JP4502477B2 - Surface treatment agent for steel sheet, coated steel sheet using the same, and method for producing the same - Google Patents
Surface treatment agent for steel sheet, coated steel sheet using the same, and method for producing the same Download PDFInfo
- Publication number
- JP4502477B2 JP4502477B2 JP2000240610A JP2000240610A JP4502477B2 JP 4502477 B2 JP4502477 B2 JP 4502477B2 JP 2000240610 A JP2000240610 A JP 2000240610A JP 2000240610 A JP2000240610 A JP 2000240610A JP 4502477 B2 JP4502477 B2 JP 4502477B2
- Authority
- JP
- Japan
- Prior art keywords
- titanium
- steel sheet
- treatment agent
- hydrogen peroxide
- halide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/02—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
- C23C18/12—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
- C23C18/1204—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
- C23C18/1208—Oxides, e.g. ceramics
- C23C18/1216—Metal oxides
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/02—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
- C23C18/12—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
- C23C18/1229—Composition of the substrate
- C23C18/1241—Metallic substrates
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- General Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Ceramic Engineering (AREA)
- Paints Or Removers (AREA)
- Other Surface Treatments For Metallic Materials (AREA)
- Application Of Or Painting With Fluid Materials (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、加工性及び耐食性に優れた被膜を形成することができる鋼板用下地処理剤及びこの下地処理剤の被膜を形成してなる被覆鋼板、並びにその被覆鋼板の製造方法に関する。
【0002】
【従来の技術及びその課題】
近年、防錆被覆鋼板には優れた耐食性が要求され、従来の冷延鋼板にかわり亜鉛系めっき鋼板を基板とする表面処理鋼板が多く使用されている。
【0003】
従来、亜鉛系めっき鋼板の表面処理として、クロム酸塩処理及びリン酸亜鉛処理が一般に行われているが、クロムの毒性が問題になっている。クロム酸塩処理は、処理工程でのクロム酸塩ヒュームの揮散の問題、排水処理設備に多大の費用を要すること、さらには化成処理被膜からのクロム酸の溶出による問題などがある。また6価クロム化合物は、IARC(International Agency for Researchon Cancer Review)を初めとして多くの公的機関が人体に対する発癌性物質に指定しており極めて有害な物質である。
【0004】
またリン酸亜鉛処理では、リン酸亜鉛処理後、通常、クロム酸によるリンス処理を行うためクロム処理の問題があるとともに、リン酸亜鉛処理剤中の反応促進剤、金属イオンなどの排水処理、被処理金属からの金属イオンの溶出によるスラッジ処理の問題がある。
【0005】
クロム酸塩処理やリン酸亜鉛処理以外の処理方法としては、(1)重燐酸アルミニウムを含有する水溶液で処理した後、150〜550℃の温度で加熱する表面処理方法(特公昭53-28857号公報参照)、(2)タンニン酸を含有する水溶液で処理する方法(特開昭51-71233号公報参照)などが提案され、また、(3)亜硝酸ナトリウム、硼酸ナトリウム、イミダゾール、芳香族カルボン酸、界面活性剤等による処理方法もしくはこれらを組合せた処理方法が行われている。
【0006】
しかしながら、(1)の方法は、この上に塗料を塗装する場合、塗料の密着性が十分でなく、また、(2)の方法は、耐食性が劣り、(3)の方法は、いずれも高温多湿の雰囲気に暴露された場合の耐食性が劣るという問題がある。
【0007】
また、膜厚数μm以下の薄膜の被膜を有する亜鉛系鋼板として、特開昭58-224174 号公報、特開昭60-50179号公報、特開昭60-50180号公報などには、亜鉛系めっき鋼板を基材とし、これにクロメート被膜を形成し、さらにこの上に最上層として有機複合シリケート被膜を形成した防錆鋼板が知られており、このものは、加工性及び耐食性に優れた性能を有する。しかしながら、この防錆鋼板はクロメート被膜を有するため、前記したと同様にクロメートイオンによる安全衛生面の問題があった。また、この防錆鋼板からクロメート被膜を除いた鋼板では、いまだ耐食性が十分ではない。
【0008】
本発明の目的は、特に、亜鉛系めっき鋼板にクロメート被膜がなくても、優れた耐食性を示し、かつ加工性及び塗料密着性の良好な被覆鋼板を得ることができる鋼鈑用下地処理剤を得ることである。
【0009】
また、本発明の目的は、耐食性、加工性及び塗料密着性に優れ、且つ環境保全の面から問題のない被覆鋼鈑を提供することである。
【0010】
更に、本発明の目的は、耐食性、加工性及び塗料密着性に優れ、且つ環境保全の面から問題のない被覆鋼鈑の製造方法を提供することにある。
【0011】
【課題を解決するための手段】
本発明者らは、特定のチタンを含む水性液及び特定の金属又はシリコンハロゲン化物を含む下地処理剤が上記目的を達成することができることを見出し、本発明を完成するに至った。
【0012】
かくして、本発明によれば、下記成分
(A)加水分解して水酸基になる基を含有するチタンモノマー及び/又はその低縮合物を過酸化水素水と反応させて得られるチタンを含む水性液(A1)、及び酸化チタンゾルの存在下で、加水分解して水酸基になる基を含有するチタンモノマー及び/又はその低縮合物を過酸化水素水と反応させて得られるチタンを含む水性液(A2)から選ばれる少なくとも1種以上のチタンを含む水性液及び
(B)チタンハロゲン化物、チタンハロゲン化物塩、ジルコニウムハロゲン化物、ジルコニウムハロゲン化物塩、シリコンハロゲン化物、シリコンハロゲン化物塩から選ばれる少なくとも1種の金属又はシリコンハロゲン化物
を含有することを特徴とする鋼板用下地処理剤を提供するものである。
【0013】
また、本発明は、鋼板表面に、本発明の鋼板用下地処理剤の下地処理剤による皮膜が被覆されてなることを特徴とする被覆鋼板が提供される。
【0014】
更に、鋼板表面に、本発明の鋼板用下地処理剤を乾燥被膜膜厚が0.001〜10μmとなるように塗布、乾燥させることを特徴とする被覆鋼板の製造方法を提供するものである。
【0015】
【発明の実施の形態】
まず、本発明の鋼鈑用下地処理剤について説明する。
【0016】
本発明の下地処理剤は、(A)加水分解して水酸基になる基を含有するチタンモノマー及び/又はその低縮合物を過酸化水素水と反応させて得られるチタンを含む水性液(A1)、及び酸化チタンゾルの存在下で、加水分解して水酸基になる基を含有するチタンモノマー及び/又はその低縮合物を過酸化水素水と反応させて得られるチタンを含む水性液(A2)から選ばれる少なくとも1種以上のチタンを含む水性液及び(B)チタンハロゲン化物、チタンハロゲン化物塩、ジルコニウムハロゲン化物、ジルコニウムハロゲン化物塩、シリコンハロゲン化物、シリコンハロゲン化物塩から選ばれる少なくとも1種の金属又はシリコンハロゲン化物を含有するものである。
【0017】
該加水分解して水酸基になる基を含有するチタンモノマーとしては、特に一般式 Ti(OR)4 (式中、Rは同一もしくは異なって炭素数1〜5のアルキル基を示す)のテトラアルコキシチタンが好ましい。炭素数1〜5のアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、iso-プロピル基、n-ブチル基、iso-ブチル基、sec-ブチル基、tert-ブチル基等が挙げられる。
また、加水分解して水酸基になる基を含有するチタンモノマーの低縮合物としては、特に上記したTi(OR)4 をお互いに縮合反応させてなる縮合度2〜30の化合物が使用可能で、特に縮合度2〜10の範囲内のものを使用することが好ましい。
【0018】
チタンを含む水性液(A1)について以下に述べる。
【0019】
水性液(A1)は、上記加水分解して水酸基になる基を含有するチタンモノマー及び/又はその低縮合物を過酸化水素水と反応させて得られる水性液である。
【0020】
加水分解して水酸基になる基を含有するチタンモノマー及び/又はその低縮合物(以下、これらのものを単に「加水分解性チタン」と略す)と過酸化水素水との混合割合は、加水分解性チタン10重量部に対して過酸化水素換算で0.1〜100重量部、特に1〜20重量部の範囲内が好ましい。過酸化水素換算で0.1重量部未満になるとキレート形成が十分でなく白濁沈殿してしまう。一方、100重量部を超えると未反応の過酸化水素が残存し易く貯蔵中に危険な活性酸素を放出するので好ましくない。
過酸化水素水の過酸化水素濃度は特に限定されないが3〜30重量範囲内であることが取り扱いやすさ、塗装作業性に関係する生成液の固形分の点で好ましい。
また、チタンお含む水性液(A1)は、加水分解性チタンを過酸化水素水と反応温度1〜70℃の範囲内で10分〜20時間反応させることにより製造できる。
【0021】
チタンを含む水性液(A1)は、加水分解性チタンを過酸化水素水と反応させることにより、加水分解性チタンが水で加水分解されて水酸基含有チタン化合物を生成し、次いで過酸化水素が生成した水酸基含有チタン化合物に配位するものと推察され、この加水分解反応及び過酸化水素による配位が同時近くに起こることにより得られたものであり、室温域で安定性が極めて高く長期の保存に耐えるキレート液を生成する。従来の製法で用いられる水酸化チタンゲルはTi-O-Ti結合により部分的に三次元化しており、このゲルと過酸化水素水を反応させた物とは組成、安定性に関し本質的に異なる。
【0022】
また、チタンを含む水性液(A1)を80℃以上で加熱処理あるいはオートクレーブ処理を行うと結晶化した酸化チタンの超微粒子を含む酸化チタン分散液が得られる。80℃未満では十分に酸化チタンの結晶化が進まない。このようにして製造された酸化チタン分散液は、酸化チタン超微粒子の粒子径が10nm以下、好ましくは1nm〜6nmの範囲である。また、該分散液の外観は半透明状のものである。該粒子径が10nmより大きくなると造膜性が低下(1μm以上でワレを生じる)するので好ましくない。 この分散液も同様に使用することができる。
チタンを含む水性液(A1)は、鋼鈑材料に塗布乾燥、または低温で加熱処理することにより、それ自体で付着性に優れた緻密な酸化チタン膜を形成できる。
【0023】
加熱処理温度としては、例えば200℃以下、特に150℃以下の温度で酸化チタン膜を形成することが好ましい。
【0024】
チタンを含む水性液(A1)は、上記した温度により水酸基を若干含む非晶質(アモルファス)の酸化チタン膜を形成する。
【0025】
また、80℃以上の加熱処理をした酸化チタン分散液は塗布するだけで結晶性の酸化チタン膜が形成できるため、加熱処理をできない材料のコーティング材として有用である。
【0026】
次ぎに、チタンを含む水性液(A2)について以下に述べる。
【0027】
チタン水性液(A2)は、酸化チタンゾルの存在下で、上記加水分解して水酸基になる基を含有するチタンモノマー及び/又はその低縮合物を過酸化水素水と反応させて得られるものである。
【0028】
酸化チタンゾルは、無定型チタニア、アナタース型チタニア微粒子が水(必要に応じて、例えば、アルコール系、アルコールエーテル系等の水性有機溶剤を含有しても構わない)に分散したゾルである。
【0029】
上記した酸化チタンゾルとしては従来から公知のものを使用することができる。該酸化チタンゾルとしては、例えば、(1)硫酸チタンや硫酸チタニルなどの含チタン溶液を加水分解して得られるもの、(2)チタンアルコキシド等の有機チタン化合物を加水分解して得られるもの、(3)四塩化チタン等のハロゲン化チタン溶液を加水分解又は中和して得られるもの等の酸化チタン凝集物を水に分散した無定型チタニアゾルや該酸化チタン凝集物を焼成してアナタース型チタン微粒子としこのものを水に分散したものを使用することができる。無定形チタニアの焼成は少なくともアナターゼの結晶化温度以上の温度、例えば、400℃〜500℃以上の温度で焼成すれば、無定形チタニアをアナターゼ型チタニアに変換させることができる。該酸化チタンの水性ゾルとして、例えば、TKS−201(テイカ(株)社製、商品名、アナターズ型結晶形、平均粒子径6nm)、TA−15(日産化学(株)社製、商品名、アナターズ型結晶形)、STS−11(石原産業(株)社製、商品名、アナターズ型結晶形)等が挙げられる。
【0030】
チタンモノマーやその縮合物と過酸化水素水とを反応させるために使用する際の上記酸化チタンゾルとチタン過酸化水素反応物との重量比率は1/99〜99/1、好ましくは約10/90〜90/10範囲である。重量比率が1/99未満になると安定性、光反応性等酸化チタンゾルを添加した効果が見られず、99/1を越えると造膜性が劣るので好ましくない。
加水分解して水酸基になる基を含有するチタンモノマー及び/又はその低縮合物(以下、これらのものを単に「加水分解性チタン」と略す)と過酸化水素水との混合割合は、加水分解性チタン10重量部に対して過酸化水素換算で0.1〜100重量部、特に1〜20重量部の範囲内が好ましい。過酸化水素換算で0.1重量部未満になるとキレート形成が十分でなく白濁沈殿してしまう。一方、100重量部を超えると未反応の過酸化水素が残存し易く貯蔵中に危険な活性酸素を放出するので好ましくない。
過酸化水素水の過酸化水素濃度は特に限定されないが3〜30重量範囲内であることが取り扱いやすさ、塗装作業性に関係する生成液の固形分の点で好ましい。
【0031】
また、水性液(A2)は、酸化チタンゾルの存在下で加水分解性チタンを過酸化水素水と反応温度1〜 70℃の範囲内で10分〜20時間反応させることにより製造できる。
水性液(A2)は、加水分解性チタンを過酸化水素水と反応させることにより、加水分解性チタンが水で加水分解されて水酸基含有チタン化合物を生成し、次いで過酸化水素が生成した水酸基含有チタン化合物に配位するものと推察され、この加水分解反応及び過酸化水素による配位が同時近くに起こることにより得られたものであり、室温域で安定性が極めて高く長期の保存に耐えるキレート液を生成する。従来の製法で用いられる水酸化チタンゲルはTi−O−Ti結合により部分的に三次元化しており、このゲルと過酸化水素水を反応させた物とは組成、安定性に関し本質的に異なる。又、酸化チタンゾルを使用することにより、合成時に一部縮合反応が起きて増粘するのを防ぐようになる。その理由は縮合反応物が酸化チタンゾルの表面に吸着され、溶液状態での高分子化を防ぐためと考えられる。
【0032】
また、チタンを含む水性液(A2)を80℃以上で加熱処理あるいはオートクレーブ処理を行うと結晶化した酸化チタンの超微粒子を含む酸化チタン分散液が得られる。80℃未満では十分に酸化チタンの結晶化が進まない。このようにして製造された酸化チタン分散液は、酸化チタン超微粒子の粒子径が10nm以下、好ましくは1nm〜6nmの範囲である。また、該分散液の外観は半透明状のものである。該粒子径が10nmより大きくなると造膜性が低下(1μm以上でワレを生じる)するので好ましくない。 この分散液も同様に使用することができる。
チタンを含む水性液(A2)は、鋼鈑材料に塗布乾燥、または低温で加熱処理することにより、それ自体で付着性に優れた緻密な酸化チタン膜を形成できる。
【0033】
加熱処理温度としては、例えば200℃以下、特に150℃以下の温度で酸化チタン膜を形成することが好ましい。
【0034】
チタンを含む水性液(A2)は、上記した温度により水酸基を若干含むアナタース型の酸化チタン膜を形成する。
【0035】
上記したチタンを含む水性液(A)の中でも、水性液(A1)は貯蔵安定性、耐食性などに優れた性能を有するのでこのものを使用することが好ましい。
【0036】
上記チタンを含む水性液(A)には、他の顔料やゾルを必要に応じて添加分散する事も出来る。添加物としては、市販されている酸化チタンゾル、酸化チタン粉末等、マイカ、タルク、シリカ、バリタ、クレー等が一例として挙げることができる。
【0037】
本発明の下地処理剤における(B)成分は、チタンハロゲン化物、チタンハロゲン化物塩、ジルコニウムハロゲン化物、ジルコニウムハロゲン化物塩、シリコンハロゲン化物、シリコンハロゲン化物塩から選ばれる少なくとも1種の金属又はシリコンハロゲン化物である。該成分として、塩を形成するものとしては、例えば、ナトリウム、カリウム、リチウム、アンモニウム等が挙げられる。塩を形成するものとしては、カリウム、ナトリウムが好ましい。ハロゲンとしては、弗素、塩素、沃素などが挙げられる。ハロゲンとしては、特に弗素が貯蔵安定性、耐食性、耐湿性などに優れた性能を有するのでこのものを使用することが好ましい。
【0038】
上記金属ハロゲン化物(B)としては、例えば、チタン弗化水素酸、チタン弗化カリウム、チタン弗化アンモニウム、ジルコニウム弗化水素酸、ジルコニウム弗化アンモニウム、ジルコニウム弗化カリウムなどが好ましいものとして挙げられる。また、シリコンハロゲン化物(B)としては、例えば、珪弗化水素酸、珪弗化ナトリウム、珪弗化アンモニウム、珪弗化カリウムなどが好ましいものとして挙げられる。
【0039】
本発明の下地処理剤における上記(A)及び(B)成分の配合割合は、チタンを含む水性液(A)100重量部(固形分)に対して、(B)成分が10〜300重量部、好ましくは20〜150重量部の範囲である。
【0040】
本発明の下地処理剤は、酸性領域で安定な液体となり、特にPH 2 〜 6、特に 3 〜5の範囲が好ましい。
【0041】
本発明の下地処理剤において、上記した成分以外に、必要に応じて防錆剤(タンニン酸、フィチン酸、ベンゾトリアゾールなど)、シリカ、着色顔料、体質顔料、防錆顔料などを含有することができる。
【0042】
本発明の下地処理剤において、該処理剤中に、リン酸、ポリリン酸、リン酸誘導体、亞リン酸、次亞リン酸などのリン酸系化合物を含むものは、理由は明らかではないが処理剤の貯蔵安定性が劣るので、このものお含まないことが望ましい。
【0043】
本発明の下地処理剤が適用される基材としては、好ましくは溶融亜鉛めっき鋼板、電気亜鉛めっき鋼板、鉄−亜鉛合金めっき鋼板、ニッケル−亜鉛合金めっき鋼板、アルミニウム−亜鉛合金めっき鋼板(例えば、「ガルバリウム」、「ガルファン」という商品名で販売されている合金めっき鋼板)などを挙げることができる。また、亜鉛系めっき鋼板として、クロム酸塩処理、リン酸亜鉛処理、複合酸化膜処理などの化成処理を施した亜鉛系めっき鋼板も使用することもできる。
【0044】
次に、本発明の被覆鋼鈑及びその製造方法について詳細に説明する。
【0045】
本発明の被覆鋼鈑は、鋼板表面に、本発明の下地処理剤の皮膜が被覆されてなるものである。
また、被覆鋼鈑の製造方法は、鋼鈑表面に本発明の下地処理剤を塗布、乾燥させたものである。
【0046】
下地処理剤は、基材である鋼鈑(組み立てられたものであっても構わない)上に、それ自体既知の塗装方法、例えば、浸漬塗装、シャワー塗装、スプレー塗装、ロール塗装、電着塗装などによって塗装することができる。下地処理剤の乾燥条件は、通常、素材到達最高温度が約60〜250℃となる条件で約2秒から約30分間乾燥させることが好適である。
【0047】
また、下地処理剤の乾燥被膜膜厚としては通常、0.05〜10μm、特に0.1〜3μmの範囲が好ましい。0.05μm未満になると、耐食性、耐水性などの性能が劣り、一方10μmを超えると、下地処理膜が割れたり加工性が低下したりするので好ましくない。
【0048】
本発明の被覆鋼板は、耐食性、耐指紋性などに優れ、そのまま防錆鋼板、潤滑防錆鋼板として使用することもできるが、この上に、さらに上層被膜を形成することもできる。 この上層被膜を形成する組成物は、目的に応じて適宜選定すればよく種々の塗料組成物を使用することができる。この塗料組成物としては、例えば、プライマー塗料、着色上塗塗料などを挙げることができる。プライマー塗料を塗装し、さらにその上に着色上塗塗料を塗装してもよい。
【0049】
【発明の効果】
本発明は、上記した構成を有することから以下の効果を生じると考えられる。
【0050】
従来、チタンを含む水性液としては、(1)酸化チタンの弗化物水溶液と硼酸から酸化チタン膜を形成すること、(2)塩化チタンや硫酸チタン水溶液とアンモニアや苛性ソーダ等のアルカリ溶液から水酸化チタンゲルを沈殿させ、次いでデカンテーションによって水酸化チタンゲル分離し、良く水洗し、さらに過酸化水素水を加え製造する方法(特開平9-71418号公報参照)等が知られている。
しかしながら、(1)は膜を形成するのに長時間必要とすること、弗化物の取り扱いが面倒であること、(2)は工程が複雑であること、アルカリ塩の除去が面倒であること、他金属が混入し易く純度の高いものを得ることは難しい、PHのコントロールが難しくその変動によって得られるものが異なってしまう等の欠点がある。
【0051】
本発明で使用するチタンを含む水性液(A)は上記したような欠点を有さない優れたもので、アルカリ塩の除去がなく工程が簡単であることから低コスト、他金属が混入し易く純度の高いものを得ることでき、PHのコントロールが簡単である。
【0052】
また、特に、チタンを含む水性液(A)は、上記した温度により水酸基を若干含む非晶質の酸化チタン膜を形成すると考えられるので、鋼鈑表面に付着性に優れた緻密な酸素透過性や水蒸気透過性の小さい皮膜が形成されるので耐食性に優れた効果を発揮する。
【0053】
また、チタンを含む水性液(A)は金属又はシリコンハロゲン化物と安定な錯体を形成していると考えられるので貯蔵安定性が良い。
【0054】
本発明の下地処理剤を鋼鈑に塗装することにより、鋼鈑表面にチタンを含む水性液(A)成分が析出し、加熱により酸化チタン膜が形成されると共に、チタンを含む水性液(A)から分離した金属又はシリコンハロゲン化物及びその塩(B)成分は加熱時において酸化チタン膜表面に移行し、金属又はシリコンの水酸化物となるために良好な耐食性を有するものと考えられる。
【0055】
【実施例】
以下、実施例及び比較例を挙げて本発明をさらに具体的に説明する。以下、「部」および「%」はそれぞれ「重量部」および「重量%」を意味する。本発明は以下の実施例に制限されるものではない。
【0056】
チタン処理剤(1)の製造例
テトラiso-プロポキシチタン10部とiso-プロパノール10部の混合物を30%過酸化水素水10部と脱イオン水100部の混合物中に20℃で1時間かけて撹拌しながら滴下した。その後25℃で2時間熟成し黄色透明の少し粘性のあるチタン処理剤(1)を得た。
【0057】
チタン処理剤(2)の製造例
製造例1のテトラiso-プロポキシチタンの代わりにテトラn-ブトキシチタンを使用して同様の製造条件でチタン処理剤(2)を得た。
【0058】
チタン処理剤(3)の製造例
製造例1のテトラiso-プロポキシチタンの代わりにテトラiso_プロポキシチタンの3量体を使用して同様の製造条件でチタン処理剤(3)を得た。
【0059】
チタン処理剤(4)の製造例
チタン処理剤(1)の製造例において過酸化水素水を3倍量用い50℃で1時間かけて滴下しさらに60℃で3時間熟成しチタン処理剤(4)を得た。
【0060】
チタン処理剤(5)の製造例
チタン処理剤(2)を95℃で6時間加熱処理し、白黄色の半透明な酸化チタン分散液を得た。
【0061】
チタン処理剤(6)製造例
四塩化チタン60%溶液5ccを蒸留水で500ccとした溶液にアンモニア水(1:9)を滴下し、水酸化チタンを沈殿させた。蒸留水で洗浄後、過酸化水素水30%溶液を10cc加えかき混ぜ、チタンを含む黄色半透明粘性液体70ccを製造した。
【0062】
下地処理剤1(実施例用)
2%チタン処理剤(1) 50 部、20%ジルコン弗化水素酸 5部、脱イオン水 45 部を配合して下地処理剤1を得た。
【0063】
下地処理剤2〜11(実施例用)及び下地処理剤A1〜A3(比較例用)
表1に示す配合で混合、分散を行い各下地処理剤を得た。
表1
【0064】
【表1】
【0065】
試験塗板の作成
上記下地処理剤を用いて下記塗装方法(1)及び塗装方法(2)にて、各試験塗板を作成した。
【0066】
塗装方法(1)
板厚0.6mm、片面のめっき付着量20g/m2 の電気亜鉛めっき鋼板を脱脂洗浄後、その上に上記下地処理剤を乾燥膜厚が0.3μmとなるように塗装し、15秒間でPMT(鋼板の最高到達温度)が100℃となる条件で焼き付けて各試験塗板を作成した。ついで得られた各処理板上に、コスマー2050(関西ペイント(株)製、商品名、アクリル/シリカ複合化樹脂液)を乾燥膜厚が3μmとなるよう塗装し、20秒間でPMT120℃になる条件で焼き付けて各試験板を作成した。
得られた各試験塗板に耐食性及び上層塗膜の密着性の試験を行った。その試験結果を後記表2に示す。試験は下記の試験方法に従って行った。
【0067】
耐食性:試験塗板の端面部及び裏面部をシールした試験塗板に、JIS Z2371に規定する塩水噴霧試験を240時間まで行い、120時間経過時及び240時間経過時における塗膜面の錆の程度を下記基準により評価した。
a:白錆の発生が認められない、
b:白錆の発生程度が塗膜面積の5%未満、
c:白錆の発生程度が塗膜面積の5%以上で10%未満、
d:白錆の発生程度が塗膜面積の10%以上で50%未満、
e:白錆の発生程度が塗膜面積の50%以上。
【0068】
上層塗膜の密着性:試験塗板にアミラック#1000ホワイト(関西ペイント(株)製、熱硬化型アルキド樹脂塗料、白色)を乾燥膜厚が30μmとなるように塗装し、130℃で20分間焼き付けて上塗塗装板−1を得た。また別に、試験塗板にマジクロン#1000ホワイト(関西ペイント(株)製、熱硬化型アクリル樹脂塗料、白色)を乾燥膜厚が30μmとなるように塗装し、150℃で20分間焼き付けて上塗塗装板−2を得た。得られた上塗塗装板−1及び上塗塗装板−2について、塗膜面にナイフにて素地に達する縦横各11本の傷を碁盤目状に入れて1mm角のマス目を100個作成した。この碁盤目部にセロハン粘着テープを密着させて瞬時にテープを剥がした際の上層塗膜の剥離程度を下記基準により評価した。
a:上層塗膜の剥離が全く認められない、
b:上層塗膜の剥離が1〜2個認められる、
c:上層塗膜の剥離が3〜10個認められる、
d:上層塗膜の剥離が10個以上認められる。
【0069】
結果を表2に挙げる。
表2
【0070】
【表2】
【0071】
塗装方法(2)
板厚0.4mm、片面のめっき付着量120g/m2 の溶融亜鉛めっき鋼板を脱脂洗浄後、その上に上記下地処理剤を乾燥膜厚が0.3μmとなるように塗装し、10秒間でPMTが100℃となる条件にて処理板を作成した。ついで、この処理板上にKPカラー8000プライマー(関西ペイント(株)製、変性エポキシ系塗料)を乾燥膜厚が5μmとなるように塗装し、20秒間でPMTが210℃となる条件で塗膜を形成し、ついでこのプライマー被膜上にKPカラー1580ホワイト(関西ペイント(株)製、ポリエステル樹脂系塗料、白色)を乾燥膜厚が15μmとなるように塗装し、40秒間でPMTが215℃となる条件で焼付けて上層塗膜を有する各試験塗板を作成した。これらの試験塗板について、上層塗膜の密着性、耐食性及び耐湿性の試験を行った。その試験結果を後記表3に示す。上層塗膜の密着性は、前記上層塗膜の密着性試験方法に準じて行った。耐食性及び耐湿性の試験は下記の試験方法に従って行った。
【0072】
耐食性:70×150mmの大きさに切断した、上層塗膜を有する試験塗板の端面部及び裏面部をシールした後、試験塗板の上部に4T折り曲げ部(塗膜面を外側にして0.4mm厚のスペーサー4枚を挟んで180度折り曲げ加工した部分)を設け、試験塗板の下部にクロスカット部を設けた塗装板についてJISZ2371に規定する塩水噴霧試験を1000時間行った。試験後の塗装板における、4T折り曲げ部での白錆の発生程度、クロスカット部のふくれ幅、一般部(加工、カットのない中央部)のふくれ発生程度を下記基準にて評価した。
【0073】
[4T折り曲げ部での白錆の発生程度]
a:白錆の発生が認められない、
b:白錆がわずかに発生、
c:白錆がかなり発生、
d:白錆が著しく発生、
[クロスカット部のふくれ幅]
a:クロスカットからの片側ふくれ幅が1mm未満、
b:クロスカットからの片側ふくれ幅が1mm以上で2mm未満、
c:クロスカットからの片側ふくれ幅が2mm以上で5mm未満、
d:クロスカットからの片側ふくれ幅が5mm以上、
[一般部のふくれ発生程度]
a:ふくれの発生が認められない、
b:わずかにふくれの発生が認められる、
c:かなりのふくれの発生が認められる、
d:著しいふくれの発生が認められる。
耐湿性:上層塗膜を有する試験塗板の端面部及び裏面部をシールした試験塗板を、JIS K54009.2.2に準じて耐湿試験を行った。耐湿試験機ボックス内の温度が49℃、相対湿度が95〜100%の条件で試験時間は1000時間とした。試験後の試験塗板の塗膜のふくれ発生程度を下記基準により評価した。
a:ふくれの発生が認められない、
b:わずかにふくれの発生が認められる、
c:かなりのふくれの発生が認められる、
d:著しいふくれの発生が認められる。
【0074】
結果を表3に挙げる。
表3
【0075】
【表3】
[0001]
BACKGROUND OF THE INVENTION
TECHNICAL FIELD The present invention relates to a steel sheet base treatment agent capable of forming a film excellent in workability and corrosion resistance, a coated steel sheet formed with a coating of the ground treatment agent, and a method for producing the coated steel sheet.
[0002]
[Prior art and problems]
In recent years, anticorrosion-coated steel sheets are required to have excellent corrosion resistance, and many surface-treated steel sheets using zinc-based plated steel sheets as substrates instead of conventional cold-rolled steel sheets have been used.
[0003]
Conventionally, chromate treatment and zinc phosphate treatment are generally performed as the surface treatment of zinc-based plated steel sheets, but the toxicity of chromium has become a problem. The chromate treatment has a problem of volatilization of chromate fume in the treatment process, a large amount of cost for the wastewater treatment facility, and a problem due to elution of chromic acid from the chemical conversion coating. Hexavalent chromium compounds are extremely harmful because many public institutions, including IARC (International Agency for Research on Cancer Review), have designated them as carcinogenic substances for the human body.
[0004]
In addition, in zinc phosphate treatment, after zinc phosphate treatment, rinsing treatment with chromic acid is usually performed, so there is a problem of chromium treatment, as well as treatment accelerators in zinc phosphate treatment agents, wastewater treatment of metal ions, etc. There is a problem of sludge treatment due to elution of metal ions from the treated metal.
[0005]
As treatment methods other than chromate treatment and zinc phosphate treatment, (1) surface treatment method (Japanese Patent Publication No. 53-28857) which is treated with an aqueous solution containing aluminum biphosphate and then heated at a temperature of 150 to 550 ° C. And (2) a method of treating with an aqueous solution containing tannic acid (see Japanese Patent Application Laid-Open No. 51-71233), and (3) sodium nitrite, sodium borate, imidazole, aromatic carvone A treatment method using an acid, a surfactant, or the like, or a treatment method combining these, is performed.
[0006]
However, in the method (1), when a paint is applied thereon, the adhesion of the paint is not sufficient, the method (2) is inferior in corrosion resistance, and the methods (3) are both high temperature. There is a problem that the corrosion resistance is inferior when exposed to a humid atmosphere.
[0007]
Further, as zinc-based steel sheets having a thin film having a film thickness of several μm or less, JP-A-58-224174, JP-A-60-50179, JP-A-60-50180, etc. A rust-proof steel sheet is known that has a plated steel plate as a base material, a chromate film is formed on this, and an organic composite silicate film is formed on top of this as a top layer, and this has excellent workability and corrosion resistance. Have However, since this rust-proof steel sheet has a chromate film, there was a problem of health and safety due to chromate ions as described above. Further, the steel plate obtained by removing the chromate film from the rust-proof steel plate still has insufficient corrosion resistance.
[0008]
The object of the present invention is, in particular, to provide a surface treatment agent for steel plates that can provide a coated steel sheet that exhibits excellent corrosion resistance and good workability and paint adhesion even if the zinc-based plated steel sheet does not have a chromate film. Is to get.
[0009]
Another object of the present invention is to provide a coated steel plate which is excellent in corrosion resistance, workability and paint adhesion, and has no problem from the viewpoint of environmental protection.
[0010]
Furthermore, the objective of this invention is providing the manufacturing method of a coated steel plate which is excellent in corrosion resistance, workability, and coating-material adhesiveness, and has no problem from the surface of environmental conservation.
[0011]
[Means for Solving the Problems]
The present inventors have found that an aqueous liquid containing a specific titanium and a base treatment agent containing a specific metal or silicon halide can achieve the above object, and have completed the present invention.
[0012]
Thus, according to the present invention, an aqueous liquid containing titanium obtained by reacting the following component (A) a titanium monomer containing a group that hydrolyzes into a hydroxyl group and / or a low condensate thereof with hydrogen peroxide solution ( A1) and an aqueous liquid (A2) containing titanium obtained by reacting a titanium monomer containing a group that hydrolyzes into a hydroxyl group and / or a low condensate thereof with hydrogen peroxide in the presence of a titanium oxide sol. An aqueous liquid containing at least one or more types of titanium selected from: (B) at least one selected from titanium halides, titanium halide salts, zirconium halides, zirconium halide salts, silicon halides, and silicon halide salts. It is an object of the present invention to provide a steel sheet base treatment agent characterized by containing a metal or silicon halide.
[0013]
The present invention also provides a coated steel sheet characterized in that the steel sheet surface is coated with a coating film of the surface treatment agent for the steel sheet of the present invention.
[0014]
Furthermore, the present invention provides a method for producing a coated steel sheet, characterized by applying and drying the steel sheet surface treatment agent of the present invention so that the dry film thickness becomes 0.001 to 10 μm.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
First, the steel plate surface treating agent of the present invention will be described.
[0016]
The ground treatment agent of the present invention is an aqueous liquid (A1) containing titanium obtained by reacting (A) a titanium monomer containing a group that hydrolyzes into a hydroxyl group and / or a low condensate thereof with hydrogen peroxide. And an aqueous liquid (A2) containing titanium obtained by reacting a titanium monomer containing a group that hydrolyzes into a hydroxyl group and / or a low condensate thereof with hydrogen peroxide in the presence of a titanium oxide sol. And an aqueous liquid containing at least one or more types of titanium and (B) at least one metal selected from titanium halide, titanium halide salt, zirconium halide, zirconium halide salt, silicon halide, silicon halide salt, or It contains silicon halide.
[0017]
As the titanium monomer containing a group which becomes a hydroxyl group upon hydrolysis, tetraalkoxy titanium of the general formula Ti (OR) 4 (wherein R is the same or different and represents an alkyl group having 1 to 5 carbon atoms) Is preferred. Examples of the alkyl group having 1 to 5 carbon atoms include methyl group, ethyl group, n-propyl group, iso-propyl group, n-butyl group, iso-butyl group, sec-butyl group, and tert-butyl group. Can be mentioned.
In addition, as a low condensate of a titanium monomer containing a group that is hydrolyzed to become a hydroxyl group, a compound having a condensation degree of 2 to 30 obtained by condensation reaction of Ti (OR) 4 with each other can be used. In particular, it is preferable to use those having a condensation degree of 2 to 10.
[0018]
The aqueous liquid (A1) containing titanium will be described below.
[0019]
The aqueous liquid (A1) is an aqueous liquid obtained by reacting the titanium monomer containing a group that becomes a hydroxyl group by hydrolysis and / or a low condensate thereof with a hydrogen peroxide solution.
[0020]
The mixing ratio of the titanium monomer and / or its low condensate containing hydrolyzed hydroxyl groups (hereinafter simply referred to as “hydrolyzable titanium”) and hydrogen peroxide is determined by hydrolysis. The amount is preferably 0.1 to 100 parts by weight, particularly 1 to 20 parts by weight in terms of hydrogen peroxide, based on 10 parts by weight of titanium. If the amount is less than 0.1 parts by weight in terms of hydrogen peroxide, chelate formation is not sufficient and white turbid precipitation occurs. On the other hand, if it exceeds 100 parts by weight, unreacted hydrogen peroxide tends to remain, and dangerous active oxygen is released during storage.
The hydrogen peroxide concentration of the hydrogen peroxide solution is not particularly limited, but it is preferably within the range of 3 to 30 weights from the viewpoint of ease of handling and the solid content of the product liquid related to coating workability.
The aqueous liquid (A1) containing titanium can be produced by reacting hydrolyzable titanium with hydrogen peroxide within a reaction temperature range of 1 to 70 ° C. for 10 minutes to 20 hours.
[0021]
In the aqueous liquid (A1) containing titanium, hydrolyzable titanium is hydrolyzed with water by reacting hydrolyzable titanium with hydrogen peroxide water to produce a hydroxyl group-containing titanium compound, and then hydrogen peroxide is produced. It is presumed that it coordinates to the hydroxyl group-containing titanium compound, and is obtained by this hydrolysis reaction and coordination by hydrogen peroxide occurring at the same time, and is extremely stable at room temperature and has a long-term storage. A chelating solution that can withstand The titanium hydroxide gel used in the conventional production method is partially three-dimensionalized by Ti—O—Ti bonds, and the composition obtained by reacting this gel with hydrogen peroxide is essentially different in terms of composition and stability.
[0022]
Further, when an aqueous liquid (A1) containing titanium is subjected to a heat treatment or autoclave treatment at 80 ° C. or higher, a titanium oxide dispersion containing ultrafine particles of crystallized titanium oxide is obtained. Below 80 ° C., the crystallization of titanium oxide does not proceed sufficiently. In the titanium oxide dispersion produced in this way, the particle diameter of the titanium oxide ultrafine particles is 10 nm or less, preferably in the range of 1 nm to 6 nm. The appearance of the dispersion is translucent. When the particle diameter is larger than 10 nm, the film forming property is deteriorated (breaking occurs at 1 μm or more), which is not preferable. This dispersion can be used as well.
The aqueous liquid (A1) containing titanium can form a dense titanium oxide film excellent in adhesion by itself by applying and drying to a steel plate material or by heat treatment at a low temperature.
[0023]
As the heat treatment temperature, for example, the titanium oxide film is preferably formed at a temperature of 200 ° C. or lower, particularly 150 ° C. or lower.
[0024]
The aqueous liquid (A1) containing titanium forms an amorphous titanium oxide film containing some hydroxyl groups at the above temperature.
[0025]
In addition, a titanium oxide dispersion that has been heat-treated at 80 ° C. or higher can form a crystalline titanium oxide film simply by coating, and thus is useful as a coating material for materials that cannot be heat-treated.
[0026]
Next, the aqueous liquid (A2) containing titanium will be described below.
[0027]
The aqueous titanium liquid (A2) is obtained by reacting the above-mentioned titanium monomer containing a group that hydrolyzes into a hydroxyl group and / or a low condensate thereof with hydrogen peroxide in the presence of a titanium oxide sol. .
[0028]
The titanium oxide sol is a sol in which amorphous titania and anatase titania fine particles are dispersed in water (which may contain an aqueous organic solvent such as alcohol or alcohol ether, if necessary).
[0029]
A conventionally well-known thing can be used as said titanium oxide sol. Examples of the titanium oxide sol include (1) those obtained by hydrolyzing a titanium-containing solution such as titanium sulfate and titanyl sulfate, (2) those obtained by hydrolyzing an organic titanium compound such as titanium alkoxide, 3) Amorphous titania sol in which titanium oxide aggregates such as those obtained by hydrolyzing or neutralizing titanium halide solutions such as titanium tetrachloride are dispersed in water, and anatase titanium fine particles by firing the titanium oxide aggregates It is possible to use a product obtained by dispersing this in water. Amorphous titania can be converted into anatase titania by firing at least at a temperature higher than the crystallization temperature of anatase, for example, at a temperature of 400 ° C. to 500 ° C. or higher. As an aqueous sol of the titanium oxide, for example, TKS-201 (manufactured by Teika Co., Ltd., trade name, Anata's crystal form, average particle diameter 6 nm), TA-15 (manufactured by Nissan Chemical Co., Ltd., trade name, Anata's crystal form), STS-11 (Ishihara Sangyo Co., Ltd., trade name, Anata's crystal form) and the like.
[0030]
The weight ratio of the titanium oxide sol and titanium hydrogen peroxide reactant when used to react the titanium monomer or its condensate with hydrogen peroxide is 1/99 to 99/1, preferably about 10/90. ~ 90/10 range. When the weight ratio is less than 1/99, the effect of adding titanium oxide sol such as stability and photoreactivity is not observed, and when it exceeds 99/1, the film forming property is inferior, which is not preferable.
The mixing ratio of the titanium monomer and / or its low condensate containing hydrolyzed hydroxyl groups (hereinafter simply referred to as “hydrolyzable titanium”) and hydrogen peroxide is determined by hydrolysis. The amount is preferably 0.1 to 100 parts by weight, particularly 1 to 20 parts by weight in terms of hydrogen peroxide, based on 10 parts by weight of titanium. If the amount is less than 0.1 parts by weight in terms of hydrogen peroxide, chelate formation is not sufficient and white turbid precipitation occurs. On the other hand, if it exceeds 100 parts by weight, unreacted hydrogen peroxide tends to remain, and dangerous active oxygen is released during storage.
The hydrogen peroxide concentration of the hydrogen peroxide solution is not particularly limited, but it is preferably within the range of 3 to 30 weights from the viewpoint of ease of handling and the solid content of the product liquid related to coating workability.
[0031]
In addition, the aqueous liquid (A2) can be produced by reacting hydrolyzable titanium with hydrogen peroxide within a reaction temperature range of 1 to 70 ° C. for 10 minutes to 20 hours in the presence of a titanium oxide sol.
In the aqueous liquid (A2), the hydrolyzable titanium is hydrolyzed with water to produce a hydroxyl group-containing titanium compound by reacting hydrolyzable titanium with hydrogen peroxide solution, and then the hydroxyl group containing hydrogen peroxide is produced. A chelate that is presumed to coordinate with the titanium compound and is obtained by the simultaneous occurrence of this hydrolysis reaction and coordination with hydrogen peroxide, which is extremely stable at room temperature and withstands long-term storage. A liquid is produced. The titanium hydroxide gel used in the conventional production method is partially three-dimensionalized by Ti—O—Ti bond, and the product obtained by reacting this gel with hydrogen peroxide is essentially different in terms of composition and stability. Further, by using a titanium oxide sol, it is possible to prevent thickening due to partial condensation reaction during synthesis. The reason is considered to be that the condensation reaction product is adsorbed on the surface of the titanium oxide sol and prevents polymerization in the solution state.
[0032]
Further, when the aqueous liquid (A2) containing titanium is subjected to heat treatment or autoclave treatment at 80 ° C. or higher, a titanium oxide dispersion containing ultrafine particles of crystallized titanium oxide is obtained. Below 80 ° C., the crystallization of titanium oxide does not proceed sufficiently. In the titanium oxide dispersion produced in this way, the particle diameter of the titanium oxide ultrafine particles is 10 nm or less, preferably in the range of 1 nm to 6 nm. The appearance of the dispersion is translucent. When the particle diameter is larger than 10 nm, the film forming property is deteriorated (breaking occurs at 1 μm or more), which is not preferable. This dispersion can be used as well.
The aqueous liquid (A2) containing titanium can form a dense titanium oxide film excellent in adhesion by itself by applying and drying to a steel plate material or by heat treatment at a low temperature.
[0033]
As the heat treatment temperature, for example, the titanium oxide film is preferably formed at a temperature of 200 ° C. or lower, particularly 150 ° C. or lower.
[0034]
The aqueous liquid (A2) containing titanium forms an anatase-type titanium oxide film containing some hydroxyl groups at the above temperature.
[0035]
Among the above-described aqueous liquids (A) containing titanium, the aqueous liquid (A1) is preferably used because it has excellent performance in storage stability, corrosion resistance and the like.
[0036]
Other pigments and sols can be added and dispersed in the aqueous liquid (A) containing titanium as necessary. Examples of the additive include commercially available titanium oxide sol, titanium oxide powder, mica, talc, silica, barita, clay, and the like.
[0037]
Component (B) in the surface treatment agent of the present invention is at least one metal selected from titanium halide, titanium halide salt, zirconium halide, zirconium halide salt, silicon halide, and silicon halide salt, or silicon halogen. It is a monster. Examples of the component that forms a salt include sodium, potassium, lithium, and ammonium. As what forms a salt, potassium and sodium are preferable. Examples of the halogen include fluorine, chlorine, iodine and the like. As the halogen, fluorine is particularly preferable because it has excellent performance in storage stability, corrosion resistance, moisture resistance and the like.
[0038]
Preferred examples of the metal halide (B) include titanium hydrofluoric acid, titanium potassium fluoride, titanium ammonium fluoride, zirconium hydrofluoric acid, zirconium ammonium fluoride, and zirconium potassium fluoride. . Further, as the silicon halide (B), for example, hydrofluoric acid, sodium silicofluoride, ammonium silicofluoride, potassium silicofluoride and the like are preferable.
[0039]
The blending ratio of the components (A) and (B) in the base treatment agent of the present invention is such that the component (B) is 10 to 300 parts by weight with respect to 100 parts by weight (solid content) of the aqueous liquid (A) containing titanium. The range is preferably 20 to 150 parts by weight.
[0040]
The surface treating agent of the present invention becomes a stable liquid in the acidic region, and is particularly preferably in the range of PH 2 to 6, particularly 3 to 5.
[0041]
In addition to the above-described components, the surface treatment agent of the present invention may contain a rust preventive agent (tannic acid, phytic acid, benzotriazole, etc.), silica, colored pigment, extender pigment, rust preventive pigment, etc., as necessary. it can.
[0042]
In the surface treatment agent of the present invention, the treatment agent containing a phosphoric acid compound such as phosphoric acid, polyphosphoric acid, phosphoric acid derivative, phosphoric acid, hypophosphoric acid, etc. is treated for unknown reasons. Since the storage stability of the agent is inferior, it is desirable not to include this.
[0043]
The base material to which the surface treatment agent of the present invention is applied is preferably a hot dip galvanized steel sheet, an electrogalvanized steel sheet, an iron-zinc alloy plated steel sheet, a nickel-zinc alloy plated steel sheet, an aluminum-zinc alloy plated steel sheet (for example, Alloy-galvanized steel sheets sold under the trade names “Galbarium” and “Galfan”). Moreover, as the zinc-based plated steel sheet, a zinc-based plated steel sheet subjected to chemical conversion treatment such as chromate treatment, zinc phosphate treatment, and composite oxide film treatment can also be used.
[0044]
Next, the coated steel sheet of the present invention and the manufacturing method thereof will be described in detail.
[0045]
The coated steel sheet of the present invention is obtained by coating the surface of the steel sheet with the coating of the ground treatment agent of the present invention.
Moreover, the manufacturing method of a coated steel plate applies the surface treating agent of this invention to the steel plate surface, and is made to dry.
[0046]
The surface treatment agent is a coating method known per se, such as dip coating, shower coating, spray coating, roll coating, electrodeposition coating, on a steel sheet (which may be assembled) as a base material. It can be painted by. The drying condition of the base treatment agent is usually preferably about 2 seconds to about 30 minutes under the condition that the maximum material arrival temperature is about 60 to 250 ° C.
[0047]
In addition, the dry film thickness of the base treatment agent is usually in the range of 0.05 to 10 μm, particularly 0.1 to 3 μm. When the thickness is less than 0.05 μm, the performance such as corrosion resistance and water resistance is inferior. On the other hand, when the thickness exceeds 10 μm, the base treatment film is cracked or the workability is lowered.
[0048]
The coated steel sheet of the present invention is excellent in corrosion resistance, fingerprint resistance and the like, and can be used as it is as a rust-proof steel sheet and a lubricated rust-proof steel sheet, but an upper film can be further formed thereon. The composition for forming the upper layer film may be appropriately selected according to the purpose, and various coating compositions can be used. Examples of the coating composition include a primer coating and a colored top coating. A primer paint may be applied, and a colored top coat may be further applied thereon.
[0049]
【The invention's effect】
Since the present invention has the above-described configuration, it is considered that the following effects are produced.
[0050]
Conventionally, as an aqueous liquid containing titanium, (1) a titanium oxide film is formed from an aqueous fluoride solution of titanium oxide and boric acid, and (2) an aqueous solution of titanium chloride or titanium sulfate and an alkaline solution such as ammonia or caustic soda is hydroxylated. A method is known in which titanium gel is precipitated, and then titanium hydroxide gel is separated by decantation, washed thoroughly with water, and further added with hydrogen peroxide (see JP-A-9-71418).
However, (1) requires a long time to form a film, the handling of fluoride is troublesome, (2) the process is complicated, the removal of alkali salts is troublesome, There are drawbacks such that it is difficult to obtain a high purity material that is easily mixed with other metals, and that it is difficult to control the pH and that the product obtained by the variation is different.
[0051]
The aqueous liquid (A) containing titanium used in the present invention is excellent without having the above-mentioned disadvantages, and is low in cost because it does not remove alkali salts and is easy to mix with other metals. High purity can be obtained, and PH control is simple.
[0052]
In particular, since the aqueous liquid (A) containing titanium is considered to form an amorphous titanium oxide film containing some hydroxyl groups at the above-mentioned temperature, it has a dense oxygen permeability excellent in adhesion to the steel plate surface. In addition, since a film having a small water vapor permeability is formed, the effect of excellent corrosion resistance is exhibited.
[0053]
Moreover, since the aqueous liquid (A) containing titanium is considered to form a stable complex with the metal or silicon halide, the storage stability is good.
[0054]
By coating the surface treatment agent of the present invention on a steel plate, an aqueous liquid (A) component containing titanium is deposited on the surface of the steel plate, a titanium oxide film is formed by heating, and an aqueous solution containing titanium (A It is considered that the metal or silicon halide and its salt (B) component separated from (1) migrate to the surface of the titanium oxide film during heating and become a metal or silicon hydroxide, and therefore have good corrosion resistance.
[0055]
【Example】
Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples. Hereinafter, “parts” and “%” mean “parts by weight” and “% by weight”, respectively. The present invention is not limited to the following examples.
[0056]
Production Example of Titanium Treatment Agent (1) A mixture of 10 parts of tetraiso-propoxytitanium and 10 parts of iso-propanol was added to a mixture of 10 parts of 30% hydrogen peroxide and 100 parts of deionized water at 20 ° C. over 1 hour. The solution was added dropwise with stirring. Thereafter, the mixture was aged at 25 ° C. for 2 hours to obtain a yellow transparent and slightly viscous titanium treating agent (1).
[0057]
Production Example of Titanium Treatment Agent (2) Titanium treatment agent (2) was obtained under the same production conditions using tetra n-butoxy titanium instead of tetraiso-propoxy titanium in Production Example 1.
[0058]
Production Example of Titanium Treatment Agent (3) A titanium treatment agent (3) was obtained under the same production conditions using a tetraiso-propoxytitanium trimer instead of the tetraiso-propoxytitanium of Production Example 1.
[0059]
Production Example of Titanium Treatment Agent (4) In the production example of Titanium Treatment Agent (1), 3 times the amount of hydrogen peroxide water was added dropwise at 50 ° C. over 1 hour, and further aged at 60 ° C. for 3 hours. )
[0060]
Production Example of Titanium Treatment Agent (5) The titanium treatment agent (2) was heat-treated at 95 ° C. for 6 hours to obtain a white-yellow translucent titanium oxide dispersion.
[0061]
Titanium treatment agent (6) Production Example Ammonia water (1: 9) was added dropwise to a solution of 5 cc of titanium tetrachloride 60% solution in 500 cc with distilled water to precipitate titanium hydroxide. After washing with distilled water, 10 cc of 30% hydrogen peroxide solution was added and stirred to produce 70 cc of a yellow translucent viscous liquid containing titanium.
[0062]
Ground treatment agent 1 (for Examples)
50% of 2% titanium treating agent (1), 5 parts of 20% zircon hydrofluoric acid and 45 parts of deionized water were blended to obtain a base treating agent 1.
[0063]
Ground treatment agents 2 to 11 (for examples) and ground treatment agents A1 to A3 (for comparative examples)
Mixing and dispersion were carried out with the formulation shown in Table 1 to obtain each surface treating agent.
Table 1
[0064]
[Table 1]
[0065]
Preparation of test coating plates Each test coating plate was prepared by the following coating method (1) and coating method (2) using the above-mentioned surface treatment agent.
[0066]
Painting method (1)
After degreasing and cleaning an electrogalvanized steel sheet with a plate thickness of 0.6 mm and a single-side plating coating amount of 20 g / m 2 , the above-mentioned surface treatment agent is applied thereon so that the dry film thickness becomes 0.3 μm. Each test coated plate was prepared by baking under the condition that the PMT (maximum temperature reached by the steel plate) was 100 ° C. Next, Cosmer 2050 (manufactured by Kansai Paint Co., Ltd., trade name, acrylic / silica composite resin solution) was applied on each of the treatment plates obtained so that the dry film thickness was 3 μm, and the PMT reached 120 ° C. in 20 seconds. Each test plate was made by baking under conditions.
Each of the obtained test coated plates was tested for corrosion resistance and adhesion of the upper coating film. The test results are shown in Table 2 below. The test was conducted according to the following test method.
[0067]
Corrosion resistance: A salt spray test specified in JIS Z2371 is performed up to 240 hours on the test coated plate with the end and back surfaces of the test coated plate sealed, and the degree of rust on the coating surface after 120 hours and after 240 hours is shown below. Evaluation was made according to the criteria.
a: generation of white rust is not observed,
b: The degree of occurrence of white rust is less than 5% of the coating area,
c: The degree of occurrence of white rust is 5% or more and less than 10% of the coating area,
d: The degree of occurrence of white rust is 10% or more and less than 50% of the coating area,
e: The degree of occurrence of white rust is 50% or more of the coating film area.
[0068]
Adhesion of upper layer coating: Amirac # 1000 white (manufactured by Kansai Paint Co., Ltd., thermosetting alkyd resin paint, white) was applied to the test coating plate so that the dry film thickness was 30 μm and baked at 130 ° C. for 20 minutes. Thus, a top coat plate-1 was obtained. Separately, Magiclon # 1000 White (manufactured by Kansai Paint Co., Ltd., thermosetting acrylic resin paint, white) was applied to the test coating plate so that the dry film thickness was 30 μm, and baked at 150 ° C. for 20 minutes for overcoating. -2 was obtained. About the obtained top coat board-1 and top coat board-2, the crack of 11 each in length and breadth which reaches | attains a base material with a knife was put in the grid surface shape, and 100 squares of 1 mm square were created. The degree of peeling of the upper layer coating film was evaluated according to the following criteria when a cellophane adhesive tape was adhered to the grid part and the tape was peeled off instantaneously.
a: No peeling of the upper coating film is observed,
b: 1-2 peeling of the upper layer coating film is observed,
c: 3 to 10 peeling of the upper coating film is observed,
d: Ten or more peelings of the upper layer coating film are observed.
[0069]
The results are listed in Table 2.
Table 2
[0070]
[Table 2]
[0071]
Painting method (2)
After degreasing and washing a hot dip galvanized steel sheet with a plate thickness of 0.4 mm and a single-side plating coating amount of 120 g / m 2 , the above-mentioned surface treatment agent is applied thereon so that the dry film thickness becomes 0.3 μm. A treated plate was prepared under conditions where the PMT was 100 ° C. Next, KP color 8000 primer (manufactured by Kansai Paint Co., Ltd., modified epoxy paint) was applied on the treated plate so that the dry film thickness was 5 μm, and the coating film was applied under the condition that the PMT was 210 ° C. in 20 seconds. Next, KP color 1580 white (manufactured by Kansai Paint Co., Ltd., polyester resin-based paint, white) was applied on the primer coating so that the dry film thickness was 15 μm, and the PMT was 215 ° C. for 40 seconds. Each test coating plate having an upper coating film was baked under the following conditions. About these test coating plates, the adhesiveness of the upper layer coating film, the corrosion resistance, and the moisture resistance test were done. The test results are shown in Table 3 below. The adhesion of the upper coating film was carried out according to the adhesion test method for the upper coating film. The corrosion resistance and moisture resistance tests were performed according to the following test methods.
[0072]
Corrosion resistance: After sealing the end face part and the back face part of the test coating plate having an upper coating film cut to a size of 70 × 150 mm, a 4T bent part (0.4 mm thickness with the coating film surface facing outside) is formed on the upper part of the test coating board. A portion sprayed 180 degrees across the four spacers) was provided, and a salt spray test specified in JISZ2371 was performed for 1000 hours on a coated plate having a cross-cut portion at the bottom of the test coated plate. In the coated plate after the test, the degree of occurrence of white rust at the 4T bent part, the swelling width of the cross cut part, and the degree of swelling of the general part (the center part without processing and cutting) were evaluated according to the following criteria.
[0073]
[Degree of white rust generation at the 4T bent part]
a: generation of white rust is not observed,
b: Slight white rust occurs,
c: White rust is considerably generated,
d: White rust is significantly generated,
[Cuff width of cross cut part]
a: The width on one side from the cross cut is less than 1 mm,
b: One side swelling width from cross cut is 1 mm or more and less than 2 mm,
c: One side swelling width from the cross cut is 2 mm or more and less than 5 mm,
d: One side swelling width from the cross cut is 5 mm or more,
[The degree of blistering in the general part]
a: No occurrence of blisters,
b: Slight swelling is observed,
c: considerable blistering is observed,
d: Remarkable blistering is observed.
Moisture resistance: A moisture resistance test was performed on a test coated plate with the end face portion and the back surface portion of the test coated plate having the upper coating film sealed in accordance with JIS K54009.2.2. The test time was 1000 hours under conditions where the temperature in the moisture resistance tester box was 49 ° C. and the relative humidity was 95 to 100%. The degree of blistering of the coating film on the test coating plate after the test was evaluated according to the following criteria.
a: No occurrence of blisters,
b: Slight swelling is observed,
c: considerable blistering is observed,
d: Remarkable blistering is observed.
[0074]
The results are listed in Table 3.
Table 3
[0075]
[Table 3]
Claims (9)
(A)加水分解して水酸基になる基を含有するチタンモノマー及び/又はその低縮合物を過酸化水素水と反応させて得られるチタンを含む水性液(A1)、及び酸化チタンゾルの存在下で、加水分解して水酸基になる基を含有するチタンモノマー及び/又はその低縮合物を過酸化水素水と反応させて得られるチタンを含む水性液(A2)から選ばれる少なくとも1種以上のチタンを含む水性液及び(B)チタンハロゲン化物、チタンハロゲン化物塩、ジルコニウムハロゲン化物、ジルコニウムハロゲン化物塩、シリコンハロゲン化物、シリコンハロゲン化物塩から選ばれる少なくとも1種の金属又はシリコンハロゲン化物を含有することを特徴とする鋼板用下地処理剤。Presence of the following component (A): an aqueous liquid (A1) containing titanium obtained by reacting a titanium monomer and / or a low condensate thereof containing a group that hydrolyzes into a hydroxyl group with a hydrogen peroxide solution, and a titanium oxide sol And at least one or more selected from an aqueous liquid (A2) containing titanium obtained by reacting a titanium monomer containing a group that hydrolyzes into a hydroxyl group and / or a low condensate thereof with hydrogen peroxide. An aqueous liquid containing titanium and (B) at least one metal selected from titanium halide, titanium halide salt, zirconium halide, zirconium halide salt, silicon halide, silicon halide salt, or silicon halide A surface treating agent for steel sheet, characterized in that.
Priority Applications (10)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000240610A JP4502477B2 (en) | 2000-08-09 | 2000-08-09 | Surface treatment agent for steel sheet, coated steel sheet using the same, and method for producing the same |
EP01951962A EP1310579B1 (en) | 2000-07-25 | 2001-07-23 | Coating material for forming titanium oxide film, method for forming titanium oxide film and use of said coating material |
CNB018125239A CN1228469C (en) | 2000-07-25 | 2001-07-23 | Coating material for forming titanium oxide film, method for forming titanium oxide film and use of said coating material |
AU2001272775A AU2001272775A1 (en) | 2000-07-25 | 2001-07-23 | Coating material for forming titanium oxide film, method for forming titanium oxide film and use of said coating material |
PCT/JP2001/006320 WO2002008490A1 (en) | 2000-07-25 | 2001-07-23 | Coating material for forming titanium oxide film, method for forming titanium oxide film and use of said coating material |
US10/312,571 US6736890B2 (en) | 2000-07-25 | 2001-07-23 | Coating material for forming titanium oxide film, method for forming titanium oxide film and use of said coating material |
DE60131979T DE60131979T2 (en) | 2000-07-25 | 2001-07-23 | COATING MATERIAL FOR THE MANUFACTURE OF TITANIUM OXIDE FILMS, METHOD OF PRODUCTION AND USE OF THIS COATING MATERIAL |
KR10-2003-7000999A KR100510281B1 (en) | 2000-07-25 | 2001-07-23 | Coating material for forming titanium oxide film, method for forming titanium oxide film and use of said coating material |
TW90118030A TW574419B (en) | 2000-07-25 | 2001-07-24 | Coating composition for forming titanium oxide film and method of forming titanium oxide film |
HK04100897A HK1058058A1 (en) | 2000-07-25 | 2004-02-11 | Coating composition for forming titanium oxide film, process for forming titanium oxide film and useof the coating composition |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000240610A JP4502477B2 (en) | 2000-08-09 | 2000-08-09 | Surface treatment agent for steel sheet, coated steel sheet using the same, and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002060975A JP2002060975A (en) | 2002-02-28 |
JP4502477B2 true JP4502477B2 (en) | 2010-07-14 |
Family
ID=18731939
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000240610A Expired - Fee Related JP4502477B2 (en) | 2000-07-25 | 2000-08-09 | Surface treatment agent for steel sheet, coated steel sheet using the same, and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4502477B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW200837156A (en) * | 2007-02-22 | 2008-09-16 | Kansai Paint Co Ltd | Coating agent for forming titanium/zirconium film, method for forming titanium/zirconium film and metal substrate coated with titanium/zirconium film |
WO2022054667A1 (en) * | 2020-09-09 | 2022-03-17 | 日本ペイント・サーフケミカルズ株式会社 | Substrate treatment agent and metal material |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001058825A (en) * | 1999-06-08 | 2001-03-06 | Kansai Paint Co Ltd | Coating agent for forming inorganic film, its production and formation of the same inorganic film |
JP2001089141A (en) * | 1999-09-16 | 2001-04-03 | Kansai Paint Co Ltd | Coating agent for forming inorganic film, method of producing the same and method of forming the same inorganic film |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS535039A (en) * | 1976-07-05 | 1978-01-18 | Kansai Paint Co Ltd | Metal surface treating liquid and surface treating method |
JPH11158648A (en) * | 1997-11-25 | 1999-06-15 | Kitazawa Yakuhin Kk | Surface treatment method |
-
2000
- 2000-08-09 JP JP2000240610A patent/JP4502477B2/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001058825A (en) * | 1999-06-08 | 2001-03-06 | Kansai Paint Co Ltd | Coating agent for forming inorganic film, its production and formation of the same inorganic film |
JP2001089141A (en) * | 1999-09-16 | 2001-04-03 | Kansai Paint Co Ltd | Coating agent for forming inorganic film, method of producing the same and method of forming the same inorganic film |
Also Published As
Publication number | Publication date |
---|---|
JP2002060975A (en) | 2002-02-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101717930B (en) | Environment-friendly nano water-based silane treatment agent capable of improving anti-corrosion performance of metal surface | |
JP5554531B2 (en) | How to paint metal materials | |
JP4575047B2 (en) | Metal surface treatment composition and metal surface treatment steel plate | |
JP5669293B2 (en) | Metal surface treatment composition and metal surface treatment method | |
JPWO2010070730A1 (en) | Surface treatment agent for galvanized steel sheet | |
JP2004238638A (en) | Surface treatment composition and surface-treated metal strip | |
KR100510281B1 (en) | Coating material for forming titanium oxide film, method for forming titanium oxide film and use of said coating material | |
JP2010156020A (en) | Surface-treated steel plate | |
JP4024129B2 (en) | Surface treatment agent for aluminum / zinc alloy-plated steel sheet and aluminum / zinc alloy-plated steel sheet surface-treated with the treatment agent | |
JP4502477B2 (en) | Surface treatment agent for steel sheet, coated steel sheet using the same, and method for producing the same | |
JP2003193255A (en) | Surface treatment composition for metallic material | |
JP2011063650A (en) | Surface treatment agent for metal material, surface treatment method, and surface treated metal material | |
JP2003193088A (en) | Surface-finishing composition for metallic material | |
JP2004052056A (en) | Surface treatment method of zinc or zinc alloy plated material | |
JP3923419B2 (en) | Non-chromium treatment of non-chromium steel sheet | |
JP2013060646A (en) | Composition for spray coating surface treatment, method for producing surface-treated hot-dip galvanized steel sheet, and the surface-treated hot-dip galvanized steel sheet | |
JP2003213457A (en) | Fuel tank made of resin coated metal | |
JP4439093B2 (en) | Post-treatment agent for phosphate treatment film on metal surface, coated steel sheet obtained by using post-treatment agent, and method for producing the same | |
JP3993729B2 (en) | Metal plate material excellent in corrosion resistance, paintability, fingerprint resistance and workability, and manufacturing method thereof | |
JP5000800B2 (en) | Inorganic film-forming coating agent, inorganic film-forming method, inorganic film-coated aluminum material and inorganic film-coated steel material obtained by using the same | |
JP5592579B2 (en) | How to paint metal materials | |
JP5222491B2 (en) | Surface-treated steel sheet | |
JP4349654B2 (en) | Inorganic film-forming coating agent, inorganic film-forming method, and inorganic film-coated substrate | |
JP3371099B2 (en) | Inorganic coated metal sheet excellent in corrosion resistance and stain resistance and method for producing the same | |
JP2003213456A (en) | Resin-coated metallic tube material and production method therefor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070727 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100203 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100302 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100331 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100420 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130430 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130430 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130430 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140430 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |