WO2008136496A1 - Surface-treated, hot-dip zn-al alloy coated steel sheet - Google Patents

Surface-treated, hot-dip zn-al alloy coated steel sheet Download PDF

Info

Publication number
WO2008136496A1
WO2008136496A1 PCT/JP2008/058320 JP2008058320W WO2008136496A1 WO 2008136496 A1 WO2008136496 A1 WO 2008136496A1 JP 2008058320 W JP2008058320 W JP 2008058320W WO 2008136496 A1 WO2008136496 A1 WO 2008136496A1
Authority
WO
WIPO (PCT)
Prior art keywords
titanium
mass
compound
surface treatment
water
Prior art date
Application number
PCT/JP2008/058320
Other languages
French (fr)
Japanese (ja)
Inventor
Rie Umebayashi
Nobue Fujibayashi
Satoru Ando
Akira Matsuzaki
Toru Imokawa
Takashi Nakano
Jun Akui
Shinichiro Nitta
Hideo Koumura
Original Assignee
Jfe Steel Corporation
Kansai Paint Co., Ltd.
Jfe Galvanizing & Coating Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2008102943A external-priority patent/JP5317516B2/en
Application filed by Jfe Steel Corporation, Kansai Paint Co., Ltd., Jfe Galvanizing & Coating Co., Ltd. filed Critical Jfe Steel Corporation
Publication of WO2008136496A1 publication Critical patent/WO2008136496A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/34Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/40Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing molybdates, tungstates or vanadates
    • C23C22/44Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing molybdates, tungstates or vanadates containing also fluorides or complex fluorides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/021Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material including at least one metal alloy layer

Definitions

  • the present invention relates to a surface-treated molten Z n -A 1 alloy-plated steel sheet that is optimal for use in automobiles, home appliances, and building materials.
  • the present invention relates to a surface treatment composition and a surface treatment film formed thereby. This relates to an environmentally-adapted surface-treated steel plate that does not contain any chromium. Background art
  • molten Z n -A 1 alloy-plated steel sheets have been widely used.
  • this hot-dip Zn-A 1 alloy-plated steel sheet mainly the hot-dip Zn-plated steel sheet (hereinafter referred to as GI) having an A1 content of 0.2 mass% or less in the plating layer, the same A1 content Galfan (hereinafter referred to as GF) with an amount of approximately 5% by mass and Galparium steel sheet (hereinafter referred to as GL) with an A1 content of approximately 55% by mass are used.
  • GF has a lower cost than GL and has better corrosion resistance than GI, so demand is particularly high in the field of construction.
  • demand for home appliances is expected to increase as a substitute for heavyweight Zn-plated steel sheets.
  • GF generally has the following problems.
  • a spangle with a tortoiseshell pattern is formed on GF.
  • the shape of this spangle varies depending on the plating conditions (eg, annealing before plating, bath components), cooling conditions after plating (eg, cooling rate), etc.
  • the appearance may be damaged when used naked.
  • spangles may float on the painted surface, which may impair the appearance after painting. For this reason, in recent years, there has been an increasing demand for GF having a beautiful plating layer with a metallic luster without spangle.
  • the plated steel sheet surface is replaced with an aqueous solution containing ions such as Fe, Ni, Co, etc., and Fe, Ni, Co, etc. are deposited on the surface of the plating layer.
  • an aqueous solution containing ions such as Fe, Ni, Co, etc., and Fe, Ni, Co, etc. are deposited on the surface of the plating layer.
  • Patent Document 1 There is a method (for example, Patent Document 1).
  • this method requires a new replacement process, which complicates the manufacturing process. Therefore, a technique for improving blackening resistance at the same time in the chemical conversion treatment step for the purpose of imparting corrosion resistance is required.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 5 9-1 7 7 3 8 1
  • Patent Document 2 Japanese Patent Laid-Open No. 2 0 0 4 — 2 9 5 0
  • Patent Document 3 International Publication No. 2 0 0 3/9 3 5 3 No. 3
  • Patent Document 4 Japanese Patent Laid-Open No. 2 0 0 3-3 0 6 7 7 7 Disclosure of Invention
  • the object of the present invention is to provide a surface-treated molten Zn n -A 1-based alloy that does not contain hexavalent chromium in the surface treatment composition or coating, has excellent blackening resistance and corrosion resistance, and has excellent plating appearance. It is to provide a steel plate with a wall.
  • the plating composition is based on the general A1 concentration of GF, and by containing appropriate amounts of Mg and Ni, spangle-free or very fine spangles are formed. It is possible to obtain a hot-dip Zn-A1 alloy-plated steel sheet that has a beautiful metallic appearance with a high metallic luster and improved blackening resistance.
  • Ni salt or Z and Co salts were added to the treatment liquid. It has been found that adding it is effective. However, if Ni salt, Co salt, etc. are added to the processing solution as they are, the corrosion resistance will be reduced. In order to improve blackening resistance without deteriorating corrosion resistance, it is necessary to add Ni salt, Co salt, etc. to the treatment solution and to form a dense reaction layer on the surface of the adhesive film by treatment. is there.
  • the present invention has been made on the basis of such findings and has the following gist.
  • At least one surface of the steel sheet contains A 1: 1 ⁇ 10 to 10% by mass, Mg: 0.2 to 1.0% by mass, Ni: 0.005 to 0.1% by mass
  • the fluorine-containing compound (C) is at least one selected from zircon ammonium fluoride and zircon hydrofluoric acid.
  • the surface treatment composition (H) further contains an organophosphate compound (D) in a solid content ratio.
  • the surface treatment composition (H) 1 and the panadic acid compound (E) A surface-treated molten Z nA 1 -based alloy-plated steel sheet, characterized by containing 0.1 to 30% by mass.
  • the surface treatment composition (H) 1 is further dispersed in a water-soluble organic resin or / and water.
  • the surface-treated molten Z n -A 1 alloy-plated steel sheet of the present invention is a surface treatment in which a specific titanium-containing aqueous liquid, a nickel compound or / and a cobalt compound, and a fluorine-containing compound are blended at a predetermined ratio.
  • a specific titanium-containing aqueous liquid, a nickel compound or / and a cobalt compound, and a fluorine-containing compound are blended at a predetermined ratio.
  • Fig. 1 is a graph showing the relationship between the Mg content in the plating layer and the plating appearance for a molten Zn-A1 alloy-plated steel sheet having a GF composition plating layer containing an appropriate amount of Ni .
  • Fig. 2 A, Fig. 2 B, and Fig. 2 C are GF-composite molten Zn—A1 alloy-plated steel plates, plated steel containing only Mg in the plating layer, plating layer 4 is a graph showing the component analysis results in the plating layer depth direction for a steel plate containing only N in the steel plate and a steel plate containing Mg and Ni in the plating layer.
  • the molten Zn-A1 alloy-plated steel sheet which is the base of the surface-treated molten ZII-A1 alloy-plated steel sheet (hereinafter referred to as "surface-treated plated steel sheet" for convenience), is at least one of the steel sheets.
  • the balance has a molten Zn—A1-based alloy plating layer consisting of Zn and inevitable impurities. The reason for limiting the plating composition of this molten Z11-1A1 alloy-plated steel sheet and preferred manufacturing conditions will be described in detail later.
  • the surface-treated film formed on the surface of the molten Zn—A 1-based alloy plated layer is a hydrolyzable titanium compound, a hydrolyzable titanium compound low-condensate, or titanium hydroxide.
  • a titanium-containing aqueous liquid (A) obtained by mixing at least one titanium compound selected from low-condensation products of titanium hydroxide with hydrogen peroxide water, a nickel compound and / or a cobalt compound ( B) and a fluorine-containing compound (C) at a predetermined ratio, and if necessary, an organic phosphate compound (D), a panadic acid compound (E), a zirconium carbonate compound (F), a water-soluble organic compound It is formed by applying and drying a surface treatment composition (H) containing one or more of a resin and / or a water-dispersible organic resin (G) in a predetermined ratio.
  • the titanium-containing aqueous liquid (A) is a hydrolysable titanium compound, a low condensate of a hydrolysable titanium compound, titanium hydroxide, or a low condensate of titanium hydroxide. It is an aqueous liquid containing titanium obtained by mixing hydrogen peroxide water.
  • the hydrolyzable titanium compound is a titanium compound having a hydrolyzable group directly bonded to titanium, and generates titanium hydroxide by reacting with water such as water or water vapor.
  • the hydrolyzable titanium compound may be one in which all of the groups bonded to titanium are hydrolyzable groups, or may be one in which a part of the groups bonded to titanium is a hydrolyzable group.
  • the hydrolyzable group may be hydroxylated by reacting with ice as described above.
  • ice there are no particular limitations as long as it produces titanium, but examples include lower alkoxyl groups and groups that form salts with titanium (for example, halogen atoms such as chlorine, hydrogen atoms, sulfate ions, etc.).
  • hydrolyzable titanium compound containing a lower alkoxyl group as a hydrolyzable group in particular, the general formula T i (OR) 4 (wherein R is the same or different carbon number)
  • a tetraalkoxytitanium represented by 1 to 5 examples include a methyl group, an ethyl group, an n-propyl group, an iso-propyl group, an n-butynole group, an iso-butyl group, a sec 1-butyl group, and a tert 1-butyl group. Can be mentioned.
  • hydrolyzable titanium compounds having a group capable of forming a salt with titanium as a hydrolyzable group include titanium chloride and titanium sulfate.
  • the low condensate of the hydrolyzable titanium compound is a low condensate of the above hydrolyzable titanium compounds.
  • the low condensate may be one in which all of the groups bonded to titanium are hydrolyzable groups, or may be one in which some of the groups bonded to titanium are hydrolyzable.
  • hydrolyzable titanium compounds whose hydrolyzable groups form a salt with titanium for example, titanium chloride, titanium sulfate, etc.
  • an aqueous solution of the hydrolyzable titanium compound and an alkaline solution such as ammonia or caustic soda are used.
  • Orthotitanic acid (titanium hydroxide gel) obtained by reaction with a solution can also be used as a low condensate.
  • hydrolyzable titanium compound low condensate and titanium hydroxide low condensate compounds having a degree of condensation of 2 to 30 can be used, and in particular, compounds having a degree of condensation of 2 to 10 are used. It is preferable. When the degree of condensation exceeds 30, a white precipitate is formed when mixed with hydrogen peroxide, and a stable titanium-containing aqueous liquid cannot be obtained. That is, when the degree of condensation is 30 or less, a stable titanium-containing aqueous liquid can be obtained by mixing with hydrogen peroxide.
  • the hydrolyzable titanium compounds, low-condensates of hydrolyzable titanium compounds, low-condensates of hydrous titanium oxide, and titanium hydroxide can be used alone or in combination of two or more.
  • Tetraalkoxy titanium which is a hydrolyzable titanium compound represented by the general formula, is particularly preferred.
  • the reason for this is that tetraalkoxytitanium is volatilized during the process of drying the surface treatment composition by the alcohol produced when hydrolyzed. Therefore, the film performance such as corrosion resistance is not affected, and particularly excellent film performance can be obtained.
  • any conventionally known liquid can be used without particular limitation as long as it is an aqueous liquid containing titanium obtained by mixing the above-described titanium compound or hydrogen peroxide water. . Specifically, the following can be mentioned.
  • Titanium ion hydrogen peroxide complex or titanic acid peroxotitanium hydrate aqueous solution obtained by adding hydrogen peroxide ice to hydrous titanium oxide gel or sol (Japanese Patent Laid-Open No. 6-3-3 5 4 1 9 No. 1 and Japanese Patent Laid-Open No. 1-2 2 4 2 2 0).
  • Titania film-forming liquid obtained by synthesizing a titanium hydroxide gel produced from an aqueous solution and a basic solution of titanium chloride and titanium sulfate by allowing hydrogen peroxide to act on the gel.
  • a titanium hydroxide gel called orthotitanic acid is obtained by reacting an aqueous solution of titanium chloride or titanium sulfate having a salt-forming group with titanium and an alkaline solution such as ammonia or caustic soda. To settle. Next, the titanium hydroxide gel is separated by decantation with water, washed well with water, further added with hydrogen peroxide solution to decompose and remove excess hydrogen peroxide, thereby obtaining a yellow transparent viscous liquid.
  • the ortho-titanic acid thus precipitated is in a gel state polymerized by polymerization of OH and hydrogen bonds, and cannot be used as an aqueous liquid containing titanium as it is.
  • hydrogen peroxide solution is added to this gel, a part of OH is in a peroxidized state, dissolved as peroxotitanate ions or in a kind of sol in which the polymer chain is divided into low molecules, and excess hydrogen peroxide. It decomposes into water and oxygen and can be used as an aqueous liquid containing titanium for forming an inorganic film.
  • this sol contains only oxygen and hydrogen atoms in addition to titanium atoms, when it is changed to titanium oxide by drying or firing, only water and oxygen are generated, so it is necessary for thermal decomposition of sol-gel method and sulfates. Therefore, it is not necessary to remove carbon components and halogen components, and a titanium oxide film having a relatively high density can be formed even at a low temperature.
  • a titanium-containing aqueous liquid (A) using a hydrolyzable titanium compound and Pino or its low condensate as a titanium compound (hereinafter referred to as “hydrolyzable titanium compound a” for convenience of explanation) It can be obtained by reacting with a hydrogen peroxide solution at a reaction temperature of 1 to 70 ° C. for about 10 minutes to 20 hours.
  • the aqueous titanium-containing liquid (A) using the hydrolyzable titanium compound a is obtained by reacting the hydrolyzable titanium compound a with hydrogen peroxide water to hydrolyze the hydrolyzable titanium compound a with water. It is considered that a hydroxyl group-containing titanium compound is produced, and then hydrogen peroxide is coordinated to the hydroxyl group-containing titanium compound. This hydrolysis reaction and coordination by hydrogen peroxide occur at the same time, and it produces a chelate solution that is extremely stable at room temperature and can withstand long-term storage.
  • the titanium hydroxide gel used in the conventional process is partly three-dimensional due to Ti-O-Ti bonds, and what is the titanium-containing aqueous liquid (A) that reacts this gel with hydrogen peroxide? Composition and stability are essentially different.
  • the titanium-containing aqueous liquid (A) using the hydrolyzable titanium compound a is heat-treated or autoclaved at 80 ° C. or higher, a titanium oxide dispersion containing ultrafine particles of crystallized titanium oxide is obtained.
  • the heat treatment or autoclave treatment is less than 80 ° C, crystallization of titanium oxide does not proceed sufficiently. That is, if the heat treatment or autoclave treatment is performed at 803 ⁇ 4 or more, the crystallization of titanium oxide can be sufficiently advanced.
  • the average particle diameter of the titanium oxide ultrafine particles of the titanium oxide dispersion produced in this way is desirably 10 nm or less, preferably about 1 to 6 nm.
  • the film-forming property is lowered (when the film is dried after coating to form a film, a wrinkle occurs at a film thickness of 1 ⁇ HI or more), which is not preferable.
  • the average particle size of the titanium oxide ultrafine particles is 10 nm or less, the film forming property is excellent. This is preferable.
  • the average particle diameter of the titanium oxide ultrafine particles is 1 nm or more, it is preferable because the surface treatment composition can be maintained in a state where the viscosity does not increase. The appearance of this titanium oxide dispersion is translucent.
  • Such a titanium oxide dispersion can also be used as the titanium-containing aqueous liquid (A).
  • the surface treatment composition (H) containing the titanium-containing aqueous liquid (A) using the hydrolyzable titanium compound a is applied to the surface of the plated steel sheet and dried (for example, dried by heating at a low temperature).
  • a dense titanium oxide-containing film (surface treatment film) having excellent adhesion can be formed.
  • the heating temperature of the steel sheet after applying the surface treatment composition (H 2) is, for example, preferably 200 ° C. or less, particularly preferably 150 ° C. or less. By heating and drying at such a temperature, the hydroxyl group is reduced. A slight amount of amorphous titanium oxide-containing film can be formed. Further, when the titanium oxide dispersion obtained through the heat treatment or photoclave treatment at 80 ° C. or higher as described above is used as the titanium-containing aqueous liquid (A), only the surface treatment composition (H) is applied. Because it can form a crystalline titanium oxide-containing film, it is useful as a coating material for materials that cannot be heat-treated.
  • a titanium-containing aqueous liquid (A 1) obtained by reacting a hydrolyzable titanium compound a with hydrogen peroxide in the presence of a titanium oxide sol should be used. You can also.
  • the titanium oxide sol is a sol in which amorphous titania fine particles or anatase titania fine particles are dispersed in water (for example, an aqueous organic solvent such as an alcohol or alcohol ether may be added if necessary). is there.
  • this titanium oxide sol conventionally known ones can be used. For example, (i) a titanium oxide aggregate obtained by hydrolyzing a titanium-containing solution such as titanium sulfate sulfate titanyl sulfate,
  • Titanium oxide aggregates obtained by hydrolyzing organic titanium compounds such as titanium alkoxide (iii) Titanium oxide aggregates obtained by hydrolyzing or neutralizing titanium halide solutions such as titanium tetrachloride, etc.
  • An amorphous titania sol in which the titanium oxide aggregates are dispersed in water, or a sol in which the titanium oxide aggregates are calcined to form anatase titanium fine particles, which are dispersed in water, can be used.
  • the temperature is at least higher than the crystallization temperature of anatase.
  • amorphous titania can be converted to anatase titania.
  • aqueous sols of titanium oxide include TKS-20 1 (trade name, manufactured by Tika, anatase crystal form, average particle size 6 nm), TA-15 (trade name, manufactured by Nissan Chemical Co., Ltd., Anatase crystal form), ST S-1 1 (trade name, manufactured by Ishihara Sangyo Co., Ltd., anatase crystal form).
  • the titanium-containing aqueous liquid (A1) if mass ratio X Bruno y between the titanium oxide sol X and titanium peroxide Hydrogen reactant y (reaction product of the hydrolyzable titanium compound a and hydrogen peroxide), A range of 1/9 9 to 9 9 1 is preferred, preferably about ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ . If the mass ratio xZy is less than 1_99, the effect of adding titanium oxide sol cannot be sufficiently obtained in terms of stability, photoreactivity, etc. On the other hand, if it exceeds 991, the film forming property is inferior.
  • the mass ratio xZy is 199 or more, the effect of adding the titanium oxide sol in terms of stability and photoreactivity can be sufficiently obtained, while if it is 9.9 / 1 or less, excellent production is achieved. It is preferable because film properties can be obtained.
  • Titanium-containing aqueous liquid (A 1) reacts hydrolyzable titanium compound a with hydrogen peroxide at a reaction temperature of 1 to 70 ° C for about 10 minutes to 20 hours in the presence of titanium oxide sol. Can be obtained.
  • the formation form and characteristics of the titanium-containing aqueous liquid (A 1) are the same as those of the titanium-containing aqueous liquid (A) using the hydrolyzable titanium compound a described above, but in particular, using a titanium oxide sol.
  • the partial condensation reaction during the synthesis can be prevented from thickening.
  • the reason is considered to be that the condensation reaction product is adsorbed on the surface of the titanium oxide sol, and polymerization in the solution state is suppressed.
  • titanium-containing aqueous liquid (A 1) When the titanium-containing aqueous liquid (A 1) is heat-treated or autoclaved at 80 ° C. or higher, a titanium oxide dispersion containing ultrafine particles of crystallized titanium oxide is obtained. The temperature conditions for obtaining this titanium oxide dispersion, the particle diameter of the crystallized titanium oxide ultrafine particles, the appearance of the dispersion, etc. are also included in the titanium-containing aqueous liquid (A ). Such a titanium oxide dispersion can also be used as the titanium-containing aqueous liquid (A1).
  • the surface treatment composition (H 1) containing the titanium-containing aqueous liquid (A 1) is applied to the surface of the plated steel sheet and dried (for example, heat-dried at a low temperature), so that it is dense with excellent adhesion itself.
  • a titanium oxide-containing film (surface treatment film) can be formed.
  • the heating temperature of the steel sheet after applying the surface treatment composition (H 2) is, for example, preferably 200 ° C. or less, particularly preferably 150 ° C. or less. By heating and drying at such a temperature, the hydroxyl group is reduced. An anatase-type titanium oxide-containing film containing a little can be formed.
  • the titanium-containing aqueous liquid (A) and the titanium-containing aqueous liquid (A 1) using the hydrolyzable titanium compound a have storage stability, corrosion resistance, etc. It is particularly preferable to use these in the present invention.
  • the blending ratio of hydrogen peroxide to at least one titanium compound selected from hydrolysable titanium compounds, hydrolyzable titanium compound low condensates, titanium hydroxide, and titanium hydroxide low condensates is
  • the amount of hydrogen peroxide converted to 10 parts by mass of the titanium compound is 0.1 to 100 parts by mass, desirably 1 to 20 parts by mass.
  • the mixing ratio of hydrogen peroxide water is less than 0.1 parts by mass in terms of hydrogen peroxide, the formation of chelate is not sufficient and white turbid precipitation occurs.
  • the amount exceeds 100 parts by mass unreacted hydrogen peroxide tends to remain, which is not preferable because dangerous active oxygen is released during storage.
  • the mixing ratio of the hydrogen peroxide solution is 0.1 parts by mass or more in terms of hydrogen peroxide, chelate formation is sufficient and no cloudy precipitation occurs.
  • unreacted hydrogen peroxide does not remain, and active oxygen is not released during storage, which is preferable.
  • the hydrogen peroxide concentration in the hydrogen peroxide solution is not particularly limited, but it is preferably about 30 to 30% by mass in terms of the solid content of the produced liquid related to ease of handling and coating workability.
  • titanium-containing aqueous liquid (A) if necessary, other sol or pigment can be added and dispersed.
  • other sol or pigment can be added and dispersed.
  • commercially available titanium oxide sol, titanium oxide powder, my strength, talc, silica, paste, clay and the like can be fisted, and one or more of these can be added.
  • the amount of titanium-containing aqueous liquid (A) added in the surface treatment composition (H) is From the viewpoint of property, the solid content is 10 to 60% by mass.
  • the treatment liquid stability is inferior when the addition amount (solid content ratio) of the titanium-containing aqueous liquid (A) is less than 10% by mass or more than 60% by mass.
  • good preferable lower limit of the addition amount of the titanium-containing permanent liquid-(A) is 1 5 mass 0/0, more preferably from 2 0 wt%, a preferred upper limit is 5 0% by weight .
  • the nickel compound and / or cobalt compound (B) is blended for improving blackening resistance.
  • the nickel compound include nickel acetate, nickel nitrate, nickel sulfate, and the like, as a cobalt compound.
  • examples thereof include cobalt acetate, cobalt nitrate, cobalt sulfate and the like, and one or more of these can be used. Of these, nickel acetate and cobalt acetate are preferred from the viewpoint of achieving both blackening resistance and corrosion resistance.
  • the addition amount of the nickel compound or the cobalt compound (B) in the surface treatment composition (H) is from 0.01 to 1% by mass in terms of solid content from the viewpoint of achieving both blackening resistance and corrosion resistance. Preferably, the content is 0.05 to 0.7% by mass.
  • the addition amount of the nickel compound or the cobalt compound (B) is less than 0.01% by mass, the effect of improving blackening resistance cannot be sufficiently obtained, while 1% by mass. If it exceeds 0 , the corrosion resistance will decrease.
  • the fluorine-containing compound (C) is added to increase the reactivity between the treatment liquid (surface treatment composition) and the plating surface and form a dense reaction layer.
  • Examples of the fluorine-containing compound (C) include zircon ammonium fluoride, potassium zircon fluoride, zircon hydrofluoric acid, titanium ammonium fluoride, hydrofluoric acid, and ammonium hydrofluoride.
  • zircon ammonium fluoride potassium zircon fluoride
  • zircon hydrofluoric acid titanium ammonium fluoride
  • titanium ammonium fluoride hydrofluoric acid
  • ammonium hydrofluoride a type or two or more types can be used.
  • the addition amount of the fluorine-containing compound (C) in the surface treatment composition (H) is 1 to 80% by mass in terms of the solid content. If the addition amount of the fluorine-containing compound (C) is less than 1% by mass, the reactivity between the treatment liquid and the plating surface is poor, so that sufficient corrosion resistance cannot be obtained and blackening resistance is not improved. On the other hand, if it exceeds 80% by mass, the etching performance of the processing solution will increase, resulting in excessive etching of the plating surface, and on the contrary, the corrosion resistance will deteriorate.
  • the addition amount of the fluorine-containing compound (C) in the surface treatment composition (H) is 1 to 80% by mass in terms of the solid content. If the addition amount of the fluorine-containing compound (C) is less than 1% by mass, the reactivity between the treatment liquid and the plating surface is poor, so that sufficient corrosion resistance cannot be obtained and blackening resistance is not improved. On the other hand, if it exceeds 80% by mass,
  • the preferable lower limit of the addition amount of the fluorine-containing compound (C 3) is 3% by mass, more preferably 10% by mass, and particularly preferably 20% by mass. / 0 .
  • it preferred upper limit is 7 0 mass 0/0, more preferably 6 0 mass%.
  • the surface treatment composition (H) used in the present invention essentially comprises the titanium-containing aqueous liquid (A), nickel compound or cobalt compound (B), and fluorine-containing compound (C) as described above.
  • One or more kinds can be contained.
  • organic phosphate compound (D) examples include 1-hydroxymethane-1,1-diphosphonic acid, 1-hydroxyethane-1,1-diphosphonic acid, 1-hydroxypropane-1,1-diphosphonic acid and the like.
  • Group-containing organic phosphorous acid 2-hydroxyphosphonoacetic acid, 2-phosphonoptane 1, 2, 4 and 1, carboxyl group-containing organic phosphorous acid such as tri-force norlevonic acid, and salts thereof are suitable. 1 type or 2 types or more of these can be used.
  • the organophosphate compound (D) has the effect of improving the storage stability of the titanium-containing aqueous liquid (A), and 1-hydroxyxetane 1,1-diphosphonic acid is particularly effective. Therefore, it is particularly preferable to use this.
  • the amount of the organic phosphate compound (D) added in the surface treatment composition (H) is 10 to 60% by mass in terms of the solid content. Is preferable from the viewpoint of water resistance and the like.
  • the amount of the organic phosphate compound (D) is less than 10% by mass, the effect of improving the storage stability of the titanium-containing aqueous liquid (A) is small.
  • the amount of the organic phosphate compound (D) added is 10% by mass or more, the effect of improving the storage stability of the titanium-containing aqueous liquid (A) can be sufficiently obtained, while 60% by mass. If it is less than / 0 , phosphoric acid will not be present in excess, and water resistance will not deteriorate.
  • a more preferable addition amount of the organic phosphate compound (D) is 20 to 50% by mass.
  • Examples of the panadic acid compound (E) include lithium metapanadate, potassium metapanadate, sodium metapanadate, and ammonium metapanadate. And one or more of these can be used. Of these, ammonium metavanadate is preferred from the standpoint of adhesion to water.
  • Panajin acid compounds in the addition amount of (E) is 0 in the percentage of solids. 1-3 0 weight 0/0 and it forces S, Al force Li degreasing corrosion resistance after Preferable from the point. If the amount of vanadate compound (E) added is less than 0.1% by mass, the effect of improving the corrosion resistance after alkali degreasing is insufficient. On the other hand, if it exceeds 30% by mass, sufficient corrosion resistance cannot be exhibited because V is excessively present. That is, the amount of vanadic acid compound (E) added is 0.1 mass. If this is the case, the effect of improving the corrosion resistance after degreasing can be sufficiently obtained. On the other hand, if it is 30% by mass or less, V does not exist in excess, so that sufficient corrosion resistance can be exhibited. . A more preferable addition amount of the panadic acid compound (E) is 0.5 to 20% by mass.
  • zirconium carbonate compound (F 2) examples include salts of zirconium carbonate such as sodium, potassium, lithium, and ammonium, and one or more of these can be used. Of these, ammonium zirconium carbonate is preferred from the viewpoint of water resistance and the like.
  • the addition amount of the zirconium carbonate compound (F) in the surface treatment composition (H) is preferably 0.1 to 20% by mass in terms of solid content from the viewpoint of corrosion resistance and the like. If the added amount of the zirconium carbonate compound (F) is less than 0.1% by mass, the effect of improving the corrosion resistance is insufficient. On the other hand, if it exceeds 20% by mass, Zr is excessively present and sufficient corrosion resistance cannot be exhibited. That is, if added pressure of zirconium carbonate compound (F) to zero. 1 mass% or more, the corrosion resistance improvement effect is sufficiently obtained, whereas, if 2 0 wt% or less, Z r is present in excess Therefore, sufficient corrosion resistance can be achieved. A more preferable addition amount of the zirconium carbonate compound (F) is 0.2 to 15% by mass.
  • the water-soluble organic resin or Z and the water-dispersible organic resin (G) are organic resins that can be dissolved or dispersed in water. Conventionally known methods for water-solubilizing or dispersing organic resins in water The method can be applied. Specifically, as an organic resin, functional groups that can be water-soluble or water-dispersed independently (for example, hydroxyl groups, polyoxyalkyls). Containing a ren group, a strong lpoxyl group, an amino group, a sulfido group, a phosbuin group, etc.) and, if necessary, some or all of these functional groups may be converted to an acidic resin (carboxyl group).
  • functional groups that can be water-soluble or water-dispersed independently (for example, hydroxyl groups, polyoxyalkyls). Containing a ren group, a strong lpoxyl group, an amino group, a sulfido group, a phosbuin group, etc
  • Containing resins ethanolamine, triethylamine and other amine compounds; ammonia water; lithium hydroxide, sodium hydroxide, potassium hydroxide neutralized alkali metal hydroxide, etc., base
  • a resin such as an amino group-containing resin
  • fatty acids such as acetic acid and lactic acid
  • those neutralized with a mineral acid such as phosphoric acid
  • water-soluble or water-dispersible organic resins include epoxy resins, phenol resins, acryl resins, urethane resins, olefin reinforced rubonic acid resins, nylon resins, resins having a polyoxyalkylene chain, Examples thereof include polyvinyl alcohol, polyglycerin, canolepoxymethylenorescenellose, hydroxymethinoresenorelose, and hydroxyxetylcellulose.
  • One or more organic resins can be used.
  • the storage stability of the surface treatment composition can be obtained by using at least one organic resin selected from water-soluble or water-dispersible acryl-based resins, urethane resins, and epoxy resins.
  • a water-soluble or water-dispersible acryl resin or urethane resin as a main component from the viewpoint of the balance between the storage stability of the surface treatment composition and the coating film performance.
  • an urethane resin having a Tg of less than 50 ° C. in order to ensure the paint adhesion of the processed part.
  • a water-soluble or water-dispersible acrylic resin is synthesized by a conventionally known method, for example, an emulsion polymerization method, a suspension polymerization method, or a polymer having a hydrophilic group by solution polymerization, and neutralized or made aqueous as necessary. Or the like.
  • the polymer having a hydrophilic group is, for example, an unsaturated monomer having a hydrophilic group such as a strong lpoxyl group, an amino group, a hydroxyl group, or a polyoxyalkylene group. Can be obtained by polymerizing the unsaturated monomer.
  • the water-soluble or water-dispersible acrylic resin is preferably one obtained by copolymerizing styrene from the viewpoint of corrosion resistance, etc.
  • the amount of styrene in the total unsaturated monomer is 10 to 60% by mass, particularly 15%. It is preferably ⁇ 50% by mass.
  • the T g (glass transition point) of the resin is preferably 30 to 80 ° C, particularly 40 to 70 ° C, from the viewpoint of the toughness of the resulting film.
  • carboxyl group-containing unsaturated monomer examples include acrylic acid, methacrylic acid, maleic acid, maleic anhydride, crotonic acid ', and itaconic acid.
  • nitrogen-containing unsaturated monomer such as the amino group-containing unsaturated monomer
  • examples of the nitrogen-containing unsaturated monomer include N, N-dimethylaminoethyl (meth) acrylate, N, N-jetylaminoethyl (meth) atalyte.
  • Nitrogen-containing alkyl (meth) acrylates such as N-tert-butylaminoethyl (meth) acrylate; N-methyl (meth) allylamide, N-ethyl (meth) Acrylamide, N—Methylol (meth) atrylamide, N—Methoxymethyl (meth) atrylamide, N—Butoxymethyl (meth) atrylamide, N, N—dimethyl (meth) acrylamide, N— Polymerizable amides such as dimethylaminopropyl (meth) atrylamide and N, N-dimethylaminoethyl (meth) atrylamide
  • 2-vinylpyridine 1 one Bulle one 2-pyrrolidone, aromatic nitrogen-containing monomers such as 4 one Bulle pyridine.
  • hydroxyl group-containing unsaturated monomer examples include 2-hydroxyxetyl (meth) acrylate, hydroxypropyl (meth) acrylate, 2,3-dihydroxypropyl (meth) acrylate, and 4-hydroxypropyl.
  • Mono-esterified products of polyhydric alcohols such as (meth) acrylate, polyethylene glycol mono (meth) acrylate, polypropylene glycol mono (meth) acrylate, and acrylic acid or methacrylic acid;
  • a compound obtained by ring-opening polymerization of ⁇ -force prolacton to a monoesterified product of polyhydric alcohol and acrylic acid or methacrylic acid can be used.
  • unsaturated monomers include methyl (meth) acrylate, ethyl (meth) acrylate, ⁇ -propyl (meth) acrylate, isopropyl (meth) acrylate, II Butyl (meth) acrylate, Isoptyl (meth) acrylate, tert-Pinitole (meth) acrylate, 2-Ethenolehexinoleacrylate, n-octyl (meth) acrylate, Lauryl (Metal) C1-C2 alkyl (meth) acrylates such as acrylate, tridecyl (meth) acrylate, octadecyl (meth) acrylate, isostearyl (meth) acrylate, etc. Bini And the like.
  • the unsaturated monomer mentioned above can use 1 type (s) or 2 or more types.
  • (meta) acrylate means “attalate or metaacrylate”.
  • a chain extension which is a low molecular weight compound having two or more active hydrogens such as a diol and diamine, if necessary, is a polyurethane composed of a polyol such as a polyester polyol and a polyether polyol and a diisocyanate.
  • a polyol such as a polyester polyol and a polyether polyol and a diisocyanate.
  • those conventionally known can be used widely (for example, Japanese Examined Patent Publication No. 4 2-2 4 1 92 2)
  • No. 4 2-2 4 1 9 4 Publication Japanese Patent Publication No. 4 2-5 1 1 8 Publication, Japanese Patent Publication No. 4 9-9 8 6 Publication, Japanese Patent Publication No. 4 9-3 3 1 0 4 Publication, Special Publication No. 5-0-1 5 0 2 7 and JP 5 3-2 9 1 7 5).
  • a method of imparting hydrophilicity by introducing an ionic group such as a hydroxyl group, an amino group, or a carboxyl group into the side chain or terminal of a polyurethane polymer, and dispersing or dissolving in water by self-emulsification.
  • polyurethane resin those obtained by different methods among the above-described dispersion or dissolution methods can be mixed and used.
  • diisocyanate examples include fragrance Aliphatic, cycloaliphatic or aliphatic diisocyanates, such as hexamethylene diisocyanate, tetramethylene diisocyanate, 3, 3 '— dimethyoxy 4, 4' Direndisorbate, ⁇ -Xylylene diisocyanate, m-Xylylene diisocyanate, 1, 3— (Diisocyanatomethyl) Dioxyhexanone, 1, 4— (Diisocyanatomethyl) Cyclohexanone, 4,4'-diisocyanatocyclohexanone, 4,4'-methylenebis (cyclohexenole isocyanate), isophorone diisocyanate, 2, 4 1-tolylene diisocyanate, 2, 6-tolylene diisocyanate P-phenylene diisocyanate, di-methane diisocyanate, m-phenylene diisocyanates, 1, 3— (Diisocyanato
  • 2,4-tolylene diisocyanate 2,6-tolylene diisocyanate, hexamethylene diisocyanate, and isophorone diisocyanate are particularly preferable.
  • polyurethane-based resins include Hydran (registered trademark) AP-1 0, AP-2 0, AP-3 0, Neudran HW-3 30, HW-3400, H W- 3 5 0 (Brand name, manufactured by Dainippon Ink and Chemicals, Inc.), Superflex (registered trademark) 1 1 0, 1 5 0, 6 0 0, E 2 25 0 0, F-3 4 3 8 D (both trade names, manufactured by Daiichi Kogyo Seiyaku Co., Ltd.).
  • the hydran AP—10 (T: 27.0, Tg: less than 50 ° C), Tg: 2 7.C), HW-340 (Tg: 7 ° C), Superflex 1 1 0 (D. ⁇ : 4 6 ° 0, 1550 (Tg: 40 ° C), E—
  • the epoxy resin is preferably a cationic epoxy resin obtained by adding amine to an epoxy resin, such as acryl modification or urethane modification. Epoxy resins, etc. can be suitably used.
  • Cationic epoxy resins include, for example, adducts of epoxy compounds and primary mono- or polyamines, secondary mono- or polyamines, primary and secondary mixed polyamines (for example, US Pat.
  • Epoxy compounds and secondary mono- or poly having ketiminated primary amino groups Min (For example, see US Patent No. 4 0 1 7 4 3 8); etherification reaction product of an epoxy compound and a hydroxyl compound having a ketiminated primary amino group (for example, JP-A-5-9-43013)).
  • Epoxy resins have a number average molecular weight of 400-400, particularly 80-200, and an epoxy equivalent of 190-200, in particular 400-1000. Is preferred.
  • Such an epoxy resin can be obtained, for example, by a reaction between a polyphenol compound and propyl hydrin.
  • polyphenol compound examples include bis (4-hydroxyphenyl) -1,2-propane, 4 , 4-dihydroxybenzophenone, bis (4-hydroxyoxyphenenole) 1-1, 1-ethane, bis (4-hydroxyoxyphenenole) 1-1, 1-isobutane, bis (4-hydroxy-tert-tert —Butinolephenol 2) 2-Propane, Bis (2—Hydroxynaphthol) Methane, 1,5-Dihydroxynaphthalene, Bis (2,4-Dihydroxyphenyl) Methane, Tetra (4-Hydroxyphenyl) 1, 1, 2, 2-Ethane, 4, 4-Dihydroxydiphenenolesnorehon, Fenenorenovolak, Cresol Novolac and the like.
  • the amount of water-soluble organic resin or Z and water-dispersible organic resin (G) added in the surface treatment composition (H) is 30% by mass or less, particularly 1 to 20% by mass in terms of solid content. It is preferable. If the added amount of water-soluble organic resin or water-dispersible organic resin (G) exceeds 30% by mass, the pariacity due to the inorganic component is reduced, so it is necessary to increase the coating adhesion amount. Conductivity will fall. That is, the amount of water-soluble organic resin or / and water-dispersible organic resin (G) added is 30 mass. /. In the following cases, since the pariacity due to the inorganic component can be maintained, there is no need to increase the coating amount, and therefore the conductivity is good.
  • the surface treatment composition (H) may further include, for example, an etching agent such as a silane coupling agent, resin fine particles, and an inorganic phosphate compound, a heavy metal compound other than the components specified by the present invention, an increased viscosity Agents, surfactants, lubricity-imparting agents (polyethylene wax, fluorine wax, carnauba wax, etc.), antifungal agents, coloring pigments, constitutional facial materials, antifungal pigments, dyes, and the like.
  • an etching agent such as a silane coupling agent, resin fine particles, and an inorganic phosphate compound, a heavy metal compound other than the components specified by the present invention
  • an increased viscosity Agents such as a silane coupling agent, resin fine particles, and an inorganic phosphate compound, a heavy metal compound other than the components specified by the present invention
  • an increased viscosity Agents such as a silane coupling agent, resin fine particles, and an inorganic phosphate compound,
  • the surface treatment composition (H) can be used, for example, methanol, ethanol as necessary. It can be used after diluting with a hydrophilic solvent such as ethylene glycol, isopropyl alcohol, ethylene glycol solvent, or propylene glycol solvent.
  • a hydrophilic solvent such as ethylene glycol, isopropyl alcohol, ethylene glycol solvent, or propylene glycol solvent.
  • the adhesion amount of the surface treatment film formed by the surface treatment composition (H) is set to 0.05 to 1.0 g / m 2 , preferably 0.1 to 0.8 g / m 2 .
  • the coating amount is less than 0.05 g / in 2 , the corrosion resistance is inferior.
  • it exceeds 1.0 g / m 2 the coating tends to break and the corrosion resistance decreases.
  • the Mg added to the molten Z n -A 1 alloy-plated layer of this molten Z n to A 1 alloy-plated steel sheet is mainly a metallic luster with no spangles or very fine spandal formed.
  • Ni that is added to the same plating layer in order to obtain a certain beautiful plating appearance is mainly aimed at improving the blackening resistance.
  • the effect of improving blackening resistance due to the addition of Ni is estimated to be obtained by the concentration of Ni in the outermost layer of the plating layer when an appropriate amount of Mg coexists. Further, by controlling the cooling rate after plating within an appropriate range, it is possible to more appropriately cause Ni concentration at the outermost layer portion of the plating layer.
  • plating layer The reason for limiting the component composition of the molten Z EL—A 1-based alloy plating layer (hereinafter simply referred to as “plating layer”) will be described below.
  • a 1 content in the plating layer is less than 1.0% by mass, a Fe 1 Zn alloy layer is formed thick on the plating eyebrow substrate interface, and workability deteriorates.
  • a 1 content is 10 mass. If it exceeds / 0 , the eutectic structure of Zn and A 1 cannot be obtained, and the A 1 lithiated layer increases and the sacrificial anticorrosive action decreases, so that the corrosion resistance of the end face is inferior.
  • a top dross mainly composed of A 1 is likely to occur in the plating bath, resulting in a problem that the plating appearance is impaired.
  • the A 1 content in the plating layer is 1.0 to 10% by mass, preferably 3 to 7% by mass.
  • one of the aims to limit the composition of the adhesive is to eliminate the spangle peculiar to the molten Z ⁇ -A 1 alloy alloy of the GF composition (zero spangle) or to form a very fine spangle.
  • the present inventors have adjusted the relationship between the plating composition and the plating appearance. The following experiments were conducted to test
  • a 1 (4 to 5 wt. / 0) of GF composition Mg and N i the molten Z n -A 1 alloy plated bath containing added singly, melting steel in these plating baths Z n — A 1 type alloy was attached, and the plating appearance (particularly spangle size, degree of dross adhesion, color tone, gloss) of the obtained plated steel sheet was visually observed.
  • the plating layer with Ni added did not show any changes in the plating appearance within the experimental range of the present inventors, and showed a plating appearance almost equivalent to that of normal GF, but added Mg.
  • the plating layer changed the spangle size, color tone, luster, etc. depending on the amount added.
  • the Mg content is 0.2 mass. If it is less than 0 , the blackening resistance also decreases. As will be described later, 0.2 mass of Mg coexists with Ni in the plating layer. If it is less than 0 , it is presumed that Ni is not concentrated on the outermost surface layer of the adhesive layer, and as a result, the blackening resistance is lowered. On the other hand, when the Mg content exceeds 1.0% by mass, the color tone gradually changes from grayish white to gray and dross adhesion increases. In addition, if the Mg content exceeds 1.0% by mass, cracks are likely to occur in the plating layer, resulting in a problem that workability is lowered. Moreover, when there is too much Mg, blackening-proof property is also inferior.
  • the Mg content in the plating layer has a lower limit of 0.2% by mass in order to obtain a beautiful plating appearance and excellent blackening resistance, preventing dross adhesion and color tone deterioration, and further reducing workability.
  • the upper limit is 1.0 mass from the viewpoint of preventing the above. / 0 .
  • Mg mainly contributed to the improvement of the appearance of adhesion
  • N i mainly contributed to the improvement of blackening resistance. It was found that coexistence with Mg is indispensable for improving the blackening resistance. In other words, Mg has the effect of forming a beautiful plating appearance, and N It was found that coexistence with i indirectly promotes the blackening resistance improvement effect by Ni. This was clarified by analyzing the plating layer in the depth direction by glow discharge luminescence surface analysis (GD S) for plated steel sheets with different blackening resistance. An example of the analysis result is shown below.
  • GD S glow discharge luminescence surface analysis
  • the samples (1) to (3) above were analyzed mainly from the outermost surface to a depth of about 200 nm (2000 A). The result is shown in Fig.2.
  • a GDS analysis device was used to discharge for 30 seconds in the depth direction with a diameter of 4 mm ⁇ and a current of 20 mA.
  • a concentration peak of Mg is seen at the same position as Zn in the outermost layer (outermost surface).
  • the concentration peak of 1 is inside (base side) of the Zn and Mg concentration peaks.
  • the sample containing only Ni with poor blackening resistance (2) In the thickening layer of the plating layer, A 1 is observed after Zn of the outermost layer, and the concentration of Ni The enrichment peak is inside the A 1 concentration peak (base side).
  • Ni is concentrated in the outermost layer part in order to have a black layer with excellent blackening resistance. It was found that the coexistence of Mg was necessary. It was also found that the Ni concentration was affected by the cooling rate after plating.
  • Ni concentration in the outermost layer portion of the plating layer exists between the outermost surface of the plating and a depth of about 30 nm (30 O A).
  • a 1 and Mg are more oxidizable than Zn
  • Ni is an element that is less oxidizable.
  • Blackening is due to the fact that the strong oxidative component elements diffuse (move / concentrate) to the outermost surface of the plating layer and take part of oxygen from the zinc oxide formed on the outermost surface of the plating layer.
  • the concentrated layer in the sample with poor blackening resistance (1) has Mg concentrated in the outermost layer deprived of oxygen of zinc oxide.
  • a 1 is concentrated on the surface side of the surface of Ni, so A 1 with strong oxidization also takes up oxygen in zinc oxide. It is conceivable that each was converted to oxygen-deficient zinc oxide.
  • Ni which is weakly oxidizable, concentrates in the outermost layer portion of the plating layer of the sample with excellent blackening resistance (3), and this coexists as a barrier layer Mg, A 1 It is considered that the blackening resistance was improved by suppressing the diffusion (migration / concentration) to the outermost layer.
  • Ni be concentrated in the outermost layer portion of the adhesive layer to play the role of a barrier layer.
  • This concentration of Ni in the outermost layer portion of the adhesive layer is It is thought that it is caused by the coexistence of Mg. However, coexist with Mg
  • the mechanism by which Ni moves to and concentrates in the outermost layer of the striking layer is not always clear at present.
  • the N i content is less than 0.005 wt% in the coating layer, less enrichment of plated layer outermost layer of the N i even coexist M g, the effect of improving the blackening resistance is not obtained .
  • ⁇ 1 is 0.005 mass% or more
  • Mg is less than 0.2 mass%
  • Ni content is 0.1 mass. If it exceeds / 0 , there is an effect of improving blackening resistance. However, it is not preferable because A 1—Mg-based dross containing Ni is generated in the plating bath and the plating appearance due to dross adhesion is impaired.
  • the Ni content in the adhesive layer is set to 0.005 to 0.1 mass%, and as described above, the Mg content is set to 0.2 to 1.0. Mass%.
  • a misch metal containing Ce and Pino or La can be contained in the plating layer. Although this misch metal containing Ce and Z or La is not effective for zero spangle formation, it increases the fluidity of the plating bath, prevents the occurrence of fine unplated pinholes, and reduces the plating surface. Smoothes the surface.
  • the content of misch metal is less than 0.005 mass% in terms of the total amount of Ce and La, pinhole suppression effects cannot be obtained sufficiently, and surface smoothing is not effective.
  • the total amount of Ce and La exceeds 0.05% by mass, it will be present as undissolved suspended matter in the plating bath, which will adhere to the plating surface and impair the plating appearance. That is, if the content of misch metal is 0.00'5 mass% or more in terms of the total amount of Ce and La, a pinhole suppression effect can be sufficiently obtained, and surface smoothing can be achieved, On the other hand, the total amount of Ce and La is 0.05 mass.
  • the misch metal containing C e and ⁇ or La is 0.005 to 0.05 mass in terms of the total amount of C e and La. / 0 , preferably 0.007 to 0.02 mass%.
  • an appropriate amount of Mg and Ni is contained in the plating layer having the GF composition, and an appropriate amount of misch metal containing Ce and / ⁇ or La can be added as necessary.
  • molten Zn-A1-based alloy steel sheet can be obtained, for example, under the following production conditions.
  • the steel plate used as the base steel plate may be appropriately selected from known steel plates according to the application, and it is not necessary to specifically limit the steel plate.
  • This steel plate (underlying steel plate) is immersed in a molten Z n -A 1 alloy plating bath and subjected to thermal immersion (molten) plating, then cooled by pulling up from the plating bath and molten on the surface of the steel plate.
  • a 1-type alloy plating layer is formed.
  • the plated layer is, A 1:. 1 0 to 1 0 weight 0/0, M g:. 0 2 ⁇ 1 ⁇ 0 Weight 0/0, N i:.
  • the bath composition of the molten Z n -A 1 alloy plating bath is substantially the same as the alloy plating layer composition.
  • Ni is concentrated in the outermost layer portion of the molten Zn-A1-based alloy plating layer.
  • the inventors of the present invention have prepared a Mg, Ni content in the molten Zn-A 1 alloy plating layer, a cooling rate after plating, and a concentration of plating component elements in the plating layer and outermost layer.
  • Mg and Ni are indispensable for improving the blackening resistance, that is, for Ni concentration in the outermost layer of the plating layer, as described above.
  • the cooling rate up to 250 ° C after fitting was greatly affected by this Ni concentration.
  • Metals such as A1, Mg, Ni, etc. in the molten Zn—A1 alloy plating layer gradually diffuse toward the outermost surface of the plating layer during solidification and normal temperature after plating.
  • Concentration of Mg and Ni on the outermost surface of the plating layer which has been particularly noted in our experiments, has a large cooling rate up to 250 ° C after plating. It was found that it affected. On the other hand, the cooling rate in the temperature range below 250 ° C had little effect on the concentration of Mg and Ni. Specifically, the cooling rate of the plated steel sheet pulled up from the molten Zn-A 1 alloy alloy bath is 1 to 15 ° C / sec, preferably 2 to 10 ° CZ sec. It was found that the Ni concentration in the outermost surface layer of the plating layer can be more effectively promoted by controlling to the upper limit.
  • the cooling rate of the plated steel sheet pulled up from the plating bath to 250 ° C is less than 2 seconds, the Ni layer is sufficiently concentrated in the outermost layer of the plating layer, but an alloy layer grows in the plating layer. As a result, it becomes a tortoiseshell pattern and the appearance deteriorates, and the workability deteriorates.
  • the cooling rate is 15 and exceeds seconds, the Mg content in the plating layer is in the range of 0.2 to 1.0% by mass, and the Ni content is in the range of 0.05 to 0.1% by mass. Even in the surrounding area, the concentration of Ni in the outermost layer of the plating layer is reduced, and the blackening resistance is not significantly affected.
  • the cooling rate of the plated steel sheet pulled up from the plating bath to 250 ° C is 15 ° C or less, Ni is sufficiently concentrated in the outermost layer of the plating layer, which is effective for blackening resistance. Indicates.
  • the cooling rate is 1 ° C / second or more, the alloy layer does not grow in the plating layer, so that a tortoiseshell pattern is not deteriorated and the appearance is not deteriorated. Therefore, the cooling rate of the steel sheet for lifting from the molten Z n -A 1 alloy alloy bath to 250 ° C is 1 to 15 ° CZ seconds, preferably 2 to 10 ° CZ seconds. It is preferable.
  • the plating bath temperature is preferably in the range of 39.degree.
  • the plating bath temperature is less than 390 ° C, the viscosity of the plating bath increases, and the plating surface tends to be uneven.
  • it exceeds 500 ° C dross in the plating bath tends to increase. That is, if the plating bath temperature is 3900 ° C or higher, the viscosity of the plating bath is properly maintained, so that the plating surface is not likely to be uneven, whereas if it is 5500 or less, The dross in the plating bath is unlikely to increase.
  • a titanium-containing aqueous liquid (A) as described above, a nickel compound or a noble metal is coated on the surface of the molten Z n -A 1 alloy-plated steel sheet.
  • cobalt compound (B), fluorine-containing compound (C) is an essential component, and if necessary, organophosphate compound (D), panadic acid compound (E), zirconium carbonate compound (F),
  • a surface treatment composition (ii) (treatment solution) containing one or more of a water-soluble organic resin or a water-dispersible organic resin (G) is applied and then dried without washing.
  • the titanium-containing aqueous liquid (A) and the surface treatment composition (H) may further contain other additive components as mentioned above, if necessary.
  • the method for applying the surface treatment composition may be any method that allows the treatment liquid to adhere to the surface of the plated steel sheet, for example, spray + roll squeezing, mouth coater, dipping.
  • the drying method after application is arbitrary, for example, a hot air method, an induction heating method, or an electric iron method.
  • the drying temperature (steel plate temperature) of the applied surface treatment composition (treatment liquid) is preferably about 40 to 200 ° C.
  • the drying temperature is less than 40 ° C, the film formation is insufficient and the corrosion resistance is poor.
  • the effect of improving the performance such as corrosion resistance corresponding to the drying temperature cannot be obtained. That is, if the drying temperature is 40 ° C or higher, the film formation is sufficient and the corrosion resistance is excellent, while if it is 200 ° C or lower, the performance such as corrosion resistance corresponding to the drying temperature is sufficiently improved. The effect is obtained.
  • the titanium-containing aqueous liquid (A) and components (B) to (G) used for the surface treatment composition are shown below.
  • Titanium tetrachloride 60 mass Ammonia water (1: 9) was added dropwise to a solution in which 5 cc of / 0 solution was made 500 cc with distilled water to precipitate a low condensation product of titanium hydroxide. After washing with distilled water, 10 cc of a 30% by mass solution of hydrogen peroxide was added and stirred to obtain a yellow translucent viscous titanium-containing aqueous liquid T 1 containing titanium.
  • Production Example 3 (Titanium-containing aqueous liquid T 3) A titanium-containing aqueous liquid T3 was obtained under the same production conditions as in Production Example 2 except that tetra-n-butoxytitanium was used instead of tetra-iso-propoxytitanium used in Production Example 2. ,
  • the production conditions were the same as in Production Example 2 except that 3 times the amount of hydrogen peroxide water was added to Production Example 2 and added dropwise at 50 ° C over 1 hour and further aged at 60 ° C for 3 hours. A titanium-containing aqueous liquid T5 was obtained.
  • the titanium-containing aqueous liquid T 3 produced in Production Example 3 was further heat-treated at 9 5 for 6 hours to obtain a white yellow translucent titanium-containing aqueous liquid T 6.
  • a mixture of 10 parts by mass of tetra-iso-propoxytitanium and 10 parts by mass of iso-propanol was added to “TKS-203” (trade name, manufactured by Tika Co., Ltd., titanium oxide sol), 5 parts by mass (solid content), 30
  • the mixture was added dropwise to a mixture of 10% by mass of hydrogen peroxide water and 10 parts by mass of deionized water with stirring at 10 ° C. over 1 hour. Thereafter, the mixture was aged for 24 hours at 10 ° C. to obtain a yellow transparent, slightly viscous titanium-containing aqueous solution T7.
  • G1 Superflex E-2500 (trade name, manufactured by Daiichi Kogyo Seiyaku Co., Ltd., water-based polyurethane resin, T g: 42 ° C)
  • G 2 Pyronal MD— 1 1 00 (trade name, manufactured by Toyobo Co., Ltd., water-based polyester resin)
  • Ade force resin EM— 07 1 8 (trade name, AD E K A), water-borne epoxy resin)
  • G 4 Hydran AP—10 (trade name, manufactured by Dainippon Ink & Chemicals, water-based polyurethane resin, T g: 27 ° C)
  • G 5 Hydran AP-30 (trade name, manufactured by Dainippon Ink & Chemicals, water-based polyurethane resin, T g: 61 ° C)
  • G 6 Hydran HW-340 (trade name, manufactured by Dainippon Ink & Chemicals, water-based polyurethane resin, T g: 7 ° C)
  • G 7 Hydran HW-3 50 (trade name, manufactured by Dainippon Ink & Chemicals, water-based polyurethane resin, T g: 5 7 ° C)
  • G 8 Superflex 110 (trade name, manufactured by Daiichi Kogyo Seiyaku Co., Ltd., water-based polyurethane resin, T g: 46 ° C)
  • G 9 Superflex 1 30 (trade name, manufactured by Daiichi Kogyo Seiyaku Co., Ltd., waterborne poly (Urethane resin, T g: 9 6 ° C)
  • G 10 Superflex 600 (trade name, manufactured by Daiichi Kogyo Seiyaku Co., Ltd., aqueous polyurethane resin, T g: 70 ° C)
  • water-dispersible acrylic resins of G 11 to G 15 were produced according to Production Examples 8 to 12 shown below.
  • Table 1 shows the monomer composition and characteristic values of the water-dispersible acryl resins of G 11 to G 15. In the following production examples, “part” and “%” are based on mass.
  • Aqualon RN-50 Product name, manufactured by Daiichi Kogyo Seiyaku Co., Ltd., nonionic emulsifier, solid content 60%
  • a water-dispersible acrylic resin of G 1 to G 15 was obtained in the same manner as in Production Example 8 except that the monomer composition in the first and second stages was changed to the blending ratio shown in Table 1.
  • the plated steel sheets shown in Table 2 were used as the base steel sheets for the surface-treated plated steel sheets.
  • Surface treatment appropriately blending the above-mentioned titanium-containing product liquid (A) and components (B) to (G)
  • the physical composition was applied to the surface of the steel plate and dried to obtain a maximum plate temperature of 80 ° C in 5 to 20 seconds.
  • These test materials were evaluated for corrosion resistance, blackening resistance and paint adhesion by the following test methods. The results are shown in Tables 3 to 5 together with the composition of the surface treatment composition applied to each specimen and the coating conditions.
  • Degreasing agent “Palclean N 364 S” (trade name, manufactured by Nihon Parkerizing Co., Ltd.) dissolved in water and adjusted to a concentration of 2% and a liquid temperature of 60 ° C for 2 minutes Spray spraying (spraying pressure: 1 kgf / cm 2 ) was performed. Thereafter, the test material was washed with tap water for 30 seconds and dried by blowing compressed air.
  • a salt spray test of JIS—Z—2 3 7 1—2 00 00 was performed on the specimen with the end and the back surface tape-sealed, and the test time when the white haze generation area ratio was 5% was measured.
  • the evaluation criteria are as follows.
  • 144 hours or more, less than 240 hours
  • 72 hours or more, less than 144 hours
  • the evaluation criteria are as follows.
  • Melamine alkyd resin paint (trade name “Delicon (registered trademark) # 700”, manufactured by Dainippon Paint Co., Ltd.) with or without pre-treatment so that the dry film thickness is 30 ⁇ 2 ⁇ m It was applied and dried at 1300C for 30 minutes.
  • Treatment method 2 minutes spray treatment (1 kgf / cm 2 )
  • cellophane adhesive tape (trade name “CT 24”, manufactured by Nichipan Co., Ltd.) was applied to the grid area, and the cell number after the cellophane adhesive tape was peeled was evaluated.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Chemical Treatment Of Metals (AREA)

Abstract

The invention provides a chromium-free surface treated, hot-dip Zn-Al alloy coated steel sheet which has excellent corrosion resistance and blackening resistance and is excellent in the surface appearance of plating. According to the invention, a steel sheet which has on the surface a hot-dip Zn-Al alloy plating layer containing Al: 1.0 to 10%, Mg: 0.2 to 1.0% and Ni: 0.005 to 0.1% is surface-treated with a surface treatment composition containing a specific titanium-containing aqueous solution, a nickel compound and/or a cobalt compound, and a fluorine -containing compound at a specific ratio to form a surface treatment film on the surface. Excellent blackening resistance is attained by virtue of the Ni and/or Co component contained in the surface treatment film and the optimized plating composition. Further, the surface treatment composition exhibits enhanced reactivity by virtue of the fluorine -containing compound to form a dense reaction layer on the surface of the plating and the fluorine-containing compound imparts higher barrier properties to the surface treatment film itself, which makes it possible to attain excellent corrosion resistance.

Description

明細書 表面処理溶融 Z n— A 1系合金めつき銅板 技術分野  Specification Surface Treatment Melting Z n— A 1-based Alloy Copper Plate Technical Field
本発明は、 自動車、 家電、建材用途に最適な表面処理溶融 Z n - A 1系合金め つき鋼板に関するもので、特に、表面処理組成物やこれにより形成される表面処 理皮膜中に 6価クロムを全く含まない環境適応型の表面処理めつき鋼板に関す るものである。 背景技術  The present invention relates to a surface-treated molten Z n -A 1 alloy-plated steel sheet that is optimal for use in automobiles, home appliances, and building materials. In particular, the present invention relates to a surface treatment composition and a surface treatment film formed thereby. This relates to an environmentally-adapted surface-treated steel plate that does not contain any chromium. Background art
従来、 自動車、 建築、 土木、 家電等の分野では、 溶融 Z n - A 1系合金めつき 鋼板が広く利用されている。 この溶融 Z n— A 1系合金めつき鋼板としては、主 に、 めっき層中の A 1含有量が 0 . 2質量%以下の溶融 Z nめっき鋼板 (以下、 G I という)、 同 A 1含有量が約 5質量%のガルファン (以下、 G Fという)、 同 A 1含有量が約 5 5質量%のガルパリユウム鋼板 (以下、 G Lという) が使用さ れている。 これらのなかで G Fは、 G Lよりも低コストであり、 G Iよりも耐食 性が優れているため、 特に建築などの分野では需要が高い。 今後は、 Z n価格の 高騰化に伴い、厚目付 Z nめっき鋼板の代替として、家電での需要も高くなると 予想される。  Conventionally, in the fields of automobiles, architecture, civil engineering, home appliances, etc., molten Z n -A 1 alloy-plated steel sheets have been widely used. As for this hot-dip Zn-A 1 alloy-plated steel sheet, mainly the hot-dip Zn-plated steel sheet (hereinafter referred to as GI) having an A1 content of 0.2 mass% or less in the plating layer, the same A1 content Galfan (hereinafter referred to as GF) with an amount of approximately 5% by mass and Galparium steel sheet (hereinafter referred to as GL) with an A1 content of approximately 55% by mass are used. Among these, GF has a lower cost than GL and has better corrosion resistance than GI, so demand is particularly high in the field of construction. In the future, as the price of Zn soars, demand for home appliances is expected to increase as a substitute for heavyweight Zn-plated steel sheets.
しかし、 G Fには、 一般に以下のような問題がある。  However, GF generally has the following problems.
G Fには亀甲模様のスパングルが形成されるが、 このスパングルは、 めっき条 件 (例えば、 めっき前焼鈍、 浴成分)、 めっき後の冷却条件 (例えば、 冷却速度) 等によって形態が異なり、 このため、 裸使用の場合に外観を損なうことがある。 また、 塗装を施してカラー鋼板とした場合、 スパングルが塗装面に浮き上がり、 塗装後の外観を損なうこともある。 このため、 近年では、 スパングルの無い金属 光沢をもつ美麗なめっき層を有する G Fに対する要求が増加している。  A spangle with a tortoiseshell pattern is formed on GF. The shape of this spangle varies depending on the plating conditions (eg, annealing before plating, bath components), cooling conditions after plating (eg, cooling rate), etc. The appearance may be damaged when used naked. In addition, when colored steel sheets are applied, spangles may float on the painted surface, which may impair the appearance after painting. For this reason, in recent years, there has been an increasing demand for GF having a beautiful plating layer with a metallic luster without spangle.
また、 Z nよりも酸化し易い M g、 A 1等の元素を含むめっき層を有している と、腐食性雰囲気に長時間曝された際に、 めっき表面が黒変色する黒変現象が発 生し易い欠点がある。 このため、 溶融 Z n— A 1系合金めつき鋼板の表面には、 黒変色を軽減可能な表面処理が必要となる。 In addition, if a plating layer containing elements such as Mg and A 1 that are easier to oxidize than Zn is present, the plating surface will turn black when exposed to a corrosive atmosphere for a long time. Departure There is a fault that is easy to produce. For this reason, a surface treatment that can reduce black discoloration is required on the surface of the steel sheet with a molten Zn—A 1 alloy.
黒変色を抑制する方法としては、 F e、 ; N i、 C o等のイオンを含む水溶液で めっき鋼板表面を置換処理し、 F e、 N i、 C o等をめつき層表面に析出させる 方法がある (例えば、 特許文献 1 )。 しかし、 この方法は置換処理工程が新たに 必要となるため、製造工程が複雑化する。 したがって、 耐食性を付与する目的で 行う化成処理工程において耐黒変性も同時に向上させる技術が必要となる。  To suppress black discoloration, the plated steel sheet surface is replaced with an aqueous solution containing ions such as Fe, Ni, Co, etc., and Fe, Ni, Co, etc. are deposited on the surface of the plating layer. There is a method (for example, Patent Document 1). However, this method requires a new replacement process, which complicates the manufacturing process. Therefore, a technique for improving blackening resistance at the same time in the chemical conversion treatment step for the purpose of imparting corrosion resistance is required.
溶融 Z n - A 1系合金めつき鋼板に耐食性を付与する化成処理技術は数多く 提案されている。 従来は、 クロム酸、 重クロム酸またはその塩類を主要成分とし た処理液による'クロメ一ト処理が施されていた。 しかし、 クロメート処理は公害 規制物質である 6価クロムを使用しており、環境に対する配慮から、またクロメ' 一ト処理液の廃液処理に多大な労力と費用とを要することから、クロムを含まな ぃクロメ一トフリー技術が検討されている。 例えば、 特許文献 2〜4には、 チタ ン、 ジルコニウム系のク口メートフリ一処理金属板が提案されている。  A number of chemical conversion treatment techniques have been proposed to impart corrosion resistance to molten Z n -A 1 alloy steel sheets. In the past, chromate treatment was performed with a treatment liquid containing chromic acid, dichromic acid or salts thereof as main components. However, the chromate treatment uses hexavalent chromium, which is a pollution-controlling substance. Because of the environmental considerations and the waste liquid treatment of the chromate treatment liquid requires a great deal of labor and expense, it does not contain chromium. IChrome free technology is being studied. For example, Patent Documents 2 to 4 propose titanium- and zirconium-based metal mate-free treated metal plates.
しかし、これら従来のク口メートフリ一処理では、耐食性は付与されるものの、 耐黒変性は改善されない。 特許文献 1 特開昭 5 9— 1 7 7 3 8 1号公報  However, these conventional mate-free treatments provide corrosion resistance but do not improve blackening resistance. Patent Document 1 Japanese Patent Application Laid-Open No. 5 9-1 7 7 3 8 1
特許文献 2 特開 2 0 0 4 — 2 9 5 0号公報  Patent Document 2 Japanese Patent Laid-Open No. 2 0 0 4 — 2 9 5 0
特許文献 3 国際公開第 2 0 0 3 / 9 3 5 3 3号パンフレツト  Patent Document 3 International Publication No. 2 0 0 3/9 3 5 3 No. 3
特許文献 4 特開 2 0 0 3— 3 0 6 7 7 7号公報 発明の開示  Patent Document 4 Japanese Patent Laid-Open No. 2 0 0 3-3 0 6 7 7 7 Disclosure of Invention
本発明の目的は、表面処理組成物や皮膜中に 6価クロムを含まず、優れた耐黒 変性と耐食性を有するとともに、めっき外観性にも優れた表面処理溶融 Z n - A 1系合金めつき鋼板を提供することにある。  The object of the present invention is to provide a surface-treated molten Zn n -A 1-based alloy that does not contain hexavalent chromium in the surface treatment composition or coating, has excellent blackening resistance and corrosion resistance, and has excellent plating appearance. It is to provide a steel plate with a wall.
本発明者らは、上記目的を達成するために、溶融 Z n— A 1系合金めつき鋼板 のめつき組成と表面処理組成の両面から検討を行い、その結果、以下のような知 見を得た。 T/JP2008/058320 In order to achieve the above-mentioned object, the present inventors have studied from both the plating composition and the surface treatment composition of the molten Zn—A1 alloy-plated steel sheet, and as a result, have found the following knowledge. Obtained. T / JP2008 / 058320
(i) めっき組成としては、 一般的な G Fの A 1濃度をベースとして、 これに適 量の M gと N iを含有させせることにより、スパングルの無い若しくは非常に微 細なスパングルが形成された金属光沢をもつ美麗なめっき外観を有するととも に、 耐黒変性も改善された溶融 Z n— A 1系合金めつき鋼板が得られる。 (i) The plating composition is based on the general A1 concentration of GF, and by containing appropriate amounts of Mg and Ni, spangle-free or very fine spangles are formed. It is possible to obtain a hot-dip Zn-A1 alloy-plated steel sheet that has a beautiful metallic appearance with a high metallic luster and improved blackening resistance.
(ii) 表面処理については、 まず、 耐黒変性を改善するために、 処理液中に各種 金属塩を添加することを検討した結果、 N i塩又は Z及ぴ C o塩を処理液中に添 加することが効果的であることが判った。 しかし、 N i塩、 C o塩などをそのま ま処理液中に添加すると耐食性が低下してしまう。耐食性を低下させることなく 耐黒変性の改善を図るためには、 処理液中に N i塩、 C o塩などを添加し、 且つ 処理によってめつき皮膜表面に緻密な反応層を形成させる必要がある。 しかし、 Z n - A 1系めつき表面には強固な A 1 の酸化膜が形成されているため、処理の 反応性が低いとめつき表面と処理皮膜との間に緻密な反応層が形成されず、十分 な耐食性を発現させることができない。そこで検討した結果、特定のチタン含有 水性液と、ニッケル化合物又は 及ぴコバルト化合物と、弗素含有化合物とを所 定の割合で含有する処理液 (表面処理組成物) で処理することにより、 上記 (i) のめつき組成の最適化と相俟って優れた耐黒変性が得られるとともに、弗素含有 化合物によって反応性が高められる結果、めっき表面に緻密な反応層が形成され、 さらに表面処理皮膜自体により髙ぃパリァ性が付与されるため、クロメートフリ 一でありながらクロメート皮膜に匹敵する優れた耐食性が得られることが判つ た。  (ii) Regarding surface treatment, first, as a result of examining the addition of various metal salts to the treatment liquid in order to improve blackening resistance, Ni salt or Z and Co salts were added to the treatment liquid. It has been found that adding it is effective. However, if Ni salt, Co salt, etc. are added to the processing solution as they are, the corrosion resistance will be reduced. In order to improve blackening resistance without deteriorating corrosion resistance, it is necessary to add Ni salt, Co salt, etc. to the treatment solution and to form a dense reaction layer on the surface of the adhesive film by treatment. is there. However, since a strong oxide film of A 1 is formed on the surface of the Zn n -A 1 system, a dense reaction layer is formed between the surface of the plating and the treatment film when the processing reactivity is low. Therefore, sufficient corrosion resistance cannot be expressed. As a result of the examination, the above-mentioned ((Treatment treatment composition) containing a specific titanium-containing aqueous liquid, a nickel compound or a cobalt compound, and a fluorine-containing compound in a predetermined ratio) i) Combined with optimization of the plating composition, excellent blackening resistance is obtained, and the reactivity is enhanced by the fluorine-containing compound. As a result, a dense reaction layer is formed on the plating surface. It has been found that, because it imparts crispness to itself, excellent corrosion resistance comparable to that of a chromate film can be obtained while being chromate-free.
さらに、処理皮膜中に有機樹脂を配合して柔軟性を付与することにより、加工 によるクラックの発生が抑えられ、平板部だけでなく加工部の上塗り塗料密着性 を良好なものにできる。 ここで、樹脂含有量を多くするほど、 耐食性を確保する ために皮膜付着量を多くする必要があり、結果として、溶接性及び導電性が低下 してしまうが、 このような問題は、 有機樹脂としてガラス転移温度 (以下、 「T g」 という) が 5 0 °C未満のウレタン樹脂を用いることで解決できることが判つ た。 すなわち、 T g 5 0 °C未満のウレタン樹脂を用いると、 樹脂含有量が少なく ても処理皮膜に十分な柔軟性が付与できることから、皮膜付着量を低く抑え、溶 接性およぴ導電性を確保しつつ、良好な耐食性と加工部の上塗り塗料密着性が得 られることが判った。 Furthermore, by adding an organic resin to the treated film to impart flexibility, the occurrence of cracks due to processing can be suppressed, and the adhesion of the top coat paint of not only the flat plate portion but also the processed portion can be improved. Here, as the resin content increases, it is necessary to increase the coating amount in order to ensure the corrosion resistance. As a result, the weldability and the conductivity decrease. As a result, it was found that this can be solved by using a urethane resin having a glass transition temperature (hereinafter referred to as “T g”) of less than 50 ° C. In other words, if a urethane resin with a Tg of less than 50 ° C is used, sufficient flexibility can be imparted to the treated film even if the resin content is low, so the coating amount is kept low, and the weldability and conductivity are reduced. Good corrosion resistance and adhesion of the top coat of the processed part It was found that
本発明は、 このような知見に基づきなされたもので、以下を要旨とするもので ある。  The present invention has been made on the basis of such findings and has the following gist.
[1] 鋼板の少なく とも一方の表面に、 A 1 : 1 · 0〜 1 0質量%、 Mg : 0. 2〜 1. 0質量%、 N i : 0. 005〜0. 1質量%を含有し、 残部が Z n及び 不可避的不純物からなる溶融 Z n - A 1系合金めつき層を有する溶融 Z n - A 1系合金めつき鋼板の表面に、 '  [1] At least one surface of the steel sheet contains A 1: 1 · 10 to 10% by mass, Mg: 0.2 to 1.0% by mass, Ni: 0.005 to 0.1% by mass On the surface of the molten Z n -A 1 alloy-plated steel sheet having a molten Z n -A 1 alloy-plated layer consisting of Zn and inevitable impurities,
加水分解性チタン化合物、加水分解性チタン化合物の低縮合物、水酸化チタン、 水酸化チタンの低縮合物の中から選ばれる少なく とも 1種のチタン化合物を過 酸化水素水と混合して得られるチタン含有水性液(A) を固形分の割合で 1 0〜 60質量%、 ニッケル化合物又は/及びコバルト化合物 (B) を固形分の割合で 0. 0 1〜 1質量%、 弗素含有化合物 (C) を固形分の割合で 1〜80質量%含 有する表面処理組成物 (H) を塗布し、 乾燥させることにより形成された皮膜付 着量が 0. 05〜1. 0 g/m2の表面処理皮膜を有することを特徴とする表面 処理溶融 Z n— A 1系合金めつき鋼板。 Obtained by mixing at least one titanium compound selected from hydrolyzable titanium compounds, hydrolyzable titanium compound low condensates, titanium hydroxide, and titanium hydroxide low condensates with hydrogen peroxide water. Titanium-containing aqueous liquid (A) in a solid content ratio of 10 to 60 mass%, nickel compound and / or cobalt compound (B) in a solid content ratio of 0.0 1 to 1 mass%, fluorine-containing compound (C ) Is applied to the surface treatment composition (H) containing a solid content of 1 to 80% by mass and dried to form a surface having a coating weight of 0.05 to 1.0 g / m 2 Surface-treated molten Z n— A 1-based alloy-plated steel sheet characterized by having a treated film.
[2] 上記 [1] の表面処理溶融 Z n-A 1系合金めつき鋼板において、 弗素含有 化合物 (C) が、 ジルコン弗化アンモニゥム、 ジルコン弗化水素酸の中から選ば れる少なく とも 1種であることを特徴とする表面処理溶融 Z n -A 1系合金め つき鋼板。  [2] In the surface-treated molten ZnA 1 alloy-plated steel sheet of [1] above, the fluorine-containing compound (C) is at least one selected from zircon ammonium fluoride and zircon hydrofluoric acid. A surface-treated molten Z n -A 1 alloy-plated steel sheet.
[3]上記 [1]又は [2] の表面処理溶融 Z n— A 1系合金めつき鋼板において、 表面処理組成物 (H) が、 さらに、 有機リン酸化合物 (D) を固形分の割合で 1 0〜 6◦質量%含有することを特徴とする表面処理溶融 Z n - A 1系合金めつ き鋼板。  [3] In the surface-treated molten Zn—A1 alloy-plated steel sheet according to [1] or [2] above, the surface treatment composition (H) further contains an organophosphate compound (D) in a solid content ratio. A surface-treated molten Zn-A1-based alloy steel sheet characterized by containing 10 to 6% by mass.
[4] 上記 [1] 〜 [3] のいずれかの表面処理溶融 Z n— A 1系合金めつき鋼板 において、 表面処理組成物 (H) 1 さらに、 パナジン酸化合物 (E) を固形分 の割合で 0. 1〜30質量%含有することを特徴とする表面処理溶融 Z n-A 1 系合金めつき鋼板。  [4] In the surface-treated molten Zn—A1 alloy-plated steel sheet according to any one of [1] to [3] above, the surface treatment composition (H) 1 and the panadic acid compound (E) A surface-treated molten Z nA 1 -based alloy-plated steel sheet, characterized by containing 0.1 to 30% by mass.
[5] 上記 [1] 〜 [4] のいずれかの表面処理溶融 Z n— A 1系合金めつき鋼板 において、 表面処理組成物 (H) 力 S、 さらに、 炭酸ジルコニウム化合物 (F) を 固形分の割合で 0 . 1〜2 0質量%含有することを特徴とする表面処理溶融 Z n 一 A 1系合金めつき鋼板。 [5] In the surface-treated molten Zn-A1-based alloy-plated steel sheet according to any one of [1] to [4] above, the surface treatment composition (H) force S, and the zirconium carbonate compound (F) A surface-treated molten Zn 1 A 1 alloy-plated steel sheet characterized by containing 0.1 to 20% by mass in terms of solid content.
[6] 上記 [ 1] 〜 [5] のいずれかの表面処理溶融 Z n— A 1系合金めつき鋼板 において、 表面処理組成物 (H ) 1 さらに、 水溶性有機樹脂又は/及ぴ水分散 性有機樹脂(G ) を固形分の割合で 3 0質量%以下含有することを特徴とする表 面処理溶融 Z n— A 1系合金めつき鋼板。  [6] In the surface-treated molten Zn—A1 alloy-plated steel sheet according to any one of [1] to [5] above, the surface treatment composition (H) 1 is further dispersed in a water-soluble organic resin or / and water. A surface-treated molten Zn-A1-based alloy-plated steel sheet, characterized by containing an organic resin (G) in a solid content of 30% by mass or less.
[7] 上記 [6] の表面処理溶融 Z n - A 1系合金めつき鋼板において、 水溶性有 機樹脂又は 及ぴ水分散性有機樹脂 (G ) 力 S、 ガラス転移温度が 5 0 °C未満のゥ レタン樹脂であることを特徴とする表面処理溶融 Z n - A 1系合金めつき鋼板。 発明の効果  [7] In the surface-treated molten Z n -A 1 alloy-plated steel sheet of [6] above, a water-soluble organic resin or a water-dispersible organic resin (G) force S and a glass transition temperature of 50 ° C. A surface-treated molten Z n -A 1 alloy-plated steel sheet characterized by being less than urethane resin. The invention's effect
本発明の表面処理溶融 Z n - A 1系合金めつき鋼板は、特定のチタン含有水性 液と、ニッケル化合物又は/及ぴ,コバルト化合物と、弗素含有化合物とを所定の 割合で配合した表面処理組成物による処理皮膜を有することにより、めっき組成 の最適化と相俟って優れた耐黒変性が得られるとともに、表面処理組成物中の弗 素含有化合物によって反応性が高められる結果、めっき表面に緻密な反応層が形 成され、 さらに表面処理皮膜自体により高いパリア性が付与されるため、 クロメ 一トフリ一でありながらクロメ一ト皮膜に匹敵する優れた耐食性が得られる。さ らに、 めっき組成の最適化により、スパングルの''無い若しくは非常に微細なスパ ングルが形成された金属光沢をもつ美麗なめっき外観を有する。 図面の簡単な説明  The surface-treated molten Z n -A 1 alloy-plated steel sheet of the present invention is a surface treatment in which a specific titanium-containing aqueous liquid, a nickel compound or / and a cobalt compound, and a fluorine-containing compound are blended at a predetermined ratio. By having the treatment film of the composition, excellent blackening resistance is obtained in combination with the optimization of the plating composition, and the reactivity is enhanced by the fluorine-containing compound in the surface treatment composition. In addition, a highly reactive layer is formed, and the surface treatment film itself imparts high pariacity, so that excellent corrosion resistance comparable to that of the chromate film can be obtained while being chrome free. In addition, by optimizing the plating composition, it has a beautiful plating appearance with a metallic luster with no spangles or very fine spangles. Brief Description of Drawings
図 1は、適量の N iを含有する G F組成のめっき層を有する溶融 Z n— A 1系 合金めつき鋼板について、めっき層中の M g含有量とめっき外観との関係を示す グラフである。  Fig. 1 is a graph showing the relationship between the Mg content in the plating layer and the plating appearance for a molten Zn-A1 alloy-plated steel sheet having a GF composition plating layer containing an appropriate amount of Ni .
図 2 A、 図 2 B、 およぴ図 2 Cは、 G F組成の溶融 Z n— A 1系合金めつき鋼 板であって、 めっき層中に M gのみを含有するめつき鋼板、 めっき層中に N の みを含有するめつき鋼板、およびめつき層中に M gと N i を含有するめつき鋼板 について、 めっき層深さ方向の成分分析結果を示すグラフである。 発明を実施するための最良の形態 Fig. 2 A, Fig. 2 B, and Fig. 2 C are GF-composite molten Zn—A1 alloy-plated steel plates, plated steel containing only Mg in the plating layer, plating layer 4 is a graph showing the component analysis results in the plating layer depth direction for a steel plate containing only N in the steel plate and a steel plate containing Mg and Ni in the plating layer. BEST MODE FOR CARRYING OUT THE INVENTION
本発明の表面処理溶融 Z II - A 1系合金めつき鋼板 (以下、 便宜上 「表面処理 めっき鋼板」 という) のベースとなる溶融 Z n— A 1系合金めつき鋼板は、 鋼板 の少なく とも一方の表面に、 A 1 : 1 . 0〜: L 0質量%、 M g : 0 . 2〜 1 . 0 質量%、 N i : 0 . 0 0 5〜 0 . 1質量。/。を含有し、 残部が Z nおよび不可避的 不純物からなる溶融 Z n— A 1系合金めつき層を有するものである。この溶融 Z 11一 A 1系合金めつき鋼板のめっき組成の限定理由や好ましい製造条件などに ついては、 後に詳述する。  The molten Zn-A1 alloy-plated steel sheet, which is the base of the surface-treated molten ZII-A1 alloy-plated steel sheet (hereinafter referred to as "surface-treated plated steel sheet" for convenience), is at least one of the steel sheets. , A 1: 1.0 ~: L 0 mass%, Mg: 0.2 ~ 1.0 mass%, Ni: 0.05 ~ 0.1 mass. /. And the balance has a molten Zn—A1-based alloy plating layer consisting of Zn and inevitable impurities. The reason for limiting the plating composition of this molten Z11-1A1 alloy-plated steel sheet and preferred manufacturing conditions will be described in detail later.
本発明の表面処理めつき鋼板において、溶融 Z n— A 1系合金めつき層表面に 形 される表面処理皮膜は、加水分解性チタン化合物、加水分解性チタン化合物 の低縮合物、水酸化チタン、水酸化チタンの低縮合物の中から選ばれる少なく と も 1種のチタン化合物を過酸化水素水と混合して得られるチタン含有水性液 ( A ) と、 ニッケル化合物又は/及ぴコバルト化合物 (B ) と、 弗素含有化合物 ( C ) とを所定の割合で含有し、 さらに必要に応じて、有機リン酸化合物(D )、 パナジン酸化合物 (E )、 炭酸ジルコニウム化合物 (F )、 水溶性有機樹脂又は/ 及ぴ水分散性有機樹脂(G ) の 1種以上を所定の割合で含有する表面処理組成物 ( H ) を塗布し、 乾燥させることにより形成されるものである。 この表面処理皮 膜は 6価クロム (但し、 不可避不純物としてのクロムを除く) を含有しない。 前記チタン含有水性液 (A) は、 加水分解性チタン化合物、 加水分解性チタン 化合物の低縮合物、水酸化チタン、水酸化チタンの低縮合物の中から選ばれる少 なく とも 1種のチタン化合物と過酸化水素水とを混合して得られるチタンを含 む水性液である。  In the surface-treated plated steel sheet of the present invention, the surface-treated film formed on the surface of the molten Zn—A 1-based alloy plated layer is a hydrolyzable titanium compound, a hydrolyzable titanium compound low-condensate, or titanium hydroxide. A titanium-containing aqueous liquid (A) obtained by mixing at least one titanium compound selected from low-condensation products of titanium hydroxide with hydrogen peroxide water, a nickel compound and / or a cobalt compound ( B) and a fluorine-containing compound (C) at a predetermined ratio, and if necessary, an organic phosphate compound (D), a panadic acid compound (E), a zirconium carbonate compound (F), a water-soluble organic compound It is formed by applying and drying a surface treatment composition (H) containing one or more of a resin and / or a water-dispersible organic resin (G) in a predetermined ratio. This surface-treated film does not contain hexavalent chromium (except for chromium as an inevitable impurity). The titanium-containing aqueous liquid (A) is a hydrolysable titanium compound, a low condensate of a hydrolysable titanium compound, titanium hydroxide, or a low condensate of titanium hydroxide. It is an aqueous liquid containing titanium obtained by mixing hydrogen peroxide water.
前記加水分解性チタン化合物は、チタンに直接結合する加水分解性基を有する チタン化合物であって、水、水蒸気などの水分と反応することにより水酸化チタ ンを生成するものである。 また、加水分解性チタン化合物は、 チタンに結合する 基の全てが加水分解性基であるものでもよいし、チタンに結合する基の一部が加 水分解性基であるものでもよい。  The hydrolyzable titanium compound is a titanium compound having a hydrolyzable group directly bonded to titanium, and generates titanium hydroxide by reacting with water such as water or water vapor. The hydrolyzable titanium compound may be one in which all of the groups bonded to titanium are hydrolyzable groups, or may be one in which a part of the groups bonded to titanium is a hydrolyzable group.
前記加水分解性基としては、上記したように氷分と反応することにより水酸化 チタンを生成させるものであれば特に制限はないが、例えば、低級アルコキシル 基やチタンと塩を形成する基 (例えば、 塩素などのハロゲン原子、 水素原子、 硫 酸イオンなど) などが挙げられる。 The hydrolyzable group may be hydroxylated by reacting with ice as described above. There are no particular limitations as long as it produces titanium, but examples include lower alkoxyl groups and groups that form salts with titanium (for example, halogen atoms such as chlorine, hydrogen atoms, sulfate ions, etc.).
加水分解性基として低級アルコキシル基を含有する加水分解性チタン化合物 としては、 特に、 一般式 T i ( O R ) 4 (式中、 Rは同一若しくは異なる炭素数As the hydrolyzable titanium compound containing a lower alkoxyl group as a hydrolyzable group, in particular, the general formula T i (OR) 4 (wherein R is the same or different carbon number)
1〜 5のアルキル基を示す)で示されるテトラアルコキシチタンが好ましい。炭 素数 1〜 5のアルキル基としては、 例えば、 メチル基、 ェチル基、 n—プロピル 基、 i s o—プロピル基、 n—ブチノレ基、 i s o—ブチル基、 s e c一プチノレ基、 t e r t 一ブチル基などが挙げられる。 A tetraalkoxytitanium represented by 1 to 5). Examples of the alkyl group having 1 to 5 carbon atoms include a methyl group, an ethyl group, an n-propyl group, an iso-propyl group, an n-butynole group, an iso-butyl group, a sec 1-butyl group, and a tert 1-butyl group. Can be mentioned.
加水分解性基として、チタンと塩を形成する基を有する加水分解性チタン化合 物としては、 塩化チタン、 硫酸チタンなどが代表的なものとして挙げられる。 また、加水分解性チタン化合物の低縮合物は、上記した加水分解性チタン化合 物どうしの低縮合物である。 この低縮合物は、チタンに結合する基の全てが加水 分解性基であるものでもよいし、チタンに結合する基の一部が加水分解性である ものでもよい。  Typical examples of hydrolyzable titanium compounds having a group capable of forming a salt with titanium as a hydrolyzable group include titanium chloride and titanium sulfate. Further, the low condensate of the hydrolyzable titanium compound is a low condensate of the above hydrolyzable titanium compounds. The low condensate may be one in which all of the groups bonded to titanium are hydrolyzable groups, or may be one in which some of the groups bonded to titanium are hydrolyzable.
加水分解性基がチタンと塩を形成する基である加水分解性チタン化合物(例え ば、 塩化チタン、 硫酸チタンなど) については、 その加水分解性チタン化合物の 水溶液とアンモニアや苛性ソーダなどのアル力リ溶液との反応により得られる オルトチタン酸 (水酸化チタンゲル) も低縮合物として使用できる。  For hydrolyzable titanium compounds whose hydrolyzable groups form a salt with titanium (for example, titanium chloride, titanium sulfate, etc.), an aqueous solution of the hydrolyzable titanium compound and an alkaline solution such as ammonia or caustic soda are used. Orthotitanic acid (titanium hydroxide gel) obtained by reaction with a solution can also be used as a low condensate.
加水分解性チタン化合物の低縮合物及ぴ水酸化チタンの低縮合物としては、縮 合度が 2〜 3 0の化合物が使用可能であり、特に縮合度が 2 ~ 1 0の化合物を使 用することが好ましい。縮合度が 3 0を超えると、過酸化水素と混合した際に白 色沈殿を生じ、 安定なチタン含有水性液が得られない。 すなわち、 縮合度が 3 0 以下であれば、 過酸化水素と混合して安定なチタン含有水性液が得られる。 以上挙げた加水分解性チタン化合物、加水分解性チタン化合物の低縮合物、水 酸化チタン、 水酸化チタンの低縮合物は、 1種又は 2種以上を使用できるが、 そ のなかでも、上述した一般式で示される加水分解性チタン化合物であるテトラァ ルコキシチタンが特に好ましい。 この理由は、 テトラアルコキシチタンは、加水 分解した時に生成されるアルコールが表面処理組成物を乾燥させる過程で揮発 8 058320 するため、耐食性などの皮膜性能に影響を与えることがなく、特に優れた皮膜性 能が得られるからである。 As the hydrolyzable titanium compound low condensate and titanium hydroxide low condensate, compounds having a degree of condensation of 2 to 30 can be used, and in particular, compounds having a degree of condensation of 2 to 10 are used. It is preferable. When the degree of condensation exceeds 30, a white precipitate is formed when mixed with hydrogen peroxide, and a stable titanium-containing aqueous liquid cannot be obtained. That is, when the degree of condensation is 30 or less, a stable titanium-containing aqueous liquid can be obtained by mixing with hydrogen peroxide. The hydrolyzable titanium compounds, low-condensates of hydrolyzable titanium compounds, low-condensates of hydrous titanium oxide, and titanium hydroxide can be used alone or in combination of two or more. Tetraalkoxy titanium, which is a hydrolyzable titanium compound represented by the general formula, is particularly preferred. The reason for this is that tetraalkoxytitanium is volatilized during the process of drying the surface treatment composition by the alcohol produced when hydrolyzed. Therefore, the film performance such as corrosion resistance is not affected, and particularly excellent film performance can be obtained.
チタン含有水性液 (A) としては、 上記したチタン化合物ど過酸化水素水を混 合することにより得られるチタンを含む水性液であれば、従来公知のものを特に 制限なしに使用することができる。具体的には、下記のものを挙げることができ る。  As the titanium-containing aqueous liquid (A), any conventionally known liquid can be used without particular limitation as long as it is an aqueous liquid containing titanium obtained by mixing the above-described titanium compound or hydrogen peroxide water. . Specifically, the following can be mentioned.
( i) 含水酸化チタンのゲル又はゾルに過酸化水素氷を添加して得られるチタ二 ルイオン過酸化水素錯体又はチタン酸 (ペルォキソチタン水和物) 水溶液 (特開 昭 6 3— 3 5 4 1 9号公報、 特開平 1— 2 2 4 2 2 0号公報参照)。  (i) Titanium ion hydrogen peroxide complex or titanic acid (peroxotitanium hydrate) aqueous solution obtained by adding hydrogen peroxide ice to hydrous titanium oxide gel or sol (Japanese Patent Laid-Open No. 6-3-3 5 4 1 9 No. 1 and Japanese Patent Laid-Open No. 1-2 2 4 2 2 0).
(ii)塩化チタンゃ硫酸チタンの水溶液と塩基性溶液から製造した水酸化チタン ゲルに過酸化水素水を作用させ、合成することで得られるチタニア膜形成用液体 (ii) Titania film-forming liquid obtained by synthesizing a titanium hydroxide gel produced from an aqueous solution and a basic solution of titanium chloride and titanium sulfate by allowing hydrogen peroxide to act on the gel.
(特開平 9一 7 1 4 1 8号公報、 特開平 1 0— 6 7 5 1 6号公報参照)。 (See Japanese Patent Application Laid-Open Nos. 9-7 4 1 8 and 10 6-7 5 16).
このチタニア膜形成用液体を得る場合、チタンと塩を形成する基を有する塩化 チタンや硫酸チタンの水溶液とアンモニアや苛性ソーダなどのアル力リ溶液と を反応させることによりオルトチタン酸と呼ばれる水酸化チタンゲルを沈殿さ せる。次いで、水を用いたデカンテーションによって水酸化チタンゲルを分離し、 良く水洗し、 さらに過酸化水素水を加え、余分な過酸化水素を分解除去すること により、 黄色透明粘性液体を得ることができる。  When obtaining this titania film-forming liquid, a titanium hydroxide gel called orthotitanic acid is obtained by reacting an aqueous solution of titanium chloride or titanium sulfate having a salt-forming group with titanium and an alkaline solution such as ammonia or caustic soda. To settle. Next, the titanium hydroxide gel is separated by decantation with water, washed well with water, further added with hydrogen peroxide solution to decompose and remove excess hydrogen peroxide, thereby obtaining a yellow transparent viscous liquid.
沈殿した上記オルトチタン酸は、 O Hどうしの重合や水素結合によって高分子 化したゲル状態にあり、そのままではチタンを含む水性液としては使用できない。 このゲルに過酸化水素水を添加すると O Hの一部が過酸化状態になり、ペルォキ ソチタン酸イオンとして溶解或いは高分子鎖が低分子に分断された一種のゾル 状態になり、余分な過酸化水素は水と酸素になって分解し、無機膜形成用のチタ ンを含む水性液として使用できるようになる。  The ortho-titanic acid thus precipitated is in a gel state polymerized by polymerization of OH and hydrogen bonds, and cannot be used as an aqueous liquid containing titanium as it is. When hydrogen peroxide solution is added to this gel, a part of OH is in a peroxidized state, dissolved as peroxotitanate ions or in a kind of sol in which the polymer chain is divided into low molecules, and excess hydrogen peroxide. It decomposes into water and oxygen and can be used as an aqueous liquid containing titanium for forming an inorganic film.
このゾルはチタン原子以外に酸素原子と水素原子しか含まないので、乾燥や焼 成によつて酸化チタンに変化する場合、水と酸素しか発生しないため、 ゾルゲル 法や硫酸塩などの熱分解に必要な炭素成分やハロゲン成分の除去が必要でなく、 低温でも比較的密度の高い酸化チタン膜を形成することができる。  Since this sol contains only oxygen and hydrogen atoms in addition to titanium atoms, when it is changed to titanium oxide by drying or firing, only water and oxygen are generated, so it is necessary for thermal decomposition of sol-gel method and sulfates. Therefore, it is not necessary to remove carbon components and halogen components, and a titanium oxide film having a relatively high density can be formed even at a low temperature.
(ii i) 塩化チタンゃ硫酸チタンの無機チタン化合物水溶液に過酸化水素を加え 0 てペルォキソチタン水和物を生成させた後に、塩基性物質を添加して得られた溶 液を放置又は加熱することによってペルォキソチタン水和物重合体の沈殿物を 生成させ、次いで、少なく ともチタン含有原料溶液に由来する氷以外の溶解成分 を除去した後に過酸化水素を作用させて得られるチタン酸化物形成用溶液(特開 2 0 0 0 - 2 4 7 6 3 8号公報、 特開 2 0 0 0— 2 4 7 6 3 9号公報参照)。 チタン化合物として加水分解性チタン化合物及ぴノ又はその低縮合物 (以下、 説明の便宜上 「加水分解性チタン化合物 a」 という) を用いるチタン含有水性液 (A) は、加水分解性チタン化合物 aを過酸化水素水と反応温度 1 ~ 7 0°Cで 1 0分間〜 2 0時間程度反応させることにより得ることができる。 (ii i) Add hydrogen peroxide to an aqueous solution of titanium chloride and inorganic titanium compound of titanium sulfate. After the formation of peroxotitanium hydrate, the solution obtained by adding the basic substance is allowed to stand or heat to form a precipitate of peroxotitanium hydrate polymer, and then at least contains titanium. Titanium oxide forming solution obtained by allowing hydrogen peroxide to act after removing dissolved components other than ice derived from the raw material solution (Japanese Patent Laid-Open Nos. 2000-206 and 38) 0 0—See 2 4 7 6 3 9). A titanium-containing aqueous liquid (A) using a hydrolyzable titanium compound and Pino or its low condensate as a titanium compound (hereinafter referred to as “hydrolyzable titanium compound a” for convenience of explanation) It can be obtained by reacting with a hydrogen peroxide solution at a reaction temperature of 1 to 70 ° C. for about 10 minutes to 20 hours.
この加水分解性チタン化合物 aを用いたチタン含有水性液 (A) は、加水分解 性チタン化合物 aと過酸化水素水とを反応させることにより、加水分解性チタン 化合物 aが水で加水分解されて水酸基含有チタン化合物を生成し、次いで、 この 水酸基含有チタン化合物に過酸化水素が配位するものと考えられる。この加水分 解反応及ぴ過酸化水素による配位が同時近くに起こることにより得られたもの であり、室温域での安定性が極めて高く、長期の保存に耐えるキレート液を生成 する。従来の製法で用いられる水酸化チタンゲルは、 T i一 O— T i結合により 部分的に三次元化しており、このゲルと過酸化水素水を反応させたチタン含有水 性液 (A) とは組成及ぴ安定性が本質的に異なる。  The aqueous titanium-containing liquid (A) using the hydrolyzable titanium compound a is obtained by reacting the hydrolyzable titanium compound a with hydrogen peroxide water to hydrolyze the hydrolyzable titanium compound a with water. It is considered that a hydroxyl group-containing titanium compound is produced, and then hydrogen peroxide is coordinated to the hydroxyl group-containing titanium compound. This hydrolysis reaction and coordination by hydrogen peroxide occur at the same time, and it produces a chelate solution that is extremely stable at room temperature and can withstand long-term storage. The titanium hydroxide gel used in the conventional process is partly three-dimensional due to Ti-O-Ti bonds, and what is the titanium-containing aqueous liquid (A) that reacts this gel with hydrogen peroxide? Composition and stability are essentially different.
また、加水分解性チタン化合物 aを用いたチタン含有水性液 (A) を 8 0°C以 上で加熱処理又はォートクレーブ処理すると、結晶化した酸化チタンの超微粒子 を含む酸化チタン分散液が得られる。前記加熱処理又はォートクレーブ処理が 8 0°C未満では、 酸化チタンの結晶化が十分に進まない。 すなわち、 前記加熱処理 又はォートクレープ処理を 8 0¾以上で行えば、酸化チタンの結晶化が十分に進 行させることができる。このようにして製造された酸化チタン分散液の酸化チタ ン超微粒子の平均粒子径は 1 0 nm以下、好ましくは 1〜 6 nm程度とすること が望ましい。酸化チタン超微粒子の平均粒子径が 1 0 より大きくなると造膜 性が低下する(塗布後乾燥して皮膜とした場合、膜厚 1 μ HI以上でヮレを生じる) ので好ましくない。すなわち、酸化チタン超微粒子の平均粒子径を 1 0 nm以下 とすると造膜性が優れる (塗布後乾燥して皮膜とした場合、膜厚 1 β m以上でヮ レを生じることがない) ので好ましい。 また、 酸化チタン超微粒子の平均粒子径 が 1 n m以上であれば、表面処理組成物を粘度が高ぐならない状態に維持できる ので好ましい。 この酸化チタン分散液の外観は半透明状のものである。 このよう な酸化チタン分散液も、 チタン含有水性液 (A ) として使用することができる。 加水分解性チタン化合物 aを用いたチタン含有水性液(A ) を含む表面処理組 成物 (H) を、 めっき鋼板表面に塗布 .乾燥 (例えば、 低温で加熱乾燥) するこ とにより、それ自体で付着性に優れた緻密な酸化チタン含有皮膜(表面処理皮膜) を形成することができる。 In addition, when the titanium-containing aqueous liquid (A) using the hydrolyzable titanium compound a is heat-treated or autoclaved at 80 ° C. or higher, a titanium oxide dispersion containing ultrafine particles of crystallized titanium oxide is obtained. . When the heat treatment or autoclave treatment is less than 80 ° C, crystallization of titanium oxide does not proceed sufficiently. That is, if the heat treatment or autoclave treatment is performed at 80¾ or more, the crystallization of titanium oxide can be sufficiently advanced. The average particle diameter of the titanium oxide ultrafine particles of the titanium oxide dispersion produced in this way is desirably 10 nm or less, preferably about 1 to 6 nm. If the average particle diameter of the titanium oxide ultrafine particles is larger than 10, the film-forming property is lowered (when the film is dried after coating to form a film, a wrinkle occurs at a film thickness of 1 μHI or more), which is not preferable. In other words, when the average particle size of the titanium oxide ultrafine particles is 10 nm or less, the film forming property is excellent. This is preferable. Further, if the average particle diameter of the titanium oxide ultrafine particles is 1 nm or more, it is preferable because the surface treatment composition can be maintained in a state where the viscosity does not increase. The appearance of this titanium oxide dispersion is translucent. Such a titanium oxide dispersion can also be used as the titanium-containing aqueous liquid (A). The surface treatment composition (H) containing the titanium-containing aqueous liquid (A) using the hydrolyzable titanium compound a is applied to the surface of the plated steel sheet and dried (for example, dried by heating at a low temperature). A dense titanium oxide-containing film (surface treatment film) having excellent adhesion can be formed.
表面処理組成物(H )を塗布した後の鋼板の加熱温度としては、例えば 2 0 0 °C 以下、特に 1 5 0 °C以下が好ましく、このような温度で加熱乾燥することにより、 水酸基を若干含む非晶質 (アモルファス) の酸化チタン含有皮膜が形成できる。 また、上記したような 8 0 °C以上の加熱処理又はォートクレーブ処理を経て得 られた酸化チタン分散液をチタン含有水性液 (A ) として用いた場合、 表面処理 組成物 (H ) を塗布するだけで結晶性の酸化チタン含有皮膜が形成できるため、 加熱処理できない材料のコーティング材として有用である。  The heating temperature of the steel sheet after applying the surface treatment composition (H 2) is, for example, preferably 200 ° C. or less, particularly preferably 150 ° C. or less. By heating and drying at such a temperature, the hydroxyl group is reduced. A slight amount of amorphous titanium oxide-containing film can be formed. Further, when the titanium oxide dispersion obtained through the heat treatment or photoclave treatment at 80 ° C. or higher as described above is used as the titanium-containing aqueous liquid (A), only the surface treatment composition (H) is applied. Because it can form a crystalline titanium oxide-containing film, it is useful as a coating material for materials that cannot be heat-treated.
また、 チタン含有水性液 (A) としては、 酸化チタンゾルの存在下で、 加水分 解性チタン化合物 a と過酸化水素水とを反応させて得られるチタン含有水性液 ( A 1 ) を使用することもできる。  As the titanium-containing aqueous liquid (A), a titanium-containing aqueous liquid (A 1) obtained by reacting a hydrolyzable titanium compound a with hydrogen peroxide in the presence of a titanium oxide sol should be used. You can also.
前記酸化チタンゾルは、無定型チタニア微粒子又は 及ぴアナタース型チタ二 ァ微粒子が水 (必要に応じて、 例えばアルコール系、 アルコールエーテル系など の水性有機溶剤を添加してもよい) に分散したゾルである。 この酸化チタンゾル としては、 従来公知のものを使用することができ、 例えば、 (i) 硫酸チタンゃ硫 酸チタニルなどの含チタン溶液を加水分解して得られる酸化チタン凝集物、 The titanium oxide sol is a sol in which amorphous titania fine particles or anatase titania fine particles are dispersed in water (for example, an aqueous organic solvent such as an alcohol or alcohol ether may be added if necessary). is there. As this titanium oxide sol, conventionally known ones can be used. For example, (i) a titanium oxide aggregate obtained by hydrolyzing a titanium-containing solution such as titanium sulfate sulfate titanyl sulfate,
(ii)チタンアルコキシドなどの有機チタン化合物を加水分解して得られる酸化 チタン凝集物、 (iii)四塩化チタンなどのハロゲン化チタン溶液を加水分解又は 中和して得られる酸化チタン凝集物、などの酸化チタン凝集物を水に分散した無 定型チタニアゾル、或いは前記酸化チタン凝集物を焼成してアナタース型チタン 微粒子とし、 このものを水に分散したゾルを使用することができる。 (ii) Titanium oxide aggregates obtained by hydrolyzing organic titanium compounds such as titanium alkoxide, (iii) Titanium oxide aggregates obtained by hydrolyzing or neutralizing titanium halide solutions such as titanium tetrachloride, etc. An amorphous titania sol in which the titanium oxide aggregates are dispersed in water, or a sol in which the titanium oxide aggregates are calcined to form anatase titanium fine particles, which are dispersed in water, can be used.
前記無定形チタニアの焼成では、少なく ともアナタースの結晶化温度以上の温 度、 例えば、 400°C〜 5 00°C以上の温度で焼成すれば、 無定形チタニアをァ ナタース型チタニアに変換させることができる。この酸化チタンの水性ゾルとし ては、 例えば、 TKS— 20 1 (商品名, ティカ社製, アナタース型結晶形, 平 均粒子径 6 nm)、 TA- 1 5 (商品名, 日産化学社製, アナタース型結晶形)、 ST S— 1 1 (商品名,石原産業社製,アナタース型結晶形)などが挙げられる。 チタン含有水性液 (A1) において、 上記酸化チタンゾル Xとチタン過酸化水 素反応物 y (加水分解性チタン化合物 aと過酸化水素水との反応生成物) との質 量比率 Xノ yば、 1/9 9〜 9 9ノ 1、好ましくは約 Ι Ο ^ Ο Θ ΟΖΙ Οの 範囲が適当である。 質量比率 xZyが 1_ 9 9未満では、 安定性、 光反応性など の点において酸化チタンゾルを添加した効果が十分に得られず、一方、 9 9 1 を超えると造膜性が劣るので好ましくない。すなわち、質量比率 xZyが 1 9 9以上であれば、安定性、光反応性などの点において酸化チタンゾルを添加した 効果が十分に得られ、 一方、 9 9/1以下であれば、優れた造膜性が得られるの で好ましい。 In the firing of the amorphous titania, the temperature is at least higher than the crystallization temperature of anatase. For example, if it is baked at a temperature of 400 ° C. to 500 ° C. or higher, amorphous titania can be converted to anatase titania. Examples of aqueous sols of titanium oxide include TKS-20 1 (trade name, manufactured by Tika, anatase crystal form, average particle size 6 nm), TA-15 (trade name, manufactured by Nissan Chemical Co., Ltd., Anatase crystal form), ST S-1 1 (trade name, manufactured by Ishihara Sangyo Co., Ltd., anatase crystal form). In the titanium-containing aqueous liquid (A1), if mass ratio X Bruno y between the titanium oxide sol X and titanium peroxide Hydrogen reactant y (reaction product of the hydrolyzable titanium compound a and hydrogen peroxide), A range of 1/9 9 to 9 9 1 is preferred, preferably about Ι Ο ^ Ο Θ ΟΖΙ Ο. If the mass ratio xZy is less than 1_99, the effect of adding titanium oxide sol cannot be sufficiently obtained in terms of stability, photoreactivity, etc. On the other hand, if it exceeds 991, the film forming property is inferior. That is, if the mass ratio xZy is 199 or more, the effect of adding the titanium oxide sol in terms of stability and photoreactivity can be sufficiently obtained, while if it is 9.9 / 1 or less, excellent production is achieved. It is preferable because film properties can be obtained.
チタン含有水性液 (A 1) は、 酸化チタンゾルの存在下で加水分解性チタン化 合物 aを過酸化水素水と反応温度 1〜 7 0°Cで 1 0分間〜 2 0時間程度反応さ せることにより得ることができる。  Titanium-containing aqueous liquid (A 1) reacts hydrolyzable titanium compound a with hydrogen peroxide at a reaction temperature of 1 to 70 ° C for about 10 minutes to 20 hours in the presence of titanium oxide sol. Can be obtained.
チタン含有水性液 (A 1) の生成形態やその特性は、 さきに述べた加水分解性 チタン化合物 aを用いたチタン含有水性液 (A) と同様であるが、 特に、 酸化チ タンゾルを使用することにより、合成時に一部縮合反応が起きて増粘するのが抑 えられる。 その理由は、縮合反応物が酸化チタンゾルの表面に吸着され、溶液状 態での高分子化が抑えられるためであると考えられる。  The formation form and characteristics of the titanium-containing aqueous liquid (A 1) are the same as those of the titanium-containing aqueous liquid (A) using the hydrolyzable titanium compound a described above, but in particular, using a titanium oxide sol. As a result, the partial condensation reaction during the synthesis can be prevented from thickening. The reason is considered to be that the condensation reaction product is adsorbed on the surface of the titanium oxide sol, and polymerization in the solution state is suppressed.
また、 チタン含有水性液 (A 1 ) を 80°C以上で加熱処理又はォートクレープ 処理すると、結晶化した酸化チタンの超微粒子を含む酸化チタン分散液が得られ る。 この酸化チタン分散液を得るための温度条件、結晶化した酸化チタン超微粒 子の粒子径、分散液の外観なども、 さきに述べた加水分解性チタン化合物 aを用 いたチタン含有水性液 (A) と同様である。 このような酸化チタン分散液も、 チ タン含有水性液 (A 1) として使用することができる。  When the titanium-containing aqueous liquid (A 1) is heat-treated or autoclaved at 80 ° C. or higher, a titanium oxide dispersion containing ultrafine particles of crystallized titanium oxide is obtained. The temperature conditions for obtaining this titanium oxide dispersion, the particle diameter of the crystallized titanium oxide ultrafine particles, the appearance of the dispersion, etc. are also included in the titanium-containing aqueous liquid (A ). Such a titanium oxide dispersion can also be used as the titanium-containing aqueous liquid (A1).
さきに述べた加水分解性チタン化合物 aを用いたチタン含有水性液(A) と同 様、 チタン含有水性液 (A 1 ) を含む表面処理組成物 (H ) を、 めっき鋼板表面 に塗布 ·乾燥 (例えば、 低温で加熱乾燥) することにより、 それ自体で付着性に 優れた緻密な酸化チタン含有皮膜 (表面処理皮膜) を形成することができる。 表面処理組成物(H )を塗布した後の鋼板の加熱温度としては、例えば 2 0 0 °C 以下、特に 1 5 0 °C以下が好ましく、このような温度で加熱乾燥することにより、 水酸基を若干含むアナタース型の酸化チタン含有皮膜が形成できる。 Same as the titanium-containing aqueous liquid (A) using the hydrolyzable titanium compound a described above. The surface treatment composition (H 1) containing the titanium-containing aqueous liquid (A 1) is applied to the surface of the plated steel sheet and dried (for example, heat-dried at a low temperature), so that it is dense with excellent adhesion itself. A titanium oxide-containing film (surface treatment film) can be formed. The heating temperature of the steel sheet after applying the surface treatment composition (H 2) is, for example, preferably 200 ° C. or less, particularly preferably 150 ° C. or less. By heating and drying at such a temperature, the hydroxyl group is reduced. An anatase-type titanium oxide-containing film containing a little can be formed.
以上述ぺたように、 チタン含有水性液 (A ) の中でも、 加水分解性チタン化合 物 aを用いたチタン含有水性液 (A ) やチタン含有水性液 (A 1 ) は、 貯蔵安定 性、耐食性などに優れた性能を有するので、本発明ではこれらを使用することが 特に好ましい。  As described above, among the titanium-containing aqueous liquid (A), the titanium-containing aqueous liquid (A) and the titanium-containing aqueous liquid (A 1) using the hydrolyzable titanium compound a have storage stability, corrosion resistance, etc. It is particularly preferable to use these in the present invention.
加水分解性チタン化合物、加水分解性チタン化合物の低縮合物、水酸化チタン、 水酸化チタンの低縮合物の中から選ばれる少なく とも 1種のチタン化合物に対 する過酸化水素水の配合割合は、チタン化合物 1 0質量部に対して過酸化水素換 算で 0 . 1 ~ 1 0 0質量部、 望ましく 1〜 2 0質量部とすることが好ましい。 過 酸化水素水の配合割合が過酸化水素換算で 0 . 1質量部未満では、キレート形成 が十分でないため白濁沈殿が生じてしまう。一方、 1 0 0質量部を超えると未反 応の過酸化水素が残存し易く、貯蔵中に危険な活性酸素を放出するので好ましく ない。 すなわち、過酸化水素水の配合割合が過酸化水素換算で 0 . 1質量部以上 であれば、 キレート形成が十分であるため白濁沈殿が生じることがなく、 一方、 1 0 0質量部以下であれば、未反応の過酸化水素が残存することがなく、貯蔵中 に活性酸素を放出することがないので好ましい。  The blending ratio of hydrogen peroxide to at least one titanium compound selected from hydrolysable titanium compounds, hydrolyzable titanium compound low condensates, titanium hydroxide, and titanium hydroxide low condensates is The amount of hydrogen peroxide converted to 10 parts by mass of the titanium compound is 0.1 to 100 parts by mass, desirably 1 to 20 parts by mass. When the mixing ratio of hydrogen peroxide water is less than 0.1 parts by mass in terms of hydrogen peroxide, the formation of chelate is not sufficient and white turbid precipitation occurs. On the other hand, when the amount exceeds 100 parts by mass, unreacted hydrogen peroxide tends to remain, which is not preferable because dangerous active oxygen is released during storage. In other words, if the mixing ratio of the hydrogen peroxide solution is 0.1 parts by mass or more in terms of hydrogen peroxide, chelate formation is sufficient and no cloudy precipitation occurs. For example, unreacted hydrogen peroxide does not remain, and active oxygen is not released during storage, which is preferable.
過酸化水素水の過酸化水素濃度は特に限定されないが、 3〜 3 0質量%程度で あることが、取り扱いやすさ、塗装作業性に関係する生成液の固形分の点で好ま しい。  The hydrogen peroxide concentration in the hydrogen peroxide solution is not particularly limited, but it is preferably about 30 to 30% by mass in terms of the solid content of the produced liquid related to ease of handling and coating workability.
チタン含有水性液 (A) には、 必要に応じて、 他のゾルゃ顔料を添加分散させ ることもできる。 例えば、 添加物としては、 市販の酸化チタンゾルゃ酸化チタン 粉末、 マイ力、 タルク、 シリカ、 ノくリタ、 クレーなどが拳げられ、 これらの 1種 以上を添加することができる。  In the titanium-containing aqueous liquid (A), if necessary, other sol or pigment can be added and dispersed. For example, as the additive, commercially available titanium oxide sol, titanium oxide powder, my strength, talc, silica, paste, clay and the like can be fisted, and one or more of these can be added.
表面処理組成物 (H ) 中でのチタン含有水性液 (A ) の添加量は、 処理液安定 性の観点から、固形分の割合で 1 0〜 6 0質量%とする。チタン含有水性液(A ) の添加量 (固形分割合) が 1 0質量%未満、 6 0質量%超のいずれの場合も処理 液安定性が劣る。 また、 以上の観点から、 チタン含有永性液 (A) の添加量の好 ましい下限は 1 5質量0 /0、 より好ましくは 2 0質量%であり、好ましい上限は 5 0質量%である。 The amount of titanium-containing aqueous liquid (A) added in the surface treatment composition (H) is From the viewpoint of property, the solid content is 10 to 60% by mass. The treatment liquid stability is inferior when the addition amount (solid content ratio) of the titanium-containing aqueous liquid (A) is less than 10% by mass or more than 60% by mass. Further, from the above viewpoint, good preferable lower limit of the addition amount of the titanium-containing permanent liquid-(A) is 1 5 mass 0/0, more preferably from 2 0 wt%, a preferred upper limit is 5 0% by weight .
前記ニッケル化合物又は/及ぴコバルト化合物(B ) は耐黒変性向上のために 配合されるものであり、 ニッケル化合物としては、 例えば、 酢酸ニッケル、 硝酸 ニッケル、硫酸ニッケルなどが、また、コパルト化合物としては、酢酸コバルト、 硝酸コパルト、硫酸コバルトなどが挙げられ、 これらの 1種又は 2 ¾以上を用い ることができる。 なかでも、酢酸ニッケル、 酢酸コバルトが耐黒変性と耐食性の 両立の観点から好適である。  The nickel compound and / or cobalt compound (B) is blended for improving blackening resistance. Examples of the nickel compound include nickel acetate, nickel nitrate, nickel sulfate, and the like, as a cobalt compound. Examples thereof include cobalt acetate, cobalt nitrate, cobalt sulfate and the like, and one or more of these can be used. Of these, nickel acetate and cobalt acetate are preferred from the viewpoint of achieving both blackening resistance and corrosion resistance.
表面処理組成物 (H) 中でのニッケル化合物又は 及ぴコバルト化合物 (B ) の添加量は、耐黒変性と耐食性を両立させるという観点から、固形分の割合で 0 . 0 1〜 1質量%、 好ましくは 0 . 0 5〜 0 . 7質量%とする。 ニッケル化合物又 はノ及ぴコバルト化合物 ( B ) の添加量が 0 . 0 1質量%未満では耐黒変性の改 善効果が十分に得られず、 一方、 1質量。 /0を超えると耐食性が低下してしまう。 前記弗素含有化合物 (C ) は、 耐食性向上の観点から、 処理液 (表面処理組成 物) とめっき表面との反応性を高め、緻密な反応層を形成するために配合される ものである。 弗素含有化合物 (C ) としては、 例えば、 ジルコン弗化アンモニゥ ム、 ジルコン弗化カリウム、 ジルコン弗化水素酸、 チタン弗化アンモニゥム、 弗 化水素酸、弗化水素酸アンモニゥムなどが挙げられ、 これらの 1種又は 2種以上 を用いることができる。 なかでも、耐食性と耐黒変性を両立させるという観点か らは、 ジルコン弗化アンモニゥム、ジルコン弗化水素酸の中から選ばれる少なく とも 1種を用いること好ましい。 The addition amount of the nickel compound or the cobalt compound (B) in the surface treatment composition (H) is from 0.01 to 1% by mass in terms of solid content from the viewpoint of achieving both blackening resistance and corrosion resistance. Preferably, the content is 0.05 to 0.7% by mass. When the addition amount of the nickel compound or the cobalt compound (B) is less than 0.01% by mass, the effect of improving blackening resistance cannot be sufficiently obtained, while 1% by mass. If it exceeds 0 , the corrosion resistance will decrease. From the viewpoint of improving corrosion resistance, the fluorine-containing compound (C) is added to increase the reactivity between the treatment liquid (surface treatment composition) and the plating surface and form a dense reaction layer. Examples of the fluorine-containing compound (C) include zircon ammonium fluoride, potassium zircon fluoride, zircon hydrofluoric acid, titanium ammonium fluoride, hydrofluoric acid, and ammonium hydrofluoride. One type or two or more types can be used. Among these, from the viewpoint of achieving both corrosion resistance and blackening resistance, it is preferable to use at least one selected from zircon ammonium fluoride and zircon hydrofluoric acid.
表面処理組成物 (H ) 中での弗素含有化合物 (C ) の添加量は、 固形分の割合 で 1〜 8 0質量%とする。 弗素含有化合物 (C ) の添加量が 1質量%未満では、 処理液とめっき表面との反応性が劣る結果、 十分な耐食性が得られず、 また、 耐 黒変性も向上しない。 一方、 8 0質量%を超えると、 処理液のエッチング性が高 くなる結果、 めっき表面が過剰にエッチングされ、却って耐食性が劣化してしま う。以上の観点から、弗素含有化合物(C )の添加量の好ましい下限は 3質量%、 より好ましくは 1 0質量%、 特に好ましくは 2 0質量。 /0である。 同様に、 好まし い上限は 7 0質量0 /0、 より好ましくは 6 0質量%である。 The addition amount of the fluorine-containing compound (C) in the surface treatment composition (H) is 1 to 80% by mass in terms of the solid content. If the addition amount of the fluorine-containing compound (C) is less than 1% by mass, the reactivity between the treatment liquid and the plating surface is poor, so that sufficient corrosion resistance cannot be obtained and blackening resistance is not improved. On the other hand, if it exceeds 80% by mass, the etching performance of the processing solution will increase, resulting in excessive etching of the plating surface, and on the contrary, the corrosion resistance will deteriorate. Yeah. From the above viewpoint, the preferable lower limit of the addition amount of the fluorine-containing compound (C 3) is 3% by mass, more preferably 10% by mass, and particularly preferably 20% by mass. / 0 . Similarly, it preferred upper limit is 7 0 mass 0/0, more preferably 6 0 mass%.
本発明で用いる表面処理組成物 (H ) は、 以上述ぺたようなチタン含有水性液 ( A)、ニッケル化合物又は 及びコバルト化合物(B )、及ぴ弗素含有化合物(C ) を必須とするものであるが、 さらに必要に応じて、 有機リン酸化合物 (D )、 パ ナジン酸化合物 (E )、 炭酸ジルコニウム化合物 (F )、 水溶性有機樹脂又は 及 び水分散性有機樹脂 (G ) のうちの 1種以上を含有することができる。  The surface treatment composition (H) used in the present invention essentially comprises the titanium-containing aqueous liquid (A), nickel compound or cobalt compound (B), and fluorine-containing compound (C) as described above. In addition, if necessary, the organic phosphoric acid compound (D), the panadic acid compound (E), the zirconium carbonate compound (F), the water-soluble organic resin, and the water-dispersible organic resin (G). One or more kinds can be contained.
前記有機リン酸化合物 (D ) としては、 例えば、 1—ヒ ドロキシメタン一 1 , 1ージホスホン酸、 1—ヒ ドロキシエタンー 1 , 1ージホスホン酸、 1ーヒ ドロ キシプロパン一 1 , 1—ジホスホン酸などのヒ ドロキシル基含有有機亜リン酸; 2—ヒ ドロキシホスホノ酢酸、 2—ホスホノプタン一 1 , 2 , 4一 トリ力ノレボン 酸などのカルボキシル基含有有機亜リン酸、及ぴこれらの塩などが好適なものと して挙げられ、 これらの 1種又は 2種以上を用いることができる。  Examples of the organic phosphate compound (D) include 1-hydroxymethane-1,1-diphosphonic acid, 1-hydroxyethane-1,1-diphosphonic acid, 1-hydroxypropane-1,1-diphosphonic acid and the like. Group-containing organic phosphorous acid: 2-hydroxyphosphonoacetic acid, 2-phosphonoptane 1, 2, 4 and 1, carboxyl group-containing organic phosphorous acid such as tri-force norlevonic acid, and salts thereof are suitable. 1 type or 2 types or more of these can be used.
有機リン酸化合物 (D ) は、 チタン含有水性液 (A ) の貯蔵安定性を向上させ る効果を有し、 なかでも、 1ーヒ ドロキシェタン一 1 , 1—ジホスホン酸はその 効果が特に大きいことから、 これを使用するのが特に好ましい。  The organophosphate compound (D) has the effect of improving the storage stability of the titanium-containing aqueous liquid (A), and 1-hydroxyxetane 1,1-diphosphonic acid is particularly effective. Therefore, it is particularly preferable to use this.
表面処理組成物 (H ) 中での有機リン酸化合物 (D ) の添加量は、 固形分の割 合で 1 0 〜 6 0質量%であることが、 チタン含有水性液 (A) の貯蔵安定性ゃ耐 水付着性などの点から好ましい。 有機リン酸化合物 (D ) の添加量が 1 0質量% 未満では、 チタン含有水性液 (A ) の貯蔵安定性の改善効果が少ない。 一方、 6 0質量%を超えると、 リン酸が過剰に存在する結果、 耐水性が劣化してしまう。 すなわち、 有機リン酸化合物 (D ) の添加量が 1 0質量%以上であれば、 チタン 含有水性液 (A ) の貯蔵安定性の改善効果が十分に得られ、 一方、 6 0質量。 /0以 下であれば、 リン酸が過剰に存在することがないため、耐水性が劣化することも ない。 有機リン酸化合物 (D ) のより好ましい添加量は、 2 0 〜 5 0質量%であ る。 The amount of the organic phosphate compound (D) added in the surface treatment composition (H) is 10 to 60% by mass in terms of the solid content. Is preferable from the viewpoint of water resistance and the like. When the amount of the organic phosphate compound (D) is less than 10% by mass, the effect of improving the storage stability of the titanium-containing aqueous liquid (A) is small. On the other hand, if it exceeds 60 mass%, the water resistance deteriorates as a result of the excessive presence of phosphoric acid. That is, if the amount of the organic phosphate compound (D) added is 10% by mass or more, the effect of improving the storage stability of the titanium-containing aqueous liquid (A) can be sufficiently obtained, while 60% by mass. If it is less than / 0 , phosphoric acid will not be present in excess, and water resistance will not deteriorate. A more preferable addition amount of the organic phosphate compound (D) is 20 to 50% by mass.
前記パナジン酸化合物 (E ) としては、 例えば、 メタパナジン酸リチウム、 メ タパナジン酸カリウム、メタパナジン酸ナトリウム、メタパナジン酸アンモニゥ ム、無水バナジン酸などが挙げられ、 これらの 1種又は 2種以上を用いることが できる。 なかでも、メタバナジン酸アンモニゥムが耐水付着 14などの点から好ま しい。 Examples of the panadic acid compound (E) include lithium metapanadate, potassium metapanadate, sodium metapanadate, and ammonium metapanadate. And one or more of these can be used. Of these, ammonium metavanadate is preferred from the standpoint of adhesion to water.
表面処理組成物 (H ) 中でのパナジン酸化合物 (E ) の添加量は、 固形分の割 合で 0 . 1〜 3 0質量0 /0であること力 S、アル力リ脱脂後耐食性の点から好ましレ、。 バナジン酸化合物 (E ) の添加量が 0 . 1質量%未満であると、 アルカリ脱脂後 の耐食性の改善効果が不十分である。 一方、 3 0質量%を超えると、 Vが過剰に 存在するため十分な耐食性を発現できない。 すなわち、 バナジン酸化合物 (E ) の添加量が 0 . 1質量。 以上であれば、アル力リ脱脂後の耐食性の改善効果が十 分に得られ、 一方、 3 0質量%以下であれば、 Vが過剰に存在することがないた め十分な耐食性を発現できる。パナジン酸化合物(E )のより好ましい添加量は、 0 . 5— 2 0質量%である。 Surface treatment composition (H) Panajin acid compounds in the addition amount of (E) is 0 in the percentage of solids. 1-3 0 weight 0/0 and it forces S, Al force Li degreasing corrosion resistance after Preferable from the point. If the amount of vanadate compound (E) added is less than 0.1% by mass, the effect of improving the corrosion resistance after alkali degreasing is insufficient. On the other hand, if it exceeds 30% by mass, sufficient corrosion resistance cannot be exhibited because V is excessively present. That is, the amount of vanadic acid compound (E) added is 0.1 mass. If this is the case, the effect of improving the corrosion resistance after degreasing can be sufficiently obtained. On the other hand, if it is 30% by mass or less, V does not exist in excess, so that sufficient corrosion resistance can be exhibited. . A more preferable addition amount of the panadic acid compound (E) is 0.5 to 20% by mass.
前記炭酸ジルコニウム化合物(F )としては、炭酸ジルコニウムのナトリゥム、 カリウム、 リチウム、 アンモニゥムなどの塩が挙げられ、 これらの 1種又は 2種 以上を用いることができる。 なかでも、炭酸ジルコニウムアンモニゥムが耐水付 着性などの点から好ましい。  Examples of the zirconium carbonate compound (F 2) include salts of zirconium carbonate such as sodium, potassium, lithium, and ammonium, and one or more of these can be used. Of these, ammonium zirconium carbonate is preferred from the viewpoint of water resistance and the like.
表面処理組成物 (H ) 中での炭酸ジルコニウム化合物 (F ) の添加量は、 固形 分の割合で 0 . 1〜2 0質量%であることが、耐食性などの点から好ましい。 炭 酸ジルコニウム化合物 (F ) の添加量が 0 . 1質量%未満であると、 耐食性の改 善効果が不十分である。 一方、 2 0質量%を超えると、 Z rが過剰に存在するた め十分な耐食性を発現できない。 すなわち、 炭酸ジルコニウム化合物 (F ) の添 加量が 0 . 1質量%以上であれば、 耐食性の改善効果が十分に得られ、 一方、 2 0質量%以下であれば、 Z rが過剰に存在することがないため十分な耐食性を発 現できる。 炭酸ジルコニウム化合物 (F ) のより好ましい添加量は、 0 . 2 ~ 1 5質量%である。 The addition amount of the zirconium carbonate compound (F) in the surface treatment composition (H) is preferably 0.1 to 20% by mass in terms of solid content from the viewpoint of corrosion resistance and the like. If the added amount of the zirconium carbonate compound (F) is less than 0.1% by mass, the effect of improving the corrosion resistance is insufficient. On the other hand, if it exceeds 20% by mass, Zr is excessively present and sufficient corrosion resistance cannot be exhibited. That is, if added pressure of zirconium carbonate compound (F) to zero. 1 mass% or more, the corrosion resistance improvement effect is sufficiently obtained, whereas, if 2 0 wt% or less, Z r is present in excess Therefore, sufficient corrosion resistance can be achieved. A more preferable addition amount of the zirconium carbonate compound (F) is 0.2 to 15% by mass.
' 前記水溶性有機樹脂又は Z及び水分散性有機樹脂 (G ) は、 水に溶解又は分散 することのできる有機樹脂であり、有機樹脂を水に水溶化又は分散化させる方法 としては、 従来公知の方法を適用することができる。 具体的には、 有機樹脂とし て、 単独で水溶化や水分散化できる官能基 (例えば、 水酸基、 ポリオキシアルキ レン基、 力ルポキシル基、 ァミノ (ィ ミノ) 基、 スルフィ ド基、 ホスブイン基な ど) を含有するもの、 及ぴ必要に応じてそれらの官能基の一部又は全部を、酸性 樹脂 (カルボキシル基含有樹脂など) であればエタノールァミン、 トリェチルァ ミンなどのァミン化合物; アンモニア水;水酸化リチウム、 水酸化ナトリウム、 水酸化カリ ゥムなどのアルカリ金属水酸化物で中和したもの、また、塩基性.樹脂 (ァミノ基含有樹脂など) であれば、 酢酸、 乳酸などの脂肪酸; リン酸などの鉱 酸で中和したものなどを使用することができる。 'The water-soluble organic resin or Z and the water-dispersible organic resin (G) are organic resins that can be dissolved or dispersed in water. Conventionally known methods for water-solubilizing or dispersing organic resins in water The method can be applied. Specifically, as an organic resin, functional groups that can be water-soluble or water-dispersed independently (for example, hydroxyl groups, polyoxyalkyls). Containing a ren group, a strong lpoxyl group, an amino group, a sulfido group, a phosbuin group, etc.) and, if necessary, some or all of these functional groups may be converted to an acidic resin (carboxyl group). Containing resins) ethanolamine, triethylamine and other amine compounds; ammonia water; lithium hydroxide, sodium hydroxide, potassium hydroxide neutralized alkali metal hydroxide, etc., base As long as it is a resin (such as an amino group-containing resin), fatty acids such as acetic acid and lactic acid; and those neutralized with a mineral acid such as phosphoric acid can be used.
水溶性又は水分散性有機樹脂としては、 例えば、 エポキシ系樹脂、 フエノール 系樹脂、 ァクリル系樹脂、 ゥレタン系樹脂、 ォレフィン一力ルボン酸系樹脂、 ナ イロン系樹脂、 ポリオキシアルキレン鎖を有する樹脂、 ポリ ビニルアルコール、 ポリ グリセリ ン、 カノレポキシメチノレセノレロース、 ヒ ドロキシメチノレセノレロース、 ヒ ドロキシェチルセルロースなどが挙げられる。上記有機樹脂は 1種又は 2種以 上を用いることができる。  Examples of water-soluble or water-dispersible organic resins include epoxy resins, phenol resins, acryl resins, urethane resins, olefin reinforced rubonic acid resins, nylon resins, resins having a polyoxyalkylene chain, Examples thereof include polyvinyl alcohol, polyglycerin, canolepoxymethylenorescenellose, hydroxymethinoresenorelose, and hydroxyxetylcellulose. One or more organic resins can be used.
これらのなかでも特に、水溶性又は水分散性のァクリル系樹脂、 ゥレタン系榭 脂及ぴエポキシ系樹脂の中から選ばれる少なく とも 1種の有機樹脂を用いるこ とが表面処理組成物の貯蔵安定性の面から好ましく、 また特に、水溶性又は水分 散性のァクリル系樹脂やウレタン系樹脂を主成分として用いることが、表面処理 組成物の貯蔵安定性と塗膜性能とのバランスの面から好ましい。 さらに、加工部 塗料密着性を確保するためには、 T gが 5 0 °C未満のゥレタン樹脂を用いること が好ましい。  Among these, in particular, the storage stability of the surface treatment composition can be obtained by using at least one organic resin selected from water-soluble or water-dispersible acryl-based resins, urethane resins, and epoxy resins. In particular, it is preferable to use a water-soluble or water-dispersible acryl resin or urethane resin as a main component from the viewpoint of the balance between the storage stability of the surface treatment composition and the coating film performance. . Furthermore, it is preferable to use an urethane resin having a Tg of less than 50 ° C. in order to ensure the paint adhesion of the processed part.
水溶性又は水分散性アクリル樹脂は、 従来公知の方法、 例えば、 乳化重合法、 懸濁重合法、親水性の基を有する重合体を溶液重合により合成し、必要に応じて 中和、 水性化する方法などにより得ることができる。  A water-soluble or water-dispersible acrylic resin is synthesized by a conventionally known method, for example, an emulsion polymerization method, a suspension polymerization method, or a polymer having a hydrophilic group by solution polymerization, and neutralized or made aqueous as necessary. Or the like.
前記親水性の基を有する重合体は、 例えば、 力ルポキシル基、 アミノ基、 水酸 基、ポリオキシアルキレン基などの親水性の基を有する不飽和単量体、必要に応 じて、 さらにその他の不飽和単量体を重合させることにより得ることができる。 水溶性又は水分散性アク リル樹脂は、耐食性などの点からスチレンを共重合し てなるものが好ましく、 全不飽和単量体中のスチレンの量は 1 0〜6 0質量%、 特に 1 5〜 5 0質量%であることが好ましい。また、共重合して得られるァクリ ル樹脂の T g (ガラス転移点)は 3 0〜8 0 °C、特に 4 0〜 7 0 °Cであることが、 得られる皮膜の強靭性などの点から好ましい。 The polymer having a hydrophilic group is, for example, an unsaturated monomer having a hydrophilic group such as a strong lpoxyl group, an amino group, a hydroxyl group, or a polyoxyalkylene group. Can be obtained by polymerizing the unsaturated monomer. The water-soluble or water-dispersible acrylic resin is preferably one obtained by copolymerizing styrene from the viewpoint of corrosion resistance, etc. The amount of styrene in the total unsaturated monomer is 10 to 60% by mass, particularly 15%. It is preferably ~ 50% by mass. In addition, an acrylic resin obtained by copolymerization The T g (glass transition point) of the resin is preferably 30 to 80 ° C, particularly 40 to 70 ° C, from the viewpoint of the toughness of the resulting film.
前記カルボキシル基含有不飽和単量体としては、 アク リル酸、 メタク リル酸、 マレイン酸、 無水マレイン酸、 クロ トン酸'、 ィタコン酸などが挙げられる。  Examples of the carboxyl group-containing unsaturated monomer include acrylic acid, methacrylic acid, maleic acid, maleic anhydride, crotonic acid ', and itaconic acid.
前記ァミノ基含有不飽和単量体などのような含窒素不飽和単量体としては、 N, N—ジメチルアミノエチル (メタ) アタ リ レート、 N, N—ジェチルアミノエチ ル (メタ) アタ リ レー ト、 N— t 一ブチルアミノエチル (メタ) アタ リ レートな どの含窒素アルキル(メタ)アタリ レート;アタ リルァミ ド、メタクリルァミ ド、 N—メチル (メタ) アタリルァミ ド、 N—ェチル (メタ) ァクリルァミ ド、 N— メチロール (メタ) アタリルァミ ド、 N—メ トキシメチル (メタ) アタ リルァミ ド、 N—ブトキシメチル (メタ) アタ リルァミ ド、 N , N—ジメチル (メタ) ァ ク リルァミ ド、 , N—ジメチルァミノプロピル (メタ) アタ リルァミ ド、 N, N—ジメチルァミノェチル (メタ) アタ リルァミ ドなどの重合性ァミ ド類; 2— ビニルピリジン、 1 一ビュル一 2—ピロリ ドン、 4一ビュルピリジンなどの芳香 族含窒素モノマー ; ァリルァミンなどが挙げられる。  Examples of the nitrogen-containing unsaturated monomer such as the amino group-containing unsaturated monomer include N, N-dimethylaminoethyl (meth) acrylate, N, N-jetylaminoethyl (meth) atalyte. Nitrogen-containing alkyl (meth) acrylates such as N-tert-butylaminoethyl (meth) acrylate; N-methyl (meth) allylamide, N-ethyl (meth) Acrylamide, N—Methylol (meth) atrylamide, N—Methoxymethyl (meth) atrylamide, N—Butoxymethyl (meth) atrylamide, N, N—dimethyl (meth) acrylamide,, N— Polymerizable amides such as dimethylaminopropyl (meth) atrylamide and N, N-dimethylaminoethyl (meth) atrylamide Like Ariruamin; 2-vinylpyridine, 1 one Bulle one 2-pyrrolidone, aromatic nitrogen-containing monomers such as 4 one Bulle pyridine.
前記水酸基含有不飽和単量体としては、 2—ヒ ドロキシェチル (メタ) アタ リ レート、 ヒ ドロキシプロピル (メタ) アタ リ レート、 2, 3—ジヒ ドロキシプチ ル (メタ) アタリ レート、 4ーヒ ドロキシプチル (メタ) アタ リ レート、 ポリエ チレングリ コールモノ (メタ)アタ リ レート、ポリプロピレングリコールモノ (メ タ)ァク リ レートなどの多価アルコールとァク リル酸又はメタク リル酸とのモノ エステル化物;上記多価アルコールとァク リル酸又はメタク リル酸とのモノエス テル化物に ε —力プロラク トンを開環重合した化合物などが拳げられる。  Examples of the hydroxyl group-containing unsaturated monomer include 2-hydroxyxetyl (meth) acrylate, hydroxypropyl (meth) acrylate, 2,3-dihydroxypropyl (meth) acrylate, and 4-hydroxypropyl. Mono-esterified products of polyhydric alcohols such as (meth) acrylate, polyethylene glycol mono (meth) acrylate, polypropylene glycol mono (meth) acrylate, and acrylic acid or methacrylic acid; A compound obtained by ring-opening polymerization of ε-force prolacton to a monoesterified product of polyhydric alcohol and acrylic acid or methacrylic acid can be used.
その他の不飽和単量体と しては、 メチル (メタ) アタ リ レート、 ェチル (メタ) アタ リ レート、 η—プロピル (メタ) アタ リ レー ト、 イソプロピル (メタ) ァク リ レート、 II一ブチル (メタ) アタ リ レート、 ィソプチル(メタ) アタ リ レート、 ■tert—プチノレ (メタ) ァク リ レー ト、 2—ェチノレへキシノレァクリ レー ト、 n—ォ クチル (メタ) アタリ レート、 ラウリル (メタ) アタ リ レート、 ト リデシル (メ タ) アタ リ レー ト、 ォクタデシル (メタ) アタリ レー ト、 イソステアリル (メタ) ァクリ レートなどの炭素数 1〜 2 4のアルキル (メタ) ァク リ レート ;酢酸ビニ ルなどが挙げられる。 Other unsaturated monomers include methyl (meth) acrylate, ethyl (meth) acrylate, η-propyl (meth) acrylate, isopropyl (meth) acrylate, II Butyl (meth) acrylate, Isoptyl (meth) acrylate, tert-Pinitole (meth) acrylate, 2-Ethenolehexinoleacrylate, n-octyl (meth) acrylate, Lauryl (Metal) C1-C2 alkyl (meth) acrylates such as acrylate, tridecyl (meth) acrylate, octadecyl (meth) acrylate, isostearyl (meth) acrylate, etc. Bini And the like.
以上挙げた不飽和単量体は、 1種又は 2種以上を用いることができる。 なお、 本願の記載において、 「 (メタ) アタリ レート」 とは 「アタリ レート又はメタァ クリレート」 を意味する  The unsaturated monomer mentioned above can use 1 type (s) or 2 or more types. In addition, in the description of the present application, “(meta) acrylate” means “attalate or metaacrylate”.
前記ウレタン系樹脂としては、ポリエステルポリオール、 ポリエーテルポリオ ールなどのポリオールとジィソシァネートからなるポリゥレタンを必要に応じ てジオール、ジァミンなどのような 2個以上の活性水素を持つ低分子量化合物で ある鎖伸長剤の存在下で鎖伸長し、水中に安定に分散又は溶解させたものを好適 に使用でき、 従来公知のものを広く使用できる (例えば、 特公昭 4 2 - 2 4 1 9 2号公報、 特公昭 4 2— 2 4 1 9 4号公報、 特公昭 4 2— 5 1 1 8号公報、 特公 昭 4 9— 9 8 6号公報、特公昭 4 9— 3 3 1 0 4号公報、特公昭 5 0— 1 5 0 2 7号公報、 特公昭 5 3— 2 9 1 7 5号公報参照)。  As the urethane resin, a chain extension which is a low molecular weight compound having two or more active hydrogens such as a diol and diamine, if necessary, is a polyurethane composed of a polyol such as a polyester polyol and a polyether polyol and a diisocyanate. Those that are chain-extended in the presence of an agent and that are stably dispersed or dissolved in water can be suitably used, and those conventionally known can be used widely (for example, Japanese Examined Patent Publication No. 4 2-2 4 1 92 2) No. 4 2-2 4 1 9 4 Publication, Japanese Patent Publication No. 4 2-5 1 1 8 Publication, Japanese Patent Publication No. 4 9-9 8 6 Publication, Japanese Patent Publication No. 4 9-3 3 1 0 4 Publication, Special Publication No. 5-0-1 5 0 2 7 and JP 5 3-2 9 1 7 5).
ポリ ウレタン樹脂を水中に安定に分散又は溶解させる方法としては、例えば下 記の方法が利用できる。  As a method for stably dispersing or dissolving the polyurethane resin in water, for example, the following methods can be used.
( 1) ポリウレタンポリマーの側鎖又は末端に水酸基、 アミノ基、 カルボキシル 基などのイオン性基を導入することにより親水性を付与し、自己乳化により水中 に分散又は溶解する方法。  (1) A method of imparting hydrophilicity by introducing an ionic group such as a hydroxyl group, an amino group, or a carboxyl group into the side chain or terminal of a polyurethane polymer, and dispersing or dissolving in water by self-emulsification.
(2) 反応の完結したポリ ウレタンボリマー又は末端ィソシァネート基をォキシ ム、 アルコール、 フエノール、 メルカプタン、 ァミン、 重亜硫酸ソーダなどのブ ロック剤でプロックしたポリウレタンポリマーを乳化剤と機械的剪断力を用い て強制的に水中に分散する方法。 さらに、末端ィソシァネート基を持つウレタン ポリマーを水、乳化剤及び鎖伸長剤と混合し、機械的剪断力を用いて分散化と髙 分子量化を同時に行う方法。  (2) Polyurethane polymer that has completed reaction or terminal isocyanate group is blocked with a polyurethane polymer blocked with a block agent such as oxime, alcohol, phenol, mercaptan, amine, sodium bisulfite, etc. using emulsifier and mechanical shear force A method of forcibly dispersing in water. Further, a method in which a urethane polymer having a terminal isocyanate group is mixed with water, an emulsifier and a chain extender, and dispersion and molecular weight are simultaneously achieved using mechanical shearing force.
(3) ポリウレタン主原料のポリオールとしてポリエチレングリコールのごとき 水溶性ポリオールを使用し、水に可溶なポリウレタンとして水中に分散又は溶解 する方法。  (3) A method in which a water-soluble polyol such as polyethylene glycol is used as a polyol as a main polyurethane material and is dispersed or dissolved in water as a water-soluble polyurethane.
なお、ポリ レタン系樹脂は、上述した分散又は溶解方法のうち異なる方法で 得られたものを混合して用いることもできる。  In addition, as the polyurethane resin, those obtained by different methods among the above-described dispersion or dissolution methods can be mixed and used.
前記ポリウレタン系樹脂の合成に使用できるジィソシァネートとしては、芳香 族、脂環族又は脂肪族のジィソシァネートが挙げられ、 具体的には、 へキサメチ レンジィソシァネー ト、 テ トラメチレンジィソシァネート、 3, 3' —ジメ トキ シー 4, 4' 一ビフエ二レンジィソシァネート、 ρ—キシリ レンジィソシァネー ト、 m—キシリ レンジイソシァネート、 1, 3— (ジイソシアナトメチル) シク 口へキサノン、 1 , 4— (ジイソシアナトメチル) シクロへキサノン、 4, 4' ージイソシアナトシクロへキサノン、 4, 4' ーメチレンビス (シクロへキシノレ イソシァネート)、 イソホロンジイソシァネート、 2, 4一 トリ レンジイソシァ ネート、 2, 6— トリ レンジイソシァネート、 p—フエ二レンジイソシァネート、 ジフエ二ルメタンジイソシァネート、 m—フエ二レンジイソシァネート、 2, 4 —ナフタレンジイソシァネート、 3, 3' —ジメチノレー 4, 4' ービフエ二レン ジィソシァネート、 4, 4' ービフエ二レンジィソシァネー トなどが挙げられる。 これらなかでも、 2 , 4— トリ レンジイソシァネート、 2, 6— ト リ レンジイソ シァネート、へキサメチレンジィソシァネート、 イソホロンジィソシァネートが 特に好ましい。 Examples of the diisocyanate that can be used for the synthesis of the polyurethane resin include fragrance Aliphatic, cycloaliphatic or aliphatic diisocyanates, such as hexamethylene diisocyanate, tetramethylene diisocyanate, 3, 3 '— dimethyoxy 4, 4' Direndisorbate, ρ-Xylylene diisocyanate, m-Xylylene diisocyanate, 1, 3— (Diisocyanatomethyl) Dioxyhexanone, 1, 4— (Diisocyanatomethyl) Cyclohexanone, 4,4'-diisocyanatocyclohexanone, 4,4'-methylenebis (cyclohexenole isocyanate), isophorone diisocyanate, 2, 4 1-tolylene diisocyanate, 2, 6-tolylene diisocyanate P-phenylene diisocyanate, di-methane diisocyanate, m-phenylene diisocyanate, 2, 4-naphthalenedi Shianeto, 3, 3 '- Jimechinore 4, 4' Bifue two lens Jiisoshianeto, 4, 4 'etc. Bifue two ranges I Société § Natick bets and the like. Of these, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, hexamethylene diisocyanate, and isophorone diisocyanate are particularly preferable.
ポリ ウレタン系樹脂の市販品と しては、 ハイ ドラン (登録商標) AP— 1 0、 同 AP— 2 0、 同 AP— 3 0、 ノヽィ ドラン HW— 3 3 0、 同 HW— 34 0、 同 H W- 3 5 0 (いずれも商品名, 大日本インキ化学工業 (株) 製)、 スーパーフレ ックス (登録商標) 1 1 0、 同 1 5 0、 同 6 0 0、 同 E— 2 5 0 0、 同 F— 3 4 3 8 D (いずれも商品名, 第一工業製薬 (株) 製) などを挙げることができる。 また、特に加工部塗料密着性を確保するという観点からは、 T gが 5 0°C未満で あるハイ ドラン AP— 1 0 (丁 : 2 7。0、 同 ?ー 2 0 (T g : 2 7。C)、 同 HW- 3 40 (T g : 7°C)、 スーパーフレックス 1 1 0 (丁 § : 4 6°0、 同 1 5 0 (T g : 4 0°C)、 同 E— 2 5 0 0 (T g : 4 2 °C) などが好適である。 前記エポキシ系樹脂と しては、エポキシ樹脂にァミンを付加してなるカチオン 系エポキシ樹脂;ァクリル変性、 ウレタン変性などの変性エポキシ樹脂などが好 適に使用できる。カチオン系エポキシ樹脂としては、例えば、エポキシ化合物と、 1級モノ—又はポリアミン、 2級モノー又はポリアミン、 1, 2級混合ポリアミ ンなどとの付加物 (例えば、 米国特許第 3 9 8 4 2 9 9号明細書参照) ;ェポキ シ化合物とケチミン化された 1級アミノ基を有する 2級モノ一又はポリァミン との付加物 (例えば、 米国特許第 4 0 1 7 4 3 8号明細書参照) ; エポキシ化合 物とケチミン化された 1級アミノ基を有するヒ ドロキシル化合物とのエーテル 化反応生成物(例えば、特開昭 5 9 - 4 3 0 1 3号公報参照)などが挙げられる。 エポキシ系樹脂としては、数平均分子量が 4 0 0〜4 0 0 0、特に 8 0 0 ~ 2 0 0 0、 エポキシ当量が 1 9 0 ~ 2 0 0 0、 特に 4 0 0 ~ 1 0 0 0であるものが 好ましい。 そのようなエポキシ系樹脂は、 例えば、 ポリフエノール化合物とェピ ルロルヒ ドリンとの反応によって得ることができ、ポリフエノール化合物として は、 例えば、 ビス (4ーヒ ドロキシフエニル) 一 2, 2—プロパン、 4, 4ージ ヒ ドロキシベンゾフエノン、 ビス(4ーヒ ドロキシフエ二ノレ)一 1 , 1 ーェタン、 ビス ( 4ーヒ ドロキシフエ二ノレ) 一 1 , 1—イソブタン、 ビス ( 4ーヒ ドロキシ - t e r t—ブチノレフエ二ノレ) 一 2 , 2一プロパン、 ビス ( 2 —ヒ ドロキシナフ チノレ) メタン、 1 , 5—ジヒ ドロキシナフタレン、 ビス ( 2, 4—ジヒ ドロキシ フエニル) メタン、 テトラ (4—ヒ ドロキシフエニル) 一 1 , 1 , 2, 2—エタ ン、 4 , 4—ジヒ ドロキシジフエニノレスノレホン、 フエノーノレノボラック、 クレゾ ールノボラックなどが挙げられる。 Commercially available polyurethane-based resins include Hydran (registered trademark) AP-1 0, AP-2 0, AP-3 0, Neudran HW-3 30, HW-3400, H W- 3 5 0 (Brand name, manufactured by Dainippon Ink and Chemicals, Inc.), Superflex (registered trademark) 1 1 0, 1 5 0, 6 0 0, E 2 25 0 0, F-3 4 3 8 D (both trade names, manufactured by Daiichi Kogyo Seiyaku Co., Ltd.). In addition, from the standpoint of ensuring the paint adhesion of the processed parts, the hydran AP—10 (T: 27.0, Tg: less than 50 ° C), Tg: 2 7.C), HW-340 (Tg: 7 ° C), Superflex 1 1 0 (D. § : 4 6 ° 0, 1550 (Tg: 40 ° C), E— The epoxy resin is preferably a cationic epoxy resin obtained by adding amine to an epoxy resin, such as acryl modification or urethane modification. Epoxy resins, etc. can be suitably used.Cationic epoxy resins include, for example, adducts of epoxy compounds and primary mono- or polyamines, secondary mono- or polyamines, primary and secondary mixed polyamines (for example, US Pat. No. 3 9 8 4 2 9 9); Epoxy compounds and secondary mono- or poly having ketiminated primary amino groups Min (For example, see US Patent No. 4 0 1 7 4 3 8); etherification reaction product of an epoxy compound and a hydroxyl compound having a ketiminated primary amino group (for example, JP-A-5-9-43013)). Epoxy resins have a number average molecular weight of 400-400, particularly 80-200, and an epoxy equivalent of 190-200, in particular 400-1000. Is preferred. Such an epoxy resin can be obtained, for example, by a reaction between a polyphenol compound and propyl hydrin. Examples of the polyphenol compound include bis (4-hydroxyphenyl) -1,2-propane, 4 , 4-dihydroxybenzophenone, bis (4-hydroxyoxyphenenole) 1-1, 1-ethane, bis (4-hydroxyoxyphenenole) 1-1, 1-isobutane, bis (4-hydroxy-tert-tert —Butinolephenol 2) 2-Propane, Bis (2—Hydroxynaphthol) Methane, 1,5-Dihydroxynaphthalene, Bis (2,4-Dihydroxyphenyl) Methane, Tetra (4-Hydroxyphenyl) 1, 1, 2, 2-Ethane, 4, 4-Dihydroxydiphenenolesnorehon, Fenenorenovolak, Cresol Novolac and the like.
表面処理組成物(H ) 中での水溶性有機樹脂又は Z及び水分散性有機樹脂(G ) の添加量は、 固形分の割合で 3 0質量%以下、特に 1〜 2 0質量%であることが 好ましい。 水溶性有機樹脂又はノ及び水分散性有機樹脂 (G ) の添加量が 3 0質 量%を超えると、無機成分によるパリア性が低下するため、皮膜付着量を増加さ せる必要が発生し、 導電性が低下してしまう。 すなわち、 水溶性有機樹脂又は// 及び水分散性有機樹脂 (G ) の添加量が 3 0質量。/。以下であれば、 無機成分によ るパリア性が維持できるため、皮膜付着量を増加させる必要がなく、 このため導 電性も良好である。  The amount of water-soluble organic resin or Z and water-dispersible organic resin (G) added in the surface treatment composition (H) is 30% by mass or less, particularly 1 to 20% by mass in terms of solid content. It is preferable. If the added amount of water-soluble organic resin or water-dispersible organic resin (G) exceeds 30% by mass, the pariacity due to the inorganic component is reduced, so it is necessary to increase the coating adhesion amount. Conductivity will fall. That is, the amount of water-soluble organic resin or / and water-dispersible organic resin (G) added is 30 mass. /. In the following cases, since the pariacity due to the inorganic component can be maintained, there is no need to increase the coating amount, and therefore the conductivity is good.
表面処理組成物 (H ) には、 さらに必要に応じて、 例えば、 シランカップリン グ剤、 樹脂微粒子、 無機リン酸化合物などのエッチング剤、 本発明が規定する成 分以外の重金属化合物、 增粘剤、 界面活性剤、 潤滑性付与剤 (ポリエチレンヮッ クス、 フッソ系ワックス、 カルナバワックスなど)、 防鲭剤、 着色顔料、 体質顔 料、 防鲭顔料、 染料などを含有することができる。  If necessary, the surface treatment composition (H) may further include, for example, an etching agent such as a silane coupling agent, resin fine particles, and an inorganic phosphate compound, a heavy metal compound other than the components specified by the present invention, an increased viscosity Agents, surfactants, lubricity-imparting agents (polyethylene wax, fluorine wax, carnauba wax, etc.), antifungal agents, coloring pigments, constitutional facial materials, antifungal pigments, dyes, and the like.
また、 表面処理組成物 (H ) は、 必要に応じて、 例えばメタノール、 エタノー ル、 イソプロピルアルコール、 エチレングリ コール系溶剤、 プロピレングリ コー ル系溶剤などの親水性溶剤で希釈して使用することができる。 In addition, the surface treatment composition (H) can be used, for example, methanol, ethanol as necessary. It can be used after diluting with a hydrophilic solvent such as ethylene glycol, isopropyl alcohol, ethylene glycol solvent, or propylene glycol solvent.
表面処理組成物 (H) により形成される表面処理皮膜の付着量は、 0 . 0 5〜 1 . 0 g /m 2、 好ましくは 0 . 1〜 0 . 8 g /m 2とする。 皮膜付着量が 0 . 0 5 g / in 2未満では耐食性が劣り、 一方、 1 . 0 g / m 2を超えると皮膜が割 れやすく、 耐食性が低下する。 The adhesion amount of the surface treatment film formed by the surface treatment composition (H) is set to 0.05 to 1.0 g / m 2 , preferably 0.1 to 0.8 g / m 2 . When the coating amount is less than 0.05 g / in 2 , the corrosion resistance is inferior. On the other hand, when it exceeds 1.0 g / m 2 , the coating tends to break and the corrosion resistance decreases.
次に、本発明の表面処理めつき鋼板のベースとなる溶融 Z n - A 1系合金めつ き鋼板について説明する。この溶融 Z n ~ A 1系合金めつき鋼板の溶融 Z n - A 1系合金めつき層中に添加する M gは、主として、スパングルの無い若しくは非 常に微細なスパンダルが形成された金属光沢のある美麗なめっき外観を得るこ とを、 また、 同じぐめっき層中に添加する N iは、 主として耐黒変性を向上させ ることを、それぞれ狙いとするものである。 この N i添加による耐黒変性の向上 効果は、適量の M gが共存することによってめっき層最表層部に N iが濃化する ことにより得られるものと推定される。 また、 めっき後の冷却速度を適正範囲に コントロールすることにより、めっき層最表層部での N i濃化をより適切に生じ させることができる。  Next, a molten Z n -A 1 alloy-plated steel sheet that serves as a base for the surface-treated plated steel sheet of the present invention will be described. The Mg added to the molten Z n -A 1 alloy-plated layer of this molten Z n to A 1 alloy-plated steel sheet is mainly a metallic luster with no spangles or very fine spandal formed. Ni that is added to the same plating layer in order to obtain a certain beautiful plating appearance is mainly aimed at improving the blackening resistance. The effect of improving blackening resistance due to the addition of Ni is estimated to be obtained by the concentration of Ni in the outermost layer of the plating layer when an appropriate amount of Mg coexists. Further, by controlling the cooling rate after plating within an appropriate range, it is possible to more appropriately cause Ni concentration at the outermost layer portion of the plating layer.
以下、 溶融 Z EL— A 1系合金めつき層 (以下、 単に 「めっき層」 という) の成 分組成の限定理由について説明する。  The reason for limiting the component composition of the molten Z EL—A 1-based alloy plating layer (hereinafter simply referred to as “plating layer”) will be described below.
めっき層中の A 1含有量が 1 . 0質量%未満では、 めっき眉一素地界面に F e 一 Z n系の合金層が厚く形成し、加工性が低下する。 一方、 A 1含有量が 1 0質 量。 /0を超えると Z nと A 1の共晶組織が得られず、 A 1 リツチ層が増加して犠牲 防食作用が低下するので、 端面部の耐食性が劣る。 また、 1が 1 0質量%を超 えるめっき層を得ようとすると、めっき浴中に A 1を主体としたトップドロスが 発生しやすくなり、 めっき外観を損なう という問題も生じる。 以上の理由から、 めっき層中の A 1含有量は 1 . 0〜 1 0質量%、好ましくは 3〜 7質量%とする。 本発明においてめつき組成を限定する狙いの一つは、 G F組成の溶融 Z η— A 1系合金めつきに特有のスパングルを無く し(ゼロスパングル化し)若しくは非 常に微細なスパングルを形成し、且つ不めっきのない金属光沢をもつ美麗なめつ き外観を得ることにあり、本発明者らは、 めっき組成とめっき外観との関係を調 ベるために、 以下のような実験を行った。 If the A 1 content in the plating layer is less than 1.0% by mass, a Fe 1 Zn alloy layer is formed thick on the plating eyebrow substrate interface, and workability deteriorates. On the other hand, A 1 content is 10 mass. If it exceeds / 0 , the eutectic structure of Zn and A 1 cannot be obtained, and the A 1 lithiated layer increases and the sacrificial anticorrosive action decreases, so that the corrosion resistance of the end face is inferior. In addition, when trying to obtain a plating layer in which 1 exceeds 10% by mass, a top dross mainly composed of A 1 is likely to occur in the plating bath, resulting in a problem that the plating appearance is impaired. For these reasons, the A 1 content in the plating layer is 1.0 to 10% by mass, preferably 3 to 7% by mass. In the present invention, one of the aims to limit the composition of the adhesive is to eliminate the spangle peculiar to the molten Z η-A 1 alloy alloy of the GF composition (zero spangle) or to form a very fine spangle. In addition, in order to obtain a beautiful appearance with a metallic luster that is not unplated, the present inventors have adjusted the relationship between the plating composition and the plating appearance. The following experiments were conducted to test
GF組成の A 1 (4〜5質量。 /0) を含有する溶融 Z n -A 1系合金めつき浴に Mgと N iをそれぞれ単独で添加し、これらのめっき浴で鋼板を溶融 Z n— A 1 系合金めつきし、 得られためっき鋼板のめっき外観 (特に、 スパングルサイズ、 ドロス付着の程度、 色調、 光沢) を目視観察した。 その結果、 N iを添加しため つき層は、本発明者らの実験範囲内ではめつき外観に変化は見られず、通常の G Fとほぼ同等のめっき外観を示したが、 Mgを添加しためっき層は、その添加量 によってスパングルサイズ、 色調おょぴ光沢等が変化した。 A 1 (4 to 5 wt. / 0) of GF composition Mg and N i the molten Z n -A 1 alloy plated bath containing added singly, melting steel in these plating baths Z n — A 1 type alloy was attached, and the plating appearance (particularly spangle size, degree of dross adhesion, color tone, gloss) of the obtained plated steel sheet was visually observed. As a result, the plating layer with Ni added did not show any changes in the plating appearance within the experimental range of the present inventors, and showed a plating appearance almost equivalent to that of normal GF, but added Mg. The plating layer changed the spangle size, color tone, luster, etc. depending on the amount added.
A 1 : 4〜5質量%、 N i : 0. 03質量%を含有する溶融 Z n— A 1系合金 めっき浴 (ミッシュメタルとしての C eおよび L aの合計含有量: 0. 008質 量0 /0) に Mgを 0〜3質量%添加し、 この溶融 Z n - A 1系合金めつき浴を用い て鋼板をめつきし、 めっき層中の Mg含有量とめっき外観 (スパングルサイズ、 ドロス付着の程度、 色調) との関係を調べた。 その結果を図 1に示す。 これによ れば、 Mg含有量が 0. 1質量%以上でスパングルが微細化しはじめ、 0. 2質 量%以上でスパングルがほぼ消失するとともに、色調が金属光沢のある白色味を 示す。 また、 Mg含有量が 0. 2質量。/ 0未満では、 耐黒変性も低下する。 これは 後述するように、 めっき層中で N i と共存する Mgが 0. 2質量。 /0未満であると N iのめつき層最表層部への濃化がなくなり、結果的に耐黒変性が低下するため であると推定される。 一方、 Mg含有量が 1. 0質量%を超えると色調が灰白色 →灰色へと順次変化していく とともに、 ドロス付着が増加してくる。 また、 Mg 含有量が 1. 0質量%を超えると、 めっき層に亀裂が生じやすくなり、加工性が 低下するという問題も生じる。 また、 Mgが多すぎると耐黒変性も劣る。 A 1: 4-5% by mass, Ni: 0.03% by mass of molten Z n—A 1 series alloy Plating bath (total content of Ce and La as misch metal: 0.008 mass 0/0) of Mg was added 0-3% by mass, the molten Z n - plated steel sheets with a 1 based alloy plated bath, plating appearance (spangle size and Mg content in the coating layer, The relationship between dross adhesion and color tone was investigated. The results are shown in Fig. 1. According to this, the spangle begins to become finer when the Mg content is 0.1% by mass or more, and when the Mg content is 0.2% by mass or more, the spangle almost disappears and the color tone shows a white color with a metallic luster. The Mg content is 0.2 mass. If it is less than 0 , the blackening resistance also decreases. As will be described later, 0.2 mass of Mg coexists with Ni in the plating layer. If it is less than 0 , it is presumed that Ni is not concentrated on the outermost surface layer of the adhesive layer, and as a result, the blackening resistance is lowered. On the other hand, when the Mg content exceeds 1.0% by mass, the color tone gradually changes from grayish white to gray and dross adhesion increases. In addition, if the Mg content exceeds 1.0% by mass, cracks are likely to occur in the plating layer, resulting in a problem that workability is lowered. Moreover, when there is too much Mg, blackening-proof property is also inferior.
したがって、めっき層中の Mg含有量は、美麗なめっき外観および優れた耐黒 変性を得るために下限を 0. 2質量%とし、 ドロス付着と色調低下を防止し、 さ らに加工性の低下を防止する観点から上限を 1. 0質量。 /0とする。 Therefore, the Mg content in the plating layer has a lower limit of 0.2% by mass in order to obtain a beautiful plating appearance and excellent blackening resistance, preventing dross adhesion and color tone deterioration, and further reducing workability. The upper limit is 1.0 mass from the viewpoint of preventing the above. / 0 .
さきに、 めっき組成のうちで Mgは主としてめつき外観の改善に、 N iは主と して耐黒変性の改善に寄与することを述べたが、本発明者らの検討の結果、 N i が耐黒変性の改善効果を発揮するには、 Mgとの共存が不可欠であることが判つ た。 すなわち、 Mgは、 美麗なめっき外観を形成する作用を有するとともに、 N i と共存することで、間接的に N iによる耐黒変性向上効果を助長していること が判った。 このことは、耐黒変性の異なるめっき鋼板について、 グロ一放電発光 表面分析 (GD S) により、 めっき層を深さ方向で分析することによって明らか にできた。 その分析結果の一例を以下に示す。 Previously, of the plating compositions, Mg mainly contributed to the improvement of the appearance of adhesion, and N i mainly contributed to the improvement of blackening resistance. It was found that coexistence with Mg is indispensable for improving the blackening resistance. In other words, Mg has the effect of forming a beautiful plating appearance, and N It was found that coexistence with i indirectly promotes the blackening resistance improvement effect by Ni. This was clarified by analyzing the plating layer in the depth direction by glow discharge luminescence surface analysis (GD S) for plated steel sheets with different blackening resistance. An example of the analysis result is shown below.
下記の (1)〜(3) の 3種類の GF組成'の溶融 Z n— A 1系合金めつき鋼板に ついて (いずれも、 めっき後の 250°Cまでの冷却速度が 5°C/秒)、 めっき層 表面から深さ方向に A 1、 Z n、 Mg、 N iの各元素の濃化形態を調査した。 The following three types of molten GF compositions (1) to (3) Zn—A1 alloy-plated steel sheets (all are cooled to 250 ° C after plating at 5 ° C / second) ), Plating layer The concentration form of each element of A1, Zn, Mg, Ni was investigated in the depth direction from the surface.
(1) めっき層中に Mgのみを含有するめつき鋼板であって、 耐黒変性が劣るも の (めっき組成 A 1 : 4. 4質量%、 Mg : 0. 6質量。 /0、 Z n :残部)(1) Plated steel sheet containing only Mg in the plating layer, which has inferior blackening resistance (plating composition A 1: 4.4 mass%, Mg: 0.6 mass. / 0 , Z n: The rest)
(2) めっき層中に N iのみを含有するめつき鋼板であって、 耐黒変性が劣るも の (めっき組成 A 1 : 4 · 4質量%、 N i : 0. 0 3質量。 /。、 Z n :残部)(2) Plated steel sheet containing only Ni in the plating layer and having inferior blackening resistance (plating composition A 1: 4 · 4% by mass, Ni: 0.03 mass. Z n: balance)
(3) めっき層中に Mgと N iを含有するめつき鋼板であって、 耐黒変性が優れ るもの (めっき組成 A 1 : 4. 4質量%、 M g : 0. 6質量%、 N i : 0. 0 3質量%、 Z n :残部) (3) Plated steel sheet containing Mg and Ni in the plating layer and excellent in blackening resistance (Plating composition A 1: 4.4 mass%, Mg: 0.6 mass%, Ni : 0.0 3 mass%, Z n: balance
黒変はめつき表面の問題と考えられるので、 上記 (1) 〜 (3) のサンプル (め つき鋼板) について、 最表面から深さ約 2 00 nm ( 2000 A) までを重点的 に分析した。 その結果を図 2に示す。 なお、 このめつき成分元素の分析では、 G D S分析装置を用いてァノード径 4 mm φ、電流 20 mAで深さ方向に 3 0秒間 放電して分析した。  Since this is considered to be a problem with the blackened fitting surface, the samples (1) to (3) above (plated steel plate) were analyzed mainly from the outermost surface to a depth of about 200 nm (2000 A). The result is shown in Fig.2. In addition, in this analysis of the elemental elements of the plating, a GDS analysis device was used to discharge for 30 seconds in the depth direction with a diameter of 4 mmφ and a current of 20 mA.
図 2によれば、 上記 (1)〜(3) のいずれのサンプルもめつき表面近傍に各め つき成分元素の濃化ピークが見られる力 s、それぞれのサンプルで各元素の濃化形 態が微妙に異なることが判る。 According to Fig. 2, the force s in which the concentration peak of each element element is observed near the surface of any of the samples (1) to (3) above, and the concentration state of each element in each sample is It turns out that it is slightly different.
まず、 耐黒変性が劣っている Mgのみを含有するサンプル (1) のめつき層に は、 最表層部 (最表面) の Z nとほぼ同位置に Mgの濃化ピークが見られ、 A 1 の濃化ピークは Z n、 Mgの濃化ピークよりも内側 (素地側) にある。  First, in the sample layer containing only Mg, which has poor blackening resistance (1), a concentration peak of Mg is seen at the same position as Zn in the outermost layer (outermost surface). The concentration peak of 1 is inside (base side) of the Zn and Mg concentration peaks.
また、 耐黒変性が劣っている N iのみを含有するサンプル (2) のめつき層の 濃化ピ^ "クは、最表層部の Z nについで A 1が見られ、 N iの濃化ピークは A 1 の濃化ピークの内側 (素地側) にある。  In addition, the sample containing only Ni with poor blackening resistance (2) In the thickening layer of the plating layer, A 1 is observed after Zn of the outermost layer, and the concentration of Ni The enrichment peak is inside the A 1 concentration peak (base side).
これに対し、 耐黒変性が優れる Mgと N iを含有するサンプル (3) のめつき P T/JP2008/058320 層は、 N iの濃化ピークが Z nと同じ最表層部にあり、 M g、 A 1の各濃化ピー クは N iの濃化ピークの内側 (素地側) にある。 In contrast, the sample (3) containing Mg and Ni with excellent blackening resistance In the PT / JP2008 / 058320 layer, the Ni concentration peak is on the same surface layer as Zn, and the Mg and A 1 concentration peaks are inside the Ni concentration peak (base side). is there.
また、 図 2には示していないが、 めっき層中にサンプル (3) と同量の M gと N iが共存し、めっき後の 2 5 0 °Cまでの冷却速度を 3 0 °CZ秒にして得られた めっき鋼板であって、耐黒変性に著効を示さなかったものについて、同様に分析 したが、 めっき層最表層部への N iの濃化がサンプル (3) に比べ少ないことが 判った。  Although not shown in Fig. 2, the same amount of Mg and Ni as in sample (3) coexisted in the plating layer, and the cooling rate up to 250 ° C after plating was 30 ° CZ seconds. The plated steel sheet obtained in this way, which did not show a significant effect on blackening resistance, was analyzed in the same way, but the Ni concentration in the outermost layer of the plating layer was less than that of the sample (3). I understood that.
以上のような分析結果から、耐黒変性の優れためつき層であるためには、その 最表層部に ,N iが濃化していることが好ましく、この最表層部での N i濃化には、 M gの共存が必要であることが判った。 また、 N i濃化には、 めっき後の冷却速 度が影響することも判明した。  From the above analysis results, it is preferable that Ni is concentrated in the outermost layer part in order to have a black layer with excellent blackening resistance. It was found that the coexistence of Mg was necessary. It was also found that the Ni concentration was affected by the cooling rate after plating.
なお、上述した蛍光 X線による分析結果から、めっき層最表層部の N i濃化は、 めっき最表面から深さ 3 0 n m ( 3 0 O A) 程度の間に存在すると推定される。 一般的に、 酸化物生成の標準エネルギーで言えば、 A 1、 M gは Z nに比べて 被酸化作用が強く、逆に N iは被酸化作用が弱い元素である。 黒変は、 被酸化作 用の強いめつき成分元素がめっき層最表面に拡散 (移動 ·濃化) して、 めっき層 最表面に生成している酸化亜鉛から酸素の一部を奪うことにより酸素欠乏型酸 化亜鉛に変換させるために発生するとすれば、 耐黒変性の劣ったサンプル (1) のめつき層は、最表層部に濃化した M gが酸化亜鉛の酸素を奪い、同じく耐黒変 性の劣ったサンプル (2) のめつき層は、 A 1が N i よりも表層側に濃化してい たことから、やはり被酸化作用の強い A 1が酸化亜鉛の酸素を奪い、それぞれ酸 素欠乏型酸化亜鉛へ変換したことが考えられる。  From the above-described analysis result by fluorescent X-ray, it is estimated that Ni concentration in the outermost layer portion of the plating layer exists between the outermost surface of the plating and a depth of about 30 nm (30 O A). In general, in terms of the standard energy for oxide formation, A 1 and Mg are more oxidizable than Zn, and Ni is an element that is less oxidizable. Blackening is due to the fact that the strong oxidative component elements diffuse (move / concentrate) to the outermost surface of the plating layer and take part of oxygen from the zinc oxide formed on the outermost surface of the plating layer. If it occurs due to the conversion to oxygen-deficient zinc oxide, the concentrated layer in the sample with poor blackening resistance (1) has Mg concentrated in the outermost layer deprived of oxygen of zinc oxide. In the darkened sample (2), which has inferior blackening resistance, A 1 is concentrated on the surface side of the surface of Ni, so A 1 with strong oxidization also takes up oxygen in zinc oxide. It is conceivable that each was converted to oxygen-deficient zinc oxide.
これに対して、 耐黒変性の優れたサンプル (3) のめつき層の最表層部には、 被酸化作用の弱い N iが濃化し、 これがバリア層となって共存する M g、 A 1の 最表層部への拡散 (移動 ·濃化) を抑制し、 耐黒変性が向上したものと考えられ る。  On the other hand, Ni, which is weakly oxidizable, concentrates in the outermost layer portion of the plating layer of the sample with excellent blackening resistance (3), and this coexists as a barrier layer Mg, A 1 It is considered that the blackening resistance was improved by suppressing the diffusion (migration / concentration) to the outermost layer.
すなわち、耐黒変性改善には、 N iがめつき層最表層部に濃化することでパリ ヤー層的な役目を果たすことが好ましく、この N iのめつき層最表層部への濃化 は、 M gの共存によって生じるものと考えられる。 ただし、 M gと共存すること で、 N iがめつき層最表層部に移動 ·濃化するメカニズムについては、 現状では 必ずしも明らかではない。 In other words, to improve the blackening resistance, it is preferable that Ni be concentrated in the outermost layer portion of the adhesive layer to play the role of a barrier layer. This concentration of Ni in the outermost layer portion of the adhesive layer is It is thought that it is caused by the coexistence of Mg. However, coexist with Mg However, the mechanism by which Ni moves to and concentrates in the outermost layer of the striking layer is not always clear at present.
めっき層中の N i含有量が 0. 005質量%未満では、 Mgが共存しても N i のめつき層最表層部への濃化が少なく、耐黒変性の改善効果は得られない。逆に ^^ 1が0. 005質量%以上であっても、 Mgが 0. 2質量%未満では 1の最 表層部への濃化は見られない。 The N i content is less than 0.005 wt% in the coating layer, less enrichment of plated layer outermost layer of the N i even coexist M g, the effect of improving the blackening resistance is not obtained . On the other hand, even if ^^ 1 is 0.005 mass% or more, if Mg is less than 0.2 mass%, concentration of 1 in the outermost layer is not observed.
また、 N i含有量が 0. 1質量。 /0を超えると、 耐黒変性の改善効果はある.もの の、 めっき浴に N iを含有する A 1— Mg系ドロスが発生し、 ドロス付着による めっき外観を損なうので、 好ましくない。 Ni content is 0.1 mass. If it exceeds / 0 , there is an effect of improving blackening resistance. However, it is not preferable because A 1—Mg-based dross containing Ni is generated in the plating bath and the plating appearance due to dross adhesion is impaired.
以上の理由から、 本発明ではめつき層中の N i含有量を 0. 00 5〜0. 1質 量%とし、また、さきに述べたように Mg含有量を 0. 2~1. 0質量%とする。 本発明めつき鋼板では、めっき層中に C eおよぴノまたは L aを含むミッシュ メタルを含有させることができる。この C eおよび Zまたは L aを含むミッシュ メタルは、ゼロスパングル化には効果はないものの、めっき浴の流動性を增して、 微細な不めっき状ピンホールの発生を防止し、めっき表面を平滑化する作用をす る。  For the above reasons, in the present invention, the Ni content in the adhesive layer is set to 0.005 to 0.1 mass%, and as described above, the Mg content is set to 0.2 to 1.0. Mass%. In the steel plate according to the present invention, a misch metal containing Ce and Pino or La can be contained in the plating layer. Although this misch metal containing Ce and Z or La is not effective for zero spangle formation, it increases the fluidity of the plating bath, prevents the occurrence of fine unplated pinholes, and reduces the plating surface. Smoothes the surface.
ミッシュメタルの含有量は、 C eおよび L aの合計量で 0. 00 5質量%未満 では、ピンホールの抑制効果が十分に得られず、表面平滑化にも効果がなくなる。 一方、 C eおよび L aの合計量が 0. 05質量%を超えると、 めっき浴中に未溶 解浮遊物として存在するようになり、これがめっき面に付着してめっき外観を損 なう。 すなわち、 ミッシュメタルの含有量が C eおよび L aの合計量で 0. 00' 5質量%以上であれば、 ピンホールの抑制効果が十分に得られ、且つ表面平滑化 にも効果があり、一方、 C eおよび L aの合計量が 0.0 5質量。 /0以下であれば、 それらがめっき浴中に未溶解浮遊物として存在することがなく、未溶解浮遊物が めっき面に付着してめっき外観を損なうこともない。このため C eおよぴ^ また は L aを含有するミッシュメタルは、 C eおよび L aの合計量で 0.005 ~ 0. 0 5質量。 /0、 望ましくは 0. 007〜0. 02質量%とすることが好ましい。 以上のように、 GF組成のめっき層に適量の Mgと N iを含有させ、 さらに必 要に応じて C eおよび/ ^または L aを含むミッシュメタルを適量含有させるこ とにより、スパングルが無く若しくは非常に微細なスパングルが形成され、金属 光沢を有し、且つ微小ピンホールなどの不めっきのない美麗なめっき外観と、優 れた耐黒変性を有する溶融 Z n - A 1系合金めつき鋼板を得ることができる。 以上のような溶融 Z n - A 1系合金めつき鋼板は、例えば、下記のような製造 条件で得ることができる。 If the content of misch metal is less than 0.005 mass% in terms of the total amount of Ce and La, pinhole suppression effects cannot be obtained sufficiently, and surface smoothing is not effective. On the other hand, if the total amount of Ce and La exceeds 0.05% by mass, it will be present as undissolved suspended matter in the plating bath, which will adhere to the plating surface and impair the plating appearance. That is, if the content of misch metal is 0.00'5 mass% or more in terms of the total amount of Ce and La, a pinhole suppression effect can be sufficiently obtained, and surface smoothing can be achieved, On the other hand, the total amount of Ce and La is 0.05 mass. If it is less than or equal to 0 , they will not be present as undissolved suspended matter in the plating bath, and undissolved suspended matter will not adhere to the plating surface and impair the plating appearance. For this reason, the misch metal containing C e and ^ or La is 0.005 to 0.05 mass in terms of the total amount of C e and La. / 0 , preferably 0.007 to 0.02 mass%. As described above, an appropriate amount of Mg and Ni is contained in the plating layer having the GF composition, and an appropriate amount of misch metal containing Ce and / ^ or La can be added as necessary. As a result, no spangles or very fine spangles are formed, a metallic luster and a beautiful plating appearance free of unplating such as minute pinholes, and a molten Z n- A 1-base alloy steel plate can be obtained. The above-described molten Zn-A1-based alloy steel sheet can be obtained, for example, under the following production conditions.
下地鋼板として使用する鋼板は、用途に応じて公知の鋼板から適宜選定すれば よく、 特に限定する必要はないが、例えば、 低炭素アルミキルド鋼板や極低炭素 鋼板を用いることが、 めっき作業の観点から好ましい。 この鋼板 (下地鋼板) を 溶融 Z n - A 1系合金めつき浴に浸漬して熱浸 (溶融) めっきを行った後、 同め つき浴から引き上げて冷却し、鋼板表面に溶融 Z n - A 1系合金めつき層を形成 する。このめつき層は、 A 1 : 1 . 0〜1 0質量0 /0、 M g: 0 . 2〜 1 · 0質量0 /0、 N i : 0 . 0 0 5〜0 . 1質量%を含有し、 さらに必要に応じて C eおよびノま たは L aを含有するミッシュメタルを、 C eおよび L aの合計量で 0 . 0 0 5〜 0 . 0 5質量%含有し、残部が Z nおよび不可避的不純物からなる。したがって、 溶融 Z n - A 1系合金めつき浴の浴組成も、実質的に合金めつき層組成とほぼ同 —とな.るように調整することが好ましい。 The steel plate used as the base steel plate may be appropriately selected from known steel plates according to the application, and it is not necessary to specifically limit the steel plate. For example, the use of a low carbon aluminum killed steel plate or an extremely low carbon steel plate To preferred. This steel plate (underlying steel plate) is immersed in a molten Z n -A 1 alloy plating bath and subjected to thermal immersion (molten) plating, then cooled by pulling up from the plating bath and molten on the surface of the steel plate. A 1-type alloy plating layer is formed. The plated layer is, A 1:. 1 0 to 1 0 weight 0/0, M g:. 0 2~ 1 · 0 Weight 0/0, N i:. 0 0 0 5 to 0 1% by weight. In addition, if necessary, misch metal containing Ce and No or La is contained in a total amount of Ce and La by 0.05 to 0.05 mass%, with the balance being It consists of Zn and inevitable impurities. Accordingly, it is preferable to adjust the bath composition of the molten Z n -A 1 alloy plating bath to be substantially the same as the alloy plating layer composition.
また、 さきに述ぺたように、溶融 Z n - A 1系合金めつき層の最表層部には N iが濃化していることが好ましい。  Further, as described above, it is preferable that Ni is concentrated in the outermost layer portion of the molten Zn-A1-based alloy plating layer.
本発明者らは、 特に、 溶融 Z n - A 1系合金めつき層中の M g, N i含有量お ょぴめっき後冷却速度とめつき層,最表層部へのめっき成分元素の濃化挙動につ いて鋭意検討した結果、 耐黒変性の向上、 すなわち、 めっき層最表層部への N i 濃化には、 さきに述べたように M gと N iの共存が不可欠であるが、 この N i濃 化にはめつき後の 2 5 0 °Cまでの冷却速度も大きく影響することを見出した。 溶融 Z n—A 1系合金めつき層中の A 1、 M g、 N i等の金属.は、 めっき後、 凝固して常温に至るまで間に、めっき層最表面に向かって徐々に拡散することが 知られており、特に本発明者らの実験で注目した M g、 N iのめつき層最表面へ の濃化は、めっきしてから 2 5 0 °Cまでの冷却速度が大きく影響することが判つ た。 一方、 2 5 0 °C未満の温度域の冷却速度は、 M g、 N iの濃化にほとんど影 響を与えなかった。 具体的には、溶融 Z n - A 1系合金めつき浴から引き上げためっき鋼板の 2 5 0 °Cまでの冷却速度を 1〜 1 5 °C /秒、好ましくは 2〜 1 0 °CZ秒にコントロー ルすることにより、めっき層最表層部への N i濃化をより効果的に促進できるこ とが判った。 めっき浴から引き上げためっき鋼板の 2 5 0 °Cまでの冷却速度が 秒未満では、 めっき層最表層部に N iの濃化は十分見られるものの、 めつ き層中に合金層が成長し、亀甲模様になって外観が悪化するとともに、加工性が 低下する原因となる。 一方、 冷却速度が 1 5で 秒を超えると、 めっき層中の M g含有量が 0 . 2〜 1 . 0質量%、 N i含有量が 0 . 0 0 5〜0 . 1質量%の範 囲であっても、 めっき層最表層部への N iの濃化が少なくなり、耐黒変性に著効 を示さなくなる。すなわち、 めっき浴から引き上げためっき鋼板の 2 5 0 °Cまで の冷却速度が 1 5 °CZ秒以下であれば、めっき層最表層部に N iが十分に濃化し、 耐黒変性に著効を示す。 一方、 冷却速度が 1 °C/秒以上であれば、 めっき層中に 合金層が成長することがないので、亀甲模様になって外観が悪化したり、カロェ性 が低下することがない。 したがって、溶融 Z n - A 1系合金めつき浴から引き上 げためつき鋼板の 2 5 0 °Cまでの冷却速度は 1〜 1 5 °CZ秒、望ましくは 2 ~ 1 0 °CZ秒とすることが好ましい。 In particular, the inventors of the present invention have prepared a Mg, Ni content in the molten Zn-A 1 alloy plating layer, a cooling rate after plating, and a concentration of plating component elements in the plating layer and outermost layer. As a result of earnest examination of the behavior, coexistence of Mg and Ni is indispensable for improving the blackening resistance, that is, for Ni concentration in the outermost layer of the plating layer, as described above. It was found that the cooling rate up to 250 ° C after fitting was greatly affected by this Ni concentration. Metals such as A1, Mg, Ni, etc. in the molten Zn—A1 alloy plating layer gradually diffuse toward the outermost surface of the plating layer during solidification and normal temperature after plating. Concentration of Mg and Ni on the outermost surface of the plating layer, which has been particularly noted in our experiments, has a large cooling rate up to 250 ° C after plating. It was found that it affected. On the other hand, the cooling rate in the temperature range below 250 ° C had little effect on the concentration of Mg and Ni. Specifically, the cooling rate of the plated steel sheet pulled up from the molten Zn-A 1 alloy alloy bath is 1 to 15 ° C / sec, preferably 2 to 10 ° CZ sec. It was found that the Ni concentration in the outermost surface layer of the plating layer can be more effectively promoted by controlling to the upper limit. If the cooling rate of the plated steel sheet pulled up from the plating bath to 250 ° C is less than 2 seconds, the Ni layer is sufficiently concentrated in the outermost layer of the plating layer, but an alloy layer grows in the plating layer. As a result, it becomes a tortoiseshell pattern and the appearance deteriorates, and the workability deteriorates. On the other hand, when the cooling rate is 15 and exceeds seconds, the Mg content in the plating layer is in the range of 0.2 to 1.0% by mass, and the Ni content is in the range of 0.05 to 0.1% by mass. Even in the surrounding area, the concentration of Ni in the outermost layer of the plating layer is reduced, and the blackening resistance is not significantly affected. In other words, if the cooling rate of the plated steel sheet pulled up from the plating bath to 250 ° C is 15 ° C or less, Ni is sufficiently concentrated in the outermost layer of the plating layer, which is effective for blackening resistance. Indicates. On the other hand, if the cooling rate is 1 ° C / second or more, the alloy layer does not grow in the plating layer, so that a tortoiseshell pattern is not deteriorated and the appearance is not deteriorated. Therefore, the cooling rate of the steel sheet for lifting from the molten Z n -A 1 alloy alloy bath to 250 ° C is 1 to 15 ° CZ seconds, preferably 2 to 10 ° CZ seconds. It is preferable.
なお、 めっき浴温は、 3 9 0〜 5 0 0 °Cの範囲とするのが好ましい。 めっき浴 温が 3 9 0 °C未満ではめつき浴の粘性が増してめっき表面が凹凸状になりやす く、 一方、 5 0 0 °Cを超えるとめつき浴中のドロスが増加しやすい。 すなわち、 めっき浴温が 3 9 0 °C以上であれば、 めっき浴の粘性が適正に維持されるので、 めっき表面が囬凸状になりにく く、 一方、 5 0 0で以下であれば、 めっき浴中の ドロスが増加しにくい。  The plating bath temperature is preferably in the range of 39.degree. When the plating bath temperature is less than 390 ° C, the viscosity of the plating bath increases, and the plating surface tends to be uneven. On the other hand, when it exceeds 500 ° C, dross in the plating bath tends to increase. That is, if the plating bath temperature is 3900 ° C or higher, the viscosity of the plating bath is properly maintained, so that the plating surface is not likely to be uneven, whereas if it is 5500 or less, The dross in the plating bath is unlikely to increase.
本発明の表面処理めつき鋼板を製造するには、溶融 Z n - A 1系合金めつき鋼 板の表面に、 さきに述べたようなチタン含有水性液 (A) と、 ニッケル化合物又 はノ及ぴコバルト化合物 (B )、 弗素含有化合物 (C ) を必須成分とし、 さらに 必要に応じて、 有機リン酸化合物 (D )、 パナジン酸化合物 (E )、 炭酸ジルコ二 ゥム化合物 (F )、 水溶性有機樹脂又は 及ぴ水分散性有機樹脂 (G ) の 1種以 上を含有する表面処理組成物 (Ή ) (処理液) を塗布した後、 水洗することなく 乾燥する。 ' 8058320 また、 チタン含有水性液 (A) や表面処理組成物 (H) には、 さらに必要に応 じて、 さきに挙げたような他の添加成分を含有させてもよい。 In order to produce the surface-treated plated steel sheet of the present invention, a titanium-containing aqueous liquid (A) as described above, a nickel compound or a noble metal is coated on the surface of the molten Z n -A 1 alloy-plated steel sheet. In addition, cobalt compound (B), fluorine-containing compound (C) is an essential component, and if necessary, organophosphate compound (D), panadic acid compound (E), zirconium carbonate compound (F), A surface treatment composition (ii) (treatment solution) containing one or more of a water-soluble organic resin or a water-dispersible organic resin (G) is applied and then dried without washing. ' In addition, the titanium-containing aqueous liquid (A) and the surface treatment composition (H) may further contain other additive components as mentioned above, if necessary.
表面処理組成物 (処理液) の塗布手段は、 例えば、 スプレー +ロール絞り、 口 一ルコーター、浸漬など、 めっき鋼板表面に処理液を付着させることができる方 法であればよい。 また、 塗布後の乾燥方式についても、 例えば、 熱風方式、 誘導 加熱方式、 電気萨方式など任意である。  The method for applying the surface treatment composition (treatment liquid) may be any method that allows the treatment liquid to adhere to the surface of the plated steel sheet, for example, spray + roll squeezing, mouth coater, dipping. Also, the drying method after application is arbitrary, for example, a hot air method, an induction heating method, or an electric iron method.
塗布した表面処理組成物 (処理液) の乾燥温度 (鋼板温度) は 40~ 200°C 程度とすることが好ましい。乾燥温度が 40°C未満で'は、皮膜形成が不十分とな り耐食性などが劣った皮膜となる。一方、 200°Cを超える板温で乾燥させても、 乾燥温度に見合う耐食性等の性能の向上効果は得られない。すなわち、乾燥温度 が 40°C以上であれば、 皮膜形成が十分となって耐食性等が優れた皮膜となり、 一方、 200°C以下であれば、乾燥温度に見合う耐食性等の性能の十分な向上効 果が得られる。 実施例  The drying temperature (steel plate temperature) of the applied surface treatment composition (treatment liquid) is preferably about 40 to 200 ° C. When the drying temperature is less than 40 ° C, the film formation is insufficient and the corrosion resistance is poor. On the other hand, even if it is dried at a plate temperature exceeding 200 ° C, the effect of improving the performance such as corrosion resistance corresponding to the drying temperature cannot be obtained. That is, if the drying temperature is 40 ° C or higher, the film formation is sufficient and the corrosion resistance is excellent, while if it is 200 ° C or lower, the performance such as corrosion resistance corresponding to the drying temperature is sufficiently improved. The effect is obtained. Example
表面処理組成物に用い'たチタン含有水性液 (A) と成分 (B) 〜 (G) を以下 に示す。  The titanium-containing aqueous liquid (A) and components (B) to (G) used for the surface treatment composition are shown below.
[チタン含有水性液 (A) の製造]  [Production of titanium-containing aqueous liquid (A)]
•製造例 1 (チタン含有水性液 T 1 )  • Production Example 1 (Titanium-containing aqueous liquid T 1)
四塩化チタン 6 0質量。 /0溶液 5 c cを蒸留水で 5 00 c c とした溶液にアン モニァ水 (1 : 9) を滴下し、 水酸化チタンの低縮合物を沈殿させた。 蒸留水で 洗浄後、過酸化水素水 30質量%溶液を 1 0 c c加えてかき混ぜ、チタンを含む 黄色半透明の粘性のあるチタン含有水性液 T 1を得た。 Titanium tetrachloride 60 mass. Ammonia water (1: 9) was added dropwise to a solution in which 5 cc of / 0 solution was made 500 cc with distilled water to precipitate a low condensation product of titanium hydroxide. After washing with distilled water, 10 cc of a 30% by mass solution of hydrogen peroxide was added and stirred to obtain a yellow translucent viscous titanium-containing aqueous liquid T 1 containing titanium.
,製造例 2 (チタン含有水性液 T 2)  , Production Example 2 (Titanium-containing aqueous liquid T 2)
テトラ i s o—プロポキシチタン 1 0質量部と i s o—プロパノール 1 0質 量部の混合物を 3 0質量%過酸化水素水 1 0質量部と脱イオン水 1 00質量部 の混合物中に 20°Cで 1時間かけて撹拌しながら滴下した。その後 2 5 °Cで 2時 間熟成し、 黄色透明の少し粘性のあるチタン含有水性液 T 2を得た。  A mixture of 10 parts by mass of tetra-iso-propoxytitanium and 10 parts by mass of iso-propanol at a temperature of 20 ° C in a mixture of 30 parts by mass of 10% by mass hydrogen peroxide and 100 parts by mass of deionized water. It was added dropwise with stirring over time. Thereafter, aging was carried out at 25 ° C. for 2 hours to obtain a yellow transparent, slightly viscous titanium-containing aqueous liquid T2.
•製造例 3 (チタン含有水性液 T 3) 製造例 2で使用したテトラ i s o—プロポキシチタンの代わりにテトラ n— ブトキシチタンを使用した以外は製造例 2と同様の製造条件で、チタン含有水性 液 T 3を得た。 , • Production Example 3 (Titanium-containing aqueous liquid T 3) A titanium-containing aqueous liquid T3 was obtained under the same production conditions as in Production Example 2 except that tetra-n-butoxytitanium was used instead of tetra-iso-propoxytitanium used in Production Example 2. ,
•製造例 4 (チタン含有水性液 T 4 )  • Production Example 4 (Titanium-containing aqueous liquid T 4)
製造例 2で使用したテトラ i s o—プロポキシチタンの代わりにテトラ . i s o一プロポキシチタンの 3量体 (テトラ i s o—プロポキシチタンの低縮合物) を使用した以外は製造例 2と同様の製造条件で、 チタン含有水性液 T 4を得た。 -製造例 5 (チタン含有水性液 T 5 )  The same production conditions as in Production Example 2 except that tetra-iso-propoxy titanium trimer (tetra-iso-propoxy titanium low condensate) was used instead of tetra-iso-propoxy titanium used in Production Example 2. A titanium-containing aqueous liquid T4 was obtained. -Production Example 5 (Titanium-containing aqueous liquid T 5)
製造例 2に対して過酸化水素水を 3倍量用い、 5 0 °Cで 1時間かけて滴下し、 さらに 6 0 °Cで 3時間熟成した以外は製造例 2と同様の製造条件で、チタン含有 水性液 T 5を得た。  The production conditions were the same as in Production Example 2 except that 3 times the amount of hydrogen peroxide water was added to Production Example 2 and added dropwise at 50 ° C over 1 hour and further aged at 60 ° C for 3 hours. A titanium-containing aqueous liquid T5 was obtained.
,製造例 6 (チタン含有水性液 T 6 )  , Production Example 6 (Titanium-containing aqueous liquid T 6)
製造例 3で製造したチタン含有水性液 T 3を、さらに 9 5 で 6時間加熱処理 することにより、 白黄色の半透明なチタン含有水性液 T 6を得た。  The titanium-containing aqueous liquid T 3 produced in Production Example 3 was further heat-treated at 9 5 for 6 hours to obtain a white yellow translucent titanium-containing aqueous liquid T 6.
-製造例 7 (チタン含有水性液 T 7 )  -Production Example 7 (Titanium-containing aqueous liquid T 7)
テトラ i s o—プロポキシチタン 1 0質量部と i s o—プロパノール 1 0質 量部の混合物を、 「T K S— 2 0 3」 (商品名, ティカ社製, 酸化チタンゾル) 5 質量部 (固形分)、 3 0質量%過酸化水素水 1 0質量部及ぴ脱イオン水 1 0 0質 量部の混合物中に 1 0 °Cで 1時間かけて撹拌しながら滴下した。その後 1 0 °Cで 2 4時間熟成し、 黄色透明の少し粘性のあるチタン含有水性液 T 7を得た。  A mixture of 10 parts by mass of tetra-iso-propoxytitanium and 10 parts by mass of iso-propanol was added to “TKS-203” (trade name, manufactured by Tika Co., Ltd., titanium oxide sol), 5 parts by mass (solid content), 30 The mixture was added dropwise to a mixture of 10% by mass of hydrogen peroxide water and 10 parts by mass of deionized water with stirring at 10 ° C. over 1 hour. Thereafter, the mixture was aged for 24 hours at 10 ° C. to obtain a yellow transparent, slightly viscous titanium-containing aqueous solution T7.
[ニッケル化合物又はコバルト化合物 (B ) ]  [Nickel or cobalt compounds (B)]
B 1 :酢酸二ッケル  B 1: Nickel acetate
B 2 :硝酸二ッケル  B 2: Nickle nickel nitrate
B 3 :硫酸二ッケル  B 3: Nickle sulfate
B 4 :酢酸コパルト  B4: acetate acetate
B 5 :硝酸コパルト  B5: nitrate nitrate
[弗素含有化合物 (C ) ]  [Fluorine-containing compound (C)]
C 1 : ジルコン弗化アンモニゥム  C 1: Zircon fluoride ammonium
C 2 : ジルコン弗化水素酸 C 3 : ジルコン弗化ナトリ ウム C 2: Zircon hydrofluoric acid C 3: Zirconium sodium fluoride
C 4 : ジルコン弗化力リ ウム  C 4: Zircon fluoride lithium
[有機リン酸化合物 (D) ]  [Organic Phosphate Compound (D)]
D 1 ·· 1—ヒ ドロキシメタン一 1 , 1ージホスホン酸  D 1 ··· 1-Hydroxymethane 1,1-diphosphonic acid
D 2 : l—ヒ ドロキシェタン一 1, 1ージホスホン酸  D 2: l-Hydroxetane 1,1-diphosphonic acid
[パナジン酸化合物 (E) ]  [Panadic acid compound (E)]
E 1 : メタバナジン酸アンモニゥム  E 1: Ammonium metavanadate
E 2 : メタパナジン酸ナトリ ウム  E 2: Sodium metapanadate
[炭酸ジルコニウム化合物 (F) ]  [Zirconium carbonate compound (F)]
F 1 :炭酸ジルコニウムアンモニゥム  F 1: Ammonium zirconium carbonate
F 2 :炭酸ジルコニウムナトリ ウム  F 2: Sodium zirconium carbonate
[水溶性又は水分散性有機樹脂 (G)]  [Water-soluble or water-dispersible organic resin (G)]
G 1 : スーパーフレックス E— 2500 (商品名, 第一工業製薬 (株) 製, 水 性ポリウレタン樹脂, T g : 42°C)  G1: Superflex E-2500 (trade name, manufactured by Daiichi Kogyo Seiyaku Co., Ltd., water-based polyurethane resin, T g: 42 ° C)
G 2 :パイロナール MD— 1 1 00 (商品名, 東洋紡績 (株) 製, 水性ポリェ ステル樹脂)  G 2: Pyronal MD— 1 1 00 (trade name, manufactured by Toyobo Co., Ltd., water-based polyester resin)
G 3 :アデ力レジン EM— 07 1 8 (商品名, (株) AD E K A), 水性ェポキ シ樹脂) ·  G 3: Ade force resin EM— 07 1 8 (trade name, AD E K A), water-borne epoxy resin)
G 4 :ハイ ドラン AP— 1 0 (商品名, 大日本ィンキ化学工業 (株) 製, 水性 ポリ ウレタン樹脂, T g : 27°C)  G 4: Hydran AP—10 (trade name, manufactured by Dainippon Ink & Chemicals, water-based polyurethane resin, T g: 27 ° C)
G 5 :ハイ ドラン AP— 30 (商品名, 大日本インキ化学工業 (株) 製, 水性 ポリ ウレタン樹脂, T g : 6 1 °C)  G 5: Hydran AP-30 (trade name, manufactured by Dainippon Ink & Chemicals, water-based polyurethane resin, T g: 61 ° C)
G 6 :ハイ ドラン HW— 340 (商品名, 大日本ィンキ化学工業 (株) 製, 水 性ポリウレタン樹脂, T g : 7°C)  G 6: Hydran HW-340 (trade name, manufactured by Dainippon Ink & Chemicals, water-based polyurethane resin, T g: 7 ° C)
G 7 :ハイ ドラン HW— 3 50 (商品名, 大日本ィンキ化学工業 (株) 製, 水 性ポリゥレタン樹脂, T g : 5 7°C)  G 7: Hydran HW-3 50 (trade name, manufactured by Dainippon Ink & Chemicals, water-based polyurethane resin, T g: 5 7 ° C)
G 8 : スーパーフレックス 1 1 0 (商品名, 第一工業製薬 (株) 製, 水性ポリ ゥレタン樹脂, T g : 46°C)  G 8: Superflex 110 (trade name, manufactured by Daiichi Kogyo Seiyaku Co., Ltd., water-based polyurethane resin, T g: 46 ° C)
G 9 : スーパーフレックス 1 30 (商品名, 第一工業製薬 (株) 製, 水性ポリ ウレタン樹脂, T g : 9 6°C) G 9: Superflex 1 30 (trade name, manufactured by Daiichi Kogyo Seiyaku Co., Ltd., waterborne poly (Urethane resin, T g: 9 6 ° C)
G 1 0 : スーパーフレックス 6 00 (商品名, 第一工業製薬 (株) 製, 水性ポ リ ゥレタン樹脂, T g : 70°C)  G 10: Superflex 600 (trade name, manufactured by Daiichi Kogyo Seiyaku Co., Ltd., aqueous polyurethane resin, T g: 70 ° C)
水溶性又は水分散性有機樹脂 (G) のうち、 G 1 1〜G 1 5の水分散性ァクリ ル樹脂は、 下記に示す製造例 8〜 1 2に従って製造した。 表 1に、 G 1 1〜G 1 5の水分散性ァクリル樹脂のモノマー組成と特性値を示す。なお、下記製造例の 「部」 および 「%」 は質量基準である。  Among water-soluble or water-dispersible organic resins (G), water-dispersible acrylic resins of G 11 to G 15 were produced according to Production Examples 8 to 12 shown below. Table 1 shows the monomer composition and characteristic values of the water-dispersible acryl resins of G 11 to G 15. In the following production examples, “part” and “%” are based on mass.
-製造例 8 (G 1 1の水分散性アク リル榭脂)  -Production Example 8 (G 11 water-dispersible acrylic resin)
還流冷却器、撹拌器、 温度計、 滴下ロートを装備した容量 2リ ッ トルの 4つ口 フラスコに脱イオン水 6 65部、 アクアロン (登録商標) RN— 50 (注 1) 9 部、 アクアロン RN— 2025 (注 2) 8 7部、下記組成のモノマー混合液 1 (1 段目) を強制乳化してなるプレエマルシヨ ンの 5 % (28. 9部) を加え、 窒素 置換後昇温した。  A 2-liter 4-neck flask equipped with a reflux condenser, stirrer, thermometer, and dropping funnel, and 65 parts deionized water, 65 parts Aqualon® RN— 50 (Note 1) 9 parts, Aqualon RN — 2025 (Note 2) 8 7 parts, 5% (28.9 parts) of pre-emulsion obtained by forcibly emulsifying monomer mixture 1 (first stage) with the following composition was added, and the temperature was increased after substituting with nitrogen.
[モノマー混合液 1]  [Monomer mixture 1]
脱イオン水: 1 66. 5部  Deionized water: 1 66. 5 parts
アクア口ン RN— 50 : 6. 6部  Aqua mouth RN— 50: 6. 6 parts
アクアロン RN— 202 5 : 5 3部  Aqualon RN— 202 5: 5 3 parts
スチレン : 3 5部  Styrene: 3 5 parts
メチルメタクリ レート : 1 6 3. 5部  Methyl methacrylate: 1 6 3.5 parts
2—ェチノレへキシノレアクリ レー ト : 1 0 5咅  2—Ethinorehexinorea create: 1 0 5 咅
2—ヒ ドロキシェチルメタクリ レート : 5部  2-Hydrochetyl methacrylate: 5 parts
メタク リノレ酸: 3部  Metaclinoleic acid: 3 parts
アク リ ロニ ト リル : 38. 5部  Acrylonitril: 38. 5 parts
ターシャリードデカンチオール: 1部  Tasha Reidodecanethiol: 1 part
5 5 °C以上に達したら、 パープチル (登録商標) H (注 3) 5部を脱イオン水 83. 5部に溶解させてなる酸化剤水溶液の 5 % (4. 43部) 及びナトリウム ホルムアルデヒ ドスルホキシレート 2. 5部を脱イオン水 83. 5部に溶解させ てなる還元剤水溶液の 5% (4. 3部) を添加し、 さらに昇温して 60 の温度 で保持した。 添加 1 5分後から、 残りのプレエマルションを 1. 5時間、 酸化剤 水溶液を 3. 5時間、 還元剤水溶液を 3. 5時間 fcわたって滴下した。 酵化剤水 溶液と還元剤水溶液の滴下を続けている間、 1段目プレエマルションの滴下終了 1時間後より下記組成のモノマー混合液 2 (2段目) を 1時間にわたって滴下し た。 5 When 5 ° C or higher is reached, 5% (4.43 parts) of an aqueous oxidizer solution containing 5 parts of Purptil® H (Note 3) dissolved in 83.5 parts of deionized water and sodium formaldehyde 5% (4.3 parts) of a reducing agent aqueous solution prepared by dissolving 2.5 parts of sulfoxylate in 83.5 parts of deionized water was added, and the temperature was further increased and maintained at 60. 1 5 minutes after addition, add the remaining pre-emulsion for 1.5 hours. The aqueous solution was added dropwise over 3.5 hours and the reducing agent aqueous solution was added over 3.5 hours fc. While the dropping of the fermenter water solution and the reducing agent aqueous solution was continued, monomer mixture 2 (second stage) having the following composition was dropped over 1 hour from 1 hour after the completion of dropping of the first stage pre-emulsion.
[モノマー混合液 2]  [Monomer mixture 2]
スチレン : 1 5部  Styrene: 1 5 parts
メチルメタクリ レート : 84. 5部  Methyl methacrylate: 84. 5 parts
2—ェチルへキシルアタ リ レー ト : 22 · 5部  2-Ethylhexyl acrylate: 22 · 5 parts
2—ヒ ドロキシェチルメタタリ レート : 4. 2 5部  2-Hydroxyshetylmetatalylate: 4.2 5 parts
メタクリル酸: 6部  Methacrylic acid: 6 parts
アク リ ロニトリル : 1 5部  Acrylonitrile: 1 5 parts
γ—メタク リロキシプロピルトリメ トキシシラン : 2. 75部  γ-methacryloxypropyltrimethoxysilane: 2.75 parts
全ての滴下終了時からさらに 1時間 6 0 °Cの温度に保持し、その後 40 °C以下 に温度を下げ、 25%アンモニア水 3. 3 5部、 スラオフ (登録商標) EX (注 4) 0. 3 5部、 2, 2, 4— トリメチルー 1, 3—ペンタンジオールモノイソ プチレート 8 3. 5部を添加し、 p H 8. 0、 不揮発分 3 1 %である G 1 1の水 分散性ァクリル樹脂を得た。  Hold at a temperature of 60 ° C for another hour after the end of all dripping, and then lower the temperature to 40 ° C or lower, and then add 25% ammonia water 3.3 5 parts, Suraoff® EX (Note 4) 0 3 5 parts, 2, 2, 4— Trimethyl-1,3-pentanediol monoisopropylate 8 3.5 parts added, pH 8.0, water dispersibility of G 11 with 31% non-volatile content Acryl resin was obtained.
(注 1) アクアロン RN— 50 :商品名, 第一工業製薬 (株) 製, ノニオン性 乳化剤, 固形分 60 %  (Note 1) Aqualon RN-50: Product name, manufactured by Daiichi Kogyo Seiyaku Co., Ltd., nonionic emulsifier, solid content 60%
(注 2) アクアロン RN— 20 25 :商品名, 第一工業製薬 (株) 製, ノニォ ン性乳化剤, 固形分 25%  (Note 2) AQUALON RN-20 25: Trade name, manufactured by Daiichi Kogyo Seiyaku Co., Ltd., nonionic emulsifier, solid content 25%
(注 3) パーブチル H :商品名, 日本油脂 (株) 製, t一プチルハイ ドロキシ パーォキサイ ド, 有効成分 6 9 %  (Note 3) Perbutyl H: Trade name, manufactured by Nippon Oil & Fats Co., Ltd., t-pylhydroxide peroxide, active ingredient 69%
(注 4) スラオフ EX :商品名, 日本エンバイ口ケミカルズ (株) 製, 防腐剤 -製造例 9〜1 2 (G 1 2〜G 1 5の水分散性ァクリル樹脂)  (Note 4) Suraoff EX: Product name, manufactured by Nippon Enviguchi Chemicals Co., Ltd., Preservatives-Production Examples 9 to 1 2 (G 1 2 to G 1 5 water-dispersible acrylic resin)
1段目、 2段目のモノマー組成を表 1に示す配合比とする以外は製造例 8と同 様の方法で、 G l 2〜G 1 5の水分散性アクリル樹脂を得た。  A water-dispersible acrylic resin of G 1 to G 15 was obtained in the same manner as in Production Example 8 except that the monomer composition in the first and second stages was changed to the blending ratio shown in Table 1.
表面処理めつき鋼板のベース鋼板としては、 表 2に示すめっき鋼板を用いた。 上記したチタン含有生成液 (A) と成分 (B) 〜 (G) を適宜配合した表面処 理組成物をめつき鋼板表面に塗布し、 5〜 20秒間で最高到達板温が 8 0°Cにな るように乾燥して供試材とした。 これら供試材について、下記の試験方法により 耐食性、 耐黒変性及び塗料密着性を評価した。 その結果を、 各供試材に適用した 表面処理組成物の組成及びその塗装条件とともに、 表 3〜表 5に示す。 The plated steel sheets shown in Table 2 were used as the base steel sheets for the surface-treated plated steel sheets. Surface treatment appropriately blending the above-mentioned titanium-containing product liquid (A) and components (B) to (G) The physical composition was applied to the surface of the steel plate and dried to obtain a maximum plate temperature of 80 ° C in 5 to 20 seconds. These test materials were evaluated for corrosion resistance, blackening resistance and paint adhesion by the following test methods. The results are shown in Tables 3 to 5 together with the composition of the surface treatment composition applied to each specimen and the coating conditions.
(1-1) 耐食性 (A)  (1-1) Corrosion resistance (A)
供試材を後述する条件で脱脂処理した後、供試材の端部と裏面をテープシール して J I S— Z— 23 7 1— 2000の塩水嘖霧試験に供し、白鲭発生面積率が 5 %となる試験時間を測定した。 その評価基準は以下のとおりである。  After degreasing the specimen under the conditions described below, the end and back of the specimen are tape sealed and subjected to the salt water fog test of JIS-Z-23 7 1-2000. % Test time was measured. The evaluation criteria are as follows.
〇: 48時間以上  ○: 48 hours or more
Δ: 24時間以上、 48時間未満  Δ: 24 hours or more, less than 48 hours
X : 24時間未満  X: Less than 24 hours
[脱脂条件]  [Degreasing conditions]
脱脂剤 「パルクリーン N 364 S」 (商品名、 日本パーカライジング (株) 製) を水に溶解'して濃度 2 %、液温 6 0°Cに調整したものを供試材に対して 2分間ス プレー噴霧 (噴霧圧: 1 k g f /cm2) した。 その後、 供試材を水道水で 30 秒間洗浄し、 圧搾空気を吹き当てて乾燥させた。 Degreasing agent “Palclean N 364 S” (trade name, manufactured by Nihon Parkerizing Co., Ltd.) dissolved in water and adjusted to a concentration of 2% and a liquid temperature of 60 ° C for 2 minutes Spray spraying (spraying pressure: 1 kgf / cm 2 ) was performed. Thereafter, the test material was washed with tap water for 30 seconds and dried by blowing compressed air.
(1-2) 耐食性 (B)  (1-2) Corrosion resistance (B)
端部と裏面をテープシールした供試材に対して J I S— Z— 2 3 7 1— 2 0 00の塩水噴霧試験を行い、 白鲭発生面積率が 5 %となる試験時間を測定した。 その評価基準は以下のとおりである。  A salt spray test of JIS—Z—2 3 7 1—2 00 00 was performed on the specimen with the end and the back surface tape-sealed, and the test time when the white haze generation area ratio was 5% was measured. The evaluation criteria are as follows.
◎ : 240時間以上  ◎: 240 hours or more
〇 : 144時間以上、 240時間未満  ○: 144 hours or more, less than 240 hours
△ : 72時間以上、 144時間未満  △: 72 hours or more, less than 144 hours
X : 72時間未満  X: Less than 72 hours
(2-1) 耐黒変性 (A)  (2-1) Blackening resistance (A)
供試材を温度 60 、相対湿度 8 0 %雰囲気に制御された恒温恒湿機に 24時 間静置した際の白色度 (L値) 変化を A L (試験後の L値—試験前の L値) で算 出した。 その評価基準は以下のとおりである。  The whiteness (L value) change when the specimen was left in a thermo-hygrostat controlled at 60% relative humidity and 80% relative humidity for 24 hours was AL (L value after test—L value before test). Value). The evaluation criteria are as follows.
〇 : Δ L≥— 1 0 △ : — 1 0 >厶: L≥一 1 5 ○: Δ L≥— 1 0 △: — 1 0> 厶: L≥1 1 5
X : - 1 5 > Δ L  X:-1 5> Δ L
(2-2) 耐黒変性 (B)  (2-2) Blackening resistance (B)
供試材を温度 80 °C、相対湿度 9 5。/。雰囲気に制御された恒温恒湿機に 24時 間静置した際の白色度 (L値) 変化を A L (試験後の L値一試験前の L値) で算 出した。 その評価基準は以下のとおりである。  Specimen temperature 80 ° C, relative humidity 9 5 /. The change in whiteness (L value) when left for 24 hours in a constant temperature and humidity chamber controlled by the atmosphere was calculated as A L (L value after test and L value before test). The evaluation criteria are as follows.
.〇 : Δ L≥— 1 0  .〇: Δ L≥— 1 0
A : - 1 0 > A L≥- 1 5  A:-1 0> A L≥- 1 5
X : - 1 5 > Δ L  X:-1 5> Δ L
(3) 塗料密着性 '  (3) Paint adhesion ''
前処理有りまたは無しの供試材にメラミンアルキッド樹脂塗料(商品名 「デリ コン (登録商標) # 700」, 大日本塗料 (株) 製)を乾燥膜厚が 30 ± 2 μ mに なるように塗布し、 1 30°Cで 30分間焼き付けて乾燥した。  Melamine alkyd resin paint (trade name “Delicon (registered trademark) # 700”, manufactured by Dainippon Paint Co., Ltd.) with or without pre-treatment so that the dry film thickness is 30 ± 2 μm It was applied and dried at 1300C for 30 minutes.
[前処理]  [Preprocessing]
脱脂剤「パルクリーン N 364 S」(商品名, 日本パーカライジング(株)製)、 濃度 2 %、 6 0 °C  Degreasing agent "Palclean N 364 S" (trade name, manufactured by Nihon Parkerizing Co., Ltd.), concentration 2%, 60 ° C
処理方法: 2分間のスプレー処理 ( 1 k g f / c m2) Treatment method: 2 minutes spray treatment (1 kgf / cm 2 )
[平板部塗料密着性]  [Plate paint adhesion]
塗装面に力ッターナイフを用いて 1 mm間隔で縦と横に 1 1本の線を引き、 1 mm四方のマス目を碁盤目状に 1 00個作製する。その後、碁盤目部にセロハン 粘着テープ (商品名 「CT 24」, ニチパン (株) 製) を貼り、 セロハン粘着テ ープを剥離した後の塗膜が剥離したマス目数で評価した。  Using a force knives on the painted surface, draw 11 lines vertically and horizontally at intervals of 1 mm to make 100 squares of 1 mm square in a grid pattern. Then, cellophane adhesive tape (trade name “CT 24”, manufactured by Nichipan Co., Ltd.) was applied to the grid area, and the cell number after the cellophane adhesive tape was peeled was evaluated.
[加工部塗料密着性]  [Processing part paint adhesion]
塗装面に力ッターナイフを用いて 1 mm間隔で縦と横に 1 1本の線を引き、 1 mm四方のマス目を碁盤目状に 1 00個作製する。その後、碁盤目部をエリクセ ン試験機で 5 mm押し出し加工し、 碁盤目部にセロハン粘着テープ (商品名 「C. T 24 j, ニチパン (株) 製) を貼り、 セロハン粘着テープを剥離した後の塗膜 が剥離したマス目数で評価した。  Using a force knives on the painted surface, draw 11 lines vertically and horizontally at intervals of 1 mm to make 100 squares of 1 mm square in a grid pattern. After that, the grid section was extruded 5 mm with an elixir testing machine, cellophane adhesive tape (trade name “C. T 24 j, manufactured by Nichipan Co., Ltd.) was applied to the grid section, and the cellophane adhesive tape was peeled off. The number of squares from which the coating film was peeled was evaluated.
[評価基準] ◎:平板部■加工部ともに塗膜の剥離無し [Evaluation criteria] ◎: Flat plate part ■ No peeling of paint film in processed part
〇 :加工部で塗膜の剥離発生、 平板部での塗膜の剥離無し  ○: Occurrence of peeling of coating film at processed part, no peeling of coating film at flat plate part
X :平板部 ·加工部ともに塗膜の剥離発生 表 3〜表 5において、 * 1 ~ * 9は以下の内容を示す。  X: Occurrence of peeling of coating film in both flat plate and processed parts In Tables 3 to 5, * 1 to * 9 indicate the following contents.
* 1 表 2に記載のめっき鋼板 No. 1〜 5  * 1 Plated steel sheets No. 1 to 5 listed in Table 2
* 2 明細書本文に記載のチタン含有水性液 T 1〜T 7  * 2 Titanium-containing aqueous solution described in the main text of the specification T 1 to T 7
* 3 明細書本文に記載のニッケル化合物又はコパルト化合物 Β 1〜Β 5 * 4 明細書本文に記載の弗素含有化合物 C 1〜C 4  * 3 Nickel compounds or cobalt compounds described in the text of the specification Β 1 to Β 5 * 4 Fluorine-containing compounds described in the text of the specification C 1 to C 4
* 5 明細書本文に記載の有機リン酸化合物 D 1, D 2  * 5 Organophosphate compounds D 1 and D 2 in the description text
* 6 明細書本文に記載のパナジン酸化合物 E 1, E 2  * 6 Panadic acid compounds described in the text of the specification E 1 and E 2
* 7 明細書本文に記載の炭酸ジルコニウム化合物 F 1, F 2  * 7 Zirconium carbonate compounds F 1 and F 2 listed in the specification text
* 8 明細書本文及ぴ表 1に記載の水溶性又は水分散性有機樹脂 G:!〜 G 1  * 8 Water-soluble or water-dispersible organic resins listed in the main text of the specification and Table 1 G:! To G 1
* 9 表面処理組成物中での固形分の質量% * 9 Mass% of solid content in the surface treatment composition
表 1 table 1
Figure imgf000038_0001
Figure imgf000038_0001
2 2
Figure imgf000039_0001
Figure imgf000039_0001
表 3 Table 3
Figure imgf000040_0001
Figure imgf000040_0001
表 4 Table 4
Figure imgf000041_0001
Figure imgf000041_0001
表 5 Table 5
Figure imgf000042_0001
Figure imgf000042_0001

Claims

請求の範囲 The scope of the claims
1 - 鋼板の少なく とも一方の表面に、 A 1 : 1. 0〜 1 0質量0 /0、 M g : 0. 2 〜 1. 0質量0 /0、 N i : 0. 005〜0. 1質量。 /0を含有し、 残部が Z n及び不 可避的不純物からなる溶融 Z n -A 1系合金めつき層を有する溶融 Z n - A 1 系合金めつき鋼板の表面に、 . 1 - the least also one surface of the steel sheet, A 1: 1. 0~ 1 0 mass 0/0, M g: 0. 2 ~ 1. 0 mass 0/0, N i: 0. 005~0 1 mass. Containing / 0, melting Z n having a melting Z n -A 1 alloy plated layer and the balance of Z n and not avoidable impurities - the surface of the A 1-based alloy plated steel sheet,
加水分解性チタン化合物、加水分解性チタン化合物の低縮合物、水酸化チタン、 水酸化チタンの低縮合物の中から選ばれる少なく とも 1種のチタン化合物を ii 酸化水素水と混合して得られるチタン含有水性液(A) を固形分の割合で 1 0〜 60質量%、 ニッケル化合物又は/及ぴコバルト化合物 (B) を固形分の割合で 0. 0 1〜 1質量%、 弗素含有化合物 (C) を固形分の割合で 1〜80質量%含 有する表面処理組成物 (H) を塗布し、 乾燥させることにより形成された皮膜付 着量が 0. 05〜 1. 0 gZm2の表面処理皮膜を有することを特徴とする表面 処理溶融 Z n - A 1系合金めつき鋼板。 It is obtained by mixing at least one titanium compound selected from hydrolyzable titanium compounds, hydrolyzable titanium compound low-condensates, titanium hydroxide, and titanium hydroxide low-condensates with ii hydrogen peroxide water. Titanium-containing aqueous liquid (A) in a solid content ratio of 10 to 60% by mass, nickel compound and / or cobalt compound (B) in a solid content ratio of 0.0 1 to 1% by mass, fluorine-containing compound ( C) Surface treatment composition (H) containing 1 to 80% by mass of the solid content is applied and dried. Surface treatment with a coating amount of 0.05 to 1.0 gZm 2 formed Surface-treated molten Z n -A 1 alloy-plated steel sheet characterized by having a film.
2. 弗素含有化合物 (C) 1) ジルコン弗化アンモニゥム、 ジルコン弗化水素酸 の中から選ばれる少なく とも 1種であることを特徴とする請求項 1に記載の表 面処理溶融 Z n - A 1系合金めつき鋼板。 2. The surface-treated melt according to claim 1, wherein the fluorine-containing compound (C) is at least one selected from the group consisting of 1) zircon ammonium fluoride and zircon hydrofluoric acid. 1 series alloy steel plate.
3. 表面処理組成物 (H) 力 S、 さらに、 有機リン酸化合物 (D) を固形分の割合 で 1 0〜 6 0質量%含有することを特徴とする請求項 1又は 2に記載の表面処 理溶融 Z n— A 1系合金めつき鋼板。 3. The surface treatment composition according to claim 1 or 2, further comprising 10 to 60% by mass of the surface treatment composition (H) force S and, further, an organophosphate compound (D) in a solid content ratio. Process melting Z n— A 1-base alloy steel plate.
4. 表面処理組成物 (H) が、 さらに、 パナジン酸化合物 (E) を固形分の割合 で 0 · 1〜 3 0質量%含有することを特徴とする請求項 1〜 3のいずれか一項に 記載の表面処理溶融 Z n -A 1系合金めつき鋼板。 4. The surface treatment composition (H) further contains 0 to 1 to 30% by mass of the panadic acid compound (E) in a solid content ratio. Surface-treated molten Z n -A 1-based alloy-plated steel sheet as described in 1.
5. 表面処理組成物 (H) 力 S、 さらに、 炭酸ジルコニウム化合物 (F) を固形分 の割合で 0.1~20質量%含有することを特徴とする請求項 1~4のいずれか 一項に記載の表面処理溶融 Z n— A 1系合金めつき鋼板。 5. The surface treatment composition (H) force S and further containing a zirconium carbonate compound (F) in a solid content ratio of 0.1 to 20% by mass. The surface-treated molten Zn—A1-based alloy-plated steel sheet according to one item.
6. 表面処理組成物 (H) が、 さらに、 水溶性有機樹脂又は Z及び水分散性有機 樹脂(G) を固形分の割合で 3 0質量%以下含有することを特徴とする請求項 1 〜5のいずれか一項に記載の表面処理溶融 Z n - A 1系合金めつき鋼板。 6. The surface treatment composition (H) further contains a water-soluble organic resin or Z and a water-dispersible organic resin (G) in a solid content ratio of 30% by mass or less. The surface-treated molten Z n -A 1 alloy-plated steel sheet according to any one of 5.
7. 水溶性有機樹脂又はノ及び水分散性有機樹脂 (G) 力 ガラス転移温度が 5 0°C未満のゥレタン樹脂であることを特徴とする請求項 6に記載の表面処理溶 融 Z n— A 1系合金めつき鋼板。 7. Water-soluble organic resin or water-dispersible organic resin (G) force Surface treatment melt Z n— according to claim 6, which is a urethane resin having a glass transition temperature of less than 50 ° C. A 1-base alloy steel plate.
PCT/JP2008/058320 2007-04-27 2008-04-24 Surface-treated, hot-dip zn-al alloy coated steel sheet WO2008136496A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2007-119966 2007-04-27
JP2007119966 2007-04-27
JP2008102943A JP5317516B2 (en) 2007-04-27 2008-04-10 Surface-treated molten Zn-Al alloy-plated steel sheet
JP2008-102943 2008-04-10

Publications (1)

Publication Number Publication Date
WO2008136496A1 true WO2008136496A1 (en) 2008-11-13

Family

ID=39943601

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/058320 WO2008136496A1 (en) 2007-04-27 2008-04-24 Surface-treated, hot-dip zn-al alloy coated steel sheet

Country Status (1)

Country Link
WO (1) WO2008136496A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108690944A (en) * 2018-06-12 2018-10-23 武汉钢铁有限公司 The hot dip plated steel manufacturing method of anti-blackening and corrosion resistance excellent
CN118064818A (en) * 2024-04-24 2024-05-24 山东新地标铁塔股份有限公司 Corrosion-resistant hot-dip galvanized steel and preparation process thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59177381A (en) * 1983-03-26 1984-10-08 Nippon Steel Corp Production of galvanized steel sheet having resistance to blackening
JP2001335960A (en) * 2000-05-23 2001-12-07 Yuken Industry Co Ltd Method for improving weather resistance of galvanized plating
JP2004238638A (en) * 2002-12-09 2004-08-26 Kansai Paint Co Ltd Surface treatment composition and surface-treated metal strip
JP2005036304A (en) * 2003-07-01 2005-02-10 Nippon Steel Corp METHOD OF PRODUCING HOT DIP Zn-Mg-Al BASED PLATED STEEL SHEET HAVING EXCELLENT APPEARANCE

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59177381A (en) * 1983-03-26 1984-10-08 Nippon Steel Corp Production of galvanized steel sheet having resistance to blackening
JP2001335960A (en) * 2000-05-23 2001-12-07 Yuken Industry Co Ltd Method for improving weather resistance of galvanized plating
JP2004238638A (en) * 2002-12-09 2004-08-26 Kansai Paint Co Ltd Surface treatment composition and surface-treated metal strip
JP2005036304A (en) * 2003-07-01 2005-02-10 Nippon Steel Corp METHOD OF PRODUCING HOT DIP Zn-Mg-Al BASED PLATED STEEL SHEET HAVING EXCELLENT APPEARANCE

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108690944A (en) * 2018-06-12 2018-10-23 武汉钢铁有限公司 The hot dip plated steel manufacturing method of anti-blackening and corrosion resistance excellent
CN118064818A (en) * 2024-04-24 2024-05-24 山东新地标铁塔股份有限公司 Corrosion-resistant hot-dip galvanized steel and preparation process thereof

Similar Documents

Publication Publication Date Title
JP5160866B2 (en) Surface-treated molten Zn-Al alloy-plated steel sheet
JP5600417B2 (en) Surface treatment composition and surface treated steel sheet
JP5600416B2 (en) Surface treatment composition and surface treated steel sheet
JP4972240B2 (en) Surface-treated steel sheet
JP5431721B2 (en) Surface treatment composition for zinc-based plated steel sheet or aluminum-based plated steel sheet and surface-treated steel sheet
TWI457468B (en) Hot-dip galvanized steel sheet and manufacturing method therefor
JP2792324B2 (en) Multi-layer galvanized steel sheet
JP5317516B2 (en) Surface-treated molten Zn-Al alloy-plated steel sheet
JP2008231418A (en) Coating material for forming titanium-zirconium film, method for forming titanium-zirconium film, metal substrate coated with titanium-zirconium film
KR101162401B1 (en) Surface treated steel sheet
JP5577782B2 (en) Surface-treated steel sheet
JP2010156020A (en) Surface-treated steel plate
JP5097311B2 (en) Surface-treated steel sheet and organic resin-coated steel sheet
WO2008136496A1 (en) Surface-treated, hot-dip zn-al alloy coated steel sheet
JP4916913B2 (en) Surface-treated steel sheet and organic resin-coated steel sheet
JP5101271B2 (en) Surface-treated steel sheet
JP2013060646A (en) Composition for spray coating surface treatment, method for producing surface-treated hot-dip galvanized steel sheet, and the surface-treated hot-dip galvanized steel sheet
JP2002275653A (en) Metallic surface treated steel sheet
JP2011052253A (en) Highly corrosion resistant surface-treated steel sheet
JP6092591B2 (en) Spray-coated surface treatment composition, method for producing surface-treated galvanized steel sheet, and surface-treated galvanized steel sheet
KR100963734B1 (en) Surface treated steel sheet
JP2010150588A (en) Surface-treated steel sheet
JP2009160749A (en) CHROMATE-FREE SURFACE-TREATED Al-Zn-BASED-ALLOY-PLATED STEEL SHEET
JP2009161790A (en) CHROMATE-FREE SURFACE-TREATED Al-Zn ALLOY PLATED STEEL SHEET

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08740985

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08740985

Country of ref document: EP

Kind code of ref document: A1