the processed part, and the remaining number of melamine alkyd resin layers was evaluated.
<Evaluation criteria>
◎: 100 ◯: 98 or more and less than 100 △: 50 or more and less than 98 ×: less than 50

(3)基材密着性
表面処理鋼板に、7mm押し出しでエリクセン加工を施し、加工部のテープ剥離試験を実施した。剥離状態を目視にて評価した。なお、剥離は下地処理層の剥離及び上層処理層の剥離のいずれをも含む。
<評価基準>
◎:剥離なし
○:剥離面積が1%超、20%以下
△:剥離面積が20%超、50%以下
×:剥離面積が50%超
(3) Base material adhesion The surface-treated steel sheet was subjected to an Erichsen process by extrusion of 7 mm, and a tape peeling test of the processed part was performed. The peeled state was evaluated visually. Note that peeling includes both peeling of the base treatment layer and peeling of the upper treatment layer.
<Evaluation criteria>
◎: No peeling ○: Peeling area is over 1%, 20% or less △: Peeling area is over 20%, 50% or less ×: Peeling area is over 50%

(4)防汚性
表面処理鋼板に、10質量%黒色顔料分散液を霧吹きにて吹き付け、吹き付け後に水洗し、試験前後の色調変化(ΔE)にて防汚性を評価した。色調変化はColor Meter ZE2000(NIPPON DENSHOKU製、光源:ハロゲンランプ12V/2A)を用いて測定した。下記の耐紫外線性、耐アルカリ性及び耐酸性の色調変化も同様。
<評価基準>
◎:ΔE≦1
○:1<ΔE≦3
△:3<ΔE≦5
×:5<ΔE
(4) Antifouling property A 10% by mass black pigment dispersion was sprayed onto the surface-treated steel sheet by spraying, washed with water, and the antifouling property was evaluated by color tone change (ΔE) before and after the test. The color change was measured using Color Meter ZE2000 (manufactured by NIPPON DENSHOKU, light source: halogen lamp 12V / 2A). The same applies to the changes in color tone of the following UV resistance, alkali resistance and acid resistance.
<Evaluation criteria>
A: ΔE ≦ 1
○: 1 <ΔE ≦ 3
Δ: 3 <ΔE ≦ 5
×: 5 <ΔE

(5)造膜性
表面処理鋼板の表面状態を、原子間力顕微鏡(AFM)で観察して評価した。
<判定基準>
◎:凹凸のない均一な皮膜が観察された
○:凹凸の少ない均一な皮膜が観察された
△:凹凸のある皮膜が観察された
×:重合体の粒子が明確に確認できる皮膜が観察された
(5) Film-forming property The surface state of the surface-treated steel sheet was evaluated by observing with an atomic force microscope (AFM).
<Criteria>
A: A uniform film without irregularities was observed. B: A uniform film with few irregularities was observed. Δ: A film with irregularities was observed. X: A film with clear confirmation of polymer particles was observed.

(6)耐紫外線性
表面処理鋼板を、蛍光紫外線湿潤装置(UVCON蛍光灯紫外線湿潤曝露試験機)にて、365nmの紫外線を4時間照射し、その後雰囲気温度50℃、湿度60%Rhに2時間静置する条件を1サイクルとして、196サイクル実施し、試験前後の色調変化(ΔE)を評価した。
<評価基準>
◎:ΔE≦1
○:1<ΔE≦3
△:3<ΔE≦5
×:5<ΔE
(6) Ultraviolet resistance The surface-treated steel sheet was irradiated with 365-nm ultraviolet light for 4 hours with a fluorescent ultraviolet light wetting device (UVCON fluorescent lamp ultraviolet light wet exposure tester), and then at an atmospheric temperature of 50 ° C. and a humidity of 60% Rh for 2 hours. 196 cycles were performed with the condition of standing as one cycle, and the change in color tone (ΔE) before and after the test was evaluated.
<Evaluation criteria>
A: ΔE ≦ 1
○: 1 <ΔE ≦ 3
Δ: 3 <ΔE ≦ 5
×: 5 <ΔE

(7)耐アルカリ性
表面処理鋼板を、25℃の3質量%水酸化ナトリウム水溶液に10分浸漬し、試験前後の色調変化(ΔE)を評価した。
<評価基準>
◎:ΔE≦1
○:1<ΔE≦3
△:3<ΔE≦5
×:5<ΔE
(7) Alkali resistance The surface-treated steel sheet was immersed in a 3 mass% sodium hydroxide aqueous solution at 25 ° C for 10 minutes, and the color tone change (ΔE) before and after the test was evaluated.
<Evaluation criteria>
A: ΔE ≦ 1
○: 1 <ΔE ≦ 3
Δ: 3 <ΔE ≦ 5
×: 5 <ΔE

(8)耐酸性
表面処理鋼板を、25℃の3質量%硫酸に3時間浸漬し、試験前後の色調変化(ΔE)を評価した。
<評価基準>
◎:ΔE≦1
○:1<ΔE≦3
△:3<ΔE≦5
×:5<ΔE
(8) Acid resistance The surface-treated steel sheet was immersed in 3 mass% sulfuric acid at 25 ° C. for 3 hours, and the color tone change (ΔE) before and after the test was evaluated.
<Evaluation criteria>
A: ΔE ≦ 1
○: 1 <ΔE ≦ 3
Δ: 3 <ΔE ≦ 5
×: 5 <ΔE

(9)耐黒変性
表面処理鋼板を、雰囲気温度70℃、湿度95%Rhに120時間静置し、試験前後の明度変化(ΔL)を評価した。
<評価基準>
◎:ΔL≦2
○:2<ΔE≦5
△:5<ΔE≦10
×:10<ΔE
(9) Blackening resistance The surface-treated steel sheet was allowed to stand at an ambient temperature of 70 ° C. and a humidity of 95% Rh for 120 hours, and the change in brightness (ΔL) before and after the test was evaluated.
<Evaluation criteria>
A: ΔL ≦ 2
○: 2 <ΔE ≦ 5
Δ: 5 <ΔE ≦ 10
×: 10 <ΔE

表6〜表9に評価結果を示す。表6〜表9より本発明の複層表面処理亜鉛系めっき鋼板は、耐食性、密着性、防汚性、造膜性、耐紫外線性、耐アルカリ性、耐酸性及び耐黒変性に優れていた。
これに対し、下地処理層を有さない比較例1及び比較例2は、耐黒変性、耐アルカリ性及び耐酸性に劣り、耐食性にも劣る場合があった。また、上層処理層のアクリル樹脂(B)の最低造膜温度(MFT)が規定範囲を超える比較例3は造膜性が劣り、その結果皮膜性能の殆どが十分に発揮されず、逆に規定範囲に満たない比較例4は塗料及び基材との密着性に劣り、耐紫外線性も劣っていた。また、本発明の複層表面処理亜鉛系めっき鋼板の上層を形成するアクリル樹脂(B)の必須重合単位である(メタ)アクリル酸エステル(b1)単位を含有しない比較例5は耐食性、耐アルカリ性及び耐酸性が著しく劣り、耐黒変性も劣っていた。ケイ素含有モノマー(b2)単位を含有しない比較例6は耐食性、耐アルカリ性、耐酸性及び耐黒変性などほとんどの性能が劣っていた。また、本発明の複層表面処理亜鉛系めっき鋼板の上層を形成するアクリル樹脂(B)に含まれてはいけないスチレン単位を重合単位として含有する比較例7は、耐紫外線性に劣っていた。(メタ)アクリル酸エステル(b1)単位を含有せずスチレン単位を重合単位として含有する比較例8は耐紫外線性及び耐黒変性に劣っており、この傾向は比較例8にジルコニウム化合物を加えた比較例9でも同様であった。また、(メタ)アクリル酸エステル(b1)単位に代えてアダマンタンアクリレート単位を含有する比較例10は、そのかさ高さからか造膜不良であり、その結果、耐食性、耐アルカリ性及び耐酸性を始め多くの性質が劣っていた。
Tables 6 to 9 show the evaluation results. From Table 6 to Table 9, the multilayer surface-treated zinc-based plated steel sheet of the present invention was excellent in corrosion resistance, adhesion, antifouling property, film forming property, ultraviolet resistance, alkali resistance, acid resistance and blackening resistance.
On the other hand, Comparative Example 1 and Comparative Example 2 having no base treatment layer were inferior in blackening resistance, alkali resistance and acid resistance, and inferior in corrosion resistance. Further, Comparative Example 3 in which the minimum film-forming temperature (MFT) of the acrylic resin (B) of the upper treatment layer exceeds the specified range is inferior in film-forming property, and as a result, most of the film performance is not fully exhibited, and conversely specified. The comparative example 4 which is less than the range was inferior in adhesiveness with a coating material and a base material, and also inferior in ultraviolet-ray resistance. Further, Comparative Example 5 containing no (meth) acrylic acid ester (b1) unit which is an essential polymerization unit of the acrylic resin (B) forming the upper layer of the multilayer surface-treated zinc-based plated steel sheet of the present invention is corrosion resistance and alkali resistance. In addition, the acid resistance was remarkably inferior, and the blackening resistance was also inferior. Comparative Example 6 containing no silicon-containing monomer (b2) unit was inferior in most performances such as corrosion resistance, alkali resistance, acid resistance and blackening resistance. Moreover, the comparative example 7 which contains the styrene unit which should not be contained in the acrylic resin (B) which forms the upper layer of the multilayer surface treatment zinc-plated steel plate of this invention as a polymerization unit was inferior in ultraviolet-ray resistance. The comparative example 8 which does not contain a (meth) acrylic acid ester (b1) unit but contains a styrene unit as a polymerization unit is inferior in UV resistance and blackening resistance, and this tendency was obtained by adding a zirconium compound to the comparative example 8. The same was true for Comparative Example 9. In addition, Comparative Example 10 containing an adamantane acrylate unit in place of the (meth) acrylic ester (b1) unit has a poor film formation due to its bulkiness, and as a result, corrosion resistance, alkali resistance and acid resistance have begun. Many properties were inferior.

実施例7〜15を比較すると明らかなように、M/(Si1+Si2)が大きくなるほど、無加工部耐食性、耐アルカリ性、耐酸性及び耐黒変性が向上する傾向がある。実施例15より、M/(Si1+Si2)が好ましい範囲を超えると基材密着性や上塗密着性がやや劣る傾向になることが分かる。これは皮膜が硬くなり、割れが生じやすくなるためと推定される。逆に、実施例7より、M/(Si1+Si2)が好ましい範囲に満たないと、耐食性や耐アルカリ性がやや劣る傾向になることが分かる。これは皮膜の架橋度が十分でなくなるためと推定される。M/(Si1+Si2)が最も好ましい範囲にある実施例10〜12は、最も好ましい範囲に満たない実施例8〜9と比較して、無加工部耐食性、耐アルカリ性及び耐黒変性に優れ、最も好ましい範囲を超える実施例13〜14と比較して、上塗密着性、基材密着性及び耐アルカリ性に優れており、M/(Si1+Si2)が最も好ましい範囲において、耐食性、耐黒変性、耐アルカリ性、上塗密着性、基材密着性などに極めて優れる皮膜を形成できることが分かる。   As is clear when Examples 7 to 15 are compared, as M / (Si1 + Si2) increases, the non-processed portion corrosion resistance, alkali resistance, acid resistance and blackening resistance tend to improve. From Example 15, it can be seen that when M / (Si1 + Si2) exceeds the preferred range, the substrate adhesion and the topcoat adhesion tend to be slightly inferior. This is presumed to be because the film becomes hard and cracking tends to occur. Conversely, from Example 7, it can be seen that if M / (Si1 + Si2) is less than the preferred range, the corrosion resistance and alkali resistance tend to be slightly inferior. This is presumed to be because the degree of crosslinking of the film is not sufficient. Examples 10 to 12 in which M / (Si1 + Si2) is in the most preferable range are most preferable in comparison with Examples 8 to 9 in which M / (Si1 + Si2) is less than the most preferable range because of excellent non-processed portion corrosion resistance, alkali resistance, and blackening resistance. Compared with Examples 13 to 14 exceeding the range, the top coating adhesion, the substrate adhesion and the alkali resistance are excellent, and M / (Si1 + Si2) is the most preferable range, and the corrosion resistance, blackening resistance, alkali resistance, top coating It turns out that the film | membrane which is extremely excellent in adhesiveness, base-material adhesiveness, etc. can be formed.

次に、実施例26〜33を比較すると明らかなように、Si1/Si2が大きくなるほど無加工部耐食性及び耐アルカリ性が向上する傾向があった。実施例33より明らかなように、Si1/Si2が好ましい範囲を超えると、カット部耐食性、端面部耐食性、上塗密着性、基材密着性、防汚性、造膜性及び耐紫外線性がやや低下する傾向がある。実施例26より明らかなように、Si1/Si2が好ましい範囲に満たないと、上塗密着性、基材密着性、防汚性、造膜性及び耐紫外線性が低下する傾向がある。Si1/Si2が最も好ましい範囲にある実施例29〜30は、最も好ましい範囲を超える実施例31〜32と比較して、耐紫外線性の改善傾向が認められ、最も好ましい範囲に満たない実施例27〜28と比較して、防汚性及び耐紫外線性に優れる。したがって、Si1/Si2が最も好ましい範囲にある場合、耐食性、上塗密着性、基材密着性、防汚性、造膜性及び耐紫外線性のいずれにも優れる極めて良好な皮膜を形成できることが分かる。これは、Si1/Si2が最適な範囲にあると、基材や上塗りとの密着性と上層処理層(Y)そのものの自己架橋性とのバランスが優れた皮膜が形成されるためと推定される。その結果、不要な官能基が存在しないため、防汚性に優れ、皮膜の架橋度が増加するため耐紫外線性にも優れるものと推定される。   Next, as is clear when Examples 26 to 33 are compared, there was a tendency that the non-processed portion corrosion resistance and alkali resistance improved as Si1 / Si2 increased. As is clear from Example 33, when Si1 / Si2 exceeds the preferred range, the cut portion corrosion resistance, end surface portion corrosion resistance, topcoat adhesion, substrate adhesion, antifouling property, film-forming property, and ultraviolet resistance are slightly reduced. Tend to. As is clear from Example 26, when Si1 / Si2 is less than the preferred range, the top coat adhesion, substrate adhesion, antifouling property, film-forming property, and ultraviolet resistance tend to decrease. In Examples 29 to 30 in which Si1 / Si2 is in the most preferable range, an improvement tendency of ultraviolet resistance was recognized as compared with Examples 31 to 32 exceeding the most preferable range, and Example 27 which is less than the most preferable range. Compared to ˜28, it is excellent in antifouling property and ultraviolet resistance. Therefore, when Si1 / Si2 is in the most preferable range, it can be seen that a very good film excellent in all of corrosion resistance, topcoat adhesion, substrate adhesion, antifouling property, film forming property and ultraviolet resistance can be formed. This is presumably because, when Si1 / Si2 is in the optimum range, a film having an excellent balance between the adhesion with the base material and the top coat and the self-crosslinking property of the upper layer treatment layer (Y) itself is formed. . As a result, it is presumed that since there is no unnecessary functional group, the antifouling property is excellent, and the degree of crosslinking of the film is increased, so that the UV resistance is also excellent.

次に、M/(Si1+Si2)とSi1/Si2との関係について述べる。M/(Si1+Si2)及びSi1/Si2が共に好ましい範囲にある実施例27〜32は、無加工部、カット部及び端面部耐食性、上塗及び基材密着性、造膜性、耐アルカリ性、耐酸性並びに耐黒変性に非常に優れ、防汚性及び耐紫外線性にも優れている。
他の実施例との比較で論じると、実施例27〜32は、M/(Si1+Si2)及びSi1/Si2が共に好ましい範囲に満たない実施例18と比較して無加工部、カット部及び端面部耐食性、基材密着性、耐アルカリ性、耐酸性並びに耐黒変性において優れており、M/(Si1+Si2)及びSi1/Si2が共に好ましい範囲を超える実施例41と比較してカット部及び端面部耐食性、上塗及び基材密着性、造膜性、耐アルカリ性、耐酸性並びに耐黒変性において優れており、M/(Si1+Si2)が好ましい範囲未満でSi1/Si2が好ましい範囲を超える実施例25と比較してカット部及び端面部耐食性、上塗及び基材密着性、造膜性、耐酸性並びに耐黒変性において優れており、M/(Si1+Si2)が好ましい範囲を超えSi1/Si2が好ましい範囲に満たない実施例34と比較して上塗及び基材密着性、造膜性、耐アルカリ性、耐酸性並びに耐黒変性において優れている。
Next, the relationship between M / (Si1 + Si2) and Si1 / Si2 will be described. Examples 27 to 32 in which both M / (Si1 + Si2) and Si1 / Si2 are in a preferable range are the non-processed part, the cut part and the end face part corrosion resistance, the coating and base material adhesion, the film forming property, the alkali resistance, the acid resistance and It is extremely excellent in blackening resistance and excellent in antifouling properties and UV resistance.
When discussed in comparison with other examples, Examples 27 to 32 are unprocessed parts, cut parts and end face parts as compared with Example 18 in which both M / (Si1 + Si2) and Si1 / Si2 are less than the preferred range. Excellent in corrosion resistance, substrate adhesion, alkali resistance, acid resistance and blackening resistance, and M / (Si1 + Si2) and Si1 / Si2 both exceed the preferred range Cut portion and end face portion corrosion resistance, Compared with Example 25 which is excellent in top coating and substrate adhesion, film-forming property, alkali resistance, acid resistance and blackening resistance, and M / (Si1 + Si2) is less than the preferred range and Si1 / Si2 is more than the preferred range. Excellent in cut and end face corrosion resistance, topcoat and substrate adhesion, film-forming properties, acid resistance and blackening resistance, M / (Si1 + Si2) exceeds the preferred range Topcoat and substrate adhesion as compared with Example 34 in which Si1 / Si2 is less than the preferred range, film formability, alkali resistance, superior in acid resistance and blackening.

M/(Si1+Si2)及びSi1/Si2が共に好ましい範囲にある実施例27〜32は、また、M/(Si1+Si2)及びSi1/Si2の一方が好ましい範囲を満たすが他方が満たさない場合と比較してもより優れた効果をもたらす。例えば、実施例27〜32は、Si1/Si2は好ましい範囲を満たすがM/(Si1+Si2)は好ましい範囲に満たない実施例19〜24と比較して、無加工部、カット部及び端面部耐食性、基材密着性並びに耐黒変性において優れている。   In Examples 27 to 32 in which both M / (Si1 + Si2) and Si1 / Si2 are in the preferred range, one of M / (Si1 + Si2) and Si1 / Si2 satisfies the preferred range, but the other does not. Even better results. For example, in Examples 27 to 32, Si1 / Si2 satisfies the preferred range, but M / (Si1 + Si2) does not satisfy the preferred range. Compared to Examples 19 to 24, the unprocessed part, the cut part, and the end face part corrosion resistance, Excellent in substrate adhesion and blackening resistance.

Claims (8)

亜鉛系めっき鋼板の少なくとも片面に下地処理層(X)と下地処理層(X)を被覆する上層処理層(Y)からなる2層の表面処理層を有する複層表面処理亜鉛系めっき鋼板であって、下地処理層(X)がZr、Ti、Hf、Ce、La及びBiよりなる群から選ばれる少なくとも1種の金属のイオン及び/又は原子である金属イオン及び/又は原子(A)を含有する無機皮膜層であり、上層処理層(Y)がイソボルニル(メタ)アクリレート(b1)からの重合単位、下記一般式(III)で表されるケイ素含有モノマー(b2)からの重合単位、α,β−エチレン性不飽和脂肪族カルボン酸(b3)からの重合単位、他の脂肪族系(メタ)アクリル酸エステル(b4)からの重合単位及び脂肪族系反応性乳化剤(b5)からの重合単位を重合単位として有し、他の脂肪族系(メタ)アクリル酸エステル(b4)が(メタ)アクリル酸と炭素数1〜10のアルカノール、炭素数5もしくは6のシクロアルカノールもしくは炭素数2〜6のアルカンジオールとのエステルであり、脂肪族系反応性乳化剤(b5)がビニルスルホン酸塩、スルホエチルメタクリレート塩、アルキルアリルスルホコハク酸塩、アルケニルスルホコハク酸塩、α−スルホ−ω−(1−(アルコキシ)メチル−2−(2−プロペニルオキシ)エトキシ)−ポリ(オキシ−1,2−エタンジイル)塩、ポリオキシアルキレンアルケニルエーテル硫酸塩、ポリオキシエチレン−1−(アリルオキシメチル)アルキルエーテル硫酸エステル塩又はポリオキシアルキレンアルケニルエーテルであり、分子中にカルボニル基以外の不飽和結合を含有せず、ガラス転移温度が0〜70℃であり、及び酸価が5〜40mgKOH/gであるアクリル樹脂(B)及び造膜助剤(C)を含有し、最低造膜温度が−5〜40℃である水系アクリル樹脂分散液である表面処理剤(P)を下地処理層(X)上に塗布後乾燥させて得られる樹脂層である複層表面処理亜鉛系めっき鋼板:
[式中、R6、R7及びR8は互いに独立に、水素原子、水酸基、炭素数1〜3のアルキル基、炭素数1〜3のアルコキシル基、又は炭素数1〜3のアルコキシル基で置換された炭素数1〜3のアルコキシル基を表し、R9は式(IV)
又は一般式(V)
(式中、R10は水素原子又はメチル基を表し、R11は炭素数1〜12のアルキレン基を表す)で表される基を表す]。
It is a multilayer surface-treated zinc-based plated steel sheet having two surface treatment layers consisting of a ground-treated layer (X) and an upper-layer treated layer (Y) covering the ground-treated layer (X) on at least one surface of the zinc-based plated steel sheet. The base treatment layer (X) contains at least one metal ion and / or atom (A) selected from the group consisting of Zr, Ti, Hf, Ce, La and Bi. An inorganic coating layer, wherein the upper treatment layer (Y) is a polymerization unit from isobornyl (meth) acrylate (b1), a polymerization unit from a silicon-containing monomer (b2) represented by the following general formula (III), α, Polymerized unit from β-ethylenically unsaturated aliphatic carboxylic acid (b3), polymerized unit from other aliphatic (meth) acrylic acid ester (b4) and polymerized unit from aliphatic reactive emulsifier (b5) Polymerize The other aliphatic (meth) acrylic acid ester (b4) is (meth) acrylic acid and an alkanol having 1 to 10 carbon atoms, a cycloalkanol having 5 or 6 carbon atoms, or an alkane having 2 to 6 carbon atoms. Aliphatic reactive emulsifier (b5) is a vinyl sulfonate, sulfoethyl methacrylate salt, alkylallyl sulfosuccinate, alkenyl sulfosuccinate, α-sulfo-ω- (1- (alkoxy) Methyl-2- (2-propenyloxy) ethoxy) -poly (oxy-1,2-ethanediyl) salt, polyoxyalkylene alkenyl ether sulfate, polyoxyethylene-1- (allyloxymethyl) alkyl ether sulfate ester salt or A polyoxyalkylene alkenyl ether with a carbonyl group Contains acrylic resin (B) and film-forming aid (C) having no external unsaturated bond, glass transition temperature of 0 to 70 ° C., and acid value of 5 to 40 mg KOH / g, A multilayer surface-treated zinc-based resin layer, which is a resin layer obtained by applying a surface treatment agent (P), which is a water-based acrylic resin dispersion having a film forming temperature of -5 to 40 ° C., to a base treatment layer (X) and then drying it. Plated steel:
[Wherein R6, R7 and R8 are each independently substituted with a hydrogen atom, a hydroxyl group, an alkyl group having 1 to 3 carbon atoms, an alkoxyl group having 1 to 3 carbon atoms, or an alkoxyl group having 1 to 3 carbon atoms. Represents an alkoxyl group having 1 to 3 carbon atoms, and R9 represents the formula (IV)
Or general formula (V)
(Wherein R10 represents a hydrogen atom or a methyl group, and R11 represents an alkylene group having 1 to 12 carbon atoms).
表面処理剤(P)がジルコニウム化合物(D1)及び金属酸化物ゾル(D2)よりなる群から選ばれる少なくとも1種である金属成分(D)を含有する請求項1記載の複層表面処理亜鉛系めっき鋼板。   The multilayer surface-treated zinc system according to claim 1, wherein the surface treatment agent (P) contains a metal component (D) which is at least one selected from the group consisting of a zirconium compound (D1) and a metal oxide sol (D2). Plated steel sheet. 表面処理剤(P)が加水分解性シリル化合物(E)を含有する請求項1又は2記載の複層表面処理亜鉛系めっき鋼板。 The multilayer surface-treated zinc-based plated steel sheet according to claim 1 or 2, wherein the surface treatment agent (P) contains a hydrolyzable silyl compound (E). 表面処理剤(P)がジルコニウム化合物(D1)及び金属酸化物ゾル(D2)よりなる群から選ばれる少なくとも1種である金属成分(D)及び加水分解性シリル化合物(E)を含有し、金属成分(D)が含有する金属の合計質量Mと、加水分解性シリル化合物(E)が含有するケイ素の質量Si1及びケイ素含有モノマー(b2)が含有するケイ素の質量Si2の合計質量との質量比率〔M/(Si1+Si2)〕が0.1〜10であり、Si1/Si2が0.15〜250である請求項1記載の複層表面処理亜鉛系めっき鋼板。 The surface treatment agent (P) contains at least one metal component (D) selected from the group consisting of a zirconium compound (D1) and a metal oxide sol (D2) and a hydrolyzable silyl compound (E), and a metal Mass ratio of total mass M of metal contained in component (D) to total mass of silicon mass Si1 contained in hydrolyzable silyl compound (E) and silicon mass Si2 contained in silicon-containing monomer (b2) The multi-layer surface-treated galvanized steel sheet according to claim 1, wherein [M / (Si1 + Si2)] is 0.1 to 10 , and Si1 / Si2 is 0.15 to 250. 下地処理層(X)中の金属イオン及び/又は原子(A)の含有量が0.5〜100mg/mである請求項1〜4のいずれか1項に記載の複層表面処理亜鉛系めっき鋼板。 Multilayer surface-treated zinc system according to any one of claims 1-4 content of the underlying process layer metal ions and / or atoms in the (X) (A) is 0.5 to 100 mg / m 2 Plated steel sheet. イソボルニル(メタ)アクリレート(b1)からの重合単位の割合が、アクリル樹脂(B)100質量部に対して、0.1〜50質量部である請求項1〜5のいずれか1項に記載の複層表面処理亜鉛系めっき鋼板。 Ratio of polymerized units from isobornyl (meth) acrylate (b1) is, relative to the acrylic resin (B) 100 parts by weight, according to any one of claims 1-5 which is 0.1 to 50 parts by weight Multi-layer surface-treated galvanized steel sheet. 金属酸化物ゾル(D2)が、酸化ケイ素ゾル、酸化セリウムゾル、酸化イットリウムゾル、酸化ネオジムゾル及び酸化ランタンゾルよりなる群から選ばれる少なくとも1種である請求項2又は4記載の複層表面処理亜鉛系めっき鋼板。 The multi-layer surface-treated zinc system according to claim 2 or 4 , wherein the metal oxide sol (D2) is at least one selected from the group consisting of silicon oxide sol, cerium oxide sol, yttrium oxide sol, neodymium oxide sol, and lanthanum oxide sol. Plated steel sheet. 造膜助剤(C)が2,2,4−トリメチル−1,3ペンタンジオールモノイソブチレート、ジエチレングリコールモノブチルエーテルアセテート、エチレングリコールモノブチルエーテル、メチルエチルケトン、N−メチルピロリドン及びジプロピレングリコールn−ブチルエーテルよりなる群から選ばれる少なくとも1種である請求項1〜7のいずれか1項に記載の複層表面処理亜鉛系めっき鋼板。 Film-forming aid (C) is 2,2,4-trimethyl-1,3-pentanediol monoisobutyrate, diethylene glycol monobutyl ether acetate, ethylene glycol monobutyl ether, methyl ethyl ketone, N-methylpyrrolidone and dipropylene glycol n-butyl ether The multilayer surface-treated zinc-based plated steel sheet according to any one of claims 1 to 7, which is at least one selected from the group consisting of:
JP2009136634A 2009-06-05 2009-06-05 Multi-layer surface-treated galvanized steel sheet Active JP5411585B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009136634A JP5411585B2 (en) 2009-06-05 2009-06-05 Multi-layer surface-treated galvanized steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009136634A JP5411585B2 (en) 2009-06-05 2009-06-05 Multi-layer surface-treated galvanized steel sheet

Publications (2)

Publication Number Publication Date
JP2010280972A JP2010280972A (en) 2010-12-16
JP5411585B2 true JP5411585B2 (en) 2014-02-12

Family

ID=43537956

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009136634A Active JP5411585B2 (en) 2009-06-05 2009-06-05 Multi-layer surface-treated galvanized steel sheet

Country Status (1)

Country Link
JP (1) JP5411585B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103205738B (en) * 2013-03-19 2016-01-13 武汉钢实硅钢浩源润滑油有限公司 A kind of chromium-free passivation liquid
JP6118419B2 (en) * 2013-10-18 2017-04-19 日本パーカライジング株式会社 Surface treatment agent for metal material, method for producing surface-treated metal material
CN106148870A (en) * 2016-07-14 2016-11-23 安徽樵森电气科技股份有限公司 A kind of irony extends ring surface galvanized method
WO2020054577A1 (en) * 2018-09-13 2020-03-19 住友大阪セメント株式会社 Anti-fouling coating film, glass ceramic product, coating material for forming anti-fouling coating film, and method for producing glass ceramic product
CN110711840B (en) * 2019-11-14 2021-02-26 含山县荣盛机械铸造有限公司 Preparation method of yttrium oxide sol binder for titanium alloy shell

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0994916A (en) * 1995-10-03 1997-04-08 Kawasaki Steel Corp Organic composite coated steel
JP2000336232A (en) * 1999-05-26 2000-12-05 Daicel Chem Ind Ltd Aqueous resin composition
JP3857866B2 (en) * 2000-02-29 2006-12-13 日本ペイント株式会社 Non-chromate metal surface treatment agent, surface treatment method and treated painted steel
JP2006322063A (en) * 2005-04-18 2006-11-30 Nippon Steel Corp Surface-lubricated steel sheet for use in transfer excellent in corrosion resistance and durability
JP5252925B2 (en) * 2005-11-22 2013-07-31 日本パーカライジング株式会社 Surface chemical conversion liquid and method for producing chemical conversion metal plate

Also Published As

Publication number Publication date
JP2010280972A (en) 2010-12-16

Similar Documents

Publication Publication Date Title
JP5509078B2 (en) Water-based metal surface treatment agent and surface-treated metal material
TWI457468B (en) Hot-dip galvanized steel sheet and manufacturing method therefor
JP5499773B2 (en) Surface treatment liquid for galvanized steel sheet, galvanized steel sheet and method for producing the same
JP5446390B2 (en) Surface treatment agent, method for producing plated steel sheet using the surface treatment agent, and plated steel sheet
JP6118419B2 (en) Surface treatment agent for metal material, method for producing surface-treated metal material
KR20130051997A (en) Surface treatment fluid for zinc-plated steel sheet, zinc-plated steel sheet, and manufacturing method for same
TW200837220A (en) Aqueous surface-treating agent for environmentally acceptable pre-coated metallic materials, and surface-treated metallic material and environmentally acceptable pre-coated metallic material
JP6263278B2 (en) Surface treatment agent for galvanized steel sheet
CN1341160A (en) Composition for metal surface treatment and surface treated metallic material
JP2007162098A (en) Metal surface-treating aqueous agent, surface treatment method and surface treated metallic material
JP5411585B2 (en) Multi-layer surface-treated galvanized steel sheet
JP4970773B2 (en) Metal surface treatment agent, metal material surface treatment method and surface treatment metal material
TW200925335A (en) Zinc-electroplated steel sheet with excellent white rust resistance treated by chromate-free chemical conversion
JP5317516B2 (en) Surface-treated molten Zn-Al alloy-plated steel sheet
JP5661238B2 (en) Surface-treated galvanized steel sheet
JP5498634B2 (en) Water-based metal surface treatment agent, surface treatment method and surface treatment metal material
JP6367462B2 (en) Metal surface treatment agent for galvanized steel or zinc-base alloy plated steel, coating method and coated steel
JPWO2017010571A1 (en) Water-based treatment agent, galvanized steel or zinc alloy plated steel, and painted galvanized steel or painted zinc alloy plated steel
JP5314816B2 (en) Water-based metal surface treatment agent
JP2006281710A (en) Coated steel plate excellent in film adhesion and its manufacturing method
JP3963683B2 (en) Aqueous surface treatment agent for plated metal plate, surface treated metal plate and method for producing the same
JP5101271B2 (en) Surface-treated steel sheet
JPH09157864A (en) Chromate treating solution composition for metallic material and treatment thereby
WO2008136496A1 (en) Surface-treated, hot-dip zn-al alloy coated steel sheet
JPH09234419A (en) Organic composite coated steel sheet having excellent water resistant secondary adhesion property

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130718

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130723

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130905

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131029

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131108

R150 Certificate of patent or registration of utility model

Ref document number: 5411585

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250