JP5317516B2 - Surface-treated molten Zn-Al alloy-plated steel sheet - Google Patents

Surface-treated molten Zn-Al alloy-plated steel sheet Download PDF

Info

Publication number
JP5317516B2
JP5317516B2 JP2008102943A JP2008102943A JP5317516B2 JP 5317516 B2 JP5317516 B2 JP 5317516B2 JP 2008102943 A JP2008102943 A JP 2008102943A JP 2008102943 A JP2008102943 A JP 2008102943A JP 5317516 B2 JP5317516 B2 JP 5317516B2
Authority
JP
Japan
Prior art keywords
mass
titanium
compound
steel sheet
plating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008102943A
Other languages
Japanese (ja)
Other versions
JP2008291350A (en
Inventor
里江 梅林
亘江 藤林
聡 安藤
晃 松崎
透 妹川
多佳士 中野
潤 阿久井
慎一郎 新田
日出夫 高村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Kansai Paint Co Ltd
JFE Galvanizing and Coating Co Ltd
Original Assignee
JFE Steel Corp
Kansai Paint Co Ltd
JFE Galvanizing and Coating Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp, Kansai Paint Co Ltd, JFE Galvanizing and Coating Co Ltd filed Critical JFE Steel Corp
Priority to JP2008102943A priority Critical patent/JP5317516B2/en
Priority to PCT/JP2008/058320 priority patent/WO2008136496A1/en
Priority to TW097115264A priority patent/TW200900542A/en
Publication of JP2008291350A publication Critical patent/JP2008291350A/en
Application granted granted Critical
Publication of JP5317516B2 publication Critical patent/JP5317516B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Chemical Treatment Of Metals (AREA)
  • Laminated Bodies (AREA)
  • Coating With Molten Metal (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a chromium-free surface treated, hot-dip Zn-Al alloy coated steel sheet which has excellent corrosion resistance and blackening resistance and is excellent in the surface appearance of plating. <P>SOLUTION: According to the invention, a steel sheet which has on the surface a hot-dip Zn-Al alloy plating layer containing Al: 1.0 to 10%, Mg: 0.2 to 1.0% and Ni: 0.005 to 0.1% is surface-treated with a surface treatment composition containing a specific titanium-containing aqueous solution, a nickel compound and/or a cobalt compound, and a fluorine-containing compound at a specific ratio to form a surface treatment film on the surface. Excellent blackening resistance is attained by virtue of the Ni and/or Co component contained in the surface treatment film and the optimized plating composition. Further, the surface treatment composition exhibits enhanced reactivity by virtue of the fluorine-containing compound to form a dense reaction layer on the surface of the plating and the fluorine-containing compound imparts higher barrier properties to the surface treatment film itself, which makes it possible to attain excellent corrosion resistance. <P>COPYRIGHT: (C)2009,JPO&amp;INPIT

Description

本発明は、自動車、家電、建材用途に最適な表面処理溶融Zn−Al系合金めっき鋼板に関するもので、特に、表面処理組成物やこれにより形成される表面処理皮膜中に6価クロムを全く含まない環境適応型の表面処理めっき鋼板に関するものである。   The present invention relates to a surface-treated molten Zn-Al alloy-plated steel sheet that is optimal for automobiles, home appliances, and building materials, and in particular, the surface treatment composition and the surface treatment film formed thereby completely contain hexavalent chromium. The present invention relates to an environment-adaptive surface-treated plated steel sheet.

従来、自動車、建築、土木、家電等の分野では、溶融Zn−Al系合金めっき鋼板が広く利用されている。この溶融Zn−Al系合金めっき鋼板としては、主に、めっき層中のAl含有量が0.2質量%以下の溶融Znめっき鋼板(以下、GIという)、同Al含有量が約5質量%のガルファン(以下、GFという)、同Al含有量が約55質量%のガルバリュウム鋼板(以下、GLという)が使用されている。これらのなかでGFは、GLよりも低コストであり、GIよりも耐食性が優れているため、特に建築などの分野では需要が高い。今後は、Zn価格の高騰化に伴い、厚目付Znめっき鋼板の代替として、家電での需要も高くなると予想される。
しかし、GFには、一般に以下のような問題がある。
GFには亀甲模様のスパングルが形成されるが、このスパングルは、めっき条件(例えば、めっき前焼鈍、浴成分)、めっき後の冷却条件(例えば、冷却速度)等によって形態が異なり、このため、裸使用の場合に外観を損なうことがある。また、塗装を施してカラー鋼板とした場合、スパングルが塗装面に浮き上がり、塗装後の外観を損なうこともある。このため、近年では、スパングルの無い金属光沢をもつ美麗なめっき層を有するGFに対する要求が増加している。
Conventionally, in the fields of automobiles, architecture, civil engineering, home appliances, etc., hot-dip Zn-Al alloy-plated steel sheets have been widely used. As this hot-dip Zn—Al-based alloy-plated steel sheet, a hot-dip Zn-plated steel sheet (hereinafter referred to as GI) whose Al content in the plating layer is 0.2% by mass or less is mainly about 5% by mass. Galfan (hereinafter referred to as GF), and a gallium steel sheet (hereinafter referred to as GL) having an Al content of about 55% by mass are used. Among these, GF has a lower cost than GL and has higher corrosion resistance than GI, and therefore is in high demand particularly in the field of construction. In the future, as the price of Zn rises, demand for home appliances is expected to increase as a substitute for thick-coated Zn-plated steel sheets.
However, GF generally has the following problems.
A spangle with a turtle shell pattern is formed in GF, but this spangle has a different form depending on plating conditions (for example, annealing before plating, bath component), cooling conditions after plating (for example, cooling rate), etc. Appearance may be impaired when used naked. In addition, when a colored steel plate is applied, spangles may float on the painted surface and impair the appearance after painting. For this reason, in recent years, the demand for GF having a beautiful plating layer having a metallic luster without spangle has increased.

また、Znよりも酸化し易いMg、Al等の元素を含むめっき層を有していると、腐食性雰囲気に長時間曝された際に、めっき表面が黒変色する黒変現象が発生し易い欠点がある。このため、溶融Zn−Al系合金めっき鋼板の表面には、黒変色を軽減可能な表面処理が必要となる。
黒変色を抑制する方法としては、Fe、Ni、Co等のイオンを含む水溶液でめっき鋼板表面を置換処理し、Fe、Ni、Co等をめっき層表面に析出させる方法がある(例えば、特許文献1)。しかし、この方法は置換処理工程が新たに必要となるため、製造工程が複雑化する。したがって、耐食性を付与する目的で行う化成処理工程において耐黒変性も同時に向上させる技術が必要となる。
In addition, when a plating layer containing an element such as Mg or Al that is easier to oxidize than Zn is present, a blackening phenomenon in which the plating surface is discolored easily occurs when exposed to a corrosive atmosphere for a long time. There are drawbacks. For this reason, the surface treatment which can reduce black discoloration is needed for the surface of a hot-dip Zn-Al type alloy plating steel plate.
As a method for suppressing black discoloration, there is a method in which the surface of a plated steel sheet is replaced with an aqueous solution containing ions of Fe, Ni, Co, etc., and Fe, Ni, Co, etc. are deposited on the surface of the plating layer (for example, Patent Documents). 1). However, this method necessitates a replacement process, which complicates the manufacturing process. Therefore, a technique for simultaneously improving blackening resistance in a chemical conversion treatment step performed for the purpose of imparting corrosion resistance is required.

溶融Zn−Al系合金めっき鋼板に耐食性を付与する化成処理技術は数多く提案されている。従来は、クロム酸、重クロム酸またはその塩類を主要成分とした処理液によるクロメート処理が施されていた。しかし、クロメート処理は公害規制物質である6価クロムを使用しており、環境に対する配慮から、またクロメート処理液の廃液処理に多大な労力と費用とを要することから、クロムを含まないクロメートフリー技術が検討されている。例えば、特許文献2〜4には、チタン、ジルコニウム系のクロメートフリー処理金属板が提案されている。
特開昭59−177381号公報 特開2004−2950号公報 国際公開第2003/93533号パンフレット 特開2003−306777号公報
Many chemical conversion treatment techniques for imparting corrosion resistance to hot-dip Zn-Al alloy-plated steel sheets have been proposed. Conventionally, chromate treatment with a treatment liquid containing chromic acid, dichromic acid or a salt thereof as a main component has been performed. However, chromate treatment uses hexavalent chromium, which is a pollution-controlling substance, and because of the environmental considerations and the waste liquid treatment of chromate treatment liquid requires a great deal of labor and expense, chromate-free technology that does not contain chromium. Is being considered. For example, Patent Documents 2 to 4 propose titanium-zirconium-based chromate-free treated metal plates.
JP 59-177381 A JP 2004-2950 A International Publication No. 2003/93533 Pamphlet JP 2003-306777 A

しかし、これら従来のクロメートフリー処理では、耐食性は付与されるものの、耐黒変性は改善されない。
したがって本発明の目的は、このような従来技術の課題を解決し、表面処理組成物や皮膜中に6価クロムを含まず、優れた耐黒変性と耐食性を有するとともに、めっき外観性にも優れた表面処理溶融Zn−Al系合金めっき鋼板を提供することにある。
However, these conventional chromate-free treatments provide corrosion resistance but do not improve blackening resistance.
Therefore, the object of the present invention is to solve such problems of the prior art, and does not contain hexavalent chromium in the surface treatment composition or film, has excellent blackening resistance and corrosion resistance, and is excellent in plating appearance. Another object of the present invention is to provide a surface-treated molten Zn-Al alloy-plated steel sheet.

本発明者らは、上記課題を解決するために、溶融Zn−Al系合金めっき鋼板のめっき組成と表面処理組成の両面から検討を行い、その結果、以下のような知見を得た。
(i)めっき組成としては、一般的なGFのAl濃度をベースとして、これに適量のMgとNiを含有させせることにより、スパングルの無い若しくは非常に微細なスパングルが形成された金属光沢をもつ美麗なめっき外観を有するとともに、耐黒変性も改善された溶融Zn−Al系合金めっき鋼板が得られる。
In order to solve the above-mentioned problems, the present inventors have studied from both the plating composition and surface treatment composition of a hot-dip Zn—Al alloy-plated steel sheet, and as a result, have obtained the following findings.
(I) The plating composition has a metallic luster with no spangles or very fine spangles formed by adding appropriate amounts of Mg and Ni based on a general Al concentration of GF. A hot-dip Zn-Al alloy-plated steel sheet having a beautiful plated appearance and improved blackening resistance is obtained.

(ii)表面処理については、まず、耐黒変性を改善するために、処理液中に各種金属塩を添加することを検討した結果、Ni塩又は/及びCo塩を処理液中に添加することが効果的であることが判った。しかし、Ni塩、Co塩などをそのまま処理液中に添加すると耐食性が低下してしまう。耐食性を低下させることなく耐黒変性の改善を図るためには、処理液中にNi塩、Co塩などを添加し、且つ処理によってめっき皮膜表面に緻密な反応層を形成させる必要がある。しかし、Zn−Al系めっき表面には強固なAlの酸化膜が形成されているため、処理の反応性が低いとめっき表面と処理皮膜との間に緻密な反応層が形成されず、十分な耐食性を発現させることができない。そこで検討した結果、特定のチタン含有水性液と、ニッケル化合物又は/及びコバルト化合物と、弗素含有化合物とを所定の割合で含有する処理液(表面処理組成物)で処理することにより、上記(i)のめっき組成の最適化と相俟って優れた耐黒変性が得られるとともに、弗素含有化合物によって反応性が高められる結果、めっき表面に緻密な反応層が形成され、さらに表面処理皮膜自体により高いバリア性が付与されるため、クロメートフリーでありながらクロメート皮膜に匹敵する優れた耐食性が得られることが判った。 (Ii) Regarding surface treatment, first, as a result of examining the addition of various metal salts to the treatment liquid in order to improve blackening resistance, Ni salts and / or Co salts should be added to the treatment liquid. Was found to be effective. However, if Ni salt, Co salt or the like is added to the treatment liquid as it is, the corrosion resistance is lowered. In order to improve the blackening resistance without reducing the corrosion resistance, it is necessary to add a Ni salt, a Co salt or the like to the treatment liquid and form a dense reaction layer on the surface of the plating film by the treatment. However, since a strong Al oxide film is formed on the Zn-Al-based plating surface, if the processing reactivity is low, a dense reaction layer is not formed between the plating surface and the processing film. Corrosion resistance cannot be expressed. As a result of the investigation, the above (i) is obtained by treating with a treatment liquid (surface treatment composition) containing a specific titanium-containing aqueous liquid, a nickel compound or / and a cobalt compound, and a fluorine-containing compound in a predetermined ratio. In addition to optimizing the plating composition, excellent blackening resistance is obtained, and the reactivity is enhanced by the fluorine-containing compound. As a result, a dense reaction layer is formed on the plating surface. It was found that excellent corrosion resistance comparable to that of the chromate film can be obtained while being chromate-free because high barrier properties are imparted.

さらに、処理皮膜中に有機樹脂を配合して柔軟性を付与することにより、加工によるクラックの発生が抑えられ、平板部だけでなく加工部の上塗り塗料密着性を良好なものにできる。ここで、樹脂含有量を多くするほど、耐食性を確保するために皮膜付着量を多くする必要があり、結果として、溶接性及び導電性が低下してしまうが、このような問題は、有機樹脂としてガラス転移温度(以下、「Tg」という)が50℃未満のウレタン樹脂を用いることで解決できることが判った。すなわち、Tg50℃未満のウレタン樹脂を用いると、樹脂含有量が少なくても処理皮膜に十分な柔軟性が付与できることから、皮膜付着量を低く抑え、溶接性および導電性を確保しつつ、良好な耐食性と加工部の上塗り塗料密着性が得られることが判った。   Furthermore, by adding an organic resin in the treatment film to impart flexibility, the occurrence of cracks due to processing can be suppressed, and the adhesion of the top coat paint of not only the flat plate portion but also the processed portion can be improved. Here, as the resin content is increased, it is necessary to increase the coating amount in order to ensure corrosion resistance. As a result, the weldability and the conductivity are deteriorated. It has been found that this can be solved by using a urethane resin having a glass transition temperature (hereinafter referred to as “Tg”) of less than 50 ° C. That is, when a urethane resin having a Tg of less than 50 ° C. is used, sufficient flexibility can be imparted to the treatment film even if the resin content is small, so that the film adhesion amount is kept low, while ensuring weldability and conductivity, It was found that corrosion resistance and adhesion of the top coat of the processed part can be obtained.

本発明は、このような知見に基づきなされたもので、以下を要旨とするものである。
[1]鋼板の少なくとも一方の表面に、Al:1.0〜10質量%、Mg:0.2〜1.0質量%、Ni:0.005〜0.1質量%を含有し、残部がZn及び不可避的不純物からなる溶融Zn−Al系合金めっき層を有する溶融Zn−Al系合金めっき鋼板の表面に、
加水分解性チタン化合物、加水分解性チタン化合物の低縮合物、水酸化チタン、水酸化チタンの低縮合物の中から選ばれる少なくとも1種のチタン化合物を過酸化水素水と混合して得られるチタン含有水性液(A)を固形分の割合で10〜60質量%、ニッケル化合物又は/及びコバルト化合物(B)を固形分の割合で0.01〜1質量%、ジルコン弗化アンモニウム、ジルコン弗化水素酸、ジルコン弗化ナトリウム、ジルコン弗化カリウムの中から選ばれる1種以上からなる弗素含有化合物(C)を固形分の割合で1〜80質量%含有する表面処理組成物(H)を塗布し、乾燥させることにより形成された皮膜付着量が0.05〜1.0g/mの表面処理皮膜を有することを特徴とする表面処理溶融Zn−Al系合金めっき鋼板。
The present invention has been made on the basis of such knowledge and has the following gist.
[1] On at least one surface of the steel sheet, Al: 1.0 to 10% by mass, Mg: 0.2 to 1.0% by mass, Ni: 0.005 to 0.1% by mass, and the balance On the surface of a molten Zn-Al alloy-plated steel sheet having a molten Zn-Al-based alloy plating layer composed of Zn and inevitable impurities,
Titanium obtained by mixing at least one titanium compound selected from hydrolyzable titanium compounds, low-condensates of hydrolyzable titanium compounds, titanium hydroxide, and low-condensates of titanium hydroxide with hydrogen peroxide water Containing aqueous liquid (A) in a solid content ratio of 10 to 60% by mass, nickel compound and / or cobalt compound (B) in a solid content ratio of 0.01 to 1% by mass, zircon ammonium fluoride, zircon fluoride A surface treatment composition (H) containing 1 to 80 mass% of a fluorine-containing compound (C) composed of one or more selected from hydrogen acid, sodium zircon fluoride, and potassium zircon fluoride in a solid content ratio is applied. And a surface-treated hot-dip Zn-Al alloy-plated steel sheet having a surface-treated film having a film adhesion amount of 0.05 to 1.0 g / m 2 formed by drying.

[2]上記[1]の表面処理溶融Zn−Al系合金めっき鋼板において、弗素含有化合物(C)が、ジルコン弗化アンモニウム、ジルコン弗化水素酸の中から選ばれる少なくとも1種であることを特徴とする表面処理溶融Zn−Al系合金めっき鋼板。
[3]上記[1]又は[2]の表面処理溶融Zn−Al系合金めっき鋼板において、表面処理組成物(H)が、さらに、有機リン酸化合物(D)を固形分の割合で10〜60質量%含有することを特徴とする表面処理溶融Zn−Al系合金めっき鋼板。
[4]上記[1]〜[3]のいずれかの表面処理溶融Zn−Al系合金めっき鋼板において、表面処理組成物(H)が、さらに、バナジン酸化合物(E)を固形分の割合で0.1〜30質量%含有することを特徴とする表面処理溶融Zn−Al系合金めっき鋼板。
[2] In the surface-treated molten Zn-Al alloy-plated steel sheet of [1], the fluorine-containing compound (C) is at least one selected from zircon ammonium fluoride and zircon hydrofluoric acid. A surface-treated hot-dip Zn-Al alloy-plated steel sheet.
[3] In the surface-treated molten Zn-Al alloy-plated steel sheet according to [1] or [2], the surface treatment composition (H) further contains an organic phosphate compound (D) in a solid content ratio of 10 to 10. A surface-treated hot-dip Zn—Al-based alloy-plated steel sheet containing 60% by mass.
[4] In the surface-treated molten Zn-Al alloy-plated steel sheet according to any one of [1] to [3], the surface treatment composition (H) further contains the vanadic acid compound (E) in a solid content ratio. A surface-treated hot-dip Zn—Al-based alloy-plated steel sheet containing 0.1 to 30% by mass.

[5]上記[1]〜[4]のいずれかの表面処理溶融Zn−Al系合金めっき鋼板において、表面処理組成物(H)が、さらに、炭酸ジルコニウム化合物(F)を固形分の割合で0.1〜20質量%含有することを特徴とする表面処理溶融Zn−Al系合金めっき鋼板。
[6]上記[1]〜[5]のいずれかの表面処理溶融Zn−Al系合金めっき鋼板において、表面処理組成物(H)が、さらに、水溶性有機樹脂又は/及び水分散性有機樹脂(G)を固形分の割合で30質量%以下含有することを特徴とする表面処理溶融Zn−Al系合金めっき鋼板。
[7]上記[6]の表面処理溶融Zn−Al系合金めっき鋼板において、水溶性有機樹脂又は/及び水分散性有機樹脂(G)が、ガラス転移温度が50℃未満のウレタン樹脂であることを特徴とする表面処理溶融Zn−Al系合金めっき鋼板。
[5] In the surface-treated molten Zn-Al alloy-plated steel sheet according to any one of [1] to [4], the surface treatment composition (H) further contains a zirconium carbonate compound (F) in a solid content ratio. A surface-treated hot-dip Zn—Al-based alloy-plated steel sheet characterized by containing 0.1 to 20% by mass.
[6] In the surface-treated molten Zn—Al alloy-plated steel sheet according to any one of [1] to [5], the surface treatment composition (H) is further a water-soluble organic resin and / or water-dispersible organic resin. A surface-treated hot-dip Zn—Al-based alloy-plated steel sheet containing (G) at a solid content of 30% by mass or less.
[7] In the surface-treated molten Zn-Al alloy-plated steel sheet of [6], the water-soluble organic resin and / or water-dispersible organic resin (G) is a urethane resin having a glass transition temperature of less than 50 ° C. A surface-treated molten Zn-Al alloy-plated steel sheet characterized by

本発明の表面処理溶融Zn−Al系合金めっき鋼板は、特定のチタン含有水性液と、ニッケル化合物又は/及びコバルト化合物と、弗素含有化合物とを所定の割合で配合した表面処理組成物による処理皮膜を有することにより、めっき組成の最適化と相俟って優れた耐黒変性が得られるとともに、表面処理組成物中の弗素含有化合物によって反応性が高められる結果、めっき表面に緻密な反応層が形成され、さらに表面処理皮膜自体により高いバリア性が付与されるため、クロメートフリーでありながらクロメート皮膜に匹敵する優れた耐食性が得られる。さらに、めっき組成の最適化により、スパングルの無い若しくは非常に微細なスパングルが形成された金属光沢をもつ美麗なめっき外観を有する。   The surface-treated hot-dip Zn-Al alloy-plated steel sheet of the present invention is a treatment film made of a surface treatment composition in which a specific titanium-containing aqueous liquid, a nickel compound or / and a cobalt compound, and a fluorine-containing compound are blended at a predetermined ratio. In combination with optimization of the plating composition, excellent blackening resistance is obtained, and the reactivity is enhanced by the fluorine-containing compound in the surface treatment composition. As a result, a dense reaction layer is formed on the plating surface. Since it is formed and further imparted with high barrier properties by the surface treatment film itself, excellent corrosion resistance comparable to that of the chromate film can be obtained while being chromate-free. Further, by optimizing the plating composition, it has a beautiful plating appearance with a metallic luster in which spangles are not formed or very fine spangles are formed.

本発明の表面処理溶融Zn−Al系合金めっき鋼板(以下、便宜上「表面処理めっき鋼板」という)のベースとなる溶融Zn−Al系合金めっき鋼板は、鋼板の少なくとも一方の表面に、Al:1.0〜10質量%、Mg:0.2〜1.0質量%、Ni:0.005〜0.1質量%を含有し、残部がZnおよび不可避的不純物からなる溶融Zn−Al系合金めっき層を有するものである。この溶融Zn−Al系合金めっき鋼板のめっき組成の限定理由や好ましい製造条件などについては、後に詳述する。   The hot-dip Zn—Al-based alloy-plated steel sheet used as the base of the surface-treated hot-dip Zn—Al-based alloy-plated steel sheet (hereinafter referred to as “surface-treated plated steel sheet” for convenience) of the present invention has Al: 1 on at least one surface of the steel sheet. 0.0-10 mass%, Mg: 0.2-1.0 mass%, Ni: 0.005-0.1 mass%, with the balance being molten Zn-Al alloy plating consisting of Zn and inevitable impurities It has a layer. The reason for limiting the plating composition of the hot-dip Zn—Al-based alloy-plated steel sheet and preferable manufacturing conditions will be described in detail later.

本発明の表面処理めっき鋼板において、溶融Zn−Al系合金めっき層表面に形成される表面処理皮膜は、加水分解性チタン化合物、加水分解性チタン化合物の低縮合物、水酸化チタン、水酸化チタンの低縮合物の中から選ばれる少なくとも1種のチタン化合物を過酸化水素水と混合して得られるチタン含有水性液(A)と、ニッケル化合物又は/及びコバルト化合物(B)と、弗素含有化合物(C)とを所定の割合で含有し、さらに必要に応じて、有機リン酸化合物(D)、バナジン酸化合物(E)、炭酸ジルコニウム化合物(F)、水溶性有機樹脂又は/及び水分散性有機樹脂(G)の1種以上を所定の割合で含有する表面処理組成物(H)を塗布し、乾燥させることにより形成されるものである。この表面処理皮膜は6価クロム(但し、不可避不純物としてのクロムを除く)を含有しない。   In the surface-treated plated steel sheet of the present invention, the surface-treated film formed on the surface of the molten Zn-Al alloy plating layer is a hydrolyzable titanium compound, a low condensate of hydrolyzable titanium compound, titanium hydroxide, titanium hydroxide. A titanium-containing aqueous liquid (A) obtained by mixing at least one titanium compound selected from low-condensates with hydrogen peroxide water, a nickel compound or / and a cobalt compound (B), and a fluorine-containing compound (C) in a predetermined ratio, and further, if necessary, an organic phosphate compound (D), a vanadic acid compound (E), a zirconium carbonate compound (F), a water-soluble organic resin and / or water dispersibility. It is formed by applying and drying a surface treatment composition (H) containing at least one organic resin (G) at a predetermined ratio. This surface treatment film does not contain hexavalent chromium (however, excluding chromium as an inevitable impurity).

前記チタン含有水性液(A)は、加水分解性チタン化合物、加水分解性チタン化合物の低縮合物、水酸化チタン、水酸化チタンの低縮合物の中から選ばれる少なくとも1種のチタン化合物と過酸化水素水とを混合して得られるチタンを含む水性液である。
前記加水分解性チタン化合物は、チタンに直接結合する加水分解性基を有するチタン化合物であって、水、水蒸気などの水分と反応することにより水酸化チタンを生成するものである。また、加水分解性チタン化合物は、チタンに結合する基の全てが加水分解性基であるものでもよいし、チタンに結合する基の一部が加水分解性基であるものでもよい。
前記加水分解性基としては、上記したように水分と反応することにより水酸化チタンを生成させるものであれば特に制限はないが、例えば、低級アルコキシル基やチタンと塩を形成する基(例えば、塩素などのハロゲン原子、水素原子、硫酸イオンなど)などが挙げられる。
The titanium-containing aqueous liquid (A) contains at least one titanium compound selected from hydrolyzable titanium compounds, hydrolyzable titanium compound low condensates, titanium hydroxide and titanium hydroxide low condensates. It is an aqueous liquid containing titanium obtained by mixing with hydrogen oxide water.
The hydrolyzable titanium compound is a titanium compound having a hydrolyzable group directly bonded to titanium, and generates titanium hydroxide by reacting with water such as water or water vapor. The hydrolyzable titanium compound may be one in which all of the groups bonded to titanium are hydrolyzable groups, or a part of the groups bonded to titanium may be hydrolyzable groups.
The hydrolyzable group is not particularly limited as long as it generates titanium hydroxide by reacting with moisture as described above. For example, a lower alkoxyl group or a group that forms a salt with titanium (for example, Halogen atoms such as chlorine, hydrogen atoms, sulfate ions, etc.).

加水分解性基として低級アルコキシル基を含有する加水分解性チタン化合物としては、特に、一般式Ti(OR)(式中、Rは同一若しくは異なる炭素数1〜5のアルキル基を示す)で示されるテトラアルコキシチタンが好ましい。炭素数1〜5のアルキル基としては、例えば、メチル基、エチル基、n−プロピル基、iso−プロピル基、n−ブチル基、iso−ブチル基、sec−ブチル基、tert−ブチル基などが挙げられる。
加水分解性基として、チタンと塩を形成する基を有する加水分解性チタン化合物としては、塩化チタン、硫酸チタンなどが代表的なものとして挙げられる。
The hydrolyzable titanium compound containing a lower alkoxyl group as the hydrolyzable group is particularly represented by the general formula Ti (OR) 4 (wherein R represents the same or different alkyl groups having 1 to 5 carbon atoms). Tetraalkoxy titanium is preferred. Examples of the alkyl group having 1 to 5 carbon atoms include a methyl group, an ethyl group, an n-propyl group, an iso-propyl group, an n-butyl group, an iso-butyl group, a sec-butyl group, and a tert-butyl group. Can be mentioned.
Typical examples of the hydrolyzable titanium compound having a group capable of forming a salt with titanium as a hydrolyzable group include titanium chloride and titanium sulfate.

また、加水分解性チタン化合物の低縮合物は、上記した加水分解性チタン化合物どうしの低縮合物である。この低縮合物は、チタンに結合する基の全てが加水分解性基であるものでもよいし、チタンに結合する基の一部が加水分解性であるものでもよい。
加水分解性基がチタンと塩を形成する基である加水分解性チタン化合物(例えば、塩化チタン、硫酸チタンなど)については、その加水分解性チタン化合物の水溶液とアンモニアや苛性ソーダなどのアルカリ溶液との反応により得られるオルトチタン酸(水酸化チタンゲル)も低縮合物として使用できる。
Moreover, the low condensate of a hydrolysable titanium compound is a low condensate of the above-mentioned hydrolysable titanium compounds. The low condensate may be one in which all of the groups bonded to titanium are hydrolyzable groups, or a part of the groups bonded to titanium may be hydrolyzable.
For hydrolyzable titanium compounds whose hydrolyzable group forms a salt with titanium (for example, titanium chloride, titanium sulfate, etc.), an aqueous solution of the hydrolyzable titanium compound and an alkaline solution such as ammonia or caustic soda are used. Orthotitanic acid (titanium hydroxide gel) obtained by the reaction can also be used as a low condensate.

加水分解性チタン化合物の低縮合物及び水酸化チタンの低縮合物としては、縮合度が2〜30の化合物が使用可能であり、特に縮合度が2〜10の化合物を使用することが好ましい。縮合度が30を超えると、過酸化水素と混合した際に白色沈殿を生じ、安定なチタン含有水性液が得られない。すなわち、縮合度が30以下であれば、過酸化水素と混合して安定なチタン含有水性液が得られる。
以上挙げた加水分解性チタン化合物、加水分解性チタン化合物の低縮合物、水酸化チタン、水酸化チタンの低縮合物は、1種又は2種以上を使用できるが、そのなかでも、上述した一般式で示される加水分解性チタン化合物であるテトラアルコキシチタンが特に好ましい。この理由は、テトラアルコキシチタンは、加水分解した時に生成されるアルコールが表面処理組成物を乾燥させる過程で揮発するため、耐食性などの皮膜性能に影響を与えることがなく、特に優れた皮膜性能が得られるからである。
As the low condensate of the hydrolyzable titanium compound and the low condensate of titanium hydroxide, a compound having a condensation degree of 2 to 30 can be used, and a compound having a condensation degree of 2 to 10 is particularly preferable. When the condensation degree exceeds 30, a white precipitate is formed when mixed with hydrogen peroxide, and a stable titanium-containing aqueous liquid cannot be obtained. That is, if the degree of condensation is 30 or less, a stable titanium-containing aqueous liquid can be obtained by mixing with hydrogen peroxide.
The hydrolyzable titanium compounds, low condensates of hydrolysable titanium compounds, titanium hydroxide, and low condensates of titanium hydroxide can be used alone or in combination of two or more thereof. Tetraalkoxy titanium which is a hydrolyzable titanium compound represented by the formula is particularly preferable. The reason for this is that tetraalkoxytitanium does not affect the film performance such as corrosion resistance because the alcohol produced when hydrolyzed volatilizes in the process of drying the surface treatment composition, and has particularly excellent film performance. It is because it is obtained.

チタン含有水性液(A)としては、上記したチタン化合物と過酸化水素水を混合することにより得られるチタンを含む水性液であれば、従来公知のものを特に制限なしに使用することができる。具体的には、下記のものを挙げることができる。
(i)含水酸化チタンのゲル又はゾルに過酸化水素水を添加して得られるチタニルイオン過酸化水素錯体又はチタン酸(ペルオキソチタン水和物)水溶液(特開昭63−35419号公報、特開平1−224220号公報参照)。
As the titanium-containing aqueous liquid (A), any conventionally known liquid can be used without particular limitation as long as it is an aqueous liquid containing titanium obtained by mixing the above-described titanium compound and hydrogen peroxide solution. Specifically, the following can be mentioned.
(I) A titanyl ion hydrogen peroxide complex or an aqueous solution of titanic acid (peroxotitanium hydrate) obtained by adding hydrogen peroxide to a hydrous titanium oxide gel or sol (JP-A 63-35419, JP-A 1-2224220 gazette).

(ii)塩化チタンや硫酸チタンの水溶液と塩基性溶液から製造した水酸化チタンゲルに過酸化水素水を作用させ、合成することで得られるチタニア膜形成用液体(特開平9−71418号公報、特開平10−67516号公報参照)。
このチタニア膜形成用液体を得る場合、チタンと塩を形成する基を有する塩化チタンや硫酸チタンの水溶液とアンモニアや苛性ソーダなどのアルカリ溶液とを反応させることによりオルトチタン酸と呼ばれる水酸化チタンゲルを沈殿させる。次いで、水を用いたデカンテーションによって水酸化チタンゲルを分離し、良く水洗し、さらに過酸化水素水を加え、余分な過酸化水素を分解除去することにより、黄色透明粘性液体を得ることができる。
(Ii) A liquid for forming a titania film obtained by synthesizing a titanium hydroxide gel produced from an aqueous solution of titanium chloride or titanium sulfate and a basic solution with a hydrogen peroxide solution (Japanese Patent Laid-Open No. 9-71418, (See Kaihei 10-67516).
When obtaining this titania film-forming liquid, titanium hydroxide gel called orthotitanic acid is precipitated by reacting an aqueous solution of titanium chloride or titanium sulfate having a salt-forming group with titanium and an alkaline solution such as ammonia or caustic soda. Let Next, the titanium hydroxide gel is separated by decantation with water, washed thoroughly with water, further added with hydrogen peroxide water, and excess hydrogen peroxide is decomposed and removed, whereby a yellow transparent viscous liquid can be obtained.

沈殿した上記オルトチタン酸は、OHどうしの重合や水素結合によって高分子化したゲル状態にあり、そのままではチタンを含む水性液としては使用できない。このゲルに過酸化水素水を添加するとOHの一部が過酸化状態になり、ペルオキソチタン酸イオンとして溶解或いは高分子鎖が低分子に分断された一種のゾル状態になり、余分な過酸化水素は水と酸素になって分解し、無機膜形成用のチタンを含む水性液として使用できるようになる。
このゾルはチタン原子以外に酸素原子と水素原子しか含まないので、乾燥や焼成によって酸化チタンに変化する場合、水と酸素しか発生しないため、ゾルゲル法や硫酸塩などの熱分解に必要な炭素成分やハロゲン成分の除去が必要でなく、低温でも比較的密度の高い酸化チタン膜を形成することができる。
The precipitated orthotitanic acid is in a gel state polymerized by polymerization of OH or hydrogen bonds, and cannot be used as an aqueous liquid containing titanium as it is. When hydrogen peroxide solution is added to this gel, a part of OH is in a peroxidized state, dissolved as a peroxotitanate ion or in a kind of sol state in which the polymer chain is divided into low molecules, and excess hydrogen peroxide Is decomposed into water and oxygen, and can be used as an aqueous liquid containing titanium for forming an inorganic film.
Since this sol contains only oxygen and hydrogen atoms in addition to titanium atoms, when it is changed to titanium oxide by drying or firing, only water and oxygen are generated, so carbon components necessary for thermal decomposition such as sol-gel method and sulfate Further, it is not necessary to remove the halogen component, and a titanium oxide film having a relatively high density can be formed even at a low temperature.

(iii)塩化チタンや硫酸チタンの無機チタン化合物水溶液に過酸化水素を加えてぺルオキソチタン水和物を生成させた後に、塩基性物質を添加して得られた溶液を放置又は加熱することによってペルオキソチタン水和物重合体の沈殿物を生成させ、次いで、少なくともチタン含有原料溶液に由来する水以外の溶解成分を除去した後に過酸化水素を作用させて得られるチタン酸化物形成用溶液(特開2000−247638号公報、特開2000−247639号公報参照)。 (Iii) Hydrogen peroxide is added to an aqueous solution of an inorganic titanium compound such as titanium chloride or titanium sulfate to form peroxotitanium hydrate, and then the solution obtained by adding a basic substance is allowed to stand or be heated. A titanium oxide forming solution obtained by forming a precipitate of a titanium hydrate polymer, and then removing hydrogen and other dissolved components derived from at least a titanium-containing raw material solution (Japanese Patent Application Laid-Open 2000-247638, JP-A-2000-247639).

チタン化合物として加水分解性チタン化合物及び/又はその低縮合物(以下、説明の便宜上「加水分解性チタン化合物a」という)を用いるチタン含有水性液(A)は、加水分解性チタン化合物aを過酸化水素水と反応温度1〜70℃で10分間〜20時間程度反応させることにより得ることができる。
この加水分解性チタン化合物aを用いたチタン含有水性液(A)は、加水分解性チタン化合物aと過酸化水素水とを反応させることにより、加水分解性チタン化合物aが水で加水分解されて水酸基含有チタン化合物を生成し、次いで、この水酸基含有チタン化合物に過酸化水素が配位するものと考えられる。この加水分解反応及び過酸化水素による配位が同時近くに起こることにより得られたものであり、室温域での安定性が極めて高く、長期の保存に耐えるキレート液を生成する。従来の製法で用いられる水酸化チタンゲルは、Ti−O−Ti結合により部分的に三次元化しており、このゲルと過酸化水素水を反応させたチタン含有水性液(A)とは組成及び安定性が本質的に異なる。
The titanium-containing aqueous liquid (A) using a hydrolyzable titanium compound and / or a low condensate thereof as a titanium compound (hereinafter referred to as “hydrolyzable titanium compound a” for convenience of explanation) contains hydrolyzable titanium compound a. It can be obtained by reacting with hydrogen oxide water at a reaction temperature of 1 to 70 ° C. for about 10 minutes to 20 hours.
In the titanium-containing aqueous liquid (A) using the hydrolyzable titanium compound a, the hydrolyzable titanium compound a is hydrolyzed with water by reacting the hydrolyzable titanium compound a with hydrogen peroxide. It is considered that a hydroxyl group-containing titanium compound is produced, and then hydrogen peroxide is coordinated to the hydroxyl group-containing titanium compound. This hydrolysis reaction and coordination by hydrogen peroxide occur at the same time, and the chelate solution is extremely stable at room temperature and can withstand long-term storage. The titanium hydroxide gel used in the conventional manufacturing method is partially three-dimensionalized by Ti—O—Ti bonds, and the titanium-containing aqueous liquid (A) obtained by reacting this gel with hydrogen peroxide is composition and stable. Sex is essentially different.

また、加水分解性チタン化合物aを用いたチタン含有水性液(A)を80℃以上で加熱処理又はオートクレーブ処理すると、結晶化した酸化チタンの超微粒子を含む酸化チタン分散液が得られる。前記加熱処理又はオートクレーブ処理が80℃未満では、酸化チタンの結晶化が十分に進まない。すなわち、前記加熱処理又はオートクレーブ処理を80℃以上で行えば、酸化チタンの結晶化が十分に進行させることができる。このようにして製造された酸化チタン分散液の酸化チタン超微粒子の平均粒子径は10nm以下、好ましくは1〜6nm程度とすることが望ましい。酸化チタン超微粒子の平均粒子径が10nmより大きくなると造膜性が低下する(塗布後乾燥して皮膜とした場合、膜厚1μm以上でワレを生じる)ので好ましくない。すなわち、酸化チタン超微粒子の平均粒子径を10nm以下とすると造膜性が優れる(塗布後乾燥して皮膜とした場合、膜厚1μm以上でワレを生じることがない)ので好ましい。また、酸化チタン超微粒子の平均粒子径が1nm以上であれば、表面処理組成物を粘度が高くならない状態に維持できるので好ましい。この酸化チタン分散液の外観は半透明状のものである。このような酸化チタン分散液も、チタン含有水性液(A)として使用することができる。   Further, when the titanium-containing aqueous liquid (A) using the hydrolyzable titanium compound a is heated or autoclaved at 80 ° C. or higher, a titanium oxide dispersion containing ultrafine particles of crystallized titanium oxide is obtained. When the heat treatment or autoclave treatment is less than 80 ° C., crystallization of titanium oxide does not proceed sufficiently. That is, if the heat treatment or autoclave treatment is performed at 80 ° C. or higher, crystallization of titanium oxide can be sufficiently advanced. The average particle diameter of the titanium oxide ultrafine particles of the titanium oxide dispersion produced in this manner is 10 nm or less, preferably about 1 to 6 nm. When the average particle diameter of the titanium oxide ultrafine particles is larger than 10 nm, the film forming property is deteriorated (when the film is dried after coating to form a film, cracking occurs at a film thickness of 1 μm or more), which is not preferable. That is, when the average particle diameter of the titanium oxide ultrafine particles is 10 nm or less, the film-forming property is excellent (when the film is dried after coating to form a film, cracking does not occur when the film thickness is 1 μm or more). Moreover, if the average particle diameter of the titanium oxide ultrafine particles is 1 nm or more, it is preferable because the surface treatment composition can be maintained in a state where the viscosity does not increase. The appearance of this titanium oxide dispersion is translucent. Such a titanium oxide dispersion can also be used as the titanium-containing aqueous liquid (A).

加水分解性チタン化合物aを用いたチタン含有水性液(A)を含む表面処理組成物(H)を、めっき鋼板表面に塗布・乾燥(例えば、低温で加熱乾燥)することにより、それ自体で付着性に優れた緻密な酸化チタン含有皮膜(表面処理皮膜)を形成することができる。
表面処理組成物(H)を塗布した後の鋼板の加熱温度としては、例えば200℃以下、特に150℃以下が好ましく、このような温度で加熱乾燥することにより、水酸基を若干含む非晶質(アモルファス)の酸化チタン含有皮膜が形成できる。
また、上記したような80℃以上の加熱処理又はオートクレーブ処理を経て得られた酸化チタン分散液をチタン含有水性液(A)として用いた場合、表面処理組成物(H)を塗布するだけで結晶性の酸化チタン含有皮膜が形成できるため、加熱処理できない材料のコーティング材として有用である。
The surface treatment composition (H) containing the titanium-containing aqueous liquid (A) using the hydrolyzable titanium compound a is applied to the surface of the plated steel plate and dried (for example, heat-dried at a low temperature), thereby adhering to itself. A dense titanium oxide-containing film (surface treatment film) having excellent properties can be formed.
The heating temperature of the steel sheet after the application of the surface treatment composition (H) is, for example, preferably 200 ° C. or lower, particularly preferably 150 ° C. or lower. Amorphous) titanium oxide-containing film can be formed.
In addition, when the titanium oxide dispersion obtained through the heat treatment or autoclave treatment as described above at 80 ° C. or more is used as the titanium-containing aqueous liquid (A), the crystal can be obtained by simply applying the surface treatment composition (H). It is useful as a coating material for materials that cannot be heat-treated.

また、チタン含有水性液(A)としては、酸化チタンゾルの存在下で、加水分解性チタン化合物aと過酸化水素水とを反応させて得られるチタン含有水性液(A1)を使用することもできる。
前記酸化チタンゾルは、無定型チタニア微粒子又は/及びアナタース型チタニア微粒子が水(必要に応じて、例えばアルコール系、アルコールエーテル系などの水性有機溶剤を添加してもよい)に分散したゾルである。この酸化チタンゾルとしては、従来公知のものを使用することができ、例えば、(i)硫酸チタンや硫酸チタニルなどの含チタン溶液を加水分解して得られる酸化チタン凝集物、(ii)チタンアルコキシドなどの有機チタン化合物を加水分解して得られる酸化チタン凝集物、(iii)四塩化チタンなどのハロゲン化チタン溶液を加水分解又は中和して得られる酸化チタン凝集物、などの酸化チタン凝集物を水に分散した無定型チタニアゾル、或いは前記酸化チタン凝集物を焼成してアナタース型チタン微粒子とし、このものを水に分散したゾルを使用することができる。
Further, as the titanium-containing aqueous liquid (A), a titanium-containing aqueous liquid (A1) obtained by reacting the hydrolyzable titanium compound a with hydrogen peroxide in the presence of a titanium oxide sol can also be used. .
The titanium oxide sol is a sol in which amorphous titania fine particles and / or anatase type titania fine particles are dispersed in water (for example, an aqueous organic solvent such as an alcohol or alcohol ether may be added if necessary). As this titanium oxide sol, conventionally known ones can be used. For example, (i) a titanium oxide aggregate obtained by hydrolyzing a titanium-containing solution such as titanium sulfate or titanyl sulfate, (ii) titanium alkoxide, etc. Titanium oxide aggregates obtained by hydrolyzing organic titanium compounds of the above, (iii) Titanium oxide aggregates obtained by hydrolyzing or neutralizing titanium halide solutions such as titanium tetrachloride, etc. An amorphous titania sol dispersed in water, or a sol in which the titanium oxide aggregates are calcined to form anatase-type titanium fine particles and this is dispersed in water can be used.

前記無定形チタニアの焼成では、少なくともアナタースの結晶化温度以上の温度、例えば、400℃〜500℃以上の温度で焼成すれば、無定形チタニアをアナタース型チタニアに変換させることができる。この酸化チタンの水性ゾルとしては、例えば、TKS−201(商品名,テイカ社製,アナタース型結晶形,平均粒子径6nm)、TA−15(商品名,日産化学社製,アナタース型結晶形)、STS−11(商品名,石原産業社製,アナタース型結晶形)などが挙げられる。
チタン含有水性液(A1)において、上記酸化チタンゾルxとチタン過酸化水素反応物y(加水分解性チタン化合物aと過酸化水素水との反応生成物)との質量比率x/yは、1/99〜99/1、好ましくは約10/90〜90/10の範囲が適当である。質量比率x/yが1/99未満では、安定性、光反応性などの点において酸化チタンゾルを添加した効果が十分に得られず、一方、99/1を超えると造膜性が劣るので好ましくない。すなわち、質量比率x/yが1/99以上であれば、安定性、光反応性などの点において酸化チタンゾルを添加した効果が十分に得られ、一方、99/1以下であれば、優れた造膜性が得られるので好ましい。
In the firing of the amorphous titania, the amorphous titania can be converted into anatase titania by firing at a temperature at least higher than the crystallization temperature of anatase, for example, 400 ° C. to 500 ° C. or more. Examples of the aqueous sol of titanium oxide include, for example, TKS-201 (trade name, manufactured by TEIKA CORPORATION, anatase crystal form, average particle diameter 6 nm), TA-15 (trade name, manufactured by NISSAN CHEMICAL CO., LTD., Anatase crystal form). STS-11 (trade name, manufactured by Ishihara Sangyo Co., Ltd., anatase type crystal form) and the like.
In the titanium-containing aqueous liquid (A1), the mass ratio x / y between the titanium oxide sol x and the titanium hydrogen peroxide reactant y (reaction product of the hydrolyzable titanium compound a and hydrogen peroxide solution) is 1 / A range of 99 to 99/1, preferably about 10/90 to 90/10 is suitable. If the mass ratio x / y is less than 1/99, the effect of adding the titanium oxide sol cannot be sufficiently obtained in terms of stability, photoreactivity, etc. On the other hand, if it exceeds 99/1, the film forming property is inferior. Absent. That is, if the mass ratio x / y is 1/99 or more, the effect of adding the titanium oxide sol can be sufficiently obtained in terms of stability, photoreactivity, and the like, and if it is 99/1 or less, it is excellent. Since film forming property is obtained, it is preferable.

チタン含有水性液(A1)は、酸化チタンゾルの存在下で加水分解性チタン化合物aを過酸化水素水と反応温度1〜70℃で10分間〜20時間程度反応させることにより得ることができる。
チタン含有水性液(A1)の生成形態やその特性は、さきに述べた加水分解性チタン化合物aを用いたチタン含有水性液(A)と同様であるが、特に、酸化チタンゾルを使用することにより、合成時に一部縮合反応が起きて増粘するのが抑えられる。その理由は、縮合反応物が酸化チタンゾルの表面に吸着され、溶液状態での高分子化が抑えられるためであると考えられる。
The titanium-containing aqueous liquid (A1) can be obtained by reacting the hydrolyzable titanium compound a with hydrogen peroxide at a reaction temperature of 1 to 70 ° C. for about 10 minutes to 20 hours in the presence of a titanium oxide sol.
The production form and characteristics of the titanium-containing aqueous liquid (A1) are the same as those of the titanium-containing aqueous liquid (A) using the hydrolyzable titanium compound a described above, but in particular, by using a titanium oxide sol. , It is possible to suppress a partial condensation reaction during the synthesis to increase the viscosity. The reason is considered to be that the condensation reaction product is adsorbed on the surface of the titanium oxide sol, and polymerization in a solution state is suppressed.

また、チタン含有水性液(A1)を80℃以上で加熱処理又はオートクレーブ処理すると、結晶化した酸化チタンの超微粒子を含む酸化チタン分散液が得られる。この酸化チタン分散液を得るための温度条件、結晶化した酸化チタン超微粒子の粒子径、分散液の外観なども、さきに述べた加水分解性チタン化合物aを用いたチタン含有水性液(A)と同様である。このような酸化チタン分散液も、チタン含有水性液(A1)として使用することができる。   Further, when the titanium-containing aqueous liquid (A1) is heated or autoclaved at 80 ° C. or higher, a titanium oxide dispersion containing ultrafine particles of crystallized titanium oxide is obtained. The titanium-containing aqueous liquid (A) using the hydrolyzable titanium compound a described above also describes the temperature conditions for obtaining this titanium oxide dispersion, the particle diameter of the crystallized titanium oxide ultrafine particles, the appearance of the dispersion, etc. It is the same. Such a titanium oxide dispersion can also be used as the titanium-containing aqueous liquid (A1).

さきに述べた加水分解性チタン化合物aを用いたチタン含有水性液(A)と同様、チタン含有水性液(A1)を含む表面処理組成物(H)を、めっき鋼板表面に塗布・乾燥(例えば、低温で加熱乾燥)することにより、それ自体で付着性に優れた緻密な酸化チタン含有皮膜(表面処理皮膜)を形成することができる。
表面処理組成物(H)を塗布した後の鋼板の加熱温度としては、例えば200℃以下、特に150℃以下が好ましく、このような温度で加熱乾燥することにより、水酸基を若干含むアナタース型の酸化チタン含有皮膜が形成できる。
以上述べたように、チタン含有水性液(A)の中でも、加水分解性チタン化合物aを用いたチタン含有水性液(A)やチタン含有水性液(A1)は、貯蔵安定性、耐食性などに優れた性能を有するので、本発明ではこれらを使用することが特に好ましい。
Similar to the titanium-containing aqueous liquid (A) using the hydrolyzable titanium compound a described above, the surface treatment composition (H) containing the titanium-containing aqueous liquid (A1) is applied to the surface of the plated steel sheet and dried (for example, By heating and drying at a low temperature, it is possible to form a dense titanium oxide-containing film (surface-treated film) having excellent adhesion by itself.
The heating temperature of the steel sheet after the application of the surface treatment composition (H) is, for example, 200 ° C. or less, particularly preferably 150 ° C. or less. By heating and drying at such a temperature, anatase-type oxidation slightly containing hydroxyl groups A titanium-containing film can be formed.
As described above, of the titanium-containing aqueous liquid (A), the titanium-containing aqueous liquid (A) and the titanium-containing aqueous liquid (A1) using the hydrolyzable titanium compound a are excellent in storage stability, corrosion resistance, and the like. It is particularly preferable to use these in the present invention.

加水分解性チタン化合物、加水分解性チタン化合物の低縮合物、水酸化チタン、水酸化チタンの低縮合物の中から選ばれる少なくとも1種のチタン化合物に対する過酸化水素水の配合割合は、チタン化合物10質量部に対して過酸化水素換算で0.1〜100質量部、望ましく1〜20質量部とすることが好ましい。過酸化水素水の配合割合が過酸化水素換算で0.1質量部未満では、キレート形成が十分でないため白濁沈殿が生じてしまう。一方、100質量部を超えると未反応の過酸化水素が残存し易く、貯蔵中に危険な活性酸素を放出するので好ましくない。すなわち、過酸化水素水の配合割合が過酸化水素換算で0.1質量部以上であれば、キレート形成が十分であるため白濁沈殿が生じることがなく、一方、100質量部以下であれば、未反応の過酸化水素が残存することがなく、貯蔵中に活性酸素を放出することがないので好ましい。   The compounding ratio of hydrogen peroxide water to at least one titanium compound selected from hydrolyzable titanium compounds, hydrolyzable titanium compound low condensates, titanium hydroxide, titanium hydroxide low condensates is titanium compounds It is preferably 0.1 to 100 parts by mass, preferably 1 to 20 parts by mass in terms of hydrogen peroxide with respect to 10 parts by mass. If the blending ratio of the hydrogen peroxide solution is less than 0.1 parts by mass in terms of hydrogen peroxide, chelate formation is not sufficient and white turbid precipitation occurs. On the other hand, if it exceeds 100 parts by mass, unreacted hydrogen peroxide tends to remain, and dangerous active oxygen is released during storage, which is not preferable. That is, if the blending ratio of hydrogen peroxide water is 0.1 parts by mass or more in terms of hydrogen peroxide, chelate formation is sufficient, so that no cloudy precipitation occurs. It is preferable because unreacted hydrogen peroxide does not remain and active oxygen is not released during storage.

過酸化水素水の過酸化水素濃度は特に限定されないが、3〜30質量%程度であることが、取り扱いやすさ、塗装作業性に関係する生成液の固形分の点で好ましい。
チタン含有水性液(A)には、必要に応じて、他のゾルや顔料を添加分散させることもできる。例えば、添加物としては、市販の酸化チタンゾルや酸化チタン粉末、マイカ、タルク、シリカ、バリタ、クレーなどが挙げられ、これらの1種以上を添加することができる。
表面処理組成物(H)中でのチタン含有水性液(A)の添加量は、処理液安定性の観点から、固形分の割合で10〜60質量%とする。チタン含有水性液(A)の添加量(固形分割合)が10質量%未満、60質量%超のいずれの場合も処理液安定性が劣る。また、以上の観点から、チタン含有水性液(A)の添加量の好ましい下限は15質量%、より好ましくは20質量%であり、好ましい上限は50質量%である。
The hydrogen peroxide concentration of the hydrogen peroxide solution is not particularly limited, but it is preferably about 3 to 30% by mass from the viewpoint of ease of handling and the solid content of the product liquid related to coating workability.
Other sols and pigments can be added and dispersed in the titanium-containing aqueous liquid (A) as necessary. Examples of the additive include commercially available titanium oxide sol, titanium oxide powder, mica, talc, silica, barita, clay, and the like, and one or more of these can be added.
The addition amount of the titanium-containing aqueous liquid (A) in the surface treatment composition (H) is 10 to 60% by mass in terms of solid content from the viewpoint of the stability of the treatment liquid. Treatment liquid stability is inferior in any case where the amount of titanium-containing aqueous liquid (A) added (solid content ratio) is less than 10 mass% or more than 60 mass%. From the above viewpoint, the preferable lower limit of the addition amount of the titanium-containing aqueous liquid (A) is 15% by mass, more preferably 20% by mass, and the preferable upper limit is 50% by mass.

前記ニッケル化合物又は/及びコバルト化合物(B)は耐黒変性向上のために配合されるものであり、ニッケル化合物としては、例えば、酢酸ニッケル、硝酸ニッケル、硫酸ニッケルなどが、また、コバルト化合物としては、酢酸コバルト、硝酸コバルト、硫酸コバルトなどが挙げられ、これらの1種又は2種以上を用いることができる。なかでも、酢酸ニッケル、酢酸コバルトが耐黒変性と耐食性の両立の観点から好適である。
表面処理組成物(H)中でのニッケル化合物又は/及びコバルト化合物(B)の添加量は、耐黒変性と耐食性を両立させるという観点から、固形分の割合で0.01〜1質量%、好ましくは0.05〜0.7質量%とする。ニッケル化合物又は/及びコバルト化合物(B)の添加量が0.01質量%未満では耐黒変性の改善効果が十分に得られず、一方、1質量%を超えると耐食性が低下してしまう。
The nickel compound and / or cobalt compound (B) is blended for improving blackening resistance. Examples of the nickel compound include nickel acetate, nickel nitrate, nickel sulfate, and the cobalt compound. , Cobalt acetate, cobalt nitrate, cobalt sulfate and the like, and one or more of these can be used. Among these, nickel acetate and cobalt acetate are preferable from the viewpoint of both blackening resistance and corrosion resistance.
The addition amount of the nickel compound and / or cobalt compound (B) in the surface treatment composition (H) is 0.01 to 1% by mass in terms of solid content from the viewpoint of achieving both blackening resistance and corrosion resistance. Preferably it is 0.05-0.7 mass%. If the addition amount of the nickel compound and / or cobalt compound (B) is less than 0.01% by mass, the effect of improving blackening resistance cannot be sufficiently obtained, while if it exceeds 1% by mass, the corrosion resistance is lowered.

前記弗素含有化合物(C)は、耐食性向上の観点から、処理液(表面処理組成物)とめっき表面との反応性を高め、緻密な反応層を形成するために配合されるものである。弗素含有化合物(C)としては、例えば、ジルコン弗化アンモニウム、ジルコン弗化カリウム、ジルコン弗化水素酸、チタン弗化アンモニウム、弗化水素酸、弗化水素酸アンモニウムなどが挙げられ、これらの1種又は2種以上を用いることができる。なかでも、耐食性と耐黒変性を両立させるという観点からは、ジルコン弗化アンモニウム、ジルコン弗化水素酸の中から選ばれる少なくとも1種を用いること好ましい。   The fluorine-containing compound (C) is blended in order to enhance the reactivity between the treatment liquid (surface treatment composition) and the plating surface and form a dense reaction layer from the viewpoint of improving the corrosion resistance. Examples of the fluorine-containing compound (C) include zircon ammonium fluoride, zircon potassium fluoride, zircon hydrofluoric acid, titanium ammonium fluoride, hydrofluoric acid, and ammonium hydrofluoride. Species or two or more can be used. Among these, from the viewpoint of achieving both corrosion resistance and blackening resistance, it is preferable to use at least one selected from zircon ammonium fluoride and zircon hydrofluoric acid.

表面処理組成物(H)中での弗素含有化合物(C)の添加量は、固形分の割合で1〜80質量%とする。弗素含有化合物(C)の添加量が1質量%未満では、処理液とめっき表面との反応性が劣る結果、十分な耐食性が得られず、また、耐黒変性も向上しない。一方、80質量%を超えると、処理液のエッチング性が高くなる結果、めっき表面が過剰にエッチングされ、却って耐食性が劣化してしまう。以上の観点から、弗素含有化合物(C)の添加量の好ましい下限は3質量%、より好ましくは10質量%、特に好ましくは20質量%である。同様に、好ましい上限は70質量%、より好ましくは60質量%である。   The addition amount of the fluorine-containing compound (C) in the surface treatment composition (H) is 1 to 80% by mass in terms of solid content. When the addition amount of the fluorine-containing compound (C) is less than 1% by mass, the reactivity between the treatment liquid and the plating surface is poor, so that sufficient corrosion resistance cannot be obtained and blackening resistance is not improved. On the other hand, if it exceeds 80% by mass, the etching property of the treatment liquid becomes high. As a result, the plating surface is excessively etched, and the corrosion resistance is deteriorated. From the above viewpoint, the preferable lower limit of the addition amount of the fluorine-containing compound (C) is 3% by mass, more preferably 10% by mass, and particularly preferably 20% by mass. Similarly, a preferable upper limit is 70 mass%, More preferably, it is 60 mass%.

本発明で用いる表面処理組成物(H)は、以上述べたようなチタン含有水性液(A)、ニッケル化合物又は/及びコバルト化合物(B)、及び弗素含有化合物(C)を必須とするものであるが、さらに必要に応じて、有機リン酸化合物(D)、バナジン酸化合物(E)、炭酸ジルコニウム化合物(F)、水溶性有機樹脂又は/及び水分散性有機樹脂(G)のうちの1種以上を含有することができる。
前記有機リン酸化合物(D)としては、例えば、1−ヒドロキシメタン−1,1−ジホスホン酸、1−ヒドロキシエタン−1,1−ジホスホン酸、1−ヒドロキシプロパン−1,1−ジホスホン酸などのヒドロキシル基含有有機亜リン酸;2−ヒドロキシホスホノ酢酸、2−ホスホノブタン−1,2,4−トリカルボン酸などのカルボキシル基含有有機亜リン酸、及びこれらの塩などが好適なものとして挙げられ、これらの1種又は2種以上を用いることができる。
The surface treatment composition (H) used in the present invention essentially comprises the titanium-containing aqueous liquid (A), nickel compound or / and cobalt compound (B), and fluorine-containing compound (C) as described above. If necessary, one of the organic phosphate compound (D), vanadic acid compound (E), zirconium carbonate compound (F), water-soluble organic resin and / or water-dispersible organic resin (G). More than seeds can be contained.
Examples of the organic phosphate compound (D) include 1-hydroxymethane-1,1-diphosphonic acid, 1-hydroxyethane-1,1-diphosphonic acid, 1-hydroxypropane-1,1-diphosphonic acid, and the like. Suitable examples include hydroxyl group-containing organic phosphorous acid; carboxyl group-containing organic phosphorous acid such as 2-hydroxyphosphonoacetic acid, 2-phosphonobutane-1,2,4-tricarboxylic acid, and salts thereof. These 1 type (s) or 2 or more types can be used.

有機リン酸化合物(D)は、チタン含有水性液(A)の貯蔵安定性を向上させる効果を有し、なかでも、1−ヒドロキシエタン−1,1−ジホスホン酸はその効果が特に大きいことから、これを使用するのが特に好ましい。
表面処理組成物(H)中での有機リン酸化合物(D)の添加量は、固形分の割合で10〜60質量%であることが、チタン含有水性液(A)の貯蔵安定性や耐水付着性などの点から好ましい。有機リン酸化合物(D)の添加量が10質量%未満では、チタン含有水性液(A)の貯蔵安定性の改善効果が少ない。一方、60質量%を超えると、リン酸が過剰に存在する結果、耐水性が劣化してしまう。すなわち、有機リン酸化合物(D)の添加量が10質量%以上であれば、チタン含有水性液(A)の貯蔵安定性の改善効果が十分に得られ、一方、60質量%以下であれば、リン酸が過剰に存在することがないため、耐水性が劣化することもない。有機リン酸化合物(D)のより好ましい添加量は、20〜50質量%である。
The organic phosphoric acid compound (D) has an effect of improving the storage stability of the titanium-containing aqueous liquid (A). Among them, 1-hydroxyethane-1,1-diphosphonic acid has a particularly large effect. It is particularly preferred to use this.
The addition amount of the organic phosphoric acid compound (D) in the surface treatment composition (H) is 10 to 60% by mass in terms of the solid content, and the storage stability and water resistance of the titanium-containing aqueous liquid (A). It is preferable from the viewpoint of adhesion. When the addition amount of the organic phosphate compound (D) is less than 10% by mass, the effect of improving the storage stability of the titanium-containing aqueous liquid (A) is small. On the other hand, when it exceeds 60 mass%, phosphoric acid exists excessively, resulting in deterioration of water resistance. That is, if the amount of the organic phosphate compound (D) added is 10% by mass or more, the effect of improving the storage stability of the titanium-containing aqueous liquid (A) can be sufficiently obtained. Further, since phosphoric acid is not excessively present, the water resistance is not deteriorated. The more preferable addition amount of the organic phosphoric acid compound (D) is 20 to 50% by mass.

前記バナジン酸化合物(E)としては、例えば、メタバナジン酸リチウム、メタバナジン酸カリウム、メタバナジン酸ナトリウム、メタバナジン酸アンモニウム、無水バナジン酸などが挙げられ、これらの1種又は2種以上を用いることができる。なかでも、メタバナジン酸アンモニウムが耐水付着性などの点から好ましい。
表面処理組成物(H)中でのバナジン酸化合物(E)の添加量は、固形分の割合で0.1〜30質量%であることが、アルカリ脱脂後耐食性の点から好ましい。バナジン酸化合物(E)の添加量が0.1質量%未満であると、アルカリ脱脂後の耐食性の改善効果が不十分である。一方、30質量%を超えると、Vが過剰に存在するため十分な耐食性を発現できない。すなわち、バナジン酸化合物(E)の添加量が0.1質量%以上であれば、アルカリ脱脂後の耐食性の改善効果が十分に得られ、一方、30質量%以下であれば、Vが過剰に存在することがないため十分な耐食性を発現できる。バナジン酸化合物(E)のより好ましい添加量は、0.5〜20質量%である。
Examples of the vanadate compound (E) include lithium metavanadate, potassium metavanadate, sodium metavanadate, ammonium metavanadate, and anhydrous vanadate, and one or more of these can be used. Of these, ammonium metavanadate is preferable from the viewpoint of water adhesion resistance.
The addition amount of the vanadic acid compound (E) in the surface treatment composition (H) is preferably 0.1 to 30% by mass in terms of solid content from the viewpoint of corrosion resistance after alkaline degreasing. When the addition amount of the vanadic acid compound (E) is less than 0.1% by mass, the effect of improving the corrosion resistance after alkaline degreasing is insufficient. On the other hand, when it exceeds 30 mass%, since V exists excessively, sufficient corrosion resistance cannot be expressed. That is, if the addition amount of the vanadic acid compound (E) is 0.1% by mass or more, the effect of improving the corrosion resistance after alkaline degreasing can be sufficiently obtained. On the other hand, if it is 30% by mass or less, V is excessive. Since it does not exist, sufficient corrosion resistance can be expressed. A more preferable addition amount of the vanadic acid compound (E) is 0.5 to 20% by mass.

前記炭酸ジルコニウム化合物(F)としては、炭酸ジルコニウムのナトリウム、カリウム、リチウム、アンモニウムなどの塩が挙げられ、これらの1種又は2種以上を用いることができる。なかでも、炭酸ジルコニウムアンモニウムが耐水付着性などの点から好ましい。
表面処理組成物(H)中での炭酸ジルコニウム化合物(F)の添加量は、固形分の割合で0.1〜20質量%であることが、耐食性などの点から好ましい。炭酸ジルコニウム化合物(F)の添加量が0.1質量%未満であると、耐食性の改善効果が不十分である。一方、20質量%を超えると、Zrが過剰に存在するため十分な耐食性を発現できない。すなわち、炭酸ジルコニウム化合物(F)の添加量が0.1質量%以上であれば、耐食性の改善効果が十分に得られ、一方、20質量%以下であれば、Zrが過剰に存在することがないため十分な耐食性を発現できる。炭酸ジルコニウム化合物(F)のより好ましい添加量は、0.2〜15質量%である。
Examples of the zirconium carbonate compound (F) include salts of zirconium carbonate such as sodium, potassium, lithium, and ammonium, and one or more of these can be used. Of these, ammonium zirconium carbonate is preferable from the viewpoint of water-resistant adhesion.
The addition amount of the zirconium carbonate compound (F) in the surface treatment composition (H) is preferably 0.1 to 20% by mass in terms of solid content from the viewpoint of corrosion resistance and the like. When the added amount of the zirconium carbonate compound (F) is less than 0.1% by mass, the effect of improving the corrosion resistance is insufficient. On the other hand, when it exceeds 20% by mass, Zr is excessively present, so that sufficient corrosion resistance cannot be exhibited. That is, if the addition amount of the zirconium carbonate compound (F) is 0.1% by mass or more, the effect of improving the corrosion resistance is sufficiently obtained. On the other hand, if it is 20% by mass or less, Zr may be excessively present. Therefore, sufficient corrosion resistance can be expressed. A more preferable addition amount of the zirconium carbonate compound (F) is 0.2 to 15% by mass.

前記水溶性有機樹脂又は/及び水分散性有機樹脂(G)は、水に溶解又は分散することのできる有機樹脂であり、有機樹脂を水に水溶化又は分散化させる方法としては、従来公知の方法を適用することができる。具体的には、有機樹脂として、単独で水溶化や水分散化できる官能基(例えば、水酸基、ポリオキシアルキレン基、カルボキシル基、アミノ(イミノ)基、スルフィド基、ホスフィン基など)を含有するもの、及び必要に応じてそれらの官能基の一部又は全部を、酸性樹脂(カルボキシル基含有樹脂など)であればエタノールアミン、トリエチルアミンなどのアミン化合物;アンモニア水;水酸化リチウム、水酸化ナトリウム、水酸化カリウムなどのアルカリ金属水酸化物で中和したもの、また、塩基性樹脂(アミノ基含有樹脂など)であれば、酢酸、乳酸などの脂肪酸;リン酸などの鉱酸で中和したものなどを使用することができる。   The water-soluble organic resin and / or water-dispersible organic resin (G) is an organic resin that can be dissolved or dispersed in water, and a conventionally known method for water-solubilizing or dispersing an organic resin in water. The method can be applied. Specifically, the organic resin contains a functional group (for example, a hydroxyl group, a polyoxyalkylene group, a carboxyl group, an amino (imino) group, a sulfide group, a phosphine group, etc.) that can be water-soluble or water-dispersed independently. , And if necessary, part or all of these functional groups are amine compounds such as ethanolamine and triethylamine if acidic resin (carboxyl group-containing resin, etc.); ammonia water; lithium hydroxide, sodium hydroxide, water Neutralized with alkali metal hydroxides such as potassium oxide, and fatty acids such as acetic acid and lactic acid for basic resins (amino group-containing resins); those neutralized with mineral acids such as phosphoric acid Can be used.

水溶性又は水分散性有機樹脂としては、例えば、エポキシ系樹脂、フェノール系樹脂、アクリル系樹脂、ウレタン系樹脂、オレフィン−カルボン酸系樹脂、ナイロン系樹脂、ポリオキシアルキレン鎖を有する樹脂、ポリビニルアルコール、ポリグリセリン、カルボキシメチルセルロース、ヒドロキシメチルセルロース、ヒドロキシエチルセルロースなどが挙げられる。上記有機樹脂は1種又は2種以上を用いることができる。
これらのなかでも特に、水溶性又は水分散性のアクリル系樹脂、ウレタン系樹脂及びエポキシ系樹脂の中から選ばれる少なくとも1種の有機樹脂を用いることが表面処理組成物の貯蔵安定性の面から好ましく、また特に、水溶性又は水分散性のアクリル系樹脂やウレタン系樹脂を主成分として用いることが、表面処理組成物の貯蔵安定性と塗膜性能とのバランスの面から好ましい。さらに、加工部塗料密着性を確保するためには、Tgが50℃未満のウレタン樹脂を用いることが好ましい。
Examples of water-soluble or water-dispersible organic resins include epoxy resins, phenolic resins, acrylic resins, urethane resins, olefin-carboxylic acid resins, nylon resins, resins having a polyoxyalkylene chain, and polyvinyl alcohol. , Polyglycerin, carboxymethylcellulose, hydroxymethylcellulose, hydroxyethylcellulose and the like. The said organic resin can use 1 type (s) or 2 or more types.
Among these, the use of at least one organic resin selected from water-soluble or water-dispersible acrylic resins, urethane resins, and epoxy resins from the viewpoint of storage stability of the surface treatment composition. In particular, it is preferable to use a water-soluble or water-dispersible acrylic resin or urethane resin as a main component from the viewpoint of the balance between the storage stability of the surface treatment composition and the coating film performance. Furthermore, in order to ensure the processed part paint adhesion, it is preferable to use a urethane resin having a Tg of less than 50 ° C.

水溶性又は水分散性アクリル樹脂は、従来公知の方法、例えば、乳化重合法、懸濁重合法、親水性の基を有する重合体を溶液重合により合成し、必要に応じて中和、水性化する方法などにより得ることができる。
前記親水性の基を有する重合体は、例えば、カルボキシル基、アミノ基、水酸基、ポリオキシアルキレン基などの親水性の基を有する不飽和単量体、必要に応じて、さらにその他の不飽和単量体を重合させることにより得ることができる。
水溶性又は水分散性アクリル樹脂は、耐食性などの点からスチレンを共重合してなるものが好ましく、全不飽和単量体中のスチレンの量は10〜60質量%、特に15〜50質量%であることが好ましい。また、共重合して得られるアクリル樹脂のTg(ガラス転移点)は30〜80℃、特に40〜70℃であることが、得られる皮膜の強靭性などの点から好ましい。
A water-soluble or water-dispersible acrylic resin is prepared by a conventionally known method, for example, an emulsion polymerization method, a suspension polymerization method, a polymer having a hydrophilic group by solution polymerization, and neutralized or made aqueous if necessary. Or the like.
The polymer having a hydrophilic group includes, for example, an unsaturated monomer having a hydrophilic group such as a carboxyl group, an amino group, a hydroxyl group, and a polyoxyalkylene group, and, if necessary, other unsaturated monomers. It can be obtained by polymerizing the monomer.
The water-soluble or water-dispersible acrylic resin is preferably one obtained by copolymerizing styrene from the viewpoint of corrosion resistance, and the amount of styrene in the total unsaturated monomer is 10 to 60% by mass, particularly 15 to 50% by mass. It is preferable that Moreover, it is preferable from points, such as toughness of the film obtained, that Tg (glass transition point) of the acrylic resin obtained by copolymerization is 30-80 degreeC, especially 40-70 degreeC.

前記カルボキシル基含有不飽和単量体としては、アクリル酸、メタクリル酸、マレイン酸、無水マレイン酸、クロトン酸、イタコン酸などが挙げられる。
前記アミノ基含有不飽和単量体などのような含窒素不飽和単量体としては、N,N−ジメチルアミノエチル(メタ)アクリレート、N,N−ジエチルアミノエチル(メタ)アクリレート、N−t−ブチルアミノエチル(メタ)アクリレートなどの含窒素アルキル(メタ)アクリレート;アクリルアミド、メタクリルアミド、N−メチル(メタ)アクリルアミド、N−エチル(メタ)アクリルアミド、N−メチロール(メタ)アクリルアミド、N−メトキシメチル(メタ)アクリルアミド、N−ブトキシメチル(メタ)アクリルアミド、N,N−ジメチル(メタ)アクリルアミド、N,N−ジメチルアミノプロピル(メタ)アクリルアミド、N,N−ジメチルアミノエチル(メタ)アクリルアミドなどの重合性アミド類;2−ビニルピリジン、1−ビニル−2−ピロリドン、4−ビニルピリジンなどの芳香族含窒素モノマー;アリルアミンなどが挙げられる。
Examples of the carboxyl group-containing unsaturated monomer include acrylic acid, methacrylic acid, maleic acid, maleic anhydride, crotonic acid, and itaconic acid.
Examples of the nitrogen-containing unsaturated monomer such as the amino group-containing unsaturated monomer include N, N-dimethylaminoethyl (meth) acrylate, N, N-diethylaminoethyl (meth) acrylate, Nt- Nitrogen-containing alkyl (meth) acrylates such as butylaminoethyl (meth) acrylate; acrylamide, methacrylamide, N-methyl (meth) acrylamide, N-ethyl (meth) acrylamide, N-methylol (meth) acrylamide, N-methoxymethyl Polymerization of (meth) acrylamide, N-butoxymethyl (meth) acrylamide, N, N-dimethyl (meth) acrylamide, N, N-dimethylaminopropyl (meth) acrylamide, N, N-dimethylaminoethyl (meth) acrylamide, etc. Amides; 2-vinylpyridine, - vinyl-2-pyrrolidone, aromatic nitrogen-containing monomers such as 4-vinylpyridine; and allylamine and the like.

前記水酸基含有不飽和単量体としては、2−ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート、2,3−ジヒドロキシブチル(メタ)アクリレート、4−ヒドロキシブチル(メタ)アクリレート、ポリエチレングリコールモノ(メタ)アクリレート、ポリプロピレングリコールモノ(メタ)アクリレートなどの多価アルコールとアクリル酸又はメタクリル酸とのモノエステル化物;上記多価アルコールとアクリル酸又はメタクリル酸とのモノエステル化物にε−カプロラクトンを開環重合した化合物などが挙げられる。   Examples of the hydroxyl group-containing unsaturated monomer include 2-hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, 2,3-dihydroxybutyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, polyethylene glycol mono Monoesterified product of polyhydric alcohol such as (meth) acrylate, polypropylene glycol mono (meth) acrylate and acrylic acid or methacrylic acid; ε-caprolactone is opened to monoesterified product of polyhydric alcohol and acrylic acid or methacrylic acid. Examples include a ring-polymerized compound.

その他の不飽和単量体としては、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n−プロピル(メタ)アクリレート、イソプロピル(メタ)アクリレート、n−ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、tert−ブチル(メタ)アクリレート、2−エチルヘキシルアクリレート、n−オクチル(メタ)アクリレート、ラウリル(メタ)アクリレート、トリデシル(メタ)アクリレート、オクタデシル(メタ)アクリレート、イソステアリル(メタ)アクリレートなどの炭素数1〜24のアルキル(メタ)アクリレート;酢酸ビニルなどが挙げられる。
以上挙げた不飽和単量体は、1種又は2種以上を用いることができる。なお、本願の記載において、「(メタ)アクリレート」とは「アクリレート又はメタアクリレート」を意味する。
Other unsaturated monomers include methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, isopropyl (meth) acrylate, n-butyl (meth) acrylate, isobutyl (meth) acrylate, 1 carbon number such as tert-butyl (meth) acrylate, 2-ethylhexyl acrylate, n-octyl (meth) acrylate, lauryl (meth) acrylate, tridecyl (meth) acrylate, octadecyl (meth) acrylate, isostearyl (meth) acrylate -24 alkyl (meth) acrylates; vinyl acetate and the like.
The unsaturated monomer mentioned above can use 1 type (s) or 2 or more types. In the description of the present application, “(meth) acrylate” means “acrylate or methacrylate”.

前記ウレタン系樹脂としては、ポリエステルポリオール、ポリエーテルポリオールなどのポリオールとジイソシアネートからなるポリウレタンを必要に応じてジオール、ジアミンなどのような2個以上の活性水素を持つ低分子量化合物である鎖伸長剤の存在下で鎖伸長し、水中に安定に分散又は溶解させたものを好適に使用でき、従来公知のものを広く使用できる(例えば、特公昭42−24192号公報、特公昭42−24194号公報、特公昭42−5118号公報、特公昭49−986号公報、特公昭49−33104号公報、特公昭50−15027号公報、特公昭53−29175号公報参照)。   Examples of the urethane-based resin include a chain extender which is a low molecular weight compound having two or more active hydrogens such as a diol and a diamine as needed, and a polyurethane composed of a polyol and a diisocyanate such as polyester polyol and polyether polyol. Those which are chain-extended in the presence and stably dispersed or dissolved in water can be suitably used, and conventionally known ones can be widely used (for example, Japanese Patent Publication No. 42-24192, Japanese Patent Publication No. 42-24194, (See JP-B-42-5118, JP-B-49-986, JP-B-49-33104, JP-B-50-15027, JP-B-53-29175).

ポリウレタン樹脂を水中に安定に分散又は溶解させる方法としては、例えば下記の方法が利用できる。
(1)ポリウレタンポリマーの側鎖又は末端に水酸基、アミノ基、カルボキシル基などのイオン性基を導入することにより親水性を付与し、自己乳化により水中に分散又は溶解する方法。
(2)反応の完結したポリウレタンポリマー又は末端イソシアネート基をオキシム、アルコール、フェノール、メルカプタン、アミン、重亜硫酸ソーダなどのブロック剤でブロックしたポリウレタンポリマーを乳化剤と機械的剪断力を用いて強制的に水中に分散する方法。さらに、末端イソシアネート基を持つウレタンポリマーを水、乳化剤及び鎖伸長剤と混合し、機械的剪断力を用いて分散化と高分子量化を同時に行う方法。
(3)ポリウレタン主原料のポリオールとしてポリエチレングリコールのごとき水溶性ポリオールを使用し、水に可溶なポリウレタンとして水中に分散又は溶解する方法。
なお、ポリウレタン系樹脂は、上述した分散又は溶解方法のうち異なる方法で得られたものを混合して用いることもできる。
As a method for stably dispersing or dissolving the polyurethane resin in water, for example, the following method can be used.
(1) A method of imparting hydrophilicity by introducing an ionic group such as a hydroxyl group, an amino group or a carboxyl group into the side chain or terminal of a polyurethane polymer, and dispersing or dissolving in water by self-emulsification.
(2) A polyurethane polymer that has been completely reacted or a polyurethane polymer in which a terminal isocyanate group has been blocked with a blocking agent such as oxime, alcohol, phenol, mercaptan, amine, or sodium bisulfite is forcibly used in an emulsifier and mechanical shearing force. How to disperse. Further, a method in which a urethane polymer having a terminal isocyanate group is mixed with water, an emulsifier and a chain extender, and dispersion and high molecular weight are simultaneously performed using mechanical shearing force.
(3) A method in which a water-soluble polyol such as polyethylene glycol is used as a polyol as a main polyurethane material, and is dispersed or dissolved in water as a water-soluble polyurethane.
In addition, what was obtained by the different method among the dispersion | distribution or melt | dissolution methods mentioned above can also mix and use a polyurethane-type resin.

前記ポリウレタン系樹脂の合成に使用できるジイソシアネートとしては、芳香族、脂環族又は脂肪族のジイソシアネートが挙げられ、具体的には、ヘキサメチレンジイソシアネート、テトラメチレンジイソシアネート、3,3′−ジメトキシ−4,4′−ビフェニレンジイソシアネート、p−キシリレンジイソシアネート、m−キシリレンジイソシアネート、1,3−(ジイソシアナトメチル)シクロヘキサノン、1,4−(ジイソシアナトメチル)シクロヘキサノン、4,4′−ジイソシアナトシクロヘキサノン、4,4′−メチレンビス(シクロヘキシルイソシアネート)、イソホロンジイソシアネート、2,4−トリレンジイソシアネート、2,6−トリレンジイソシアネート、p−フェニレンジイソシアネート、ジフェニルメタンジイソシアネート、m−フェニレンジイソシアネート、2,4−ナフタレンジイソシアネート、3,3′−ジメチル−4,4′−ビフェニレンジイソシアネート、4,4′−ビフェニレンジイソシアネートなどが挙げられる。これらなかでも、2,4−トリレンジイソシアネート、2,6−トリレンジイソシアネート、ヘキサメチレンジイソシアネート、イソホロンジイソシアネートが特に好ましい。   Examples of the diisocyanate that can be used for the synthesis of the polyurethane resin include aromatic, alicyclic or aliphatic diisocyanates. Specifically, hexamethylene diisocyanate, tetramethylene diisocyanate, 3,3′-dimethoxy-4, 4'-biphenylene diisocyanate, p-xylylene diisocyanate, m-xylylene diisocyanate, 1,3- (diisocyanatomethyl) cyclohexanone, 1,4- (diisocyanatomethyl) cyclohexanone, 4,4'-diisocyanato Cyclohexanone, 4,4'-methylenebis (cyclohexyl isocyanate), isophorone diisocyanate, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, p-phenylene diisocyanate, diphenylmethane di Isocyanate, m- phenylene diisocyanate, 2,4-naphthalene diisocyanate, 3,3'-dimethyl-4,4'-biphenylene diisocyanate, 4,4'-biphenylene diisocyanate and the like. Among these, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, hexamethylene diisocyanate, and isophorone diisocyanate are particularly preferable.

ポリウレタン系樹脂の市販品としては、ハイドラン(登録商標)AP−10、同AP−20、同AP−30、ハイドランHW−330、同HW−340、同HW−350(いずれも商品名,大日本インキ化学工業(株)製)、スーパーフレックス(登録商標)110、同150、同600、同E−2500、同F−3438D(いずれも商品名,第一工業製薬(株)製)などを挙げることができる。また、特に加工部塗料密着性を確保するという観点からは、Tgが50℃未満であるハイドランAP−10(Tg:27℃)、同AP−20(Tg:27℃)、同HW−340(Tg:7℃)、スーパーフレックス110(Tg:46℃)、同150(Tg:40℃)、同E−2500(Tg:42℃)などが好適である。   Commercially available polyurethane resins include Hydran (registered trademark) AP-10, AP-20, AP-30, Hydran HW-330, HW-340, HW-350 (all trade names, Dainippon Ink Chemical Industry Co., Ltd.), Superflex (registered trademark) 110, 150, 600, E-2500, F-3438D (all trade names, manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) be able to. In particular, from the viewpoint of ensuring the adhesion of the processed part paint, Hydran AP-10 (Tg: 27 ° C.), AP-20 (Tg: 27 ° C.), HW-340 (Tg) of less than 50 ° C. Tg: 7 ° C., Superflex 110 (Tg: 46 ° C.), 150 (Tg: 40 ° C.), E-2500 (Tg: 42 ° C.) and the like are suitable.

前記エポキシ系樹脂としては、エポキシ樹脂にアミンを付加してなるカチオン系エポキシ樹脂;アクリル変性、ウレタン変性などの変性エポキシ樹脂などが好適に使用できる。カチオン系エポキシ樹脂としては、例えば、エポキシ化合物と、1級モノ−又はポリアミン、2級モノ−又はポリアミン、1,2級混合ポリアミンなどとの付加物(例えば、米国特許第3984299号明細書参照);エポキシ化合物とケチミン化された1級アミノ基を有する2級モノ−又はポリアミンとの付加物(例えば、米国特許第4017438号明細書参照);エポキシ化合物とケチミン化された1級アミノ基を有するヒドロキシル化合物とのエーテル化反応生成物(例えば、特開昭59−43013号公報参照)などが挙げられる。   As the epoxy resin, a cationic epoxy resin obtained by adding an amine to an epoxy resin; a modified epoxy resin such as an acrylic modification or a urethane modification can be preferably used. Examples of cationic epoxy resins include adducts of epoxy compounds with primary mono- or polyamines, secondary mono- or polyamines, and primary and secondary mixed polyamines (see, for example, US Pat. No. 3,984,299). An adduct of an epoxy compound and a secondary mono- or polyamine having a ketiminated primary amino group (see, for example, US Pat. No. 4,017,438); an epoxy compound having a ketiminated primary amino group Examples include etherification reaction products with hydroxyl compounds (see, for example, JP-A-59-43013).

エポキシ系樹脂としては、数平均分子量が400〜4000、特に800〜2000、エポキシ当量が190〜2000、特に400〜1000であるものが好ましい。そのようなエポキシ系樹脂は、例えば、ポリフェノール化合物とエピルロルヒドリンとの反応によって得ることができ、ポリフェノール化合物としては、例えば、ビス(4−ヒドロキシフェニル)−2,2−プロパン、4,4−ジヒドロキシベンゾフェノン、ビス(4−ヒドロキシフェニル)−1,1−エタン、ビス(4−ヒドロキシフェニル)−1,1−イソブタン、ビス(4−ヒドロキシ−tert−ブチルフェニル)−2,2−プロパン、ビス(2−ヒドロキシナフチル)メタン、1,5−ジヒドロキシナフタレン、ビス(2,4−ジヒドロキシフェニル)メタン、テトラ(4−ヒドロキシフェニル)−1,1,2,2−エタン、4,4−ジヒドロキシジフェニルスルホン、フェノールノボラック、クレゾールノボラックなどが挙げられる。   As the epoxy resin, those having a number average molecular weight of 400 to 4000, particularly 800 to 2000, and an epoxy equivalent of 190 to 2000, particularly 400 to 1000 are preferable. Such an epoxy resin can be obtained, for example, by a reaction between a polyphenol compound and epirulhydrin, and examples of the polyphenol compound include bis (4-hydroxyphenyl) -2,2-propane, 4,4. -Dihydroxybenzophenone, bis (4-hydroxyphenyl) -1,1-ethane, bis (4-hydroxyphenyl) -1,1-isobutane, bis (4-hydroxy-tert-butylphenyl) -2,2-propane, Bis (2-hydroxynaphthyl) methane, 1,5-dihydroxynaphthalene, bis (2,4-dihydroxyphenyl) methane, tetra (4-hydroxyphenyl) -1,1,2,2-ethane, 4,4-dihydroxy Diphenylsulfone, phenol novolak, cresol novolak, etc. That.

表面処理組成物(H)中での水溶性有機樹脂又は/及び水分散性有機樹脂(G)の添加量は、固形分の割合で30質量%以下、特に1〜20質量%であることが好ましい。水溶性有機樹脂又は/及び水分散性有機樹脂(G)の添加量が30質量%を超えると、無機成分によるバリア性が低下するため、皮膜付着量を増加させる必要が発生し、導電性が低下してしまう。すなわち、水溶性有機樹脂又は/及び水分散性有機樹脂(G)の添加量が30質量%以下であれば、無機成分によるバリア性が維持できるため、皮膜付着量を増加させる必要がなく、このため導電性も良好である。
表面処理組成物(H)には、さらに必要に応じて、例えば、シランカップリング剤、樹脂微粒子、無機リン酸化合物などのエッチング剤、本発明が規定する成分以外の重金属化合物、増粘剤、界面活性剤、潤滑性付与剤(ポリエチレンワックス、フッソ系ワックス、カルナバワックスなど)、防錆剤、着色顔料、体質顔料、防錆顔料、染料などを含有することができる。
The addition amount of the water-soluble organic resin and / or water-dispersible organic resin (G) in the surface treatment composition (H) is 30% by mass or less, particularly 1 to 20% by mass in terms of solid content. preferable. When the addition amount of the water-soluble organic resin and / or water-dispersible organic resin (G) exceeds 30% by mass, the barrier property due to the inorganic component is lowered, so that it is necessary to increase the coating amount and the conductivity is increased. It will decline. That is, if the addition amount of the water-soluble organic resin and / or water-dispersible organic resin (G) is 30% by mass or less, the barrier property due to the inorganic component can be maintained, so there is no need to increase the coating amount. Therefore, the conductivity is also good.
In the surface treatment composition (H), if necessary, for example, etching agents such as silane coupling agents, resin fine particles, inorganic phosphate compounds, heavy metal compounds other than the components specified by the present invention, thickeners, A surfactant, a lubricity-imparting agent (polyethylene wax, fluorine-based wax, carnauba wax, etc.), a rust inhibitor, a color pigment, an extender pigment, a rust preventive pigment, and a dye can be contained.

また、表面処理組成物(H)は、必要に応じて、例えばメタノール、エタノール、イソプロピルアルコール、エチレングリコール系溶剤、プロピレングリコール系溶剤などの親水性溶剤で希釈して使用することができる。
表面処理組成物(H)により形成される表面処理皮膜の付着量は、0.05〜1.0g/m、好ましくは0.1〜0.8g/mとする。皮膜付着量が0.05g/m未満では耐食性が劣り、一方、1.0g/mを超えると皮膜が割れやすく、耐食性が低下する。
Further, the surface treatment composition (H) can be used as diluted with a hydrophilic solvent such as methanol, ethanol, isopropyl alcohol, an ethylene glycol solvent, or a propylene glycol solvent, if necessary.
The adhesion amount of the surface treatment film formed by the surface treatment composition (H) is 0.05 to 1.0 g / m 2 , preferably 0.1 to 0.8 g / m 2 . Coating adhesion amount poor corrosion resistance is less than 0.05 g / m 2, whereas, 1.0 g / m 2 of coating fragile exceeds, corrosion resistance decreases.

次に、本発明の表面処理めっき鋼板のベースとなる溶融Zn−Al系合金めっき鋼板について説明する。この溶融Zn−Al系合金めっき鋼板の溶融Zn−A1系合金めっき層中に添加するMgは、主として、スパングルの無い若しくは非常に微細なスパングルが形成された金属光沢のある美麗なめっき外観を得ることを、また、同じくめっき層中に添加するNiは、主として耐黒変性を向上させることを、それぞれ狙いとするものである。このNi添加による耐黒変性の向上効果は、適量のMgが共存することによってめっき層最表層部にNiが濃化することにより得られるものと推定される。また、めっき後の冷却速度を適正範囲にコントロールすることにより、めっき層最表層部でのNi濃化をより適切に生じさせることができる。   Next, the hot-dip Zn—Al-based alloy-plated steel sheet that serves as the base of the surface-treated plated steel sheet of the present invention will be described. Mg added to the molten Zn-A1 alloy-plated layer of this hot-dip Zn-Al alloy-plated steel sheet mainly obtains a beautiful plating appearance with a metallic luster with no spangles or very fine spangles formed. In addition, Ni added to the plating layer also aims to improve mainly blackening resistance. The effect of improving the blackening resistance due to the addition of Ni is presumed to be obtained when Ni is concentrated in the outermost layer portion of the plating layer when an appropriate amount of Mg coexists. Moreover, Ni concentration in a plating layer outermost layer part can be more appropriately produced by controlling the cooling rate after plating to an appropriate range.

以下、溶融Zn−Al系合金めっき層(以下、単に「めっき層」という)の成分組成の限定理由について説明する。
めっき層中のAl含有量が1.0質量%未満では、めっき層−素地界面にFe−Zn系の合金層が厚く形成し、加工性が低下する。一方、Al含有量が10質量%を超えるとZnとAlの共晶組織が得られず、Alリッチ層が増加して犠牲防食作用が低下するので、端面部の耐食性が劣る。また、Alが10質量%を超えるめっき層を得ようとすると、めっき浴中にAlを主体としたトップドロスが発生しやすくなり、めっき外観を損なうという問題も生じる。以上の理由から、めっき層中のAl含有量は1.0〜10質量%、好ましくは3〜7質量%とする。
Hereinafter, the reason for limiting the component composition of the molten Zn—Al-based alloy plating layer (hereinafter simply referred to as “plating layer”) will be described.
When the Al content in the plating layer is less than 1.0% by mass, an Fe—Zn alloy layer is formed thick at the plating layer-substrate interface, and the workability deteriorates. On the other hand, if the Al content exceeds 10% by mass, a eutectic structure of Zn and Al cannot be obtained, and the Al-rich layer increases and the sacrificial anticorrosive action decreases, so that the corrosion resistance of the end face portion is inferior. Moreover, when it is going to obtain the plating layer in which Al exceeds 10 mass%, the top dross which has Al as a main component will generate | occur | produce easily in a plating bath, and the problem that a plating external appearance is impaired also arises. For these reasons, the Al content in the plating layer is 1.0 to 10% by mass, preferably 3 to 7% by mass.

本発明においてめっき組成を限定する狙いの一つは、GF組成の溶融Zn−Al系合金めっきに特有のスパングルを無くし(ゼロスパングル化し)若しくは非常に微細なスパングルを形成し、且つ不めっきのない金属光沢をもつ美麗なめっき外観を得ることにあり、本発明者らは、めっき組成とめっき外観との関係を調べるために、以下のような実験を行った。
GF組成のAl(4〜5質量%)を含有する溶融Zn−Al系合金めっき浴にMgとNiをそれぞれ単独で添加し、これらのめっき浴で鋼板を溶融Zn−Al系合金めっきし、得られためっき鋼板のめっき外観(特に、スパングルサイズ、ドロス付着の程度、色調、光沢)を目視観察した。その結果、Niを添加しためっき層は、本発明者らの実験範囲内ではめっき外観に変化は見られず、通常のGFとほぼ同等のめっき外観を示したが、Mgを添加しためっき層は、その添加量によってスパングルサイズ、色調および光沢等が変化した。
One of the aims of limiting the plating composition in the present invention is to eliminate spangles (zero spangled) peculiar to hot-dip Zn-Al alloy plating with a GF composition, or to form very fine spangles, and no plating. In order to obtain a beautiful plating appearance with metallic luster, the present inventors conducted the following experiment in order to investigate the relationship between the plating composition and the plating appearance.
Mg and Ni were added individually to a hot-dip Zn-Al alloy plating bath containing Al (4 to 5% by mass) of GF composition, and a steel plate was hot-dip Zn-Al alloy plated in these plating baths. The plated appearance (particularly spangle size, degree of dross adhesion, color tone, gloss) of the plated steel sheet was visually observed. As a result, the plating layer to which Ni was added showed no change in the plating appearance within the experimental range of the present inventors, and showed a plating appearance almost equivalent to that of normal GF, but the plating layer to which Mg was added was The spangle size, color tone, gloss, etc. changed depending on the added amount.

Al:4〜5質量%、Ni:0.03質量%を含有する溶融Zn−Al系合金めっき浴(ミッシュメタルとしてのCeおよびLaの合計含有量:0.008質量%)にMgを0〜3質量%添加し、この溶融Zn−Al系合金めっき浴を用いて鋼板をめっきし、めっき層中のMg含有量とめっき外観(スパングルサイズ、ドロス付着の程度、色調)との関係を調べた。その結果を図1に示す。これによれば、Mg含有量が0.1質量%以上でスパングルが微細化しはじめ、0.2質量%以上でスパングルがほぼ消失するとともに、色調が金属光沢のある白色味を示す。また、Mg含有量が0.2質量%未満では、耐黒変性も低下する。これは後述するように、めっき層中でNiと共存するMgが0.2質量%未満であるとNiのめっき層最表層部への濃化がなくなり、結果的に耐黒変性が低下するためであると推定される。一方、Mg含有量が1.0質量%を超えると色調が灰白色→灰色へと順次変化していくとともに、ドロス付着が増加してくる。また、Mg含有量が1.0質量%を超えると、めっき層に亀裂が生じやすくなり、加工性が低下するという問題も生じる。また、Mgが多すぎると耐黒変性も劣る。
したがって、めっき層中のMg含有量は、美麗なめっき外観および優れた耐黒変性を得るために下限を0.2質量%とし、ドロス付着と色調低下を防止し、さらに加工性の低下を防止する観点から上限を1.0質量%とする。
Al: 4 to 5 mass%, Ni: 0.03 mass% containing molten Zn-Al alloy plating bath (total content of Ce and La as misch metal: 0.008 mass%) 3% by mass was added, and a steel sheet was plated using this molten Zn-Al alloy plating bath, and the relationship between the Mg content in the plating layer and the plating appearance (spangle size, degree of dross adhesion, color tone) was examined. . The result is shown in FIG. According to this, when the Mg content is 0.1% by mass or more, the spangle starts to become finer, and when it is 0.2% by mass or more, the spangle almost disappears and the color tone shows a white taste with a metallic luster. Further, when the Mg content is less than 0.2% by mass, the blackening resistance is also lowered. As will be described later, if Mg coexisting with Ni in the plating layer is less than 0.2% by mass, the concentration of Ni in the outermost layer portion of the plating layer is eliminated, resulting in a decrease in blackening resistance. It is estimated that. On the other hand, when the Mg content exceeds 1.0% by mass, the color tone changes from grayish white to gray and the dross adhesion increases. Moreover, when Mg content exceeds 1.0 mass%, it will become easy to produce a crack in a plating layer and the problem that workability falls also arises. Moreover, when there is too much Mg, blackening-proof property is also inferior.
Therefore, the Mg content in the plating layer has a lower limit of 0.2% by mass in order to obtain a beautiful plating appearance and excellent blackening resistance, preventing dross adhesion and color tone deterioration, and further preventing deterioration of workability. Therefore, the upper limit is set to 1.0% by mass.

さきに、めっき組成のうちでMgは主としてめっき外観の改善に、Niは主として耐黒変性の改善に寄与することを述べたが、本発明者らの検討の結果、Niが耐黒変性の改善効果を発揮するには、Mgとの共存が不可欠であることが判った。すなわち、Mgは、美麗なめっき外観を形成する作用を有するとともに、Niと共存することで、間接的にNiによる耐黒変性向上効果を助長していることが判った。このことは、耐黒変性の異なるめっき鋼板について、グロー放電発光表面分析(GDS)により、めっき層を深さ方向で分析することによって明らかにできた。その分析結果の一例を以下に示す。   In the plating composition, it has been described that Mg mainly contributes to the improvement of the plating appearance and Ni mainly contributes to the improvement of the blackening resistance. As a result of the examination by the present inventors, Ni improves the blackening resistance. It was found that coexistence with Mg is indispensable for exerting the effect. That is, it has been found that Mg has an effect of forming a beautiful plating appearance and indirectly promotes the effect of improving the blackening resistance by Ni by coexisting with Ni. This was clarified by analyzing the plating layer in the depth direction by glow discharge luminescent surface analysis (GDS) for the plated steel sheets having different blackening resistance. An example of the analysis result is shown below.

下記の(1)〜(3)の3種類のGF組成の溶融Zn−Al系合金めっき鋼板について(いずれも、めっき後の250℃までの冷却速度が5℃/秒)、めっき層表面から深さ方向にAl、Zn、Mg、Niの各元素の濃化形態を調査した。
(1)めっき層中にMgのみを含有するめっき鋼板であって、耐黒変性が劣るもの(めっき組成 Al:4.4質量%、Mg:0.6質量%、Zn:残部)
(2)めっき層中にNiのみを含有するめっき鋼板であって、耐黒変性が劣るもの(めっき組成 Al:4.4質量%、Ni:0.03質量%、Zn:残部)
(3)めっき層中にMgとNiを含有するめっき鋼板であって、耐黒変性が優れるもの(めっき組成 Al:4.4質量%、Mg:0.6質量%、Ni:0.03質量%、Zn:残部)
黒変はめっき表面の問題と考えられるので、上記(1)〜(3)のサンプル(めっき鋼板)について、最表面から深さ約200nm(2000Å)までを重点的に分析した。その結果を図2に示す。なお、このめっき成分元素の分析では、GDS分析装置を用いてアノード径4mmφ、電流20mAで深さ方向に30秒間放電して分析した。
Regarding the hot-dip Zn-Al alloy-plated steel sheet having the following three types of GF compositions (1) to (3) (all are cooled to 250 ° C. after plating at 5 ° C./second), the depth from the plating layer surface The concentrated form of each element of Al, Zn, Mg, and Ni was investigated in the vertical direction.
(1) Plated steel sheet containing only Mg in the plating layer and having inferior blackening resistance (plating composition Al: 4.4 mass%, Mg: 0.6 mass%, Zn: balance)
(2) Plated steel sheet containing only Ni in the plating layer and inferior in blackening resistance (plating composition Al: 4.4 mass%, Ni: 0.03 mass%, Zn: balance)
(3) Plated steel sheet containing Mg and Ni in the plating layer and excellent in blackening resistance (plating composition Al: 4.4 mass%, Mg: 0.6 mass%, Ni: 0.03 mass) %, Zn: balance)
Since blackening is considered to be a problem of the plating surface, the samples (plated steel sheets) of the above (1) to (3) were mainly analyzed from the outermost surface to a depth of about 200 nm (2000 mm). The result is shown in FIG. In the analysis of the plating component elements, a GDS analyzer was used to discharge for 30 seconds in the depth direction at an anode diameter of 4 mmφ and a current of 20 mA for analysis.

図2によれば、上記(1)〜(3)のいずれのサンプルもめっき表面近傍に各めっき成分元素の濃化ピークが見られるが、それぞれのサンプルで各元素の濃化形態が微妙に異なることが判る。
まず、耐黒変性が劣っているMgのみを含有するサンプル(1)のめっき層には、最表層部(最表面)のZnとほぼ同位置にMgの濃化ピークが見られ、Alの濃化ピークはZn、Mgの濃化ピークよりも内側(素地側)にある。
また、耐黒変性が劣っているNiのみを含有するサンプル(2)のめっき層の濃化ピークは、最表層部のZnについでAlが見られ、Niの濃化ピークはAlの濃化ピークの内側(素地側)にある。
According to FIG. 2, the concentration peak of each plating component element is observed in the vicinity of the plating surface in any of the above samples (1) to (3), but the concentration form of each element is slightly different in each sample. I understand that.
First, in the plating layer of sample (1) containing only Mg, which has poor blackening resistance, an Mg concentration peak is observed at almost the same position as Zn in the outermost layer (outermost surface), and the concentration of Al is increased. The enrichment peak is on the inner side (substrate side) of the Zn and Mg concentration peaks.
Moreover, the concentration peak of the plating layer of the sample (2) containing only Ni having poor blackening resistance is Al, followed by Zn at the outermost layer portion, and the Ni concentration peak is the Al concentration peak. On the inside (base side).

これに対し、耐黒変性が優れるMgとNiを含有するサンプル(3)のめっき層は、Niの濃化ピークがZnと同じ最表層部にあり、Mg、Alの各濃化ピークはNiの濃化ピークの内側(素地側)にある。
また、図2には示していないが、めっき層中にサンプル(3)と同量のMgとNiが共存し、めっき後の250℃までの冷却速度を30℃/秒にして得られためっき鋼板であって、耐黒変性に著効を示さなかったものについて、同様に分析したが、めっき層最表層部へのNiの濃化がサンプル(3)に比べ少ないことが判った。
On the other hand, the plating layer of the sample (3) containing Mg and Ni, which has excellent blackening resistance, has a Ni concentration peak in the same outermost layer as Zn, and each concentration peak of Mg and Al is Ni. It is inside the concentration peak (base side).
Although not shown in FIG. 2, the same amount of Mg and Ni as in the sample (3) coexist in the plating layer, and the plating obtained at a cooling rate of up to 250 ° C. after plating was 30 ° C./second. A steel plate that did not show a significant effect on blackening resistance was analyzed in the same manner, but it was found that the concentration of Ni in the outermost layer portion of the plating layer was less than that of the sample (3).

以上のような分析結果から、耐黒変性の優れためっき層であるためには、その最表層部にNiが濃化していることが好ましく、この最表層部でのNi濃化には、Mgの共存が必要であることが判った。また、Ni濃化には、めっき後の冷却速度が影響することも判明した。
なお、上述した蛍光X線による分析結果から、めっき層最表層部のNi濃化は、めっき最表面から深さ30nm(300Å)程度の間に存在すると推定される。
From the above analysis results, it is preferable that Ni is concentrated in the outermost layer portion in order to be a plating layer having excellent blackening resistance. For the Ni concentration in the outermost layer portion, It was found that the coexistence of It has also been found that the cooling rate after plating affects the Ni concentration.
In addition, from the analysis result by the fluorescent X-ray mentioned above, it is estimated that Ni concentration of a plating layer outermost layer part exists in the depth of about 30 nm (300 kg) from the plating outermost surface.

一般的に、酸化物生成の標準エネルギーで言えば、Al、MgはZnに比べて被酸化作用が強く、逆にNiは被酸化作用が弱い元素である。黒変は、被酸化作用の強いめっき成分元素がめっき層最表面に拡散(移動・濃化)して、めっき層最表面に生成している酸化亜鉛から酸素の一部を奪うことにより酸素欠乏型酸化亜鉛に変換させるために発生するとすれば、耐黒変性の劣ったサンプル(1)のめっき層は、最表層部に濃化したMgが酸化亜鉛の酸素を奪い、同じく耐黒変性の劣ったサンプル(2)のめっき層は、AlがNiよりも表層側に濃化していたことから、やはり被酸化作用の強いAlが酸化亜鉛の酸素を奪い、それぞれ酸素欠乏型酸化亜鉛へ変換したことが考えられる。   In general, in terms of standard energy for oxide generation, Al and Mg are elements that have a stronger oxidization action than Zn, and conversely, Ni is an element that has a low oxidization action. Blackening is due to oxygen deficiency by diffusing (moving and concentrating) the plating component element with strong oxidization action to the outermost surface of the plating layer, and taking some oxygen from the zinc oxide generated on the outermost surface of the plating layer. If it occurs due to the conversion to zinc oxide, the plating layer of sample (1) with inferior blackening resistance shows that Mg concentrated in the outermost layer deprives oxygen of zinc oxide, and also has inferior blackening resistance. Since the plating layer of sample (2) was concentrated with Al on the surface layer side than Ni, Al, which is also highly oxidizable, took oxygen from zinc oxide and converted it into oxygen-deficient zinc oxide. Can be considered.

これに対して、耐黒変性の優れたサンプル(3)のめっき層の最表層部には、被酸化作用の弱いNiが濃化し、これがバリア層となって共存するMg、Alの最表層部への拡散(移動・濃化)を抑制し、耐黒変性が向上したものと考えられる。
すなわち、耐黒変性改善には、Niがめっき層最表層部に濃化することでバリヤー層的な役目を果たすことが好ましく、このNiのめっき層最表層部への濃化は、Mgの共存によって生じるものと考えられる。ただし、Mgと共存することで、Niがめっき層最表層部に移動・濃化するメカニズムについては、現状では必ずしも明らかではない。
In contrast, the outermost layer portion of the plating layer of the sample (3) excellent in blackening resistance is enriched with Ni, which is weakly oxidizable, and the outermost layer portion of Mg and Al coexisting as a barrier layer. It is considered that the diffusion (migration / concentration) to the surface is suppressed and the blackening resistance is improved.
That is, for the improvement of blackening resistance, it is preferable that Ni is concentrated in the outermost layer portion of the plating layer, so that it plays a role as a barrier layer. The concentration of Ni in the outermost layer portion of the plating layer is the coexistence of Mg. It is thought that it is caused by. However, the mechanism by which Ni moves and concentrates in the outermost layer portion of the plating layer by coexisting with Mg is not always clear at present.

めっき層中のNi含有量が0.005質量%未満では、Mgが共存してもNiのめっき層最表層部への濃化が少なく、耐黒変性の改善効果は得られない。逆にNiが0.005質量%以上であっても、Mgが0.2質量%未満ではNiの最表層部への濃化は見られない。
また、Ni含有量が0.1質量%を超えると、耐黒変性の改善効果はあるものの、めっき浴にNiを含有するAl−Mg系ドロスが発生し、ドロス付着によるめっき外観を損なうので、好ましくない。
以上の理由から、本発明ではめっき層中のNi含有量を0.005〜0.1質量%とし、また、さきに述べたようにMg含有量を0.2〜1.0質量%とする。
When the Ni content in the plating layer is less than 0.005 mass%, even if Mg coexists, the concentration of Ni on the outermost layer of the plating layer is small, and the effect of improving blackening resistance cannot be obtained. On the contrary, even if Ni is 0.005 mass% or more, if Mg is less than 0.2 mass%, concentration of Ni in the outermost layer is not observed.
In addition, when the Ni content exceeds 0.1% by mass, although there is an effect of improving blackening resistance, Al—Mg-based dross containing Ni is generated in the plating bath, and the plating appearance due to dross adhesion is impaired. It is not preferable.
For the above reasons, in the present invention, the Ni content in the plating layer is set to 0.005 to 0.1% by mass, and the Mg content is set to 0.2 to 1.0% by mass as described above. .

本発明めっき鋼板では、めっき層中にCeおよび/またはLaを含むミッシュメタルを含有させることができる。このCeおよび/またはLaを含むミッシュメタルは、ゼロスパングル化には効果はないものの、めっき浴の流動性を増して、微細な不めっき状ピンホールの発生を防止し、めっき表面を平滑化する作用をする。
ミッシュメタルの含有量は、CeおよびLaの合計量で0.005質量%未満では、ピンホールの抑制効果が十分に得られず、表面平滑化にも効果がなくなる。一方、CeおよびLaの合計量が0.05質量%を超えると、めっき浴中に未溶解浮遊物として存在するようになり、これがめっき面に付着してめっき外観を損なう。すなわち、ミッシュメタルの含有量がCeおよびLaの合計量で0.005質量%以上であれば、ピンホールの抑制効果が十分に得られ、且つ表面平滑化にも効果があり、一方、CeおよびLaの合計量が0.05質量%以下であれば、それらがめっき浴中に未溶解浮遊物として存在することがなく、未溶解浮遊物がめっき面に付着してめっき外観を損なうこともない。このためCeおよび/またはLaを含有するミッシュメタルは、CeおよびLaの合計量で0.005〜0.05質量%、望ましくは0.007〜0.02質量%とすることが好ましい。
In the plated steel sheet of the present invention, a misch metal containing Ce and / or La can be contained in the plating layer. Although this misch metal containing Ce and / or La has no effect on zero spangle formation, it increases the fluidity of the plating bath, prevents the occurrence of fine unplated pinholes, and smoothes the plating surface. Works.
If the content of misch metal is less than 0.005 mass% in terms of the total amount of Ce and La, the effect of suppressing pinholes cannot be sufficiently obtained, and the effect of smoothing the surface is lost. On the other hand, if the total amount of Ce and La exceeds 0.05% by mass, it will be present as an undissolved suspended matter in the plating bath, which will adhere to the plated surface and impair the plating appearance. That is, if the content of misch metal is 0.005% by mass or more in terms of the total amount of Ce and La, a pinhole suppressing effect can be sufficiently obtained, and the surface smoothing is effective, while Ce and If the total amount of La is 0.05% by mass or less, they will not be present as undissolved suspended matter in the plating bath, and undissolved suspended matter will not adhere to the plating surface and impair the plating appearance. . For this reason, the misch metal containing Ce and / or La is preferably 0.005 to 0.05% by mass, and preferably 0.007 to 0.02% by mass in terms of the total amount of Ce and La.

以上のように、GF組成のめっき層に適量のMgとNiを含有させ、さらに必要に応じてCeおよび/またはLaを含むミッシュメタルを適量含有させることにより、スパングルが無く若しくは非常に微細なスパングルが形成され、金属光沢を有し、且つ微小ピンホールなどの不めっきのない美麗なめっき外観と、優れた耐黒変性を有する溶融Zn−Al系合金めっき鋼板を得ることができる。   As described above, an appropriate amount of Mg and Ni is contained in the plating layer having a GF composition, and if necessary, an appropriate amount of misch metal containing Ce and / or La is contained, so that there is no spangle or very fine spangle. Is formed, and a hot-dip Zn-Al alloy-plated steel sheet having a metallic appearance and a beautiful plating appearance free from unplating such as minute pinholes and excellent blackening resistance can be obtained.

以上のような溶融Zn−Al系合金めっき鋼板は、例えば、下記のような製造条件で得ることができる。
下地鋼板として使用する鋼板は、用途に応じて公知の鋼板から適宜選定すればよく、特に限定する必要はないが、例えば、低炭素アルミキルド鋼板や極低炭素鋼板を用いることが、めっき作業の観点から好ましい。この鋼板(下地鋼板)を溶融Zn−Al系合金めっき浴に浸漬して熱浸(溶融)めっきを行った後、同めっき浴から引き上げて冷却し、鋼板表面に溶融Zn−Al系合金めっき層を形成する。このめっき層は、Al:1.0〜10質量%、Mg:0.2〜1.0質量%、Ni:0.005〜0.1質量%を含有し、さらに必要に応じてCeおよび/またはLaを含有するミッシュメタルを、CeおよびLaの合計量で0.005〜0.05質量%含有し、残部がZnおよび不可避的不純物からなる。したがって、溶融Zn−Al系合金めっき浴の浴組成も、実質的に合金めっき層組成とほぼ同一となるように調整することが好ましい。
また、さきに述べたように、溶融Zn−Al系合金めっき層の最表層部にはNiが濃化していることが好ましい。
The above hot-dip Zn—Al-based alloy-plated steel sheet can be obtained, for example, under the following production conditions.
The steel plate to be used as the base steel plate may be appropriately selected from known steel plates depending on the application, and is not particularly limited. For example, using a low carbon aluminum killed steel plate or an extremely low carbon steel plate is a viewpoint of the plating work. To preferred. This steel plate (underlying steel plate) is immersed in a hot-dip Zn-Al alloy plating bath and subjected to hot-dip (hot) plating, and then pulled up from the plating bath and cooled, and a hot-dip Zn-Al-based alloy plating layer is formed on the steel plate surface. Form. This plating layer contains Al: 1.0 to 10% by mass, Mg: 0.2 to 1.0% by mass, Ni: 0.005 to 0.1% by mass, and, if necessary, Ce and / or Or the misch metal containing La is 0.005-0.05 mass% in the total amount of Ce and La, and the remainder consists of Zn and an unavoidable impurity. Therefore, it is preferable to adjust the bath composition of the molten Zn—Al-based alloy plating bath to be substantially the same as the alloy plating layer composition.
Further, as described above, it is preferable that Ni is concentrated in the outermost layer portion of the molten Zn—Al-based alloy plating layer.

本発明者らは、特に、溶融Zn−Al系合金めっき層中のMg,Ni含有量およびめっき後冷却速度とめっき層最表層部へのめっき成分元素の濃化挙動について鋭意検討した結果、耐黒変性の向上、すなわち、めっき層最表層部へのNi濃化には、さきに述べたようにMgとNiの共存が不可欠であるが、このNi濃化にはめっき後の250℃までの冷却速度も大きく影響することを見出した。
溶融Zn−Al系合金めっき層中のAl、Mg、Ni等の金属は、めっき後、凝固して常温に至るまで間に、めっき層最表面に向かって徐々に拡散することが知られており、特に本発明者らの実験で注目したMg、Niのめっき層最表面への濃化は、めっきしてから250℃までの冷却速度が大きく影響することが判った。一方、250℃未満の温度域の冷却速度は、Mg、Niの濃化にほとんど影響を与えなかった。
The inventors of the present invention, in particular, as a result of earnestly examining the content of Mg and Ni in the molten Zn-Al alloy plating layer, the cooling rate after plating, and the concentration behavior of the plating component elements on the outermost layer of the plating layer, As described above, coexistence of Mg and Ni is indispensable for improvement of blackening, that is, Ni concentration on the outermost layer portion of the plating layer, but this Ni concentration requires up to 250 ° C. after plating. It has been found that the cooling rate has a great influence.
It is known that metals such as Al, Mg, and Ni in the molten Zn-Al alloy plating layer gradually diffuse toward the outermost surface of the plating layer during solidification and normal temperature after plating. In particular, it has been found that the concentration of Mg and Ni on the outermost surface of the plating layer, which has been noted in the experiments by the present inventors, is greatly influenced by the cooling rate up to 250 ° C. after plating. On the other hand, the cooling rate in the temperature range below 250 ° C. hardly affected the concentration of Mg and Ni.

具体的には、溶融Zn−Al系合金めっき浴から引き上げためっき鋼板の250℃までの冷却速度を1〜15℃/秒、好ましくは2〜10℃/秒にコントロールすることにより、めっき層最表層部へのNi濃化をより効果的に促進できることが判った。めっき浴から引き上げためっき鋼板の250℃までの冷却速度が1℃/秒未満では、めっき層最表層部にNiの濃化は十分見られるものの、めっき層中に合金層が成長し、亀甲模様になって外観が悪化するとともに、加工性が低下する原因となる。一方、冷却速度が15℃/秒を超えると、めっき層中のMg含有量が0.2〜1.0質量%、Ni含有量が0.005〜0.1質量%の範囲であっても、めっき層最表層部へのNiの濃化が少なくなり、耐黒変性に著効を示さなくなる。すなわち、めっき浴から引き上げためっき鋼板の250℃までの冷却速度が15℃/秒以下であれば、めっき層最表層部にNiが十分に濃化し、耐黒変性に著効を示す。一方、冷却速度が1℃/秒以上であれば、めっき層中に合金層が成長することがないので、亀甲模様になって外観が悪化したり、加工性が低下することがない。したがって、溶融Zn−Al系合金めっき浴から引き上げためっき鋼板の250℃までの冷却速度は1〜15℃/秒、望ましくは2〜10℃/秒とすることが好ましい。   Specifically, by controlling the cooling rate of the plated steel sheet pulled up from the molten Zn—Al alloy plating bath to 250 ° C. to 1 to 15 ° C./second, preferably 2 to 10 ° C./second, It has been found that Ni concentration on the surface layer can be more effectively promoted. When the cooling rate of the plated steel sheet pulled up from the plating bath to 250 ° C. is less than 1 ° C./second, although Ni is sufficiently concentrated in the outermost layer of the plated layer, an alloy layer grows in the plated layer, and a tortoiseshell pattern As a result, the appearance deteriorates and the workability deteriorates. On the other hand, if the cooling rate exceeds 15 ° C./second, the Mg content in the plating layer is in the range of 0.2 to 1.0 mass% and the Ni content is in the range of 0.005 to 0.1 mass%. Further, the concentration of Ni in the outermost layer portion of the plating layer is reduced, and the blackening resistance is not significantly affected. That is, if the cooling rate to 250 ° C. of the plated steel sheet pulled up from the plating bath is 15 ° C./second or less, Ni is sufficiently concentrated in the outermost layer portion of the plating layer, and exhibits an excellent effect on blackening resistance. On the other hand, if the cooling rate is 1 ° C./second or more, the alloy layer does not grow in the plating layer, so that the outer appearance is not deteriorated and the workability is not lowered due to the turtle shell pattern. Therefore, the cooling rate of the plated steel sheet pulled up from the molten Zn—Al-based alloy plating bath to 250 ° C. is preferably 1 to 15 ° C./second, more preferably 2 to 10 ° C./second.

なお、めっき浴温は、390〜500℃の範囲とするのが好ましい。めっき浴温が390℃未満ではめっき浴の粘性が増してめっき表面が凹凸状になりやすく、一方、500℃を超えるとめっき浴中のドロスが増加しやすい。すなわち、めっき浴温が390℃以上であれば、めっき浴の粘性が適正に維持されるので、めっき表面が凹凸状になりにくく、一方、500℃以下であれば、めっき浴中のドロスが増加しにくい。   The plating bath temperature is preferably in the range of 390 to 500 ° C. If the plating bath temperature is less than 390 ° C., the viscosity of the plating bath increases and the plating surface tends to be uneven, while if it exceeds 500 ° C., dross in the plating bath tends to increase. That is, if the plating bath temperature is 390 ° C. or higher, the viscosity of the plating bath is properly maintained, so that the plating surface is less likely to be uneven, while if it is 500 ° C. or lower, dross in the plating bath increases. Hard to do.

本発明の表面処理めっき鋼板を製造するには、溶融Zn−Al系合金めっき鋼板の表面に、さきに述べたようなチタン含有水性液(A)と、ニッケル化合物又は/及びコバルト化合物(B)、弗素含有化合物(C)を必須成分とし、さらに必要に応じて、有機リン酸化合物(D)、バナジン酸化合物(E)、炭酸ジルコニウム化合物(F)、水溶性有機樹脂又は/及び水分散性有機樹脂(G)の1種以上を含有する表面処理組成物(H)(処理液)を塗布した後、水洗することなく乾燥する。
また、チタン含有水性液(A)や表面処理組成物(H)には、さらに必要に応じて、さきに挙げたような他の添加成分を含有させてもよい。
In order to produce the surface-treated plated steel sheet of the present invention, the titanium-containing aqueous liquid (A) and the nickel compound and / or cobalt compound (B) as described above are formed on the surface of the molten Zn-Al alloy-plated steel sheet. In addition, the fluorine-containing compound (C) is an essential component, and if necessary, an organic phosphate compound (D), a vanadate compound (E), a zirconium carbonate compound (F), a water-soluble organic resin and / or water dispersibility. After apply | coating the surface treatment composition (H) (treatment liquid) containing 1 or more types of organic resin (G), it dries without washing with water.
Further, the titanium-containing aqueous liquid (A) and the surface treatment composition (H) may further contain other additive components as mentioned above, if necessary.

表面処理組成物(処理液)の塗布手段は、例えば、スプレー+ロール絞り、ロールコーター、浸漬など、めっき鋼板表面に処理液を付着させることができる方法であればよい。また、塗布後の乾燥方式についても、例えば、熱風方式、誘導加熱方式、電気炉方式など任意である。
塗布した表面処理組成物(処理液)の乾燥温度(鋼板温度)は40〜200℃程度とすることが好ましい。乾燥温度が40℃未満では、皮膜形成が不十分となり耐食性などが劣った皮膜となる。一方、200℃を超える板温で乾燥させても、乾燥温度に見合う耐食性等の性能の向上効果は得られない。すなわち、乾燥温度が40℃以上であれば、皮膜形成が十分となって耐食性等が優れた皮膜となり、一方、200℃以下であれば、乾燥温度に見合う耐食性等の性能の十分な向上効果が得られる。
The method for applying the surface treatment composition (treatment liquid) may be any method that allows the treatment liquid to adhere to the surface of the plated steel sheet, such as spray + roll squeezing, roll coater, or dipping. Also, the drying method after application is arbitrary, for example, a hot air method, an induction heating method, an electric furnace method, or the like.
The drying temperature (steel plate temperature) of the applied surface treatment composition (treatment liquid) is preferably about 40 to 200 ° C. When the drying temperature is less than 40 ° C., the film formation is insufficient and the film has poor corrosion resistance. On the other hand, even if it is dried at a plate temperature exceeding 200 ° C., the effect of improving the performance such as corrosion resistance corresponding to the drying temperature cannot be obtained. That is, if the drying temperature is 40 ° C. or higher, the film formation is sufficient and the corrosion resistance is excellent. On the other hand, if it is 200 ° C. or lower, the performance such as the corrosion resistance corresponding to the drying temperature is sufficiently improved. can get.

表面処理組成物に用いたチタン含有水性液(A)と成分(B)〜(G)を以下に示す。
[チタン含有水性液(A)の製造]
・製造例1(チタン含有水性液T1)
四塩化チタン60質量%溶液5ccを蒸留水で500ccとした溶液にアンモニア水(1:9)を滴下し、水酸化チタンの低縮合物を沈殿させた。蒸留水で洗浄後、過酸化水素水30質量%溶液を10cc加えてかき混ぜ、チタンを含む黄色半透明の粘性のあるチタン含有水性液T1を得た。
The titanium-containing aqueous liquid (A) and components (B) to (G) used in the surface treatment composition are shown below.
[Production of titanium-containing aqueous liquid (A)]
Production Example 1 (Titanium-containing aqueous liquid T1)
Ammonia water (1: 9) was added dropwise to a solution in which 5 cc of a titanium tetrachloride 60 mass% solution was made 500 cc with distilled water to precipitate a low condensation product of titanium hydroxide. After washing with distilled water, 10 cc of a 30% by mass hydrogen peroxide solution was added and stirred to obtain a yellow translucent viscous titanium-containing aqueous liquid T1 containing titanium.

・製造例2(チタン含有水性液T2)
テトラiso−プロポキシチタン10質量部とiso−プロパノール10質量部の混合物を30質量%過酸化水素水10質量部と脱イオン水100質量部の混合物中に20℃で1時間かけて撹拌しながら滴下した。その後25℃で2時間熟成し、黄色透明の少し粘性のあるチタン含有水性液T2を得た。
・製造例3(チタン含有水性液T3)
製造例2で使用したテトラiso−プロポキシチタンの代わりにテトラn−ブトキシチタンを使用した以外は製造例2と同様の製造条件で、チタン含有水性液T3を得た。
・製造例4(チタン含有水性液T4)
製造例2で使用したテトラiso−プロポキシチタンの代わりにテトラiso−プロポキシチタンの3量体(テトラiso−プロポキシチタンの低縮合物)を使用した以外は製造例2と同様の製造条件で、チタン含有水性液T4を得た。
Production Example 2 (Titanium-containing aqueous liquid T2)
A mixture of 10 parts by mass of tetraiso-propoxytitanium and 10 parts by mass of iso-propanol was dropped into a mixture of 30 parts by mass of 10 parts by mass of hydrogen peroxide and 100 parts by mass of deionized water with stirring at 20 ° C. over 1 hour. did. Thereafter, aging was carried out at 25 ° C. for 2 hours to obtain a yellow transparent, slightly viscous titanium-containing aqueous liquid T2.
Production Example 3 (Titanium-containing aqueous liquid T3)
A titanium-containing aqueous liquid T3 was obtained under the same production conditions as in Production Example 2 except that tetra-n-butoxy titanium was used instead of tetraiso-propoxy titanium used in Production Example 2.
Production Example 4 (Titanium-containing aqueous liquid T4)
In the same production conditions as in Production Example 2, except that a tetramer of tetraiso-propoxytitanium (low condensation product of tetraiso-propoxytitanium) was used instead of tetraiso-propoxytitanium used in Production Example 2, titanium was used. A contained aqueous liquid T4 was obtained.

・製造例5(チタン含有水性液T5)
製造例2に対して過酸化水素水を3倍量用い、50℃で1時間かけて滴下し、さらに60℃で3時間熟成した以外は製造例2と同様の製造条件で、チタン含有水性液T5を得た。
・製造例6(チタン含有水性液T6)
製造例3で製造したチタン含有水性液T3を、さらに95℃で6時間加熱処理することにより、白黄色の半透明なチタン含有水性液T6を得た。
・製造例7(チタン含有水性液T7)
テトラiso−プロポキシチタン10質量部とiso−プロパノール10質量部の混合物を、「TKS−203」(商品名,テイカ社製,酸化チタンゾル)5質量部(固形分)、30質量%過酸化水素水10質量部及び脱イオン水100質量部の混合物中に10℃で1時間かけて撹拌しながら滴下した。その後10℃で24時間熟成し、黄色透明の少し粘性のあるチタン含有水性液T7を得た。
Production Example 5 (Titanium-containing aqueous liquid T5)
A titanium-containing aqueous liquid was produced under the same production conditions as in Production Example 2, except that hydrogen peroxide was used in 3 times the amount of Production Example 2, dropped at 50 ° C over 1 hour, and further aged at 60 ° C for 3 hours. T5 was obtained.
Production Example 6 (Titanium-containing aqueous liquid T6)
The titanium-containing aqueous liquid T3 produced in Production Example 3 was further heat-treated at 95 ° C. for 6 hours to obtain a white yellow translucent titanium-containing aqueous liquid T6.
Production Example 7 (Titanium-containing aqueous liquid T7)
A mixture of 10 parts by mass of tetraiso-propoxytitanium and 10 parts by mass of iso-propanol, 5 parts by mass (solid content) of “TKS-203” (trade name, manufactured by Teika Co., Ltd.), 30% by mass hydrogen peroxide solution The mixture was added dropwise to a mixture of 10 parts by mass and 100 parts by mass of deionized water with stirring at 10 ° C. over 1 hour. Thereafter, the mixture was aged at 10 ° C. for 24 hours to obtain a yellow transparent, slightly viscous titanium-containing aqueous liquid T7.

[ニッケル化合物又はコバルト化合物(B)]
B1:酢酸ニッケル
B2:硝酸ニッケル
B3:硫酸ニッケル
B4:酢酸コバルト
B5:硝酸コバルト
[弗素含有化合物(C)]
C1:ジルコン弗化アンモニウム
C2:ジルコン弗化水素酸
C3:ジルコン弗化ナトリウム
C4:ジルコン弗化カリウム
[Nickel compound or cobalt compound (B)]
B1: Nickel acetate B2: Nickel nitrate B3: Nickel sulfate B4: Cobalt acetate B5: Cobalt nitrate [fluorine-containing compound (C)]
C1: Zircon ammonium fluoride C2: Zircon hydrofluoric acid C3: Zircon sodium fluoride C4: Zircon potassium fluoride

[有機リン酸化合物(D)]
D1:1−ヒドロキシメタン−1,1−ジホスホン酸
D2:1−ヒドロキシエタン−1,1−ジホスホン酸
[バナジン酸化合物(E)]
E1:メタバナジン酸アンモニウム
E2:メタバナジン酸ナトリウム
[炭酸ジルコニウム化合物(F)]
F1:炭酸ジルコニウムアンモニウム
F2:炭酸ジルコニウムナトリウム
[Organic Phosphate Compound (D)]
D1: 1-hydroxymethane-1,1-diphosphonic acid D2: 1-hydroxyethane-1,1-diphosphonic acid [vanadic acid compound (E)]
E1: ammonium metavanadate E2: sodium metavanadate [zirconium carbonate compound (F)]
F1: Ammonium zirconium carbonate F2: Sodium zirconium carbonate

[水溶性又は水分散性有機樹脂(G)]
G1:スーパーフレックスE−2500(商品名,第一工業製薬(株)製,水性ポリウレタン樹脂,Tg:42℃)
G2:バイロナールMD−1100(商品名,東洋紡績(株)製,水性ポリエステル樹脂)
G3:アデカレジンEM−0718(商品名,(株)ADEKA),水性エポキシ樹脂)
G4:ハイドランAP−10(商品名,大日本インキ化学工業(株)製,水性ポリウレタン樹脂,Tg:27℃)
G5:ハイドランAP−30(商品名,大日本インキ化学工業(株)製,水性ポリウレタン樹脂,Tg:61℃)
G6:ハイドランHW−340(商品名,大日本インキ化学工業(株)製,水性ポリウレタン樹脂,Tg:7℃)
G7:ハイドランHW−350(商品名,大日本インキ化学工業(株)製,水性ポリウレタン樹脂,Tg:57℃)
G8:スーパーフレックス110(商品名,第一工業製薬(株)製,水性ポリウレタン樹脂,Tg:46℃)
G9:スーパーフレックス130(商品名,第一工業製薬(株)製,水性ポリウレタン樹脂,Tg:96℃)
G10:スーパーフレックス600(商品名,第一工業製薬(株)製,水性ポリウレタン樹脂,Tg:70℃)
[Water-soluble or water-dispersible organic resin (G)]
G1: Superflex E-2500 (trade name, manufactured by Daiichi Kogyo Seiyaku Co., Ltd., water-based polyurethane resin, Tg: 42 ° C.)
G2: Bayronal MD-1100 (trade name, manufactured by Toyobo Co., Ltd., water-based polyester resin)
G3: Adeka Resin EM-0718 (trade name, ADEKA Corporation, water-based epoxy resin)
G4: Hydran AP-10 (trade name, manufactured by Dainippon Ink and Chemicals, water-based polyurethane resin, Tg: 27 ° C.)
G5: Hydran AP-30 (trade name, manufactured by Dainippon Ink & Chemicals, water-based polyurethane resin, Tg: 61 ° C.)
G6: Hydran HW-340 (trade name, manufactured by Dainippon Ink & Chemicals, water-based polyurethane resin, Tg: 7 ° C.)
G7: Hydran HW-350 (trade name, manufactured by Dainippon Ink & Chemicals, water-based polyurethane resin, Tg: 57 ° C.)
G8: Superflex 110 (trade name, manufactured by Daiichi Kogyo Seiyaku Co., Ltd., water-based polyurethane resin, Tg: 46 ° C.)
G9: Superflex 130 (trade name, manufactured by Daiichi Kogyo Seiyaku Co., Ltd., aqueous polyurethane resin, Tg: 96 ° C.)
G10: Superflex 600 (trade name, manufactured by Daiichi Kogyo Seiyaku Co., Ltd., water-based polyurethane resin, Tg: 70 ° C.)

水溶性又は水分散性有機樹脂(G)のうち、G11〜G15の水分散性アクリル樹脂は、下記に示す製造例8〜12に従って製造した。表1に、G11〜G15の水分散性アクリル樹脂のモノマー組成と特性値を示す。なお、下記製造例の「部」および「%」は質量基準である。
・製造例8(G11の水分散性アクリル樹脂)
還流冷却器、撹拌器、温度計、滴下ロートを装備した容量2リットルの4つ口フラスコに脱イオン水665部、アクアロン(登録商標)RN−50(注1)9部、アクアロンRN−2025(注2)87部、下記組成のモノマー混合液1(1段目)を強制乳化してなるプレエマルションの5%(28.9部)を加え、窒素置換後昇温した。
Among the water-soluble or water-dispersible organic resins (G), G11 to G15 water-dispersible acrylic resins were produced according to Production Examples 8 to 12 shown below. Table 1 shows the monomer composition and characteristic values of G11 to G15 water-dispersible acrylic resins. In the following production examples, “part” and “%” are based on mass.
Production Example 8 (G11 water-dispersible acrylic resin)
A 2-liter four-necked flask equipped with a reflux condenser, stirrer, thermometer, and dropping funnel was added to 665 parts deionized water, 9 parts Aqualon (registered trademark) RN-50 (Note 1), Aqualon RN-2025 ( Note 2) 87 parts, 5% (28.9 parts) of a pre-emulsion obtained by forcibly emulsifying monomer mixed solution 1 (first stage) having the following composition was added, and the temperature was increased after substitution with nitrogen.

[モノマー混合液1]
脱イオン水:166.5部
アクアロンRN−50:6.6部
アクアロンRN−2025:53部
スチレン:35部
メチルメタクリレート:163.5部
2−エチルヘキシルアクリレート:105部
2−ヒドロキシエチルメタクリレート:5部
メタクリル酸:3部
アクリロニトリル:38.5部
ターシャリードデカンチオール:1部
55℃以上に達したら、パーブチル(登録商標)H(注3)5部を脱イオン水83.5部に溶解させてなる酸化剤水溶液の5%(4.43部)及びナトリウムホルムアルデヒドスルホキシレート2.5部を脱イオン水83.5部に溶解させてなる還元剤水溶液の5%(4.3部)を添加し、さらに昇温して60℃の温度で保持した。添加15分後から、残りのプレエマルションを1.5時間、酸化剤水溶液を3.5時間、還元剤水溶液を3.5時間にわたって滴下した。酸化剤水溶液と還元剤水溶液の滴下を続けている間、1段目プレエマルションの滴下終了1時間後より下記組成のモノマー混合液2(2段目)を1時間にわたって滴下した。
[Monomer mixture 1]
Deionized water: 166.5 parts Aqualon RN-50: 6.6 parts Aqualon RN-2025: 53 parts Styrene: 35 parts Methyl methacrylate: 163.5 parts 2-Ethylhexyl acrylate: 105 parts 2-Hydroxyethyl methacrylate: 5 parts Methacrylic acid: 3 parts Acrylonitrile: 38.5 parts Tertiary decanethiol: 1 part When 55 ° C or higher is reached, 5 parts of perbutyl (registered trademark) H (Note 3) is dissolved in 83.5 parts of deionized water. Add 5% (4.3 parts) of a reducing agent aqueous solution prepared by dissolving 5% (4.43 parts) of an oxidizing agent aqueous solution and 2.5 parts of sodium formaldehyde sulfoxylate in 83.5 parts of deionized water. The temperature was further raised and maintained at a temperature of 60 ° C. 15 minutes after the addition, the remaining pre-emulsion was added dropwise over 1.5 hours, the oxidizing agent aqueous solution for 3.5 hours, and the reducing agent aqueous solution over 3.5 hours. While the dropping of the oxidizing agent aqueous solution and the reducing agent aqueous solution was continued, the monomer mixed solution 2 (second stage) having the following composition was dropped over 1 hour from the end of dropping of the first stage pre-emulsion.

[モノマー混合液2]
スチレン:15部
メチルメタクリレート:84.5部
2−エチルヘキシルアクリレート:22.5部
2−ヒドロキシエチルメタクリレート:4.25部
メタクリル酸:6部
アクリロニトリル:15部
γ−メタクリロキシプロピルトリメトキシシラン:2.75部
全ての滴下終了時からさらに1時間60℃の温度に保持し、その後40℃以下に温度を下げ、25%アンモニア水3.35部、スラオフ(登録商標)EX(注4)0.35部、2,2,4−トリメチル−1,3−ペンタンジオールモノイソブチレート83.5部を添加し、pH8.0、不揮発分31%であるG11の水分散性アクリル樹脂を得た。
[Monomer mixture 2]
Styrene: 15 parts Methyl methacrylate: 84.5 parts 2-Ethylhexyl acrylate: 22.5 parts 2-Hydroxyethyl methacrylate: 4.25 parts Methacrylic acid: 6 parts Acrylonitrile: 15 parts γ-methacryloxypropyltrimethoxysilane: 2. 75 parts At the end of the dropwise addition, the temperature was kept at 60 ° C. for another hour, and then the temperature was lowered to 40 ° C. or lower. 3.35 parts of 25% aqueous ammonia, Suraoff® EX (Note 4) 0.35 Part of 2,2,4-trimethyl-1,3-pentanediol monoisobutyrate 83.5 parts was added to obtain a water-dispersible acrylic resin of G11 having a pH of 8.0 and a non-volatile content of 31%.

(注1)アクアロンRN−50:商品名,第一工業製薬(株)製,ノニオン性乳化剤,固形分60%
(注2)アクアロンRN−2025:商品名,第一工業製薬(株)製,ノニオン性乳化剤,固形分25%
(注3)パーブチルH:商品名,日本油脂(株)製,t−ブチルハイドロキシパーオキサイド,有効成分69%
(注4)スラオフEX:商品名,日本エンバイロケミカルズ(株)製,防腐剤
・製造例9〜12(G12〜G15の水分散性アクリル樹脂)
1段目、2段目のモノマー組成を表1に示す配合比とする以外は製造例8と同様の方法で、G12〜G15の水分散性アクリル樹脂を得た。
(Note 1) Aqualon RN-50: trade name, manufactured by Daiichi Kogyo Seiyaku Co., Ltd., nonionic emulsifier, solid content 60%
(Note 2) Aqualon RN-2025: trade name, manufactured by Daiichi Kogyo Seiyaku Co., Ltd., nonionic emulsifier, solid content 25%
(Note 3) Perbutyl H: Trade name, manufactured by NOF Corporation, t-butylhydroxyperoxide, 69% active ingredient
(Note 4) Sura-off EX: trade name, manufactured by Nippon Enviro Chemicals Co., Ltd., preservatives and production examples 9-12 (water-dispersible acrylic resins of G12 to G15)
A water-dispersible acrylic resin of G12 to G15 was obtained in the same manner as in Production Example 8 except that the monomer composition in the first and second stages was changed to the blending ratio shown in Table 1.

表面処理めっき鋼板のベース鋼板としては、表2に示すめっき鋼板を用いた。
上記したチタン含有生成液(A)と成分(B)〜(G)を適宜配合した表面処理組成物をめっき鋼板表面に塗布し、5〜20秒間で最高到達板温が80℃になるように乾燥して供試材とした。これら供試材について、下記の試験方法により耐食性、耐黒変性及び塗料密着性を評価した。その結果を、各供試材に適用した表面処理組成物の組成及びその塗装条件とともに、表3〜表5に示す。
As the base steel plate of the surface-treated plated steel plate, the plated steel plate shown in Table 2 was used.
A surface treatment composition appropriately blended with the above-described titanium-containing product liquid (A) and components (B) to (G) is applied to the surface of the plated steel sheet so that the maximum plate temperature is 80 ° C. in 5 to 20 seconds. It dried and it was set as the test material. These test materials were evaluated for corrosion resistance, blackening resistance and paint adhesion by the following test methods. The results are shown in Tables 3 to 5 together with the composition of the surface treatment composition applied to each test material and the coating conditions.

(1-1)耐食性(A)
供試材を後述する条件で脱脂処理した後、供試材の端部と裏面をテープシールしてJIS−Z−2371−2000の塩水噴霧試験に供し、白錆発生面積率が5%となる試験時間を測定した。その評価基準は以下のとおりである。
○:48時間以上
△:24時間以上、48時間未満
×:24時間未満
[脱脂条件]
脱脂剤「パルクリーンN364S」(商品名、日本パーカライジング(株)製)を水に溶解して濃度2%、液温60℃に調整したものを供試材に対して2分間スプレー噴霧(噴霧圧:1kgf/cm)した。その後、供試材を水道水で30秒間洗浄し、圧搾空気を吹き当てて乾燥させた。
(1-2)耐食性(B)
端部と裏面をテープシールした供試材に対してJIS−Z−2371−2000の塩水噴霧試験を行い、白錆発生面積率が5%となる試験時間を測定した。その評価基準は以下のとおりである。
◎:240時間以上
○:144時間以上、240時間未満
△:72時間以上、144時間未満
×:72時間未満
(1-1) Corrosion resistance (A)
After degreasing the test material under the conditions described later, the end portion and the back surface of the test material are tape-sealed and subjected to the salt spray test of JIS-Z-2371-2000, and the white rust generation area ratio becomes 5%. The test time was measured. The evaluation criteria are as follows.
○: 48 hours or more Δ: 24 hours or more, less than 48 hours ×: less than 24 hours [degreasing conditions]
Degreasing agent “Palclean N364S” (trade name, manufactured by Nihon Parkerizing Co., Ltd.) dissolved in water and adjusted to a concentration of 2% and a liquid temperature of 60 ° C. is sprayed onto the test material for 2 minutes (spray pressure) : 1 kgf / cm 2 ). Thereafter, the test material was washed with tap water for 30 seconds and dried by blowing compressed air.
(1-2) Corrosion resistance (B)
The salt spray test of JIS-Z-2371-2000 was performed on the test material whose end and back surface were tape-sealed, and the test time at which the white rust generation area ratio was 5% was measured. The evaluation criteria are as follows.
◎: 240 hours or more ○: 144 hours or more, less than 240 hours Δ: 72 hours or more, less than 144 hours ×: less than 72 hours

(2-1)耐黒変性(A)
供試材を温度60℃、相対湿度80%雰囲気に制御された恒温恒湿機に24時間静置した際の白色度(L値)変化をΔL(試験後のL値−試験前のL値)で算出した。その評価基準は以下のとおりである。
○:ΔL≧−10
△:−10>ΔL≧−15
×:−15>ΔL
(2-2)耐黒変性(B)
供試材を温度80℃、相対湿度95%雰囲気に制御された恒温恒湿機に24時間静置した際の白色度(L値)変化をΔL(試験後のL値−試験前のL値)で算出した。その評価基準は以下のとおりである。
○:ΔL≧−10
△:−10>ΔL≧−15
×:−15>ΔL
(2-1) Blackening resistance (A)
The change in whiteness (L value) when the test material was allowed to stand for 24 hours in a thermo-hygrostat controlled at 60 ° C. and 80% relative humidity atmosphere was ΔL (L value after test−L value before test) ). The evaluation criteria are as follows.
○: ΔL ≧ −10
Δ: −10> ΔL ≧ −15
×: −15> ΔL
(2-2) Blackening resistance (B)
The change in whiteness (L value) when the test material was allowed to stand for 24 hours in a thermo-hygrostat controlled at a temperature of 80 ° C. and a relative humidity of 95% was expressed as ΔL (L value after test−L value before test) ). The evaluation criteria are as follows.
○: ΔL ≧ −10
Δ: −10> ΔL ≧ −15
×: −15> ΔL

(3)塗料密着性
前処理有りまたは無しの供試材にメラミンアルキッド樹脂塗料(商品名「デリコン(登録商標)#700」,大日本塗料(株)製)を乾燥膜厚が30±2μmになるように塗布し、130℃で30分間焼き付けて乾燥した。
[前処理]
脱脂剤「パルクリーンN364S」(商品名,日本パーカライジング(株)製)、濃度2%、60℃
処理方法:2分間のスプレー処理(1kgf/cm
(3) Paint adhesion Melamine alkyd resin paint (trade name “Delicon (registered trademark) # 700”, manufactured by Dainippon Paint Co., Ltd.) is used as a test material with or without pretreatment to a dry film thickness of 30 ± 2 μm. Then, it was baked at 130 ° C. for 30 minutes and dried.
[Preprocessing]
Degreasing agent “Pulclean N364S” (trade name, manufactured by Nihon Parkerizing Co., Ltd.), concentration 2%, 60 ° C.
Treatment method: 2 minutes spray treatment (1 kgf / cm 2 )

[平板部塗料密着性]
塗装面にカッターナイフを用いて1mm間隔で縦と横に11本の線を引き、1mm四方のマス目を碁盤目状に100個作製する。その後、碁盤目部にセロハン粘着テープ(商品名「CT24」,ニチバン(株)製)を貼り、セロハン粘着テープを剥離した後の塗膜が剥離したマス目数で評価した。
[加工部塗料密着性]
塗装面にカッターナイフを用いて1mm間隔で縦と横に11本の線を引き、1mm四方のマス目を碁盤目状に100個作製する。その後、碁盤目部をエリクセン試験機で5mm押し出し加工し、碁盤目部にセロハン粘着テープ(商品名「CT24」,ニチバン(株)製)を貼り、セロハン粘着テープを剥離した後の塗膜が剥離したマス目数で評価した。
[評価基準]
◎:平板部・加工部ともに塗膜の剥離無し
○:加工部で塗膜の剥離発生、平板部での塗膜の剥離無し
×:平板部・加工部ともに塗膜の剥離発生
[Flat plate paint adhesion]
Using a cutter knife on the painted surface, draw 11 lines vertically and horizontally at intervals of 1 mm to make 100 1 mm square cells in a grid pattern. Thereafter, cellophane adhesive tape (trade name “CT24”, manufactured by Nichiban Co., Ltd.) was applied to the grid area, and the cell number after peeling the cellophane adhesive tape was evaluated.
[Processed part paint adhesion]
Using a cutter knife on the painted surface, draw 11 lines vertically and horizontally at intervals of 1 mm to make 100 1 mm square cells in a grid pattern. After that, the grid part was extruded 5 mm with an Erichsen testing machine, cellophane adhesive tape (trade name “CT24”, manufactured by Nichiban Co., Ltd.) was applied to the grid part, and the coating after peeling the cellophane adhesive tape was peeled off. The number of squares was evaluated.
[Evaluation criteria]
◎: No peeling of coating film in flat plate / working part ○: No peeling of coating film in processing part, No peeling of coating film in flat part ×: Occurrence of peeling of coating film in both flat part and processing part

Figure 0005317516
Figure 0005317516

Figure 0005317516
Figure 0005317516

表3〜表5において、*1〜*9は以下の内容を示す。
*1 表2に記載のめっき鋼板No.1〜5
*2 明細書本文に記載のチタン含有水性液T1〜T7
*3 明細書本文に記載のニッケル化合物又はコバルト化合物B1〜B5
*4 明細書本文に記載の弗素含有化合物C1〜C4
*5 明細書本文に記載の有機リン酸化合物D1,D2
*6 明細書本文に記載のバナジン酸化合物E1,E2
*7 明細書本文に記載の炭酸ジルコニウム化合物F1,F2
*8 明細書本文及び表1に記載の水溶性又は水分散性有機樹脂G1〜G15
*9 表面処理組成物中での固形分の質量%
In Tables 3 to 5, * 1 to * 9 indicate the following contents.
* 1 Plated steel plates No. 1 to 5 listed in Table 2
* 2 Titanium-containing aqueous liquids T1 to T7 described in the specification text
* 3 Nickel compounds or cobalt compounds B1 to B5 described in the main text of the specification
* 4 Fluorine-containing compounds C1 to C4 described in the main text of the specification
* 5 Organophosphate compounds D1, D2 described in the main text of the specification
* 6 Vanadic acid compounds E1, E2 described in the main text of the specification
* 7 Zirconium carbonate compounds F1 and F2 described in the specification
* 8 Water-soluble or water-dispersible organic resins G1 to G15 described in the specification text and Table 1
* 9 Mass% of solid content in the surface treatment composition

Figure 0005317516
Figure 0005317516

Figure 0005317516
Figure 0005317516

Figure 0005317516
Figure 0005317516

適量のNiを含有するGF組成のめっき層を有する溶融Zn−Al系合金めっき鋼板について、めっき層中のMg含有量とめっき外観との関係を示すグラフThe graph which shows the relationship between Mg content in a plating layer, and a plating external appearance about the hot-dip Zn-Al type alloy plating steel plate which has a plating layer of GF composition containing an appropriate amount of Ni GF組成の溶融Zn−Al系合金めっき鋼板であって、めっき層中にMgのみを含有するめっき鋼板、めっき層中にNiのみを含有するめっき鋼板、およびめっき層中にMgとNiを含有するめっき鋼板について、めっき層深さ方向の成分分析結果を示すグラフA hot-dip Zn-Al alloy-plated steel sheet having a GF composition, a plated steel sheet containing only Mg in the plating layer, a plated steel sheet containing only Ni in the plating layer, and Mg and Ni in the plating layer The graph which shows the component analysis result of the plating layer depth direction about the plated steel sheet

Claims (7)

鋼板の少なくとも一方の表面に、Al:1.0〜10質量%、Mg:0.2〜1.0質量%、Ni:0.005〜0.1質量%を含有し、残部がZn及び不可避的不純物からなる溶融Zn−Al系合金めっき層を有する溶融Zn−Al系合金めっき鋼板の表面に、
加水分解性チタン化合物、加水分解性チタン化合物の低縮合物、水酸化チタン、水酸化チタンの低縮合物の中から選ばれる少なくとも1種のチタン化合物を過酸化水素水と混合して得られるチタン含有水性液(A)を固形分の割合で10〜60質量%、ニッケル化合物又は/及びコバルト化合物(B)を固形分の割合で0.01〜1質量%、ジルコン弗化アンモニウム、ジルコン弗化水素酸、ジルコン弗化ナトリウム、ジルコン弗化カリウムの中から選ばれる1種以上からなる弗素含有化合物(C)を固形分の割合で1〜80質量%含有する表面処理組成物(H)を塗布し、乾燥させることにより形成された皮膜付着量が0.05〜1.0g/mの表面処理皮膜を有することを特徴とする表面処理溶融Zn−Al系合金めっき鋼板。
At least one surface of the steel sheet contains Al: 1.0 to 10% by mass, Mg: 0.2 to 1.0% by mass, Ni: 0.005 to 0.1% by mass, the balance being Zn and inevitable On the surface of a hot-dip Zn-Al-based alloy-plated steel sheet having a hot-dip Zn-Al-based alloy plating layer made of mechanical impurities,
Titanium obtained by mixing at least one titanium compound selected from hydrolyzable titanium compounds, low-condensates of hydrolyzable titanium compounds, titanium hydroxide, and low-condensates of titanium hydroxide with hydrogen peroxide water Containing aqueous liquid (A) in a solid content ratio of 10 to 60% by mass, nickel compound and / or cobalt compound (B) in a solid content ratio of 0.01 to 1% by mass, zircon ammonium fluoride, zircon fluoride A surface treatment composition (H) containing 1 to 80 mass% of a fluorine-containing compound (C) composed of one or more selected from hydrogen acid, sodium zircon fluoride, and potassium zircon fluoride in a solid content ratio is applied. And a surface-treated hot-dip Zn-Al alloy-plated steel sheet having a surface-treated film having a film adhesion amount of 0.05 to 1.0 g / m 2 formed by drying.
弗素含有化合物(C)が、ジルコン弗化アンモニウム、ジルコン弗化水素酸の中から選ばれる少なくとも1種であることを特徴とする請求項1に記載の表面処理溶融Zn−Al系合金めっき鋼板。   The surface-treated molten Zn-Al alloy-plated steel sheet according to claim 1, wherein the fluorine-containing compound (C) is at least one selected from zircon ammonium fluoride and zircon hydrofluoric acid. 表面処理組成物(H)が、さらに、有機リン酸化合物(D)を固形分の割合で10〜60質量%含有することを特徴とする請求項1又は2に記載の表面処理溶融Zn−Al系合金めっき鋼板。   The surface-treated molten Zn-Al according to claim 1 or 2, wherein the surface-treated composition (H) further contains 10 to 60% by mass of the organic phosphate compound (D) in a solid content ratio. Alloy-plated steel sheet. 表面処理組成物(H)が、さらに、バナジン酸化合物(E)を固形分の割合で0.1〜30質量%含有することを特徴とする請求項1〜3のいずれか一項に記載の表面処理溶融Zn−Al系合金めっき鋼板。   The surface treatment composition (H) further contains 0.1 to 30% by mass of the vanadic acid compound (E) in a solid content ratio. Surface-treated molten Zn-Al alloy-plated steel sheet. 表面処理組成物(H)が、さらに、炭酸ジルコニウム化合物(F)を固形分の割合で0.1〜20質量%含有することを特徴とする請求項1〜4のいずれか一項に記載の表面処理溶融Zn−Al系合金めっき鋼板。   The surface treatment composition (H) further contains 0.1 to 20% by mass of the zirconium carbonate compound (F) in a solid content ratio, according to any one of claims 1 to 4. Surface-treated molten Zn-Al alloy-plated steel sheet. 表面処理組成物(H)が、さらに、水溶性有機樹脂又は/及び水分散性有機樹脂(G)を固形分の割合で30質量%以下含有することを特徴とする請求項1〜5のいずれか一項に記載の表面処理溶融Zn−Al系合金めっき鋼板。   The surface treatment composition (H) further contains a water-soluble organic resin and / or a water-dispersible organic resin (G) in a proportion of a solid content of 30% by mass or less. The surface-treated hot-dip Zn—Al-based alloy-plated steel sheet according to claim 1. 水溶性有機樹脂又は/及び水分散性有機樹脂(G)が、ガラス転移温度が50℃未満のウレタン樹脂であることを特徴とする請求項6に記載の表面処理溶融Zn−Al系合金めっき鋼板。   The surface-treated molten Zn-Al alloy-plated steel sheet according to claim 6, wherein the water-soluble organic resin and / or the water-dispersible organic resin (G) is a urethane resin having a glass transition temperature of less than 50 ° C. .
JP2008102943A 2007-04-27 2008-04-10 Surface-treated molten Zn-Al alloy-plated steel sheet Active JP5317516B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2008102943A JP5317516B2 (en) 2007-04-27 2008-04-10 Surface-treated molten Zn-Al alloy-plated steel sheet
PCT/JP2008/058320 WO2008136496A1 (en) 2007-04-27 2008-04-24 Surface-treated, hot-dip zn-al alloy coated steel sheet
TW097115264A TW200900542A (en) 2007-04-27 2008-04-25 Hot dip Zn-Al alloy coated steel sheet

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007119966 2007-04-27
JP2007119966 2007-04-27
JP2008102943A JP5317516B2 (en) 2007-04-27 2008-04-10 Surface-treated molten Zn-Al alloy-plated steel sheet

Publications (2)

Publication Number Publication Date
JP2008291350A JP2008291350A (en) 2008-12-04
JP5317516B2 true JP5317516B2 (en) 2013-10-16

Family

ID=40166380

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008102943A Active JP5317516B2 (en) 2007-04-27 2008-04-10 Surface-treated molten Zn-Al alloy-plated steel sheet

Country Status (2)

Country Link
JP (1) JP5317516B2 (en)
TW (1) TW200900542A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5649181B2 (en) * 2011-08-09 2015-01-07 Jfeスチール株式会社 Hot-dip Zn-Al alloy-plated steel sheet with excellent corrosion resistance and method for producing the same
JP6072569B2 (en) * 2012-02-28 2017-02-01 日鉄住金鋼板株式会社 Surface coated aluminum-containing galvanized steel sheet
JP5661699B2 (en) * 2012-08-14 2015-01-28 Jfe鋼板株式会社 Manufacturing method of resin-coated steel sheet
JP6092591B2 (en) * 2012-11-21 2017-03-08 Jfeスチール株式会社 Spray-coated surface treatment composition, method for producing surface-treated galvanized steel sheet, and surface-treated galvanized steel sheet
CN109804103B (en) 2016-10-11 2021-02-19 杰富意钢铁株式会社 Surface treatment liquid for zinc-based plated steel sheet, zinc-based plated steel sheet with surface treatment film, and method for producing same
CN111074187B (en) * 2019-12-19 2021-12-14 河钢股份有限公司 Steel sheet comprising zinc-aluminium-magnesium coating and method for manufacturing same
EP4209616A4 (en) * 2020-10-05 2024-03-13 JFE Steel Corporation Surface treated steel sheet for organic resin coating and manufacturing method thereof; organic resin coated steel sheet and manufacturing method thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59177381A (en) * 1983-03-26 1984-10-08 Nippon Steel Corp Production of galvanized steel sheet having resistance to blackening
JP3475908B2 (en) * 2000-05-23 2003-12-10 ユケン工業株式会社 Method for improving the weather resistance of zinc-based plating materials
JP2004238638A (en) * 2002-12-09 2004-08-26 Kansai Paint Co Ltd Surface treatment composition and surface-treated metal strip
JP3735360B2 (en) * 2003-07-01 2006-01-18 新日本製鐵株式会社 Manufacturing method of hot-dip Zn-Mg-Al plated steel sheet with excellent appearance

Also Published As

Publication number Publication date
JP2008291350A (en) 2008-12-04
TW200900542A (en) 2009-01-01

Similar Documents

Publication Publication Date Title
JP5160866B2 (en) Surface-treated molten Zn-Al alloy-plated steel sheet
JP5600417B2 (en) Surface treatment composition and surface treated steel sheet
JP5600416B2 (en) Surface treatment composition and surface treated steel sheet
JP4972240B2 (en) Surface-treated steel sheet
JP5431721B2 (en) Surface treatment composition for zinc-based plated steel sheet or aluminum-based plated steel sheet and surface-treated steel sheet
TWI457468B (en) Hot-dip galvanized steel sheet and manufacturing method therefor
JP5317516B2 (en) Surface-treated molten Zn-Al alloy-plated steel sheet
JP4575047B2 (en) Metal surface treatment composition and metal surface treatment steel plate
TW200300163A (en) Coating composition for forming titanium oxide film, method of forming titanium oxide film and metal substrate coated with titanium oxide film
JP2008231418A (en) Coating material for forming titanium-zirconium film, method for forming titanium-zirconium film, metal substrate coated with titanium-zirconium film
US7527876B2 (en) Surface-treated steel sheet
JP5577782B2 (en) Surface-treated steel sheet
JP2010156020A (en) Surface-treated steel plate
JPWO2002061005A1 (en) Coating agent for forming titanium oxide film, method for forming titanium oxide film, and metal substrate coated with titanium oxide film
JP5097311B2 (en) Surface-treated steel sheet and organic resin-coated steel sheet
JP4916913B2 (en) Surface-treated steel sheet and organic resin-coated steel sheet
JP5101271B2 (en) Surface-treated steel sheet
JP2002275653A (en) Metallic surface treated steel sheet
JP2013060646A (en) Composition for spray coating surface treatment, method for producing surface-treated hot-dip galvanized steel sheet, and the surface-treated hot-dip galvanized steel sheet
WO2008136496A1 (en) Surface-treated, hot-dip zn-al alloy coated steel sheet
JP2002275642A (en) Coated steel sheet excellent in corrosion resistance
JP6092591B2 (en) Spray-coated surface treatment composition, method for producing surface-treated galvanized steel sheet, and surface-treated galvanized steel sheet
KR100963734B1 (en) Surface treated steel sheet
JP2009161790A (en) CHROMATE-FREE SURFACE-TREATED Al-Zn ALLOY PLATED STEEL SHEET
JP2009160749A (en) CHROMATE-FREE SURFACE-TREATED Al-Zn-BASED-ALLOY-PLATED STEEL SHEET

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130416

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130611

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130702

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130709

R150 Certificate of patent or registration of utility model

Ref document number: 5317516

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250