JP2013060646A - Composition for spray coating surface treatment, method for producing surface-treated hot-dip galvanized steel sheet, and the surface-treated hot-dip galvanized steel sheet - Google Patents

Composition for spray coating surface treatment, method for producing surface-treated hot-dip galvanized steel sheet, and the surface-treated hot-dip galvanized steel sheet Download PDF

Info

Publication number
JP2013060646A
JP2013060646A JP2011201124A JP2011201124A JP2013060646A JP 2013060646 A JP2013060646 A JP 2013060646A JP 2011201124 A JP2011201124 A JP 2011201124A JP 2011201124 A JP2011201124 A JP 2011201124A JP 2013060646 A JP2013060646 A JP 2013060646A
Authority
JP
Japan
Prior art keywords
titanium
steel sheet
compound
composition
galvanized steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011201124A
Other languages
Japanese (ja)
Inventor
Rie Kaneko
里江 金子
Akira Matsuzaki
晃 松崎
Yasuhide Oshima
安秀 大島
Takashi Okubo
崇 大久保
Hideto Urushima
秀人 宇留嶋
Takashi Nakano
多佳士 中野
Shinichiro Nitta
慎一郎 新田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Kansai Paint Co Ltd
Original Assignee
JFE Steel Corp
Kansai Paint Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp, Kansai Paint Co Ltd filed Critical JFE Steel Corp
Priority to JP2011201124A priority Critical patent/JP2013060646A/en
Publication of JP2013060646A publication Critical patent/JP2013060646A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Chemical Treatment Of Metals (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an environmentally compatible composition for surface treatment, which does not contain hexavalent chromium at all and can exhibit sufficient corrosion resistance and coating film appearance (finishing state) in the case when it is applied to the surface of a hot-dip galvanized steel sheet by a spray coating method to form a surface treatment coating film on the surface.SOLUTION: The composition for spray coating surface treatment includes: a specific titanium-containing aqueous liquid (A); a nickel compound (B); a fluorine-containing compound (C); an organic phosphoric acid compound (D); a vanadic acid compound (E); and a zirconium carbonate compound (F), by a prescribed amount each, has a pH within the range of 7-10, and contains no resin component. The composition is used for forming a surface treatment coating film by being applied to at least one surface of a hot-dip galvanized steel sheet by a spray coating method.

Description

本発明は、スプレー塗布表面処理用組成物、表面処理溶融亜鉛めっき鋼板の製造方法、および表面処理溶融亜鉛めっき鋼板に関する。本発明は特に、溶融亜鉛めっき鋼板の表面にスプレー塗布法で塗布するのに適した、6価クロムを含まない環境適用型の表面処理用組成物に関する。   The present invention relates to a spray-coated surface treatment composition, a method for producing a surface-treated galvanized steel sheet, and a surface-treated galvanized steel sheet. In particular, the present invention relates to an environmentally-applicable surface treatment composition that does not contain hexavalent chromium and is suitable for being applied to the surface of a hot-dip galvanized steel sheet by a spray coating method.

家電用鋼板、建材用鋼板、自動車用鋼板には、従来から溶融亜鉛めっき鋼板の表面に、耐食性(耐白錆性、耐赤錆性)を向上させる目的で、クロム酸、重クロム酸またはその塩類を主要成分とした処理液によるクロメート処理が施された鋼板が幅広く用いられている。このクロメート処理は、溶融亜鉛めっき鋼板の生産ラインでは、スプレー塗布法により行われることが多く、経済的である。スプレー塗布法は、クロメート処理液をスプレーで塗布またはシャワーで流しかける比較的簡便な方法であり、その後ロールやエアー絞りで塗布(液膜)量を調整し、オーブンなどで乾燥させる。   Conventionally, steel sheets for home appliances, steel sheets for building materials, and steel sheets for automobiles have been used for the purpose of improving corrosion resistance (white rust resistance, red rust resistance) on the surface of hot-dip galvanized steel sheets, chromic acid, dichromic acid or salts thereof Steel plates that have been chromate-treated with a treatment liquid containing as a main component are widely used. This chromate treatment is often performed by a spray coating method in a production line for hot dip galvanized steel sheets, and is economical. The spray coating method is a relatively simple method in which a chromate treatment solution is applied by spraying or is poured by a shower. Thereafter, the amount of coating (liquid film) is adjusted with a roll or an air squeezer and dried in an oven or the like.

しかし、クロメート処理は公害規制物質である6価クロムを使用しており、環境に対する配慮から、またクロメート処理液の廃液処理に多大な労力と費用とを要することから、処理液にクロムを含まないクロメートフリー技術が検討されている。   However, the chromate treatment uses hexavalent chromium, which is a pollution-controlling substance, and because of the environmental considerations and the waste liquid treatment of the chromate treatment liquid requires a great deal of labor and expense, the treatment liquid does not contain chromium. Chromate-free technology is being studied.

ここで、6価クロムを含まない処理液を溶融亜鉛めっき鋼板に塗布する場合、クロメートと同等以上の耐食性を発現させるためには乾燥後の皮膜付着量が1g/m程度必要となるが、スプレー塗布法ではこれだけの皮膜付着量を得ることが困難である。つまり、スプレーした後にロールやエアーで液膜を強く絞りとるスプレー塗布法では、耐食性を発現させるために必要な皮膜付着量を得ることが困難である。そのため、この場合ロールコート法を用いて鋼板表面に処理液を塗布、乾燥させ、表面処理皮膜を形成することが一般的であった。これは、ロールコート法は、アプリケータロールの回転速度や各ロール間の押付け圧などの調整により、皮膜付着量の調整が比較的に容易なためである。 Here, when a treatment liquid not containing hexavalent chromium is applied to a hot dip galvanized steel sheet, the coating amount after drying needs to be about 1 g / m 2 in order to develop corrosion resistance equivalent to or higher than that of chromate. It is difficult to obtain such a coating amount by the spray coating method. That is, in the spray coating method in which the liquid film is strongly squeezed with a roll or air after spraying, it is difficult to obtain a coating amount necessary for developing corrosion resistance. For this reason, in this case, it has been common to apply a treatment liquid to the surface of the steel sheet using a roll coating method and dry it to form a surface treatment film. This is because the roll coating method makes it relatively easy to adjust the coating amount by adjusting the rotational speed of the applicator roll and the pressing pressure between the rolls.

特許文献1には、6価クロムを含まない処理液として、特定のチタン含有水性液と、ニッケル化合物または/およびコバルト化合物と、弗素含有化合物とを所定の割合で配合した表面処理組成物を用いて、これをロールコート法により溶融Zn−Al系合金めっき鋼板に塗布、乾燥させて表面処理皮膜を形成することで、優れた耐食性と耐黒変性を有し、めっき外観性にも優れたクロムフリー表面処理溶融Zn−Al系合金めっき鋼板を得る技術が記載されている。   Patent Document 1 uses a surface treatment composition in which a specific titanium-containing aqueous liquid, a nickel compound or / and a cobalt compound, and a fluorine-containing compound are blended at a predetermined ratio as a treatment liquid that does not contain hexavalent chromium. By applying this to a molten Zn-Al alloy-plated steel sheet by a roll coating method and drying it to form a surface treatment film, chromium has excellent corrosion resistance and blackening resistance, and also has excellent plating appearance. A technique for obtaining a free surface-treated molten Zn-Al alloy-plated steel sheet is described.

特開2008−291350号公報JP 2008-291350 A

ロールコート法は塗布直後の液膜厚を数ミクロン程度に精度よく制御するのに適した方法であるが、2段または3段のバックアップロールなどの大規模な設備を要するため、設備投資が必要となる。そこで本発明者らは、従来設備であり、かつ、より簡易な設備で塗布可能なスプレー塗布法を用いて、特許文献1と同様の組成物を溶融亜鉛めっき鋼板表面に塗布、乾燥させて表面処理皮膜を形成し、特許文献1と同様の特性を得ることを試みた。しかしながら、特許文献1と同様の種々の組成物についてスプレー塗布法で表面処理皮膜を形成したところ、一部の組成物を塗布した場合に塗布直後の液膜に発泡が見られ、その後乾燥させて形成した表面処理皮膜の外観(仕上がり状態)が大きく損なわれるという問題があった。また、上記種々の組成物のいずれを塗布した場合にも、スプレー塗布法では鋼板に十分な耐食性が付与されないという問題もあった。   The roll coating method is suitable for accurately controlling the film thickness immediately after coating to several microns, but requires large-scale equipment such as a two-stage or three-stage backup roll, and requires capital investment. It becomes. Therefore, the present inventors applied the same composition as that of Patent Document 1 to the surface of a hot dip galvanized steel sheet using a spray coating method that is a conventional facility and can be applied with a simpler facility, and then dried. An attempt was made to form a treatment film and obtain the same characteristics as in Patent Document 1. However, when a surface treatment film was formed by spray coating for various compositions similar to Patent Document 1, foaming was observed in the liquid film immediately after coating when a part of the composition was coated, and then the film was dried. There was a problem that the appearance (finished state) of the formed surface treatment film was greatly impaired. Moreover, even when any of the above various compositions is applied, there is a problem that the spray coating method does not provide sufficient corrosion resistance to the steel sheet.

そこで本発明の目的は、上記課題に鑑み、溶融亜鉛めっき鋼板の表面にスプレー塗布法で塗布して表面処理皮膜を形成する場合にも十分な耐食性および皮膜外観(仕上がり状態)を呈することが可能な、6価クロムを全く含まない環境適用型の表面処理用組成物を提供すること、この組成物を用いた表面処理溶融亜鉛めっき鋼板の製造方法を提供すること、およびこの方法により得られる表面処理溶融亜鉛めっき鋼板を提供することにある。   Therefore, in view of the above problems, the object of the present invention is to provide sufficient corrosion resistance and coating appearance (finished state) even when a surface-treated coating is formed on the surface of a hot dip galvanized steel sheet by spray coating. Further, providing an environmentally-applicable surface treatment composition containing no hexavalent chromium, providing a method for producing a surface-treated hot-dip galvanized steel sheet using this composition, and the surface obtained by this method It is to provide a treated hot-dip galvanized steel sheet.

この目的を達成すべく本発明者らがさらに検討したところ、特許文献1に記載の組成物のうち樹脂成分を含むものをスプレー塗布法で溶融亜鉛めっき鋼板表面に塗布した場合に、塗布直後の液膜に発泡が見られることが判明した。これは、分子中に親水性部分と疎水性部分とを有する樹脂成分が液気界面に配向し、界面張力を低くして泡を安定化するためと考えられる。   When the present inventors further examined to achieve this object, when a composition containing a resin component in the composition described in Patent Document 1 was applied to the surface of a hot dip galvanized steel sheet by a spray coating method, It was found that foaming was observed in the liquid film. This is presumably because the resin component having a hydrophilic part and a hydrophobic part in the molecule is oriented at the liquid-gas interface, and the interfacial tension is lowered to stabilize the foam.

また、本発明者らは、スプレー塗布法で十分な耐食性が得られない理由は、スプレー塗布法ではスプレーされた後、リンガー等で絞り切られるまでの間、ロールコート法に比べて厚い液膜が形成されるためであるとの着想に至った。すなわち、スプレー塗布法では、厚い液膜が形成されるため、特許文献1に記載の組成物のように酸性で反応性の高い処理液を用いると、溶融亜鉛めっき鋼板表面に対するエッチングが過剰に進行するため、緻密な皮膜を形成できず、十分な耐食性を確保できないのである。   In addition, the reason why the present inventors cannot obtain sufficient corrosion resistance by the spray coating method is that the liquid film is thicker than the roll coating method until it is sprayed by the spray coating method and then drawn by a ringer or the like. It came to the idea that it was because of the formation. That is, in the spray coating method, a thick liquid film is formed. Therefore, when an acidic and highly reactive treatment liquid such as the composition described in Patent Document 1 is used, etching on the surface of the hot dip galvanized steel sheet proceeds excessively. Therefore, a dense film cannot be formed, and sufficient corrosion resistance cannot be ensured.

その結果、溶融亜鉛めっき鋼板の表面に、特定のチタン含有水性液、ニッケル化合物、弗素含有化合物、有機リン酸化合物、バナジン酸化合物、炭酸ジルコニウム化合物を、特に弗素含有化合物比率をある特定範囲で含み、かつ、pHが7〜10の範囲内に調整され、樹脂成分を含まない組成物を用いれば、スプレー塗布法という簡易設備でも製造可能で優れた耐食性および皮膜外観(仕上がり状態)を有する溶融亜鉛めっき鋼板が得られることを見出し、本発明を完成させるに至った。   As a result, the surface of the hot dip galvanized steel sheet contains a specific titanium-containing aqueous liquid, nickel compound, fluorine-containing compound, organic phosphoric acid compound, vanadic acid compound, zirconium carbonate compound, in particular a fluorine-containing compound ratio within a certain range. In addition, if a composition having a pH adjusted within the range of 7 to 10 and containing no resin component is used, molten zinc having excellent corrosion resistance and coating appearance (finished state) that can be manufactured even with a simple equipment such as a spray coating method. It discovered that a plated steel plate was obtained and came to complete this invention.

本発明は、このような知見に基づきなされたものであり、その要旨構成は以下のとおりである。
(1)加水分解性チタン化合物、加水分解性チタン化合物の低縮合物、水酸化チタン、水酸化チタンの低縮合物の中から選ばれる少なくとも1種のチタン化合物を過酸化水素水と混合して得られるチタン含有水性液(A)を固形分の割合で10〜60質量%と、ニッケル化合物(B)を固形分の割合で0.01〜1質量%と、弗素含有化合物(C)を固形分の割合で10〜20質量%と、有機リン酸化合物(D)を固形分の割合で10〜60質量%と、バナジン酸化合物(E)を固形分の割合で0.1〜30質量%と、炭酸ジルコニウム化合物(F)を固形分の割合で5〜30質量%と、を含有し、
pHが7〜10の範囲内に調整され、樹脂成分を含まない組成物であって、
溶融亜鉛めっき鋼板の少なくとも片面にスプレー塗布法にて塗布して表面処理皮膜を形成するために用いることを特徴とするスプレー塗布表面処理用組成物。
This invention is made | formed based on such knowledge, The summary structure is as follows.
(1) Mixing at least one titanium compound selected from hydrolyzable titanium compounds, low-condensates of hydrolyzable titanium compounds, titanium hydroxide, and low-condensates of titanium hydroxide with hydrogen peroxide water The obtained titanium-containing aqueous liquid (A) is 10 to 60% by mass in the solid content ratio, the nickel compound (B) is 0.01 to 1% by mass in the solid content ratio, and the fluorine-containing compound (C) is solid. 10 to 20% by mass, 10 to 60% by mass of the organic phosphoric acid compound (D), and 0.1 to 30% by mass of the vanadic acid compound (E) to the solid content. And 5 to 30% by mass of the zirconium carbonate compound (F) in a solid content ratio,
pH is adjusted within a range of 7 to 10, and the composition does not contain a resin component,
A composition for spray coating surface treatment, which is used for forming a surface treatment film by applying to at least one surface of a hot dip galvanized steel sheet by a spray coating method.

(2)前記弗素含有化合物(C)が、ジルコン弗化アンモニウム、ジルコン弗化水素酸の中から選ばれる少なくとも1種である上記(1)に記載のスプレー塗布表面処理用組成物。   (2) The composition for surface treatment by spray application according to the above (1), wherein the fluorine-containing compound (C) is at least one selected from zircon ammonium fluoride and zircon hydrofluoric acid.

(3)溶融亜鉛めっき鋼板の少なくとも片面に、上記(1)または(2)に記載のスプレー塗布表面処理用組成物をスプレー塗布法にて塗布し、リンガーロールまたはエアーで塗布量を絞り、乾燥させることにより表面処理皮膜を形成することを特徴とする表面処理溶融亜鉛めっき鋼板の製造方法。   (3) The spray coating surface treatment composition described in (1) or (2) above is applied to at least one surface of a hot dip galvanized steel sheet by a spray coating method, and the coating amount is reduced with a ringer roll or air and dried. A method for producing a surface-treated hot-dip galvanized steel sheet, characterized by forming a surface-treated film.

(4)上記(3)に記載の製造方法により製造された表面処理溶融亜鉛めっき鋼板。   (4) A surface-treated hot-dip galvanized steel sheet produced by the production method described in (3) above.

本発明によれば、表面処理用組成物に樹脂成分を含有させていないため、スプレー塗布法で塗布した際に発泡しにくく、その後乾燥させて得た表面処理皮膜の外観(仕上がり状態)が損なわれることがない。また、組成物のpHを7〜10に積極的に調整し、かつ、反応性に大きく影響する弗素含有化合物を固形分の割合で10〜20質量%にすることで、スプレー塗布法を用いる場合の鋼板表面との反応性が適切な組成物となり、スプレー塗布法で塗布して形成した表面処理皮膜であっても十分な耐食性を得ることができる。このようにして、溶融亜鉛めっき鋼板の表面にスプレー塗布法で塗布して表面処理皮膜を形成する場合に十分な耐食性および皮膜外観(仕上がり状態)を呈することが可能な、6価クロムを全く含まない環境適用型の表面処理用組成物を提供することができた。   According to the present invention, since the resin composition is not contained in the surface treatment composition, it is difficult to foam when applied by a spray coating method, and the appearance (finished state) of the surface treatment film obtained after drying is impaired. It will not be. Further, when the spray coating method is used by positively adjusting the pH of the composition to 7 to 10 and setting the fluorine-containing compound that greatly affects the reactivity to 10 to 20% by mass in the solid content ratio The reactivity with the steel sheet surface becomes an appropriate composition, and even a surface-treated film formed by coating by a spray coating method can provide sufficient corrosion resistance. In this way, there is absolutely no hexavalent chromium capable of exhibiting sufficient corrosion resistance and coating appearance (finished state) when applied to the surface of a hot dip galvanized steel sheet by spray coating to form a surface-treated coating. It was possible to provide a surface treatment composition having no environmental application.

以下、本発明をより詳細に説明する。   Hereinafter, the present invention will be described in more detail.

(溶融亜鉛めっき鋼板)
本発明の表面処理用組成物を適用する溶融亜鉛めっき鋼板は、JIS G 3302:2010に規定される非合金化めっきの溶融亜鉛めっきを行った鋼板である。この非合金化めっきの溶融亜鉛めっきを行った鋼板(溶融亜鉛めっき鋼板)はその酸化物層の厚さおよび被エッチング性が本発明の表面処理用組成物に適するものであり、本発明の表面処理用組成物をスプレー塗布して表面処理皮膜が形成された表面処理溶融亜鉛めっき鋼板は優れた耐食性を有する。なお、素地鋼板の鋼種は特に限定されず、低炭素鋼、極低炭素鋼、IF鋼、各種合金元素を添加した高張力鋼板等の種々の鋼板を用いることができる。
(Hot galvanized steel sheet)
The hot-dip galvanized steel sheet to which the composition for surface treatment of the present invention is applied is a steel sheet that has been subjected to hot-dip galvanizing of non-alloyed plating specified in JIS G 3302: 2010. This non-alloyed hot-dip galvanized steel sheet (hot-dip galvanized steel sheet) is suitable for the surface treatment composition of the present invention because of its oxide layer thickness and etchability. The surface-treated hot-dip galvanized steel sheet on which the surface-treated film is formed by spray-coating the treatment composition has excellent corrosion resistance. The steel type of the base steel plate is not particularly limited, and various steel plates such as low carbon steel, extremely low carbon steel, IF steel, and high tensile steel plates to which various alloy elements are added can be used.

表面処理皮膜をめっき皮膜表面に形成した際に皮膜欠陥やムラが生じないようにするため、必要に応じて、予めめっき皮膜表面にアルカリ脱脂、溶剤脱脂、表面調整処理(アルカリ性の表面調整処理または酸性の表面調整処理)などの処理を施しておくことができる。   In order to prevent film defects and unevenness when the surface treatment film is formed on the surface of the plating film, alkali degreasing, solvent degreasing, surface adjustment treatment (alkaline surface adjustment treatment or Treatment such as acidic surface conditioning treatment can be performed.

また、使用環境下での黒変(めっき表面の酸化現象の一種)を防止する目的で、必要に応じて予めめっき表面に鉄族金属イオン(Niイオン,Coイオン,Feイオンの1種以上)を含む酸性またはアルカリ性水溶液による表面調整処理を施しておくこともできる。   In addition, for the purpose of preventing blackening in the usage environment (a kind of oxidation phenomenon on the plating surface), an iron group metal ion (one or more kinds of Ni ion, Co ion, Fe ion) is previously applied to the plating surface as necessary. Surface conditioning treatment with an acidic or alkaline aqueous solution containing can also be performed.

(表面処理皮膜の形成方法)
本発明において、溶融亜鉛めっき鋼板の表面に表面処理用組成物を塗布する方法は、スプレー塗布法である。ここで、本明細書において「スプレー塗布法」とは、表面処理用組成物(処理液)を鋼板表面に対してスプレーで塗布する方法、またはシャワーで流しかける方法を意味する。その後、リンガーロールまたはエアーで塗布量を絞り、乾燥させることにより鋼板表面に皮膜を形成する。塗布の詳細な条件については後述する。
(Method for forming surface treatment film)
In the present invention, the method of applying the surface treatment composition to the surface of the hot dip galvanized steel sheet is a spray coating method. Here, the “spray coating method” in the present specification means a method of spraying the surface treatment composition (treatment liquid) on the steel plate surface or a method of pouring it with a shower. Thereafter, the coating amount is squeezed with a ringer roll or air and dried to form a film on the surface of the steel sheet. Detailed conditions for coating will be described later.

(スプレー塗布表面処理用組成物)
本発明のスプレー塗布表面処理用組成物は、特定のチタン含有水性液(A)を固形分の割合で10〜60質量%と、ニッケル化合物(B)を固形分の割合で0.01〜1質量%と、弗素含有化合物(C)を固形分の割合で10〜20質量%と、有機リン酸化合物(D)を固形分の割合で10〜60質量%と、バナジン酸化合物(E)を固形分の割合で0.1〜30質量%と、炭酸ジルコニウム化合物(F)を固形分の割合で5〜30質量%と、を含有し、pHが7〜10の範囲内に調整され、樹脂成分を含まない組成物であり、この組成物は6価クロムを含有しない。このような組成物を採用することによって、これを溶融亜鉛めっき鋼板の表面にスプレー塗布法で塗布しても、十分な耐食性および皮膜外観(仕上がり状態)を呈する表面処理皮膜を得ることができる。以下、より詳細に説明する。
(Composition for spray coating surface treatment)
In the composition for spray coating surface treatment of the present invention, the specific titanium-containing aqueous liquid (A) is 10 to 60% by mass in a solid content ratio, and the nickel compound (B) is 0.01 to 1 in a solid content ratio. 10% to 20% by mass of the fluorine-containing compound (C) in a proportion of the solid content, 10 to 60% by mass of the organophosphate compound (D) in the proportion of the solid content, and the vanadate compound (E). Containing 0.1 to 30% by mass of the solid content and 5 to 30% by mass of the zirconium carbonate compound (F) in the proportion of the solid content, the pH being adjusted within the range of 7 to 10; It is a composition containing no components, and this composition does not contain hexavalent chromium. By adopting such a composition, even if it is applied to the surface of a hot-dip galvanized steel sheet by a spray coating method, a surface-treated film exhibiting sufficient corrosion resistance and film appearance (finished state) can be obtained. This will be described in more detail below.

前記チタン含有水性液(A)は、加水分解性チタン化合物、加水分解性チタン化合物の低縮合物、水酸化チタン、水酸化チタンの低縮合物の中から選ばれる少なくとも1種のチタン化合物と過酸化水素水とを混合して得られるチタンを含む水性液である。   The titanium-containing aqueous liquid (A) contains at least one titanium compound selected from hydrolyzable titanium compounds, hydrolyzable titanium compound low condensates, titanium hydroxide and titanium hydroxide low condensates. It is an aqueous liquid containing titanium obtained by mixing with hydrogen oxide water.

前記加水分解性チタン化合物は、チタンに直接結合する加水分解性基を有するチタン化合物であって、水、水蒸気などの水分と反応することにより水酸化チタンを生成するものである。また、加水分解性チタン化合物は、チタンに結合する基の全てが加水分解性基であるものでもよいし、チタンに結合する基の一部が加水分解性基であるものでもよい。前記加水分解性基としては、上記したように水分と反応することにより水酸化チタンを生成させるものであれば特に制限はないが、例えば、低級アルコキシル基やチタンと塩を形成する基(例えば、塩素などのハロゲン原子、水素原子、硫酸イオンなど)などが挙げられる。   The hydrolyzable titanium compound is a titanium compound having a hydrolyzable group directly bonded to titanium, and generates titanium hydroxide by reacting with water such as water or water vapor. The hydrolyzable titanium compound may be one in which all of the groups bonded to titanium are hydrolyzable groups, or a part of the groups bonded to titanium may be hydrolyzable groups. The hydrolyzable group is not particularly limited as long as it generates titanium hydroxide by reacting with moisture as described above. For example, a lower alkoxyl group or a group that forms a salt with titanium (for example, Halogen atoms such as chlorine, hydrogen atoms, sulfate ions, etc.).

加水分解性基として低級アルコキシル基を含有する加水分解性チタン化合物としては、特に、一般式Ti(OR)(式中、Rは同一または異なる炭素数1〜5のアルキル基を示す)で示されるテトラアルコキシチタンが好ましい。炭素数1〜5のアルキル基としては、例えば、メチル基、エチル基、n−プロピル基、iso−プロピル基、n−ブチル基、iso−ブチル基、sec−ブチル基、tert−ブチル基などが挙げられる。加水分解性基として、チタンと塩を形成する基を有する加水分解性チタン化合物としては、塩化チタン、硫酸チタンなどが代表的なものとして挙げられる。 As the hydrolyzable titanium compound containing a lower alkoxyl group as a hydrolyzable group, in particular, represented by the general formula Ti (OR) 4 (wherein R represents the same or different alkyl group having 1 to 5 carbon atoms) Tetraalkoxy titanium is preferred. Examples of the alkyl group having 1 to 5 carbon atoms include a methyl group, an ethyl group, an n-propyl group, an iso-propyl group, an n-butyl group, an iso-butyl group, a sec-butyl group, and a tert-butyl group. Can be mentioned. Typical examples of the hydrolyzable titanium compound having a group capable of forming a salt with titanium as a hydrolyzable group include titanium chloride and titanium sulfate.

加水分解性チタン化合物の低縮合物は、上記した加水分解性チタン化合物同士の低縮合物である。この低縮合物は、チタンに結合する基の全てが加水分解性基であるものでもよいし、チタンに結合する基の一部が加水分解性であるものでもよい。加水分解性基がチタンと塩を形成する基である加水分解性チタン化合物(例えば、塩化チタン、硫酸チタンなど)については、その加水分解性チタン化合物の水溶液とアンモニアや苛性ソーダなどのアルカリ溶液との反応により得られるオルトチタン酸(水酸化チタンゲル)も低縮合物として使用できる。   The low condensate of the hydrolyzable titanium compound is a low condensate of the above hydrolyzable titanium compounds. The low condensate may be one in which all of the groups bonded to titanium are hydrolyzable groups, or a part of the groups bonded to titanium may be hydrolyzable. For hydrolyzable titanium compounds whose hydrolyzable group forms a salt with titanium (for example, titanium chloride, titanium sulfate, etc.), an aqueous solution of the hydrolyzable titanium compound and an alkaline solution such as ammonia or caustic soda are used. Orthotitanic acid (titanium hydroxide gel) obtained by the reaction can also be used as a low condensate.

加水分解性チタン化合物の低縮合物および水酸化チタンの低縮合物としては、縮合度が2〜30の化合物が使用可能であり、特に縮合度が2〜10の化合物を使用することが好ましい。縮合度が30以下であれば、過酸化水素と混合した際に白色沈殿を生じることなく、安定なチタン含有水性液が得られるからである。   As the low condensate of the hydrolyzable titanium compound and the low condensate of titanium hydroxide, a compound having a condensation degree of 2 to 30 can be used, and a compound having a condensation degree of 2 to 10 is particularly preferable. This is because if the degree of condensation is 30 or less, a stable titanium-containing aqueous liquid can be obtained without causing white precipitation when mixed with hydrogen peroxide.

以上挙げた加水分解性チタン化合物、加水分解性チタン化合物の低縮合物、水酸化チタン、水酸化チタンの低縮合物は、1種または2種以上を使用できるが、そのなかでも、上述した一般式で示される加水分解性チタン化合物であるテトラアルコキシチタンが、過酸化水素と混合した際に沈殿が生じにくいので、より好ましい。   The hydrolyzable titanium compounds listed above, low-condensates of hydrolyzable titanium compounds, titanium hydroxide, and low-condensates of titanium hydroxide can be used alone or in combination of two or more thereof. Tetraalkoxytitanium, which is a hydrolyzable titanium compound represented by the formula, is more preferred because precipitation hardly occurs when mixed with hydrogen peroxide.

チタン含有水性液(A)としては、上記したチタン化合物と過酸化水素水とを混合することにより得られるチタンを含む水性液であれば、従来公知のものを特に制限なしに使用することができる。具体的には、下記のものを挙げることができる。   As the titanium-containing aqueous liquid (A), any conventionally known liquid can be used without particular limitation as long as it is an aqueous liquid containing titanium obtained by mixing the above-described titanium compound and hydrogen peroxide solution. . Specifically, the following can be mentioned.

(i)含水酸化チタンのゲルまたはゾルに過酸化水素水を添加して得られるチタニルイオン過酸化水素錯体またはチタン酸(ペルオキソチタン水和物)水溶液(特開昭63−35419号公報、特開平1−224220号公報参照)。   (I) A titanyl ion hydrogen peroxide complex or an aqueous solution of titanic acid (peroxotitanium hydrate) obtained by adding hydrogen peroxide to a hydrous titanium oxide gel or sol (JP-A 63-35419, JP 1-2224220 gazette).

(ii)塩化チタンや硫酸チタンの水溶液と塩基性溶液から製造した水酸化チタンゲルに過酸化水素水を作用させ、合成することで得られるチタニア膜形成用液体(特開平9−71418号公報、特開平10−67516号公報参照)。   (Ii) A liquid for forming a titania film obtained by synthesizing a titanium hydroxide gel produced from an aqueous solution of titanium chloride or titanium sulfate and a basic solution with a hydrogen peroxide solution (Japanese Patent Laid-Open No. 9-71418, (See Kaihei 10-67516).

このチタニア膜形成用液体を得る場合、チタンと塩を形成する基を有する塩化チタンや硫酸チタンの水溶液とアンモニアや苛性ソーダなどのアルカリ溶液とを反応させることによりオルトチタン酸と呼ばれる水酸化チタンゲルを沈殿させる。次いで、水を用いたデカンテーションによって水酸化チタンゲルを分離し、良く水洗し、さらに過酸化水素水を加え、余分な過酸化水素を分解除去することにより、黄色透明粘性液体を得ることができる。   When obtaining this titania film-forming liquid, titanium hydroxide gel called orthotitanic acid is precipitated by reacting an aqueous solution of titanium chloride or titanium sulfate having a salt-forming group with titanium and an alkaline solution such as ammonia or caustic soda. Let Next, the titanium hydroxide gel is separated by decantation with water, washed thoroughly with water, further added with hydrogen peroxide water, and excess hydrogen peroxide is decomposed and removed, whereby a yellow transparent viscous liquid can be obtained.

沈殿した上記オルトチタン酸は、OH同士の重合や水素結合によって高分子化したゲル状態にあり、そのままではチタンを含む水性液としては使用できない。このゲルに過酸化水素水を添加するとOHの一部が過酸化状態になり、ペルオキソチタン酸イオンとして溶解あるいは高分子鎖が低分子に分断された一種のゾル状態になり、余分な過酸化水素は水と酸素になって分解し、無機膜形成用のチタンを含む水性液として使用できるようになる。このゾルはチタン原子以外に酸素原子と水素原子しか含まないので、乾燥や焼成によって酸化チタンに変化する場合、水と酸素しか発生しないため、ゾルゲル法や硫酸塩などの熱分解に必要な炭素成分やハロゲン成分の除去が必要でなく、低温でも比較的密度の高い酸化チタン膜を形成することができる。   The ortho-titanic acid thus precipitated is in a gel state polymerized by polymerization of OH or hydrogen bonds, and as such cannot be used as an aqueous liquid containing titanium. When hydrogen peroxide solution is added to this gel, a part of OH is in a peroxidized state, dissolved as a peroxotitanate ion or in a kind of sol state in which the polymer chain is divided into low molecules, and excess hydrogen peroxide Is decomposed into water and oxygen, and can be used as an aqueous liquid containing titanium for forming an inorganic film. Since this sol contains only oxygen and hydrogen atoms in addition to titanium atoms, when it is changed to titanium oxide by drying or firing, only water and oxygen are generated, so carbon components necessary for thermal decomposition such as sol-gel method and sulfate Further, it is not necessary to remove the halogen component, and a titanium oxide film having a relatively high density can be formed even at a low temperature.

(iii)塩化チタンや硫酸チタンの無機チタン化合物水溶液に過酸化水素を加えてぺルオキソチタン水和物を生成させた後に、塩基性物質を添加して得られた溶液を放置または加熱することによってペルオキソチタン水和物重合体の沈殿物を生成させ、次いで、少なくともチタン含有原料溶液に由来する水以外の溶解成分を除去した後に過酸化水素を作用させて得られるチタン酸化物形成用溶液(特開2000−247638号公報、特開2000−247639号公報参照)。   (Iii) Hydrogen peroxide is added to an aqueous solution of an inorganic titanium compound such as titanium chloride or titanium sulfate to produce peroxotitanium hydrate, and then the solution obtained by adding a basic substance is allowed to stand or be heated to allow peroxo A titanium oxide forming solution obtained by forming a precipitate of a titanium hydrate polymer, and then removing hydrogen and other dissolved components derived from at least a titanium-containing raw material solution (Japanese Patent Application Laid-Open 2000-247638, JP-A-2000-247639).

チタン化合物として加水分解性チタン化合物および/またはその低縮合物(以下、単に「加水分解性チタン化合物a」という)を用いるチタン含有水性液(A)は、加水分解性チタン化合物aを過酸化水素水と反応温度1〜70℃で10分間〜20時間程度反応させることにより得ることができる。この加水分解性チタン化合物aを用いたチタン含有水性液(A)は、加水分解性チタン化合物aと過酸化水素水とを反応させることにより、加水分解性チタン化合物aが水で加水分解されて水酸基含有チタン化合物を生成し、次いで、この水酸基含有チタン化合物に過酸化水素が配位するものと考えられ、この加水分解反応および過酸化水素による配位が同時近くに起こることにより得られたものであり、室温域での安定性が極めて高く、長期の保存に耐えるキレート液を生成する。従来の製法で用いられる水酸化チタンゲルは、Ti−O−Ti結合により部分的に三次元化しており、このゲルと過酸化水素水を反応させたチタン含有水性液(A)とは組成および安定性が本質的に異なる。   The titanium-containing aqueous liquid (A) using a hydrolyzable titanium compound and / or a low condensate thereof (hereinafter simply referred to as “hydrolyzable titanium compound a”) as the titanium compound is obtained by converting hydrolyzable titanium compound a to hydrogen peroxide. It can be obtained by reacting with water at a reaction temperature of 1 to 70 ° C. for about 10 minutes to 20 hours. In the titanium-containing aqueous liquid (A) using the hydrolyzable titanium compound a, the hydrolyzable titanium compound a is hydrolyzed with water by reacting the hydrolyzable titanium compound a with hydrogen peroxide. A product obtained by producing a hydroxyl group-containing titanium compound and then coordinating hydrogen peroxide to the hydroxyl group-containing titanium compound, and this hydrolysis reaction and coordination by hydrogen peroxide occur simultaneously. It produces a chelate solution that is extremely stable at room temperature and can withstand long-term storage. The titanium hydroxide gel used in the conventional production method is partially three-dimensional by Ti—O—Ti bond, and the titanium-containing aqueous liquid (A) obtained by reacting this gel with hydrogen peroxide solution is composition and stable. Sex is essentially different.

また、加水分解性チタン化合物aを用いたチタン含有水性液(A)を80℃以上で加熱処理またはオートクレーブ処理すると、結晶化した酸化チタンの超微粒子を含む酸化チタン分散液が得られる。前記加熱処理またはオートクレーブ処理が80℃未満では、酸化チタンの結晶化が十分に進まない。このようにして製造された酸化チタン分散液に含まれる酸化チタン超微粒子の平均粒子径は、好ましくは10nm以下、より好ましくは1〜6nm程度である。酸化チタン超微粒子の平均粒子径が10nmより大きくなると造膜性が低下する(塗布後乾燥して皮膜とした場合、膜厚1μm以上でワレを生じる)ので好ましくない。この酸化チタン分散液の外観は半透明状のものである。このような酸化チタン分散液も、チタン含有水性液(A)として使用することができる。   Further, when the titanium-containing aqueous liquid (A) using the hydrolyzable titanium compound a is heated or autoclaved at 80 ° C. or higher, a titanium oxide dispersion liquid containing ultrafine particles of crystallized titanium oxide is obtained. When the heat treatment or autoclave treatment is less than 80 ° C., crystallization of titanium oxide does not proceed sufficiently. The average particle diameter of the titanium oxide ultrafine particles contained in the titanium oxide dispersion thus produced is preferably 10 nm or less, more preferably about 1 to 6 nm. When the average particle diameter of the titanium oxide ultrafine particles is larger than 10 nm, the film forming property is deteriorated (when the film is dried after coating to form a film, cracking occurs at a film thickness of 1 μm or more), which is not preferable. The appearance of this titanium oxide dispersion is translucent. Such a titanium oxide dispersion can also be used as the titanium-containing aqueous liquid (A).

加水分解性チタン化合物aを用いたチタン含有水性液(A)を含む表面処理用組成物(G)を、めっき鋼板表面に塗布・乾燥(例えば、低温で加熱乾燥)することにより、それ自体で付着性に優れた緻密な酸化チタン含有皮膜(表面処理皮膜)を形成することができる。   By applying and drying the surface treatment composition (G) containing the titanium-containing aqueous liquid (A) using the hydrolyzable titanium compound a on the surface of the plated steel sheet (for example, heat drying at a low temperature), A dense titanium oxide-containing film (surface treatment film) having excellent adhesion can be formed.

表面処理用組成物(G)を塗布した後の加熱温度としては、例えば200℃以下、特に150℃以下が好ましく、このような温度で加熱乾燥することにより、水酸基を若干含む非晶質(アモルファス)の酸化チタン含有皮膜が形成できる。また、上記したような80℃以上の加熱処理またはオートクレーブ処理を経て得られた酸化チタン分散液をチタン含有水性液(A)として用いた場合、表面処理組成物(G)を塗布するだけで結晶性の酸化チタン含有皮膜が形成できるため、加熱処理できない材料のコーティング材として有用である。   The heating temperature after applying the surface treatment composition (G) is, for example, preferably 200 ° C. or less, particularly preferably 150 ° C. or less. ) Of titanium oxide containing film can be formed. In addition, when the titanium oxide dispersion obtained through the heat treatment or autoclave treatment as described above at 80 ° C. or more is used as the titanium-containing aqueous liquid (A), the crystal can be obtained by simply applying the surface treatment composition (G). It is useful as a coating material for materials that cannot be heat-treated.

また、チタン含有水性液(A)としては、酸化チタンゾルの存在下で、加水分解性チタン化合物aと過酸化水素水とを反応させて得られるチタン含有水性液(A1)を使用することもできる。   Further, as the titanium-containing aqueous liquid (A), a titanium-containing aqueous liquid (A1) obtained by reacting the hydrolyzable titanium compound a with hydrogen peroxide in the presence of a titanium oxide sol can also be used. .

前記酸化チタンゾルは、無定型チタニア微粒子または/およびアナタース型チタニア微粒子が水(必要に応じて、例えばアルコール系、アルコールエーテル系などの水性有機溶剤を添加してもよい)に分散したゾルである。この酸化チタンゾルとしては、従来公知のものを使用することができ、例えば、(i)硫酸チタンや硫酸チタニルなどの含チタン溶液を加水分解して得られる酸化チタン凝集物、(ii)チタンアルコキシドなどの有機チタン化合物を加水分解して得られる酸化チタン凝集物、(iii)四塩化チタンなどのハロゲン化チタン溶液を加水分解または中和して得られる酸化チタン凝集物、などの酸化チタン凝集物を水に分散した無定型チタニアゾル、あるいは前記酸化チタン凝集物を焼成してアナタース型チタン微粒子とし、これを水に分散したゾルを使用することができる。   The titanium oxide sol is a sol in which amorphous titania fine particles and / or anatase type titania fine particles are dispersed in water (for example, an aqueous organic solvent such as an alcohol or alcohol ether may be added if necessary). As this titanium oxide sol, conventionally known ones can be used. For example, (i) a titanium oxide aggregate obtained by hydrolyzing a titanium-containing solution such as titanium sulfate or titanyl sulfate, (ii) titanium alkoxide, etc. Titanium oxide aggregates obtained by hydrolyzing organic titanium compounds of (ii), (iii) Titanium oxide aggregates obtained by hydrolyzing or neutralizing titanium halide solutions such as titanium tetrachloride, etc. Amorphous titania sol dispersed in water or a sol in which the titanium oxide aggregate is fired to form anatase titanium fine particles and dispersed in water can be used.

前記無定形チタニアの焼成では、少なくともアナターゼの結晶化温度以上の温度、例えば、400℃〜500℃以上の温度で焼成すれば、無定形チタニアをアナターゼ型チタニアに変換させることができる。この酸化チタンの水性ゾルとしては、例えば、TKS−201(商品名,テイカ社製,アナタース型結晶形,平均粒子径6nm)、TA−15(商品名,日産化学社製,アナタース型結晶形)、STS−11(商品名,石原産業社製,アナタース型結晶形)などが挙げられる。   In the firing of the amorphous titania, the amorphous titania can be converted into anatase titania by firing at a temperature of at least the crystallization temperature of anatase, for example, a temperature of 400 ° C. to 500 ° C. or more. Examples of the aqueous sol of titanium oxide include, for example, TKS-201 (trade name, manufactured by TEIKA CORPORATION, anatase crystal form, average particle diameter 6 nm), TA-15 (trade name, manufactured by NISSAN CHEMICAL CO., LTD., Anatase crystal form). STS-11 (trade name, manufactured by Ishihara Sangyo Co., Ltd., anatase type crystal form) and the like.

チタン含有水性液(A1)において、上記酸化チタンゾルxとチタン過酸化水素反応物y(加水分解性チタン化合物aと過酸化水素水との反応生成物)との質量比率x/yは、1/99〜99/1、好ましくは約10/90〜90/10の範囲が適当である。質量比率x/yが1/99未満では、安定性、光反応性などの点において酸化チタンゾルを添加した効果が十分に得られず、一方、99/1を超えると造膜性が劣るので好ましくない。   In the titanium-containing aqueous liquid (A1), the mass ratio x / y between the titanium oxide sol x and the titanium hydrogen peroxide reactant y (reaction product of the hydrolyzable titanium compound a and hydrogen peroxide solution) is 1 / A range of 99 to 99/1, preferably about 10/90 to 90/10 is suitable. If the mass ratio x / y is less than 1/99, the effect of adding the titanium oxide sol cannot be sufficiently obtained in terms of stability, photoreactivity, etc. On the other hand, if it exceeds 99/1, the film forming property is inferior. Absent.

チタン含有水性液(A1)は、酸化チタンゾルの存在下で加水分解性チタン化合物aを過酸化水素水と反応温度1〜70℃で10分間〜20時間程度反応させることにより得ることができる。チタン含有水性液(A1)の生成形態やその特性は、さきに述べた加水分解性チタン化合物aを用いたチタン含有水性液(A)と同様であるが、特に、酸化チタンゾルを使用することにより、合成時に一部縮合反応が起きて増粘するのが抑えられる。その理由は、縮合反応物が酸化チタンゾルの表面に吸着され、溶液状態での高分子化が抑えられるためであると考えられる。   The titanium-containing aqueous liquid (A1) can be obtained by reacting the hydrolyzable titanium compound a with hydrogen peroxide at a reaction temperature of 1 to 70 ° C. for about 10 minutes to 20 hours in the presence of a titanium oxide sol. The production form and characteristics of the titanium-containing aqueous liquid (A1) are the same as those of the titanium-containing aqueous liquid (A) using the hydrolyzable titanium compound a described above, but in particular, by using a titanium oxide sol. , It is possible to suppress a partial condensation reaction during the synthesis to increase the viscosity. The reason is considered to be that the condensation reaction product is adsorbed on the surface of the titanium oxide sol, and polymerization in a solution state is suppressed.

また、チタン含有水性液(A1)を80℃以上で加熱処理またはオートクレーブ処理すると、結晶化した酸化チタンの超微粒子を含む酸化チタン分散液が得られる。この酸化チタン分散液を得るための温度条件、結晶化した酸化チタン超微粒子の粒子径、分散液の外観なども、さきに述べた加水分解性チタン化合物aを用いたチタン含有水性液(A)と同様である。このような酸化チタン分散液も、チタン含有水性液(A1)として使用することができる。   Further, when the titanium-containing aqueous liquid (A1) is subjected to a heat treatment or autoclave treatment at 80 ° C. or higher, a titanium oxide dispersion containing ultrafine particles of crystallized titanium oxide is obtained. The titanium-containing aqueous liquid (A) using the hydrolyzable titanium compound a described above also describes the temperature conditions for obtaining this titanium oxide dispersion, the particle diameter of the crystallized titanium oxide ultrafine particles, the appearance of the dispersion, etc. It is the same. Such a titanium oxide dispersion can also be used as the titanium-containing aqueous liquid (A1).

さきに述べた加水分解性チタン化合物aを用いたチタン含有水性液(A)と同様、チタン含有水性液(A1)を含む表面処理用組成物(H)を、めっき鋼板表面に塗布・乾燥(例えば、低温で加熱乾燥)することにより、それ自体で付着性に優れた緻密な酸化チタン含有皮膜(表面処理皮膜)を形成することができる。   Similar to the titanium-containing aqueous liquid (A) using the hydrolyzable titanium compound a described above, the surface treatment composition (H) containing the titanium-containing aqueous liquid (A1) is applied to the surface of the plated steel sheet and dried ( For example, by performing heat drying at a low temperature, a dense titanium oxide-containing film (surface treatment film) having excellent adhesion can be formed.

表面処理組成物(H)を塗布した後の加熱温度としては、乾けば問題なく、例えば鋼板温度として200℃以下、特に150℃以下が好ましく、このような温度で加熱乾燥することにより、水酸基を若干含むアナタース型の酸化チタン含有皮膜が形成できる。   As the heating temperature after applying the surface treatment composition (H), if it dries, there is no problem. For example, the steel plate temperature is preferably 200 ° C. or less, particularly preferably 150 ° C. or less. An anatase-type titanium oxide-containing film containing a little can be formed.

以上述べたように、チタン含有水性液(A)の中でも、加水分解性チタン化合物aを用いたチタン含有水性液(A)やチタン含有水性液(A1)は、貯蔵安定性、耐食性などに優れた性能を有するので、本発明ではこれらを使用することが特に好ましい。   As described above, of the titanium-containing aqueous liquid (A), the titanium-containing aqueous liquid (A) and the titanium-containing aqueous liquid (A1) using the hydrolyzable titanium compound a are excellent in storage stability, corrosion resistance, and the like. It is particularly preferable to use these in the present invention.

加水分解性チタン化合物、加水分解性チタン化合物の低縮合物、水酸化チタン、水酸化チタンの低縮合物の中から選ばれる少なくとも1種のチタン化合物に対する過酸化水素水の配合割合は、チタン化合物10質量部に対して過酸化水素換算で0.1〜100質量部とすることが好ましく、1〜20質量部とすることがより好ましい。上記配合割合を0.1質量部以上とすれば、キレート形成が十分であり白濁沈殿が生じることがなく、一方、100質量部以下であれば、未反応の過酸化水素が残存しにくく、貯蔵中に危険な活性酸素を放出しにくいため好ましい。   The compounding ratio of hydrogen peroxide water to at least one titanium compound selected from hydrolyzable titanium compounds, hydrolyzable titanium compound low condensates, titanium hydroxide, titanium hydroxide low condensates is titanium compounds It is preferable to set it as 0.1-100 mass parts in conversion of hydrogen peroxide with respect to 10 mass parts, and it is more preferable to set it as 1-20 mass parts. If the blending ratio is 0.1 parts by mass or more, chelate formation is sufficient and cloudy precipitation does not occur. On the other hand, if it is 100 parts by mass or less, unreacted hydrogen peroxide hardly remains and is stored. It is preferable because it is difficult to release dangerous active oxygen.

過酸化水素水の過酸化水素濃度は特に限定されないが、3〜30質量%程度であることが、取り扱いやすさ、塗装作業性に関係する生成液の固形分の点で好ましい。   The hydrogen peroxide concentration of the hydrogen peroxide solution is not particularly limited, but it is preferably about 3 to 30% by mass from the viewpoint of ease of handling and the solid content of the product liquid related to coating workability.

チタン含有水性液(A)には、必要に応じて、他のゾルや顔料を添加分散させることもできる。例えば、添加物としては、市販の酸化チタンゾルや酸化チタン粉末、マイカ、タルク、シリカ、バリタ、クレーなどが挙げられ、これらの1種以上を添加することができる。   Other sols and pigments can be added and dispersed in the titanium-containing aqueous liquid (A) as necessary. Examples of the additive include commercially available titanium oxide sol, titanium oxide powder, mica, talc, silica, barita, clay, and the like, and one or more of these can be added.

処理液の安定性を確保するために、表面処理用組成物(G),(H)中でのチタン含有水性液(A)の含有量は、固形分の割合で10質量%〜60質量%とする。   In order to ensure the stability of the treatment liquid, the content of the titanium-containing aqueous liquid (A) in the surface treatment compositions (G) and (H) is 10% by mass to 60% by mass in terms of solid content. And

前記ニッケル化合物(B)は耐黒変性向上のために配合されるものであり、ニッケル化合物(B)としては、例えば、酢酸ニッケル、硝酸ニッケル、硫酸ニッケルなどの無機ニッケル化合物が挙げられ、これらの1種または2種以上を用いることができる。なかでも、酢酸ニッケルが耐黒変性向上の点から好適である。ニッケル化合物(B)の配合量は、組成物の固形分の割合で0.01質量%〜1質量%である。0.01質量%以上であれば十分な耐黒変性の改善が得られ、一方、1質量%以下であれば耐食性が劣化することもないからである。   The nickel compound (B) is blended for improving blackening resistance, and examples of the nickel compound (B) include inorganic nickel compounds such as nickel acetate, nickel nitrate, and nickel sulfate. 1 type (s) or 2 or more types can be used. Of these, nickel acetate is preferred from the viewpoint of improving blackening resistance. The compounding quantity of a nickel compound (B) is 0.01 mass%-1 mass% in the ratio of the solid content of a composition. If the content is 0.01% by mass or more, sufficient blackening resistance can be improved, while if the content is 1% by mass or less, the corrosion resistance is not deteriorated.

前記弗素含有化合物(C)は貯蔵安定性、耐食性、耐水付着性などを向上させるために配合されるものであり、弗素含有化合物(C)としては、例えば、ジルコン弗化アンモニウム、ジルコン弗化カリウム、ジルコン弗化水素酸、チタン弗化アンモニウム、弗化水素酸、弗化水素酸アンモニウムなどの無機弗素含有化合物が挙げられ、これらの1種または2種以上を用いることができる。なかでも、ジルコン弗化アンモニウム、ジルコン弗化水素酸の中から選ばれる少なくとも1種を用いること好ましい。特に、ジルコニウム弗化アンモニウムはアルカリ脱脂後の耐食性、耐水付着性の点から、ジルコン弗化水素酸はアルカリ脱脂後の耐食性の点から好適である。   The fluorine-containing compound (C) is blended in order to improve storage stability, corrosion resistance, water resistance, and the like. Examples of the fluorine-containing compound (C) include zircon ammonium fluoride and zircon potassium fluoride. Inorganic fluorine-containing compounds such as zircon hydrofluoric acid, titanium ammonium fluoride, hydrofluoric acid, and ammonium hydrofluoride, and one or more of these can be used. Of these, it is preferable to use at least one selected from ammonium zircon fluoride and zircon hydrofluoric acid. Zirconium hydrofluoric acid is particularly suitable from the viewpoint of corrosion resistance after alkaline degreasing and adhesion to water, and zircon hydrofluoric acid from the viewpoint of corrosion resistance after alkaline degreasing.

弗素含有化合物(C)の配合量は、組成物の固形分の割合で10質量%〜20質量%である。10質量%以上とすれば、スプレー処理時の反応性が適正に得ることができ、十分な耐食性を得ることができる。一方、20質量%以下とすれば、反応性が高くなりすぎず、めっき表面のエッチング量を抑えて、十分な耐食性を得ることができる。   The compounding quantity of a fluorine-containing compound (C) is 10 mass%-20 mass% in the ratio of the solid content of a composition. If it is 10 mass% or more, the reactivity at the time of a spray process can be obtained appropriately, and sufficient corrosion resistance can be obtained. On the other hand, if the content is 20% by mass or less, the reactivity does not become too high, and the etching amount on the plating surface can be suppressed to obtain sufficient corrosion resistance.

前記有機リン酸化合物(D)としては、例えば、1−ヒドロキシメタン−1、1−ジホスホン酸、1−ヒドロキシエタン−1、1−ジホスホン酸、1−ヒドロキシプロパン−1、1−ジホスホン酸などのヒドロキシル基含有有機亜リン酸;2−ヒドロキシホスホノ酢酸、2−ホスホノブタン−1,2,4−トリカルボン酸などのカルボキシル基含有有機亜リン酸、およびこれらの塩などが好適なものとして挙げられ、これらの1種または2種以上を用いることができる。有機リン酸化合物(D)は、チタン含有水性液(A)の貯蔵安定性を向上させる効果を有し、なかでも、1−ヒドロキシエタン−1、1−ジホスホン酸はその効果が特に大きいことから、これを使用するのが特に好ましい。   Examples of the organic phosphoric acid compound (D) include 1-hydroxymethane-1, 1-diphosphonic acid, 1-hydroxyethane-1, 1-diphosphonic acid, 1-hydroxypropane-1, 1-diphosphonic acid, and the like. Suitable examples include hydroxyl group-containing organic phosphorous acid; carboxyl group-containing organic phosphorous acid such as 2-hydroxyphosphonoacetic acid, 2-phosphonobutane-1,2,4-tricarboxylic acid, and salts thereof. These 1 type (s) or 2 or more types can be used. The organic phosphoric acid compound (D) has an effect of improving the storage stability of the titanium-containing aqueous liquid (A). Among them, 1-hydroxyethane-1,1-diphosphonic acid has a particularly large effect. It is particularly preferred to use this.

有機リン酸化合物(D)の配合量は、組成物の固形分の割合で10質量%〜60質量%である。有機リン酸化合物(D)の配合量が10質量%以上であれば、十分な貯蔵安定性を得ることができ、60質量%以下であれば、十分な耐水付着性を得ることができる。   The compounding quantity of an organic phosphoric acid compound (D) is 10 mass%-60 mass% in the ratio of the solid content of a composition. If the amount of the organic phosphoric acid compound (D) is 10% by mass or more, sufficient storage stability can be obtained, and if it is 60% by mass or less, sufficient water resistance adhesion can be obtained.

前記バナジン酸化合物(E)としては、例えば、メタバナジン酸リチウム、メタバナジン酸カリウム、メタバナジン酸ナトリウム、メタバナジン酸アンモニウム、無水バナジン酸などが挙げられ、これらの1種または2種以上を用いることができる。なかでも、メタバナジン酸アンモニウムが耐水付着性などの点から好ましい。皮膜をアルカリ脱脂した後の耐食性を確保するために、バナジン酸化合物(E)の配合量は、組成物の固形分の割合で0.1質量%〜30質量%とする。   Examples of the vanadate compound (E) include lithium metavanadate, potassium metavanadate, sodium metavanadate, ammonium metavanadate, and anhydrous vanadate, and one or more of these can be used. Of these, ammonium metavanadate is preferable from the viewpoint of water adhesion resistance. In order to ensure the corrosion resistance after alkali degreasing the film, the compounding amount of the vanadic acid compound (E) is 0.1% by mass to 30% by mass in terms of the solid content of the composition.

前記炭酸ジルコニウム化合物(F)としては、炭酸ジルコニウムのナトリウム、カリウム、リチウム、アンモニウムなどの塩が挙げられ、これらの1種または2種以上を用いることができる。なかでも、炭酸ジルコニウムアンモニウムが耐水付着性などの点から好ましい。皮膜をアルカリ脱脂した後の耐食性を確保するために、炭酸ジルコニウム化合物(F)の配合量は、組成物の固形分の割合で5質量%〜30質量%とする。   Examples of the zirconium carbonate compound (F) include salts of zirconium carbonate such as sodium, potassium, lithium, and ammonium, and one or more of these can be used. Of these, ammonium zirconium carbonate is preferable from the viewpoint of water-resistant adhesion. In order to ensure the corrosion resistance after alkali degreasing the film, the blending amount of the zirconium carbonate compound (F) is 5% by mass to 30% by mass in terms of the solid content of the composition.

本発明の組成物の特徴は、pHが7〜10の範囲内に調整されたものであることである。上記成分(A)〜(F)のみを含む組成物は酸性であるところ、本発明ではさらにアルカリを添加してpHを7〜10の範囲内に調整する。スプレー塗布法の場合、スプレーされた後、リンガー等で絞り切られるまでの間、ロールコート法に比べて液膜厚が厚いため、酸性のまま、および/または、弗素含有化合物を適正な範囲に調整しない条件では鋼板との反応性が高すぎ、溶融亜鉛めっき鋼板表面に対するエッチングが過剰に進行するため、緻密な皮膜を形成できず、十分な耐食性を確保することができない。pHを7〜10の範囲内とし、かつ弗素含有化合物を適正な範囲に調整すれば、鋼板表面との反応性すなわち表面に対するエッチング性を適正な範囲に抑えることができ、十分な耐食性を得ることができる。   The characteristic of the composition of this invention is that pH was adjusted in the range of 7-10. Where the composition containing only the components (A) to (F) is acidic, in the present invention, an alkali is further added to adjust the pH within the range of 7 to 10. In the case of the spray coating method, the liquid film thickness is thicker than that of the roll coating method after spraying until it is squeezed out by a ringer or the like. If the conditions are not adjusted, the reactivity with the steel sheet is too high, and the etching on the surface of the hot-dip galvanized steel sheet proceeds excessively, so that a dense film cannot be formed and sufficient corrosion resistance cannot be ensured. If the pH is within the range of 7 to 10 and the fluorine-containing compound is adjusted to an appropriate range, the reactivity with the steel sheet surface, that is, the etching property to the surface can be suppressed to an appropriate range, and sufficient corrosion resistance can be obtained. Can do.

添加するアルカリは特に限定されず、アンモニア、水酸化ナトリウム、水酸化カルシウム、ジメチルアミン、トリエチルアミン、ジメチルエタノールアミンなどが挙げられ、乾燥過程で揮散して皮膜中に残存しにくいことからアンモニアが特に好ましい。   The alkali to be added is not particularly limited, and examples thereof include ammonia, sodium hydroxide, calcium hydroxide, dimethylamine, triethylamine, dimethylethanolamine, and ammonia is particularly preferable because it is volatilized in the drying process and hardly remains in the film. .

本発明の組成物のもう1つの特徴は、樹脂成分を含まないことである。表面処理用組成物に樹脂成分を含有させないことにより、スプレー塗布法で塗布した際に発泡しにくく、その後乾燥させて得た表面処理皮膜の外観(仕上がり状態)が損なわれることがない。   Another feature of the composition of the present invention is that it does not contain a resin component. By not including the resin component in the surface treatment composition, foaming hardly occurs when applied by a spray coating method, and the appearance (finished state) of the surface treatment film obtained by subsequent drying is not impaired.

本発明の組成物には、さらに必要に応じて、例えば、シランカップリング剤、無機リン酸化合物などのエッチング剤、本発明が規定する成分以外の重金属化合物、増粘剤、界面活性剤、染料などを含有することができる。また、本発明の組成物は、必要に応じて、例えばメタノール、エタノール、イソプロピルアルコール、エチレングリコール系溶剤、プロピレングリコール系溶剤などの親水性溶剤で希釈して使用することができる。   In the composition of the present invention, if necessary, for example, etching agents such as silane coupling agents and inorganic phosphate compounds, heavy metal compounds other than the components defined by the present invention, thickeners, surfactants, dyes Etc. can be contained. Moreover, the composition of this invention can be diluted with hydrophilic solvents, such as methanol, ethanol, isopropyl alcohol, an ethylene glycol type solvent, a propylene glycol type solvent, for example as needed, and can be used.

(表面処理溶融亜鉛めっき鋼板およびその製造方法)
本発明の表面処理溶融亜鉛めっき鋼板の製造方法は、溶融亜鉛めっき鋼板の少なくとも片面に、これまで説明した組成物をスプレー塗布法にて塗布し、リンガーロールまたはエアーで塗布量を絞り、乾燥させることにより表面処理皮膜を形成することで得ることができる。こうして得た表面処理溶融亜鉛めっき鋼板は、既述のとおり、皮膜に6価クロムを含まず、十分な耐食性および皮膜外観(仕上がり状態)を呈する。
(Surface-treated hot-dip galvanized steel sheet and manufacturing method thereof)
In the method for producing a surface-treated hot-dip galvanized steel sheet according to the present invention, at least one surface of a hot-dip galvanized steel sheet is coated with the composition described so far by a spray coating method, and the coating amount is squeezed with a ringer roll or air and dried. This can be obtained by forming a surface treatment film. As described above, the surface-treated hot-dip galvanized steel sheet thus obtained does not contain hexavalent chromium and exhibits sufficient corrosion resistance and appearance (finished state).

次に、本発明に適したスプレー塗布法の条件について説明する。スプレー塗布法では、鋼板の表面全面が液に接触するようなスプレー圧であれば問題なく、0.2kgf/cm以上とするのが好ましい。0.2kgf/cm未満では、液不足による外観不良が発生し易いと考えられるためである。スプレー塗布後はリンガーロールまたはエアーで液を絞る。リンガーロールの絞り圧またはエアーの圧力は、目標とする付着量が得られる範囲に調整すればよい。 Next, the conditions of the spray coating method suitable for the present invention will be described. In the spray coating method, there is no problem if the spray pressure is such that the entire surface of the steel sheet is in contact with the liquid, and it is preferably 0.2 kgf / cm 2 or more. This is because if it is less than 0.2 kgf / cm 2, it is considered that appearance defects due to insufficient liquid are likely to occur. After spraying, squeeze the liquid with a ringer roll or air. The squeezing pressure of the ringer roll or the air pressure may be adjusted within a range in which a target adhesion amount can be obtained.

本発明により形成される表面処理皮膜の片面当たりの付着量は、0.05〜0.5g/mが好ましい。皮膜付着量が0.05g/m以上であれば、耐食性をより確実に得ることができ、0.5g/m以下であれば、皮膜が割れたり、クラックが形成されたりして耐食性が低下する可能性が低いからである。 The adhesion amount per one side of the surface treatment film formed according to the present invention is preferably 0.05 to 0.5 g / m 2 . If film coating weight of 0.05 g / m 2 or more, it is possible to obtain a corrosion resistance more reliably, if 0.5 g / m 2 or less, or cracking the film, the corrosion resistance and cracks are formed This is because the possibility of lowering is low.

以下、実施例を用いて本発明をさらに詳細に説明するが、本発明は以下の実施例に何ら限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated further in detail using an Example, this invention is not limited to a following example at all.

(めっき鋼板)
表面処理鋼板のベース鋼板としては、表1に示すめっき鋼板を用いた。No.2のみが本発明例に用いる溶融亜鉛めっき鋼板であり、残りは比較例に用いる亜鉛めっき鋼板である。

Figure 2013060646
(Plated steel sheet)
As the base steel plate of the surface-treated steel plate, the plated steel plate shown in Table 1 was used. No. Only 2 is a hot dip galvanized steel sheet used in the present invention example, and the rest is a galvanized steel sheet used in the comparative example.
Figure 2013060646

(表面処理用組成物)
以下に、この実施例の組成物に用いた各成分(A)〜(F)を示す。
[チタン含有水溶液(A)の製造]
<製造例1(チタン含有水性液T1)>
四塩化チタン60質量%溶液5ccを蒸留水で500ccとした溶液にアンモニア水(1:9)を滴下し、水酸化チタンを沈殿させた。蒸留水で洗浄後、過酸化水素水30質量%溶液を10cc加えてかき混ぜ、チタンを含む黄色半透明の粘性のあるチタン含有水性液T1を得た。
<製造例2(チタン含有水性液T2)>
テトラiso−プロポキシチタン10部とiso−プロパノール10部の混合物を30質量%過酸化水素水10質量部と脱イオン水100質量部の混合物中に20℃で1時間かけて撹拌しながら滴下した。その後25℃で2時間熟成し、黄色透明の少し粘性のあるチタン含有水性液T2を得た。
<製造例3(チタン含有水性液T3)>
製造例2で使用したテトラiso−プロポキシチタンの代わりにテトラn−ブトキシチタンを使用した以外は製造例2と同様の製造条件で、チタン含有水性液T3を得た。
<製造例4(チタン含有水性液T4)>
製造例2で使用したテトラiso−プロポキシチタンの代わりにテトラiso−プロポキシチタンの3量体を使用した以外は製造例2と同様の製造条件で、チタン含有水性液T4を得た。
<製造例5(チタン含有水性液T5)>
製造例2に対して過酸化水素水を3倍量用い、50℃で1時間かけて滴下し、さらに60℃で3時間熟成した以外は製造例2と同様の製造条件で、チタン含有水性液T5を得た。
<製造例6(チタン含有水性液T6)>
製造例3で製造したチタン含有水性液T3を、さらに95℃で6時間加熱処理することにより、白黄色の半透明なチタン含有水性液T6を得た。
<製造例7(チタン含有水性液T7)>
テトラiso−プロポキシチタン10質量部とiso−プロパノール10質量部の混合物を、「TKS−203」(商品名,テイカ社製,酸化チタンゾル)5質量部(固形分)、30質量%過酸化水素水10質量部及び脱イオン水100質量部の混合物中に10℃で1時間かけて撹拌しながら滴下した。その後10℃で24時間熟成し、黄色透明の少し粘性のあるチタン含有水性液T7を得た。
(Surface treatment composition)
Below, each component (A)-(F) used for the composition of this Example is shown.
[Production of titanium-containing aqueous solution (A)]
<Production Example 1 (Titanium-containing aqueous liquid T1)>
Ammonia water (1: 9) was added dropwise to a solution in which 5 cc of a titanium tetrachloride 60 mass% solution was made 500 cc with distilled water to precipitate titanium hydroxide. After washing with distilled water, 10 cc of a 30% by mass hydrogen peroxide solution was added and stirred to obtain a yellow translucent viscous titanium-containing aqueous liquid T1 containing titanium.
<Production Example 2 (Titanium-containing aqueous liquid T2)>
A mixture of 10 parts of tetraiso-propoxytitanium and 10 parts of iso-propanol was dropped into a mixture of 10 parts by weight of 30% by weight hydrogen peroxide and 100 parts by weight of deionized water with stirring at 20 ° C. over 1 hour. Thereafter, aging was carried out at 25 ° C. for 2 hours to obtain a yellow transparent, slightly viscous titanium-containing aqueous liquid T2.
<Production Example 3 (Titanium-containing aqueous liquid T3)>
A titanium-containing aqueous liquid T3 was obtained under the same production conditions as in Production Example 2 except that tetra-n-butoxy titanium was used instead of tetraiso-propoxy titanium used in Production Example 2.
<Production Example 4 (Titanium-containing aqueous liquid T4)>
A titanium-containing aqueous liquid T4 was obtained under the same production conditions as in Production Example 2 except that tetramer of tetraiso-propoxytitanium used in Production Example 2 was used instead of tetraiso-propoxytitanium.
<Production Example 5 (Titanium-containing aqueous liquid T5)>
A titanium-containing aqueous liquid was produced under the same production conditions as in Production Example 2, except that hydrogen peroxide was used in 3 times the amount of Production Example 2, dropped at 50 ° C over 1 hour, and further aged at 60 ° C for 3 hours. T5 was obtained.
<Production Example 6 (Titanium-containing aqueous liquid T6)>
The titanium-containing aqueous liquid T3 produced in Production Example 3 was further heat-treated at 95 ° C. for 6 hours to obtain a white yellow translucent titanium-containing aqueous liquid T6.
<Production Example 7 (Titanium-containing aqueous liquid T7)>
A mixture of 10 parts by mass of tetraiso-propoxytitanium and 10 parts by mass of iso-propanol, 5 parts by mass (solid content) of “TKS-203” (trade name, manufactured by Teika Co., Ltd.), 30% by mass hydrogen peroxide solution The mixture was added dropwise to a mixture of 10 parts by mass and 100 parts by mass of deionized water with stirring at 10 ° C. over 1 hour. Thereafter, the mixture was aged at 10 ° C. for 24 hours to obtain a yellow transparent, slightly viscous titanium-containing aqueous liquid T7.

[ニッケル化合物(B)]
B1:酢酸ニッケル
B2:硝酸ニッケル
B3:硫酸ニッケル
[Nickel compound (B)]
B1: Nickel acetate B2: Nickel nitrate B3: Nickel sulfate

[弗素含有化合物(C)]
C1:ジルコン弗化アンモニウム
C2:ジルコン弗化水素酸
C3:ジルコン弗化ナトリウム
C4:ジルコン弗化カリウム
[Fluorine-containing compound (C)]
C1: Zircon ammonium fluoride C2: Zircon hydrofluoric acid C3: Zircon sodium fluoride C4: Zircon potassium fluoride

[有機リン酸化合物(D)]
D1:1−ヒドロキシメタン−1,1−ジホスホン酸
D2:1−ヒドロキシエタン−1,1−ジホスホン酸
[Organic Phosphate Compound (D)]
D1: 1-hydroxymethane-1,1-diphosphonic acid D2: 1-hydroxyethane-1,1-diphosphonic acid

[バナジン酸化合物(E)]
E1:メタバナジン酸アンモニウム
E2:メタバナジン酸ナトリウム
[Vanadate compound (E)]
E1: Ammonium metavanadate E2: Sodium metavanadate

[炭酸ジルコニウム化合物(F)]
F1:炭酸ジルコニウムアンモニウム
F2:炭酸ジルコニウムナトリウム
[Zirconium carbonate compound (F)]
F1: Ammonium zirconium carbonate F2: Sodium zirconium carbonate

[樹脂成分(Z)]
Z1:スーパーフレックスE−2500(商品名,第一工業製薬(株)製,水性ポリウレタン樹脂,Tg:42℃)
Z2:バイロナールMD−1100(商品名,東洋紡績(株)製,水性ポリエステル樹脂)
Z3:アデカレジンEM−0718(商品名,(株)ADEKA),水性エポキシ樹脂)
Z4:ハイドランAP−10(商品名,大日本インキ化学工業(株)製,水性ポリウレタン樹脂,Tg:27℃)
Z5:ハイドランAP−30(商品名,大日本インキ化学工業(株)製,水性ポリウレタン樹脂,Tg:61℃)
Z6:ハイドランHW−340(商品名,大日本インキ化学工業(株)製,水性ポリウレタン樹脂,Tg:7℃)
Z7:ハイドランHW−350(商品名,大日本インキ化学工業(株)製,水性ポリウレタン樹脂,Tg:57℃)
Z8:スーパーフレックス110(商品名,第一工業製薬(株)製,水性ポリウレタン樹脂,Tg:46℃)
Z9:スーパーフレックス130(商品名,第一工業製薬(株)製,水性ポリウレタン樹脂,Tg:96℃)
Z10:スーパーフレックス600(商品名,第一工業製薬(株)製,水性ポリウレタン樹脂,Tg:70℃)
[Resin component (Z)]
Z1: Superflex E-2500 (trade name, manufactured by Daiichi Kogyo Seiyaku Co., Ltd., aqueous polyurethane resin, Tg: 42 ° C.)
Z2: Bayronal MD-1100 (trade name, manufactured by Toyobo Co., Ltd., water-based polyester resin)
Z3: Adeka Resin EM-0718 (trade name, ADEKA Co., Ltd., aqueous epoxy resin)
Z4: Hydran AP-10 (trade name, manufactured by Dainippon Ink & Chemicals, water-based polyurethane resin, Tg: 27 ° C.)
Z5: Hydran AP-30 (trade name, manufactured by Dainippon Ink and Chemicals, water-based polyurethane resin, Tg: 61 ° C.)
Z6: Hydran HW-340 (trade name, manufactured by Dainippon Ink & Chemicals, water-based polyurethane resin, Tg: 7 ° C.)
Z7: Hydran HW-350 (trade name, manufactured by Dainippon Ink & Chemicals, water-based polyurethane resin, Tg: 57 ° C.)
Z8: Superflex 110 (trade name, manufactured by Daiichi Kogyo Seiyaku Co., Ltd., water-based polyurethane resin, Tg: 46 ° C.)
Z9: Superflex 130 (trade name, manufactured by Daiichi Kogyo Seiyaku Co., Ltd., water-based polyurethane resin, Tg: 96 ° C.)
Z10: Superflex 600 (trade name, manufactured by Daiichi Kogyo Seiyaku Co., Ltd., water-based polyurethane resin, Tg: 70 ° C.)

[アルカリ成分]
この実施例の各組成物は、アンモニア水溶液を所定量添加して、後述の表2に記載のpHに調整した。
[Alkali component]
Each composition of this example was adjusted to a pH described in Table 2 below by adding a predetermined amount of an aqueous ammonia solution.

これらの成分を所定量配合し、複数種の表面処理用組成物を作製した。各組成物の配合およびpHを表2に示す。なお、表2において、*1〜*9は以下の内容を示す。
*1 明細書本文に記載のチタン含有水溶液T1〜T7
*2 明細書本文に記載のニッケル化合物B1〜B3
*3 明細書本文に記載の弗素含有化合物C1〜C4
*4 明細書本文に記載の有機リン酸化合物D1,D2
*5 明細書本文に記載のバナジン酸化合物E1,E2
*6 明細書本文に記載の炭酸ジルコニウム化合物F1,F2
*7 明細書本文に記載の樹脂成分Z1〜Z10
*8 表面処理用組成物(水性処理液)中の固形分割合(質量%)
*9 pH値(測定温度23℃)
A predetermined amount of these components was blended to prepare a plurality of types of surface treatment compositions. Table 2 shows the composition and pH of each composition. In Table 2, * 1 to * 9 indicate the following contents.
* 1 Titanium-containing aqueous solution T1 to T7 described in the specification text
* 2 Nickel compounds B1 to B3 described in the specification text
* 3 Fluorine-containing compounds C1 to C4 described in the main text of the specification
* 4 Organophosphate compounds D1 and D2 described in the specification text
* 5 Vanadic acid compounds E1, E2 described in the main text of the specification
* 6 Zirconium carbonate compounds F1 and F2 described in the specification text
* 7 Resin components Z1 to Z10 described in the specification text
* 8 Solid content ratio (mass%) in the surface treatment composition (aqueous treatment liquid)
* 9 pH value (measurement temperature 23 ° C)

Figure 2013060646
Figure 2013060646
Figure 2013060646
Figure 2013060646

(塗布方法)
表1に記載のいずれかのめっき鋼板の表面(片面)に、表2に記載の組成物を塗布し、30〜100℃で乾燥させ、供試材(表面処理めっき鋼板)とした。塗布は以下に示す方法で行い、片面当たりの皮膜付着量は0.2g/mとした。
塗布方法1:組成物をスプレー圧1kgf/cmでスプレーして塗布した後に、リンガーロールで絞った後の液膜厚が2μmとなるように余分な液を搾り取る。
塗布方法2:組成物をロールコーターにて塗布し、液膜厚が5μmとなるように各ロール荷重を調整して組成物を鋼板側へ転写することにより行った。
(Application method)
The composition described in Table 2 was applied to the surface (one side) of any of the plated steel sheets described in Table 1 and dried at 30 to 100 ° C. to obtain test materials (surface-treated plated steel sheets). The coating was performed by the method shown below, and the coating amount per side was 0.2 g / m 2 .
Application method 1: After the composition is applied by spraying at a spray pressure of 1 kgf / cm 2 , excess liquid is squeezed out so that the liquid film thickness after squeezing with a Ringer roll is 2 μm.
Application method 2: The composition was applied by a roll coater, and each roll load was adjusted so that the liquid film thickness was 5 μm, and the composition was transferred to the steel sheet side.

(評価基準)
各供試材について、以下の試験方法により耐食性、皮膜の仕上がり状態を評価した。加えて、耐黒変性、耐水付着性、貯蔵安定性も評価した。その結果を、各供試材に適用した組成物の種類および塗布条件とともに表3および表4に示す。なお、表3および表4において、*10,*11は以下の内容を示す。
*10 明細書本文に記載の塗布方法
*11 表1に記載のめっき鋼板のNo.1〜8
(Evaluation criteria)
About each test material, the corrosion resistance and the finished state of the film were evaluated by the following test methods. In addition, blackening resistance, water adhesion resistance, and storage stability were also evaluated. The results are shown in Tables 3 and 4 together with the type of composition applied to each test material and the application conditions. In Tables 3 and 4, * 10 and * 11 indicate the following contents.
* 10 Coating method described in the text of the specification * 11 No. of plated steel sheet listed in Table 1. 1-8

(1)耐食性
端部と裏面をテープシールした供試材に対してJIS−Z−2371−2000に準拠した塩水噴霧試験を行い、白錆発生面積率が5%となる試験時間を測定した。その評価基準は以下のとおりである。
◎:72時間以上
○:48時間以上、72時間未満
△:24時間以上、48時間未満
×:24時間未満
(1) Corrosion resistance A salt spray test based on JIS-Z-2371-2000 was performed on the specimens whose end portions and back surface were tape-sealed, and the test time at which the white rust generation area ratio was 5% was measured. The evaluation criteria are as follows.
◎: 72 hours or more ○: 48 hours or more, less than 72 hours Δ: 24 hours or more, less than 48 hours ×: less than 24 hours

(2)耐食性(脱脂後)
供試材を後述する条件で脱脂処理した後、端部と裏面をテープシールした供試材に対して、JIS−Z−2371−2000に準拠した塩水噴霧試験を行い、白錆発生面積率が5%となる試験時間を測定した。その評価基準は以下のとおりである。
◎:72時間以上
○:48時間以上、72時間未満
△:24時間以上、48時間未満
×:24時間未満
[脱脂条件]
脱脂剤「パルクリンCLN-364S」(商品名、日本パーカライジング(株)製)を水に溶解して、濃度2質量%、60℃に調整したものを供試材に対して2分間スプレー噴霧(スプレー圧 1kgf/cm)した。その後、供試材を水道水で30秒水洗し、圧搾空気を当てて乾燥させた。
(2) Corrosion resistance (after degreasing)
After degreasing the specimen under the conditions described later, a salt spray test based on JIS-Z-2371-2000 is performed on the specimen with the end and the back tape sealed, and the white rust occurrence area ratio is The test time of 5% was measured. The evaluation criteria are as follows.
◎: 72 hours or more ○: 48 hours or more, less than 72 hours Δ: 24 hours or more, less than 48 hours ×: less than 24 hours [Degreasing conditions]
Degreasing agent “PARCLIN CLN-364S” (trade name, manufactured by Nihon Parkerizing Co., Ltd.) dissolved in water and adjusted to a concentration of 2% by mass and 60 ° C. is sprayed onto the test material for 2 minutes (spray) Pressure 1 kgf / cm 2 ). Thereafter, the test material was washed with tap water for 30 seconds and dried by applying compressed air.

(3)皮膜の仕上がり状態
皮膜の仕上がり状態は、以下の基準で判定した。
○(良好):泡の乾き跡などの凹凸が目視で確認されず、指で擦ったときに皮膜の欠落が生じない平滑で均一な皮膜である。
△(やや不良):凹凸が目視で確認されるか、指で擦ったときに皮膜の欠落が生じるかのいずれかである。
×(不良):凹凸が目視で確認され、かつ、指で擦ったときに皮膜の欠落が生じる。
(3) Finished state of film The finished state of the film was determined according to the following criteria.
○ (good): Unevenness such as dry marks of bubbles is not visually confirmed, and the film is smooth and uniform with no film missing when rubbed with a finger.
Δ (slightly defective): Either unevenness is visually confirmed or the film is missing when rubbed with a finger.
X (defect): Concavities and convexities are confirmed visually, and a film is missing when rubbed with a finger.

(4)耐黒変性
供試材を温度80℃、相対湿度95%に制御された恒温恒湿機に24時間静置した際の白色度(L値)の変化をΔL(試験後のL値−試験前のL値)で算出した。その算出基準は以下の通りである。
○:ΔL≧−10
△:−10>ΔL≧−15
×:−15>ΔL
(4) Blackening resistance The change in whiteness (L value) when the test material was allowed to stand in a thermo-hygrostat controlled at a temperature of 80 ° C. and a relative humidity of 95% for 24 hours was ΔL (L value after the test) -L value before test). The calculation standard is as follows.
○: ΔL ≧ −10
Δ: −10> ΔL ≧ −15
×: −15> ΔL

(5)耐水付着性
供試材にメラミンアルキッド樹脂塗料(商品名:デリコン(登録商標)#700、大日本塗料(株)製)を乾燥膜厚が30μm±2μmとなるように塗装し、130℃、30分間の焼付を行った。焼付後の供試材を沸騰水中に1時間浸漬した。浸漬後、供試材を引き上げ、塗装面にカッターナイフで1mm間隔で11本の線を縦と横に引き、1mm四方のマス目を碁盤目状に100個作成する。碁盤目状になったマス目にセロハン粘着テープ(商品名「CT-24」、ニチバン(株)製)を貼り、セロハン粘着テープを剥離した後の塗膜が剥離したマス目数で評価した。
○:塗膜の剥離なし
×:剥離発生
(5) Water-resistant adhesion Melamine alkyd resin paint (trade name: Delicon (registered trademark) # 700, manufactured by Dainippon Paint Co., Ltd.) was applied to the test material so that the dry film thickness was 30 μm ± 2 μm. Baking was performed at 0 ° C. for 30 minutes. The test material after baking was immersed in boiling water for 1 hour. After dipping, the specimen is pulled up, and 11 lines are drawn vertically and horizontally at a 1 mm interval on the painted surface to make 100 squares of 1 mm square in a grid pattern. A cellophane adhesive tape (trade name “CT-24”, manufactured by Nichiban Co., Ltd.) was applied to the grids in a grid pattern, and the number of squares from which the coating film was peeled after peeling the cellophane adhesive tape was evaluated.
○: No peeling of coating film ×: Occurrence of peeling

(6)貯蔵安定性
濃度12質量%に調整した組成物を40℃の恒温槽内に30日静置し、組成物の状態を目視で評価した。
○:組成物の状態の変化は見られない。
×:組成物が粘度上昇もしくは組成物中にゲル状態の不溶物が生成するもの
(6) Storage stability The composition adjusted to a concentration of 12% by mass was left in a constant temperature bath at 40 ° C. for 30 days, and the state of the composition was visually evaluated.
○: No change in the state of the composition is observed.
X: The composition has a viscosity increase or a gel insoluble matter is generated in the composition

Figure 2013060646
Figure 2013060646

Figure 2013060646
Figure 2013060646

表3および表4より以下のことがわかる。まず、比較例14〜39に示すとおり、pHが7〜10の範囲を外れた組成物を用いてスプレー塗布法で表面処理皮膜を形成した場合、耐食性が劣る結果となった。また、pHが7未満すなわち酸性の組成物を用いた場合、皮膜の仕上がりも不十分となった。   Table 3 and Table 4 show the following. First, as shown in Comparative Examples 14 to 39, when a surface treatment film was formed by a spray coating method using a composition having a pH outside the range of 7 to 10, the corrosion resistance was inferior. Moreover, when the pH was less than 7, that is, an acidic composition was used, the finish of the film was insufficient.

次に、比較例40〜54に示すように、樹脂成分を含む組成物を用いてスプレー塗布法で表面処理皮膜を形成した場合、皮膜の仕上がり状態が悪くなるとともに、耐食性も十分ではなくなった。   Next, as shown in Comparative Examples 40 to 54, when a surface treatment film was formed by a spray coating method using a composition containing a resin component, the finished state of the film was deteriorated and the corrosion resistance was not sufficient.

さらに、比較例1〜13に示すように、組成物の成分(A)〜(F)のいずれかが本発明で規定する含有量の範囲外となった場合、耐食性、アルカリ脱脂後の耐食性、耐黒変性、耐水付着性、貯蔵安定性の少なくとも1つが劣る結果となった。   Furthermore, as shown in Comparative Examples 1 to 13, when any of the components (A) to (F) of the composition is out of the content range defined in the present invention, corrosion resistance, corrosion resistance after alkaline degreasing, At least one of blackening resistance, water adhesion resistance and storage stability was inferior.

一方、発明例1〜34に示すとおり、本発明の範囲内に含まれる組成物を用いてスプレー塗布法で表面処理皮膜を形成した場合、十分な耐食性およびアルカリ脱脂後の耐食性が得られ、かつ、皮膜の仕上がり状態も良好であった。また、耐黒変性、耐水付着性、貯蔵安定性も十分であった。   On the other hand, as shown in Invention Examples 1 to 34, when a surface treatment film is formed by a spray coating method using the composition included in the scope of the present invention, sufficient corrosion resistance and corrosion resistance after alkaline degreasing are obtained, and The finished state of the film was also good. Further, blackening resistance, water adhesion resistance and storage stability were sufficient.

なお、比較例63〜65に参考に示すように、ロールコート法で塗布した場合には、組成物がpH7未満の酸性であっても耐食性が劣ることはなかった。また、比較例66〜68に参考に示すように、ロールコート法で塗布した場合には、組成物に樹脂が含まれていても、皮膜の仕上がりが劣ることはなかった。このことから、耐食性が劣り、または、皮膜仕上がりが劣るという問題は、スプレー塗布法にて塗布する場合に特有のものであることがわかった。   As shown in Comparative Examples 63 to 65 for reference, when the composition was applied by a roll coating method, the corrosion resistance was not inferior even if the composition was acidic with a pH of less than 7. Moreover, as shown in Comparative Examples 66 to 68 for reference, when applied by a roll coating method, the finish of the film was not inferior even if the composition contained a resin. From this, it was found that the problem that the corrosion resistance is inferior or the film finish is inferior is peculiar to the case of applying by the spray coating method.

また、比較例55〜61に示すとおり、溶融亜鉛めっき鋼板以外の鋼板に本発明で規定する成分組成を満たす組成物をスプレー塗布法で塗布しても、十分な耐食性を得ることができなかった。よって、本発明は、これらの組成物により溶融亜鉛めっき鋼板に対して表面処理皮膜を形成した場合に特有のものであることがわかった。   Further, as shown in Comparative Examples 55 to 61, sufficient corrosion resistance could not be obtained even when a composition satisfying the component composition defined in the present invention was applied to a steel sheet other than the hot dip galvanized steel sheet by a spray coating method. . Therefore, it turned out that this invention is peculiar when forming a surface treatment film | membrane with respect to a hot-dip galvanized steel plate with these compositions.

本発明によれば、溶融亜鉛めっき鋼板の表面にスプレー塗布法で塗布して表面処理皮膜を形成する場合に十分な耐食性および皮膜外観(仕上がり状態)を呈することが可能な、6価クロムを全く含まない環境適用型の表面処理用組成物を提供することができた。
According to the present invention, hexavalent chrome capable of exhibiting sufficient corrosion resistance and coating appearance (finished state) when a surface-treated coating is formed on a surface of a hot dip galvanized steel sheet by spray coating. It was possible to provide an environmentally applicable surface treatment composition that does not contain the material.

Claims (4)

加水分解性チタン化合物、加水分解性チタン化合物の低縮合物、水酸化チタン、水酸化チタンの低縮合物の中から選ばれる少なくとも1種のチタン化合物を過酸化水素水と混合して得られるチタン含有水性液(A)を固形分の割合で10〜60質量%と、ニッケル化合物(B)を固形分の割合で0.01〜1質量%と、弗素含有化合物(C)を固形分の割合で10〜20質量%と、有機リン酸化合物(D)を固形分の割合で10〜60質量%と、バナジン酸化合物(E)を固形分の割合で0.1〜30質量%と、炭酸ジルコニウム化合物(F)を固形分の割合で5〜30質量%と、を含有し、
pHが7〜10の範囲内に調整され、樹脂成分を含まない組成物であって、
溶融亜鉛めっき鋼板の少なくとも片面にスプレー塗布法にて塗布して表面処理皮膜を形成するために用いることを特徴とするスプレー塗布表面処理用組成物。
Titanium obtained by mixing at least one titanium compound selected from hydrolyzable titanium compounds, low-condensates of hydrolyzable titanium compounds, titanium hydroxide, and low-condensates of titanium hydroxide with hydrogen peroxide water 10 to 60% by mass of the aqueous solution (A) in the solid content, 0.01 to 1% by mass of the nickel compound (B) in the solid content, and the solid content of the fluorine-containing compound (C). 10 to 20% by mass, 10 to 60% by mass of the organic phosphoric acid compound (D) as a solid content, and 0.1 to 30% by mass of the vanadic acid compound (E) as a solid content, and carbonic acid. The zirconium compound (F) contains 5 to 30% by mass in a solid content ratio,
pH is adjusted within a range of 7 to 10, and the composition does not contain a resin component,
A composition for spray coating surface treatment, which is used for forming a surface treatment film by applying to at least one surface of a hot dip galvanized steel sheet by a spray coating method.
前記弗素含有化合物(C)が、ジルコン弗化アンモニウム、ジルコン弗化水素酸の中から選ばれる少なくとも1種である請求項1に記載のスプレー塗布表面処理用組成物。   2. The spray-coated surface treatment composition according to claim 1, wherein the fluorine-containing compound (C) is at least one selected from zircon ammonium fluoride and zircon hydrofluoric acid. 溶融亜鉛めっき鋼板の少なくとも片面に、請求項1または2に記載のスプレー塗布表面処理用組成物をスプレー塗布法にて塗布し、リンガーロールまたはエアーで塗布量を絞り、乾燥させることにより表面処理皮膜を形成することを特徴とする表面処理溶融亜鉛めっき鋼板の製造方法。   The surface treatment film is formed by applying the spray coating surface treatment composition according to claim 1 or 2 to at least one surface of a hot dip galvanized steel sheet by a spray coating method, squeezing the coating amount with a ringer roll or air, and drying. A method for producing a surface-treated hot-dip galvanized steel sheet, wherein 請求項3に記載の製造方法により製造された表面処理溶融亜鉛めっき鋼板。
A surface-treated hot-dip galvanized steel sheet produced by the production method according to claim 3.
JP2011201124A 2011-09-14 2011-09-14 Composition for spray coating surface treatment, method for producing surface-treated hot-dip galvanized steel sheet, and the surface-treated hot-dip galvanized steel sheet Withdrawn JP2013060646A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011201124A JP2013060646A (en) 2011-09-14 2011-09-14 Composition for spray coating surface treatment, method for producing surface-treated hot-dip galvanized steel sheet, and the surface-treated hot-dip galvanized steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011201124A JP2013060646A (en) 2011-09-14 2011-09-14 Composition for spray coating surface treatment, method for producing surface-treated hot-dip galvanized steel sheet, and the surface-treated hot-dip galvanized steel sheet

Publications (1)

Publication Number Publication Date
JP2013060646A true JP2013060646A (en) 2013-04-04

Family

ID=48185552

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011201124A Withdrawn JP2013060646A (en) 2011-09-14 2011-09-14 Composition for spray coating surface treatment, method for producing surface-treated hot-dip galvanized steel sheet, and the surface-treated hot-dip galvanized steel sheet

Country Status (1)

Country Link
JP (1) JP2013060646A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018070350A1 (en) 2016-10-11 2018-04-19 Jfeスチール株式会社 Surface treatment liquid for galvanized steel sheet, method for producing galvanized steel sheet having surface treatment film, and galvanized steel sheet having surface treatment film
KR101936785B1 (en) 2017-01-16 2019-01-11 (주)노루페인트 Filler composition for repairing pinhole of vehicle and repairing method using thereof
JP2020152986A (en) * 2019-03-22 2020-09-24 日鉄日新製鋼株式会社 Coated steel panel and method of manufacturing coated steel panel

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018070350A1 (en) 2016-10-11 2018-04-19 Jfeスチール株式会社 Surface treatment liquid for galvanized steel sheet, method for producing galvanized steel sheet having surface treatment film, and galvanized steel sheet having surface treatment film
KR20190061068A (en) 2016-10-11 2019-06-04 제이에프이 스틸 가부시키가이샤 A method for producing a zinc-base plated steel sheet having a surface-treated film, and a zinc-based plated steel sheet having a surface-
US11174556B2 (en) 2016-10-11 2021-11-16 Jfe Steel Corporation Surface-treatment solution for zinc or zinc alloy coated steel sheet, method of producing zinc or zinc alloy coated steel sheet with surface-coating layer, and zinc or zinc alloy coated steel sheet with surface-coating layer
KR101936785B1 (en) 2017-01-16 2019-01-11 (주)노루페인트 Filler composition for repairing pinhole of vehicle and repairing method using thereof
JP2020152986A (en) * 2019-03-22 2020-09-24 日鉄日新製鋼株式会社 Coated steel panel and method of manufacturing coated steel panel
JP7339492B2 (en) 2019-03-22 2023-09-06 日本製鉄株式会社 Coated steel sheet and method for producing coated steel sheet

Similar Documents

Publication Publication Date Title
JP5555179B2 (en) Surface treatment agent for galvanized steel sheet, surface treatment method for galvanized steel sheet, and galvanized steel sheet
JP4972240B2 (en) Surface-treated steel sheet
JP4575047B2 (en) Metal surface treatment composition and metal surface treatment steel plate
JP2008231418A (en) Coating material for forming titanium-zirconium film, method for forming titanium-zirconium film, metal substrate coated with titanium-zirconium film
JP2004238638A (en) Surface treatment composition and surface-treated metal strip
JP4573586B2 (en) Surface-treated steel sheet
JP5317516B2 (en) Surface-treated molten Zn-Al alloy-plated steel sheet
JP2010156020A (en) Surface-treated steel plate
JP5577782B2 (en) Surface-treated steel sheet
JP3952198B2 (en) Metal surface treatment method and galvanized steel sheet
JP2013060646A (en) Composition for spray coating surface treatment, method for producing surface-treated hot-dip galvanized steel sheet, and the surface-treated hot-dip galvanized steel sheet
JP5097311B2 (en) Surface-treated steel sheet and organic resin-coated steel sheet
JP6092591B2 (en) Spray-coated surface treatment composition, method for producing surface-treated galvanized steel sheet, and surface-treated galvanized steel sheet
JP5222491B2 (en) Surface-treated steel sheet
JP2003193088A (en) Surface-finishing composition for metallic material
JP2004052056A (en) Surface treatment method of zinc or zinc alloy plated material
JP2003193255A (en) Surface treatment composition for metallic material
JP4916913B2 (en) Surface-treated steel sheet and organic resin-coated steel sheet
JP2003213457A (en) Fuel tank made of resin coated metal
JP5101271B2 (en) Surface-treated steel sheet
JP4439093B2 (en) Post-treatment agent for phosphate treatment film on metal surface, coated steel sheet obtained by using post-treatment agent, and method for producing the same
JP2002275642A (en) Coated steel sheet excellent in corrosion resistance
JP4502477B2 (en) Surface treatment agent for steel sheet, coated steel sheet using the same, and method for producing the same
JP2003213456A (en) Resin-coated metallic tube material and production method therefor
JP2004190071A (en) Method for surface-treating automotive body

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20141202