JP6367462B2 - Metal surface treatment agent for galvanized steel or zinc-base alloy plated steel, coating method and coated steel - Google Patents

Metal surface treatment agent for galvanized steel or zinc-base alloy plated steel, coating method and coated steel Download PDF

Info

Publication number
JP6367462B2
JP6367462B2 JP2017502439A JP2017502439A JP6367462B2 JP 6367462 B2 JP6367462 B2 JP 6367462B2 JP 2017502439 A JP2017502439 A JP 2017502439A JP 2017502439 A JP2017502439 A JP 2017502439A JP 6367462 B2 JP6367462 B2 JP 6367462B2
Authority
JP
Japan
Prior art keywords
mass
metal surface
compound
solid content
surface treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017502439A
Other languages
Japanese (ja)
Other versions
JPWO2016136834A1 (en
Inventor
邦彦 東新
邦彦 東新
伊藤 大輔
大輔 伊藤
森下 敦司
敦司 森下
康弘 木下
康弘 木下
遠藤 正彦
正彦 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Parkerizing Co Ltd
Nippon Steel Corp
Original Assignee
Nihon Parkerizing Co Ltd
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Parkerizing Co Ltd, Nippon Steel Corp filed Critical Nihon Parkerizing Co Ltd
Publication of JPWO2016136834A1 publication Critical patent/JPWO2016136834A1/en
Application granted granted Critical
Publication of JP6367462B2 publication Critical patent/JP6367462B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/14Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to metal, e.g. car bodies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/082Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising vinyl resins; comprising acrylic resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/18Layered products comprising a layer of metal comprising iron or steel
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/18Homopolymers or copolymers of nitriles
    • C09D133/20Homopolymers or copolymers of acrylonitrile
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/08Anti-corrosive paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2222/00Aspects relating to chemical surface treatment of metallic material by reaction of the surface with a reactive medium
    • C23C2222/20Use of solutions containing silanes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Paints Or Removers (AREA)
  • Laminated Bodies (AREA)
  • Chemical Treatment Of Metals (AREA)

Description

本発明は、亜鉛めっき鋼材用または亜鉛基合金めっき鋼材用の金属表面処理剤、該金属表面処理剤を用いた亜鉛めっき鋼材または亜鉛基合金めっき鋼材の被覆方法、該被覆方法によって製造した被覆鋼材に関する。   The present invention relates to a metal surface treatment agent for a galvanized steel material or a zinc base alloy plated steel material, a coating method for a galvanized steel material or a zinc base alloy plated steel material using the metal surface treatment agent, and a coated steel material produced by the coating method. About.

家庭電化製品や建材等には、亜鉛や亜鉛系めっき鋼板が広く用いられている。これらの鋼板は、そのままでは、耐食性や上塗り塗装性が不十分であるために、クロメート処理が施される。しかし、近年、家庭用電化製品用途では6価クロムの使用が規制され、これに変わりクロメートフリー処理が施されるようになってきた。   Zinc and zinc-based plated steel sheets are widely used for home appliances and building materials. These steel plates are subjected to chromate treatment because they are insufficient in corrosion resistance and top coatability. However, in recent years, the use of hexavalent chromium has been restricted for household appliances, and instead, chromate-free treatment has been applied.

このクロメートフリー処理を施した亜鉛めっき鋼板は、使用される用途によっては塗装を行わないでそのまま用いられる場合も少なくない。塗装を行わないで用いる場合には、耐食性のみならず、耐指紋性が求められる。また、プレス加工や折り曲げ加工等の成型加工が施される場合には鋼板と金型との摺動により傷が発生しないように耐傷付き性が求められる。さらに、加工時塗油される防錆油、加工油等を除去する目的で溶剤をしみこませたウエス等によりラビングされる場合には溶剤により皮膜が溶解し、外観が変色してしまわないように耐溶剤性が求められる。用いられる溶剤は複数あり、それぞれの溶剤に対する耐溶剤性が必要となる。塗装して用いる場合にも、片面塗装のみの場合の未塗装側は200〜250℃程度の高温で焼付けると黄変して、ひどい場合は褐変することがあるため、耐熱性が求められる。   The galvanized steel sheet subjected to the chromate-free treatment is often used as it is without coating depending on the intended use. When used without coating, not only corrosion resistance but also fingerprint resistance is required. Further, when molding such as pressing or bending is performed, scratch resistance is required so that scratches do not occur due to sliding between the steel plate and the mold. Furthermore, when rubbing with a cloth soaked with a solvent for the purpose of removing rust preventive oil, processing oil, etc. applied during processing, the film will be dissolved by the solvent and the appearance will not be discolored. Solvent resistance is required. There are a plurality of solvents used, and solvent resistance to each solvent is required. Even in the case of coating and using, the unpainted side in the case of only one-side coating is yellowed when baked at a high temperature of about 200 to 250 ° C., and in severe cases it may be browned, so heat resistance is required.

このため、各種性能を有する亜鉛めっき鋼板に関する技術がいくつか提案されている。   For this reason, several techniques regarding galvanized steel sheets having various performances have been proposed.

特許文献1には、(A)特定のポリウレタン樹脂の水性分散体、及び(B)リン酸化合物、バナジウム化合物、ジルコニウム化合物、チタニウム化合物、コバルト化合物、ニッケル化合物、シランカップリング剤及びシリカ粒子から選ばれる少なくとも1種を含有する無公害型の金属表面処理組成物に関する技術が記載されている。この技術によれば、クロム酸塩処理及びリン酸塩処理に匹敵する耐食性を持ちかつ貯蔵安定性、耐指紋性、耐溶剤性、上塗塗膜付着性に優れた皮膜を形成することができる。   In Patent Document 1, (A) an aqueous dispersion of a specific polyurethane resin, and (B) a phosphoric acid compound, a vanadium compound, a zirconium compound, a titanium compound, a cobalt compound, a nickel compound, a silane coupling agent, and silica particles are selected. Techniques relating to non-polluting metal surface treatment compositions containing at least one of the above are described. According to this technique, it is possible to form a film having corrosion resistance comparable to chromate treatment and phosphate treatment and having excellent storage stability, fingerprint resistance, solvent resistance, and top coat adhesion.

特許文献2には、エチレン−アクリル酸共重合樹脂、ジルコニウムまたはバナジウムを含む水溶性金属化合物、コロイダルシリカ、オキシカルボン酸類またはアミン類のキレート形成性有機化合物、及び無機塩またはその水溶性塩の化合物からなる不揮発成分を有し、クロムを含んでいない、pH7〜10である金属表面の水系処理薬剤に関する技術が記載されている。この技術によれば、美麗な黒色外観と良好な耐食性だけでなく、耐熱性、導電性、耐指紋性を併せ持つ非クロム型黒色化鋼板を製造することができる。しかし、この非クロム型黒色化鋼板は、耐溶剤性には優れるものの、水を使用した場合の耐洗浄性に劣り、洗浄後の耐食性が悪いことがわかっている。   Patent Document 2 discloses an ethylene-acrylic acid copolymer resin, a water-soluble metal compound containing zirconium or vanadium, a colloidal silica, an oxycarboxylic acid or an amine chelate-forming organic compound, and an inorganic salt or a water-soluble salt compound thereof A technique relating to a water-based treatment agent for a metal surface having a non-volatile component and containing no chromium and having a pH of 7 to 10 is described. According to this technology, it is possible to produce a non-chromium blackened steel sheet having not only a beautiful black appearance and good corrosion resistance but also heat resistance, conductivity, and fingerprint resistance. However, although this non-chromium type blackened steel sheet is excellent in solvent resistance, it has been found that the non-chromium type blackened steel sheet is inferior in cleaning resistance when water is used and has poor corrosion resistance after cleaning.

特許文献3には、特定のカチオン性ポリウレタン樹脂、特定のカチオン性フェノール樹脂、シランカップリング剤、マンガン化合物、ジルコニウム化合物、バナジウム化合物と、フィッシャートロプッシュワックスとを含有する水系表面処理液を用いた技術が記載されている。この技術によれば、平面部耐食性、アルカリ脱脂後耐食性、加工部耐食性、耐指紋性、導電性、塗装密着性、加工性、耐熱性、耐酸性、耐水性等の性能バランスに優れた表面処理鋼板を提供することができる。   In Patent Document 3, an aqueous surface treatment liquid containing a specific cationic polyurethane resin, a specific cationic phenol resin, a silane coupling agent, a manganese compound, a zirconium compound, a vanadium compound, and a Fischer-Tropsch wax was used. The technology is described. According to this technology, surface treatment with excellent balance of performance such as flat surface corrosion resistance, corrosion resistance after alkaline degreasing, processed portion corrosion resistance, fingerprint resistance, conductivity, paint adhesion, workability, heat resistance, acid resistance, and water resistance. A steel plate can be provided.

特許文献4には、特定のアクリル系樹脂、水およびコロイダルシリカを含有する水系表面処理剤に関する技術が記載されている。この技術によれば、平面部耐食性、耐溶剤性、上塗り塗装性および溶接性のみならず、加工部耐食性、耐傷つき性に優れた表面処理金属材を得ることができる。しかし、十分な耐食性を得ようとすると、クロメート下地を必要とすることがわかっている。   Patent Document 4 describes a technique related to an aqueous surface treatment agent containing a specific acrylic resin, water, and colloidal silica. According to this technique, it is possible to obtain a surface-treated metal material that is excellent not only in the flat portion corrosion resistance, solvent resistance, top coatability and weldability, but also in the processed portion corrosion resistance and scratch resistance. However, it has been found that a chromate substrate is required to obtain sufficient corrosion resistance.

特許文献5には、アニオン性アクリル樹脂、特定のケイ酸アルカリ金属塩、塩基性ジルコニウム化合物、バナジウム化合物及び特定の有機リン化合物を水に配合した金属材料用表面処理剤に関する技術が記載されている。この技術によれば、優れた耐食性、耐薬品性、耐熱変色性及び耐候性を有する皮膜が得られる。   Patent Document 5 describes a technique related to a surface treatment agent for a metal material in which an anionic acrylic resin, a specific alkali metal silicate salt, a basic zirconium compound, a vanadium compound, and a specific organic phosphorus compound are mixed in water. . According to this technique, a film having excellent corrosion resistance, chemical resistance, heat discoloration and weather resistance can be obtained.

特開2009−127061号JP 2009-127061 特開2005−194627号JP-A-2005-194627 特開2008−194839号JP 2008-194839 A 特開2002−322409号JP 2002-322409 A WO2007/069783WO2007 / 069783

しかしながら、上述の技術では、クロメート下地を必要としないで、亜鉛めっき鋼材または亜鉛基合金めっき鋼材の表面に、平面部耐食性、加工部耐食性、耐指紋性、塗装密着性、耐洗浄性、耐傷付き性、耐溶剤性及び耐熱性を含めた全ての特性に優れた皮膜を形成することができない。
そこで、本発明は、亜鉛めっき鋼材または亜鉛基合金めっき鋼材の表面に、平面部耐食性、加工部耐食性、耐指紋性、塗装密着性、耐洗浄性、耐傷付き性、耐溶剤性及び耐熱性に優れた皮膜を形成することができる金属表面処理剤、該金属表面処理剤を用いた被覆方法、及び該被覆方法によって製造した被覆鋼材を提供することを目的とする。
However, the above-mentioned technology does not require a chromate base, and the surface of the galvanized steel or zinc-base alloy-plated steel material is flat surface corrosion resistance, processed portion corrosion resistance, fingerprint resistance, paint adhesion, washing resistance, and scratch resistance. It is not possible to form a film excellent in all properties including properties, solvent resistance and heat resistance.
Therefore, the present invention provides a surface of a galvanized steel material or a zinc-base alloy-plated steel material with flat surface corrosion resistance, processed portion corrosion resistance, fingerprint resistance, paint adhesion, cleaning resistance, scratch resistance, solvent resistance, and heat resistance. It is an object of the present invention to provide a metal surface treatment agent capable of forming an excellent film, a coating method using the metal surface treatment agent, and a coated steel material produced by the coating method.

本発明者らは、上記課題を解決するための手段について鋭意検討を重ねた結果、特定のアクリル樹脂(A)と、水ガラス化合物(B)と、ジルコニウム化合物(C)と、リン化合物(D)と、バナジウム化合物(E)とを、特定の配合比にて含む金属表面処理剤を用いることにより、亜鉛めっき鋼材または亜鉛基合金めっき鋼材の表面に、平面部耐食性、加工部耐食性、耐指紋性、塗装密着性、耐洗浄性、耐傷付き性、耐溶剤性及び耐熱性に優れた皮膜を形成することができることを見出し、本発明を完成するに至った。   As a result of intensive studies on means for solving the above problems, the present inventors have found that a specific acrylic resin (A), a water glass compound (B), a zirconium compound (C), and a phosphorus compound (D ) And a vanadium compound (E) at a specific compounding ratio, the surface of the galvanized steel or zinc-base alloy-plated steel material has a flat surface corrosion resistance, a processed portion corrosion resistance, and a fingerprint resistance. The present invention has been completed by finding that it is possible to form a film having excellent properties, paint adhesion, washing resistance, scratch resistance, solvent resistance and heat resistance.

即ち、本発明の要旨とするところは、
(1)亜鉛めっき鋼材用または亜鉛基合金めっき鋼材用の金属表面処理剤であって、アクリル樹脂(A)と、水ガラス化合物(B)と、ジルコニウム化合物(C)と、リン化合物(D)と、バナジウム化合物(E)とを含み、前記アクリル樹脂(A)が、原料モノマーの合計質量を基準として、20〜70質量%の(メタ)アクリル酸エステル(a)と、2〜10質量%のカルボキシル基を含有するエチレン性不飽和モノマー(b)と、2〜10質量%の水酸基を含有するエチレン性不飽和モノマー(c)と、10〜30質量%のスチレン(d)と、10〜30質量%のアクリロニトリル(e)との乳化重合反応により得られる共重合体であり、前記金属表面処理剤の固形分合計質量(W)に対する前記アクリル樹脂(A)の固形分質量比である(A)/(W)が0.40〜0.60であり、前記金属表面処理剤の固形分合計質量(W)に対する前記水ガラス化合物(B)の固形分質量比である(B)/(W)が0.05〜0.25であり、前記金属表面処理剤の固形分合計質量(W)に対する前記ジルコニウム化合物(C)の固形分質量比である(C)/(W)が0.05〜0.2であり、前記金属表面処理剤の固形分合計質量(W)に対する前記リン化合物(D)の固形分質量比である(D)/(W)が0.01〜0.10であり、前記金属表面処理剤の固形分合計質量(W)に対する前記バナジウム化合物(E)の固形分質量比である(E)/(W)が0.001〜0.03である、ことを特徴とする金属表面処理剤。
That is, the gist of the present invention is that
(1) A metal surface treatment agent for galvanized steel or zinc-based alloy-plated steel, the acrylic resin (A), the water glass compound (B), the zirconium compound (C), and the phosphorus compound (D) And the vanadium compound (E), wherein the acrylic resin (A) is 20 to 70% by mass of (meth) acrylic acid ester (a) and 2 to 10% by mass based on the total mass of the raw material monomers. Ethylenically unsaturated monomer (b) containing 2 to 10% by mass of hydroxyl group, 10 to 30% by mass of styrene (d), 10 to 30% by mass of styrene (d), It is a copolymer obtained by an emulsion polymerization reaction with 30% by mass of acrylonitrile (e), and the solid content mass ratio of the acrylic resin (A) to the solid mass total mass (W) of the metal surface treatment agent (A) / (W) is 0.40 to 0.60, and is the solid content mass ratio of the water glass compound (B) to the solid mass total mass (W) of the metal surface treatment agent (B). / (W) is 0.05 to 0.25, and the solid content mass ratio of the zirconium compound (C) to the total solid content mass (W) of the metal surface treatment agent is (C) / (W). 0.05 to 0.2, and (D) / (W), which is the solid content mass ratio of the phosphorus compound (D) to the total solid mass (W) of the metal surface treatment agent, is 0.01 to 0. 10 and (E) / (W), which is the solid content mass ratio of the vanadium compound (E) to the total solid content mass (W) of the metal surface treatment agent, is 0.001 to 0.03. A metal surface treatment agent characterized by the above.

(2)追加成分としてシラン化合物(F)を含み、前記シラン化合物(F)を含む前記金属表面処理剤の固形分合計質量(W)に対する前記シラン化合物(F)の固形分質量比である(F)/(W)が0.25以下である上記(1)に記載の金属表面処理剤。   (2) It is a solid content mass ratio of the silane compound (F) with respect to the total solid mass (W) of the metal surface treatment agent containing the silane compound (F) as an additional component and containing the silane compound (F). F) / (W) is a metal surface treating agent as described in said (1) which is 0.25 or less.

(3)追加成分としてポリオレフィンワックス(G)を含む上記(1)または(2)に記載の金属表面処理剤。   (3) The metal surface treating agent according to the above (1) or (2), which contains the polyolefin wax (G) as an additional component.

(4)上記(1)〜(3)のいずれかに記載の金属表面処理剤を、亜鉛めっき鋼材または亜鉛基合金めっき鋼材の表面に塗布して皮膜を形成することを特徴とする被覆方法。   (4) A coating method comprising applying the metal surface treatment agent according to any one of (1) to (3) above to a surface of a galvanized steel material or a zinc-based alloy plated steel material to form a film.

(5)上記(4)に記載の被覆方法によって得られる被覆鋼材。   (5) A coated steel material obtained by the coating method described in (4) above.

(6)皮膜量が0.5〜2.0g/mである上記(5)に記載の被覆鋼材。(6) The coated steel material according to (5), wherein the coating amount is 0.5 to 2.0 g / m 2 .

本発明によれば、亜鉛めっき鋼材または亜鉛基合金めっき鋼材の表面に、平面部耐食性、加工部耐食性、耐指紋性、塗装密着性、耐洗浄性、耐傷付き性、耐溶剤性及び耐熱性に優れた皮膜を形成することができる金属表面処理剤、該金属表面処理剤を用いた被覆方法、及び該被覆方法によって製造した被覆鋼材を提供することができる。   According to the present invention, the surface of a galvanized steel material or zinc-based alloy-plated steel material has a flat surface corrosion resistance, a processed portion corrosion resistance, fingerprint resistance, paint adhesion, cleaning resistance, scratch resistance, solvent resistance, and heat resistance. It is possible to provide a metal surface treatment agent capable of forming an excellent film, a coating method using the metal surface treatment agent, and a coated steel material produced by the coating method.

以下、本発明を詳細に説明するが、本発明は下記の実施形態に限定されるものではない。
[亜鉛めっき鋼材用または亜鉛基合金めっき鋼材用の金属表面処理剤]
本発明に係る金属表面処理剤は、アクリル樹脂(A)と、水ガラス化合物(B)と、ジルコニウム化合物(C)と、リン化合物(D)と、バナジウム化合物(E)とを含む。
Hereinafter, the present invention will be described in detail, but the present invention is not limited to the following embodiments.
[Metallic surface treatment agent for galvanized steel or zinc-base alloy-plated steel]
The metal surface treating agent according to the present invention includes an acrylic resin (A), a water glass compound (B), a zirconium compound (C), a phosphorus compound (D), and a vanadium compound (E).

本発明に用いるアクリル樹脂(A)の配合量は、金属表面処理剤を構成する各成分における固形分の合計100質量%に対して、固形分質量換算で40〜60質量%であり、より好ましくは45〜60質量%である。アクリル樹脂(A)の配合量が40質量%未満の場合は、耐食性、密着性等が劣るため好ましくない。また、60質量%を超える場合は、耐溶剤性、耐熱性、耐洗浄性、耐傷付き性等が劣るため好ましくない。なお、アクリル樹脂としては、原料モノマーの合計質量を基準として、それぞれ固形分質量換算で、20〜70質量%の(メタ)アクリル酸エステル(a)と、2〜10質量%のカルボキシル基を含有するエチレン性不飽和モノマー(b)と、2〜10質量%の水酸基を含有するエチレン性不飽和モノマー(c)と、10〜30質量%のスチレン(d)と、10〜30質量%のアクリロニトリル(e)との乳化重合反応により得られる共重合体を用いる必要がある。なお、本願明細書において、「エチレン性不飽和モノマー」とは、エチレン性不飽和基、すなわち、炭素−炭素二重結合を有するモノマーを意味する。また、アクリル樹脂(A)を構成する各モノマー(a)〜(e)の乳化重合反応は、例えば、公知の、分子中に重合性の二重結合を有する反応性乳化剤等を用いて行うことができる。   The blending amount of the acrylic resin (A) used in the present invention is more preferably 40 to 60% by mass in terms of solid content with respect to 100% by mass in total of the solid content in each component constituting the metal surface treatment agent. Is 45-60 mass%. When the blending amount of the acrylic resin (A) is less than 40% by mass, the corrosion resistance and adhesion are inferior, which is not preferable. Moreover, when it exceeds 60 mass%, since solvent resistance, heat resistance, washing | cleaning resistance, scratch resistance, etc. are inferior, it is unpreferable. In addition, as an acrylic resin, 20-70 mass% (meth) acrylic acid ester (a) and 2-10 mass% carboxyl group are each converted into solid content mass on the basis of the total mass of a raw material monomer. Ethylenically unsaturated monomer (b), ethylenically unsaturated monomer (c) containing 2 to 10% by mass of hydroxyl group, 10 to 30% by mass of styrene (d), and 10 to 30% by mass of acrylonitrile It is necessary to use a copolymer obtained by an emulsion polymerization reaction with (e). In the present specification, “ethylenically unsaturated monomer” means a monomer having an ethylenically unsaturated group, that is, a carbon-carbon double bond. In addition, the emulsion polymerization reaction of each monomer (a) to (e) constituting the acrylic resin (A) is performed using, for example, a known reactive emulsifier having a polymerizable double bond in the molecule. Can do.

本発明に使用される(メタ)アクリル酸エステル(a)としては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n−プロピル(メタ)アクリレートまたはその異性体、n−ブチル(メタ)アクリレートまたはその異性体、n−ペンチル(メタ)アクリレートまたはその異性体、n−ヘキシル(メタ)アクリレートまたはその異性体、n−ヘプチル(メタ)アクリレートまたはその異性体、n−オクチル(メタ)アクリレートまたはその異性体等が挙げられる。尚、本明細書で(メタ)を用いる場合は、メチル基(−CH)を有する場合と有しない場合の両方を意味する。Examples of the (meth) acrylic acid ester (a) used in the present invention include methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate or an isomer thereof, and n-butyl (meth). Acrylate or isomer thereof, n-pentyl (meth) acrylate or isomer thereof, n-hexyl (meth) acrylate or isomer thereof, n-heptyl (meth) acrylate or isomer thereof, n-octyl (meth) acrylate or Examples thereof include isomers thereof. In addition, when (meth) is used in this specification, it means both the case of having a methyl group (—CH 3 ) and the case of not having it.

この様な(メタ)アクリル酸エステル(a)の配合量は、アクリル樹脂(A)を構成する各モノマー(a)〜(e)の合計100質量%に対して、20〜70質量%、好ましくは30〜60質量%である。(メタ)アクリル酸エステル(a)の配合量が20質量%未満の場合は得られる重合体皮膜の柔軟性が欠如するため、成膜時に皮膜にクラックが入り、十分な耐食性を得ることができない。また、耐洗浄性が劣ることがある。一方、配合量が70質量%を超える場合は耐溶剤性が劣るため好ましくない。   The blending amount of such a (meth) acrylic acid ester (a) is 20 to 70% by mass, preferably 100% by mass with respect to a total of 100% by mass of the monomers (a) to (e) constituting the acrylic resin (A). Is 30 to 60% by mass. When the blending amount of the (meth) acrylic acid ester (a) is less than 20% by mass, the resulting polymer film lacks flexibility, so that the film is cracked during film formation and sufficient corrosion resistance cannot be obtained. . Also, the washing resistance may be inferior. On the other hand, when the blending amount exceeds 70% by mass, the solvent resistance is inferior, which is not preferable.

本発明に使用されるカルボキシル基を含有するエチレン性不飽和モノマー(b)としては、例えば、アクリル酸、メタクリル酸、マレイン酸、無水マレイン酸、フマル酸、クロトン酸、イタコン酸、シトラコン酸、桂皮酸等が挙げられる。この様なカルボキシル基を含有するエチレン性不飽和モノマー(b)の配合量は、アクリル樹脂(A)を構成する各モノマー(a)〜(e)の合計100質量%に対して2〜10質量%であり、より好ましくは2.5〜8質量%である。2質量%未満の場合は鋼板に対する皮膜の耐食性、密着性等に劣り、10質量%を超える場合は耐食性、耐溶剤性、密着性、耐洗浄性が劣るため好ましくない。   Examples of the ethylenically unsaturated monomer (b) containing a carboxyl group used in the present invention include acrylic acid, methacrylic acid, maleic acid, maleic anhydride, fumaric acid, crotonic acid, itaconic acid, citraconic acid, and cinnamon. An acid etc. are mentioned. The compounding quantity of such an ethylenically unsaturated monomer (b) containing a carboxyl group is 2 to 10 mass with respect to a total of 100 mass% of the monomers (a) to (e) constituting the acrylic resin (A). %, More preferably 2.5 to 8% by mass. When the amount is less than 2% by mass, the corrosion resistance and adhesion of the film to the steel sheet are inferior, and when it exceeds 10% by mass, the corrosion resistance, solvent resistance, adhesion and washing resistance are inferior.

本発明に使用される水酸基を含有するエチレン性不飽和モノマー(c)としては、例えば、2−ヒドロキシエチル(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレート、3−ヒドロキシプロピル(メタ)アクリレート、2−ヒドロキシブチル(メタ)アクリレート、3−ヒドロキシブチル(メタ)アクリレート、4−ヒドロキシブチル(メタ)アクリレート、2−ヒドロキシエチル(メタ)アリルエーテル、3−ヒドロキシプロピル(メタ)アリルエーテル、4−ヒドロキシブチル(メタ)アリルエーテル、アリルアルコールなどが挙げられる。この様な水酸基を含有するエチレン性不飽和モノマー(c)の配合量は、アクリル樹脂(A)を構成する各モノマー(a)〜(e)の合計100質量%に対して2〜10質量%であり、より好ましくは2.5〜8質量%である。2質量%未満の場合は耐食性、鋼板に対する密着性等に劣り、10質量%を超える場合は耐食性、耐溶剤性、密着性、耐洗浄性等が劣るため好ましくない。   Examples of the ethylenically unsaturated monomer (c) containing a hydroxyl group used in the present invention include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, 3-hydroxybutyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, 2-hydroxyethyl (meth) allyl ether, 3-hydroxypropyl (meth) allyl ether, 4-hydroxy Examples include butyl (meth) allyl ether and allyl alcohol. The blending amount of the ethylenically unsaturated monomer (c) containing such a hydroxyl group is 2 to 10% by mass with respect to a total of 100% by mass of the monomers (a) to (e) constituting the acrylic resin (A). More preferably, it is 2.5-8 mass%. When the amount is less than 2% by mass, the corrosion resistance and adhesion to the steel sheet are inferior, and when it exceeds 10% by mass, the corrosion resistance, solvent resistance, adhesion, and washing resistance are inferior.

本発明で使用されるスチレン(d)の配合量はアクリル樹脂(A)を構成する各モノマー(a)〜(e)の合計100質量%に対して10〜30質量%であり、より好ましくは12〜25質量%である。10質量%未満の場合は耐傷つき性が劣り、30質量%を超える場合は耐食性、耐溶剤性、密着性等が劣るため好ましくない。   The compounding quantity of styrene (d) used by this invention is 10-30 mass% with respect to the total 100 mass% of each monomer (a)-(e) which comprises an acrylic resin (A), More preferably It is 12 to 25% by mass. When it is less than 10% by mass, scratch resistance is inferior, and when it exceeds 30% by mass, corrosion resistance, solvent resistance, adhesion and the like are inferior.

本発明で使用されるアクリロニトリル(e)の配合量はアクリル樹脂(A)を構成する各モノマー(a)〜(e)の合計100質量%に対して10〜30質量%であり、より好ましくは15〜28質量%である。10質量%未満の場合は耐溶剤性、密着性等に劣り、30質量%を超える場合は200〜250℃の高温で黄変するため耐熱性に劣り好ましくない。   The amount of acrylonitrile (e) used in the present invention is 10 to 30% by mass, more preferably 10% by mass to 100% by mass of each monomer (a) to (e) constituting the acrylic resin (A). 15 to 28% by mass. When the amount is less than 10% by mass, the solvent resistance and adhesion are inferior, and when it exceeds 30% by mass, yellowing occurs at a high temperature of 200 to 250 ° C., which is inferior in heat resistance.

上記アクリル樹脂(A)である共重合体は、該アクリル樹脂(A)を構成する各モノマー(a)〜(e)を所定質量割合で混合し、上記反応性乳化剤を用いた乳化重合反応により製造することができる。このアクリル樹脂(A)の重量平均分子量は、通常、20000〜2000000の範囲内であるが、50000〜500000であることが好ましい。なお、本明細書における重量平均分子量の値は、共重合体をDMF(N,N−ジメチルホルムアミド)に溶解し、GPC(Gel Permeation Chromatography)により測定し、St換算で重量平均分子量を求めた値を意味する。重量平均分子量が上記の数値範囲内であるアクリル樹脂(A)は、上記乳化重合反応の温度及び時間を適宜調整することにより製造することができる。   The copolymer which is the said acrylic resin (A) mixes each monomer (a)-(e) which comprises this acrylic resin (A) by a predetermined mass ratio, and is the emulsion polymerization reaction using the said reactive emulsifier. Can be manufactured. The weight average molecular weight of the acrylic resin (A) is usually in the range of 20,000 to 2,000,000, but preferably 50,000 to 500,000. In addition, the value of the weight average molecular weight in this specification is a value obtained by dissolving the copolymer in DMF (N, N-dimethylformamide), measuring by GPC (Gel Permeation Chromatography), and calculating the weight average molecular weight in terms of St. Means. The acrylic resin (A) having a weight average molecular weight within the above numerical range can be produced by appropriately adjusting the temperature and time of the emulsion polymerization reaction.

本発明に用いる水ガラス化合物(B)の配合量は、金属表面処理剤を構成する各成分における固形分の合計100質量%に対して、固形分質量換算で5〜25質量%であり、より好ましくは8〜20質量%である。水ガラス化合物(B)の配合量が5質量%未満では耐食性に劣るため好ましくない。また、25質量%を超える場合は、耐食性、密着性、耐洗浄性等が劣るため好ましくない。なお、水ガラス化合物(B)としては、例えば、1号ケイ酸ナトリウム(富士化学(株)製)、2号ケイ酸ナトリウム(富士化学(株)製)、3号ケイ酸ナトリウム(富士化学(株)製)、4号ケイ酸ナトリウム(富士化学(株)製)、5号ケイ酸ナトリウム(富士化学(株)製)、1号珪酸カリ(富士化学(株)製)、2号珪酸カリ(富士化学(株)製)、リチウムシリケート35(日産化学工業(株)製)、リチウムシリケート45(日産化学工業(株)製)、リチウムシリケート75(日産化学工業(株)製)などを挙げることができるが、これらに限定されるものではない。   The compounding quantity of the water glass compound (B) used for this invention is 5-25 mass% in conversion of solid content with respect to the total 100 mass% of solid content in each component which comprises a metal surface treating agent, and more. Preferably it is 8-20 mass%. If the amount of the water glass compound (B) is less than 5% by mass, the corrosion resistance is poor, which is not preferable. Moreover, when exceeding 25 mass%, since corrosion resistance, adhesiveness, washing | cleaning resistance, etc. are inferior, it is unpreferable. As the water glass compound (B), for example, No. 1 sodium silicate (Fuji Chemical Co., Ltd.), No. 2 sodium silicate (Fuji Chemical Co., Ltd.), No. 3 sodium silicate (Fuji Chemical ( No. 4 sodium silicate (Fuji Chemical Co., Ltd.), No. 5 sodium silicate (Fuji Chemical Co., Ltd.), No. 1 potassium silicate (Fuji Chemical Co., Ltd.), No. 2 potassium silicate (Manufactured by Fuji Chemical Co., Ltd.), lithium silicate 35 (manufactured by Nissan Chemical Industries, Ltd.), lithium silicate 45 (manufactured by Nissan Chemical Industries, Ltd.), lithium silicate 75 (manufactured by Nissan Chemical Industries, Ltd.), etc. However, it is not limited to these.

本発明に用いるジルコニウム化合物(C)の配合量は、金属表面処理剤を構成する各成分における固形分の合計100質量%に対して、固形分質量換算で5〜20質量%であり、より好ましくは8〜18質量%である。ジルコニウム化合物(C)の配合量が5質量%未満の場合は耐食性、耐洗浄性、耐傷付き性等が劣るため好ましくない。また、20質量%を超える場合は、耐食性、密着性等が劣るため好ましくない。なお、ジルコニウム化合物(C)としては、例えば、炭酸ジルコニウム、テトラキス(アセチルアセトナト)ジルコニウム(IV)、ヘキサフルオロジルコニウム(IV)酸アンモニウム、炭酸ジルコニウムアンモニウムなどを挙げることができるが、これらに限定されるものではない。   The compounding amount of the zirconium compound (C) used in the present invention is 5 to 20% by mass in terms of solid content, more preferably 100% by mass in terms of solid content in each component constituting the metal surface treatment agent, and more preferably. Is 8 to 18% by mass. When the compounding amount of the zirconium compound (C) is less than 5% by mass, the corrosion resistance, the washing resistance, the scratch resistance, etc. are inferior. Moreover, when it exceeds 20 mass%, since corrosion resistance, adhesiveness, etc. are inferior, it is unpreferable. Examples of the zirconium compound (C) include, but are not limited to, zirconium carbonate, tetrakis (acetylacetonato) zirconium (IV), ammonium hexafluorozirconium (IV), and ammonium zirconium carbonate. It is not something.

本発明に用いるリン化合物(D)の配合量は、金属表面処理剤を構成する各成分における固形分の合計100質量%に対して、固形分質量換算で1〜10質量%であり、より好ましくは2〜8質量%である。リン化合物(D)の配合量が1質量%未満の場合は耐食性、耐洗浄性等が劣るため好ましくない。一方、10質量%を超える場合は、処理剤の安定性が低下するため好ましくない。また、耐食性が劣ることがある。なお、リン化合物(D)としては、例えば、第一リン酸アンモニウム、リン酸水素二アンモニウム、1−ヒドロキシエタン−1,1−ジホスホン酸、アミノトリ(メチレンホスホン酸)、エチレンジアミン−N,N,N’,N’−テトラ(メチレンホスホン酸)、ヘキサメチレンジアミン−N,N,N’,N’−テトラ(メチレンホスホン酸)、ジエチレントリアミン−N,N,N’,N’’,N’’−ペンタ(メチレンホスホン酸)、2−ホスホノブタン−1,2,4−トリカルボン酸等を挙げることができるが、これらに限定されるものではない。   The compounding quantity of the phosphorus compound (D) used for this invention is 1-10 mass% in conversion of solid mass with respect to the total 100 mass% of solid content in each component which comprises a metal surface treating agent, More preferably Is 2 to 8% by mass. When the amount of the phosphorus compound (D) is less than 1% by mass, the corrosion resistance and the washing resistance are inferior. On the other hand, if it exceeds 10% by mass, the stability of the treatment agent decreases, which is not preferable. Moreover, corrosion resistance may be inferior. Examples of the phosphorus compound (D) include primary ammonium phosphate, diammonium hydrogen phosphate, 1-hydroxyethane-1,1-diphosphonic acid, aminotri (methylenephosphonic acid), ethylenediamine-N, N, N. ', N'-tetra (methylenephosphonic acid), hexamethylenediamine-N, N, N', N'-tetra (methylenephosphonic acid), diethylenetriamine-N, N, N ', N ", N"- Penta (methylene phosphonic acid), 2-phosphonobutane-1,2,4-tricarboxylic acid and the like can be mentioned, but are not limited thereto.

本発明に用いるバナジウム化合物(E)の配合量は、金属表面処理剤を構成する各成分における固形分の合計100質量%に対して、固形分質量換算で0.1〜3質量%であり、より好ましくは0.2〜2質量%である。バナジウム化合物(E)の配合量が0.1質量%未満の場合は耐食性が劣るため好ましくない。また、3質量%を超える場合は、耐熱性が劣るため好ましくない。なお、バナジウム化合物(E)としては、例えば、しゅう酸酸化バナジウム(IV)(n水和物)、メタバナジン(V)酸ナトリウム、バナジウム(IV)ビス(アセチルアセトナト)オキシド、メタバナジン(V)酸アンモニウム、五酸化バナジウムなどを挙げることができるが、これらに限定されるものではない。   The compounding quantity of the vanadium compound (E) used for this invention is 0.1-3 mass% in conversion of solid content with respect to total 100 mass% of solid content in each component which comprises a metal surface treating agent, More preferably, it is 0.2-2 mass%. When the amount of the vanadium compound (E) is less than 0.1% by mass, the corrosion resistance is inferior. Moreover, when exceeding 3 mass%, since heat resistance is inferior, it is unpreferable. Examples of the vanadium compound (E) include vanadium oxalate (IV) oxalate (n hydrate), sodium metavanadate (V), vanadium (IV) bis (acetylacetonato) oxide, and metavanadium (V) acid. Examples thereof include ammonium and vanadium pentoxide, but are not limited thereto.

本発明において、亜鉛めっき鋼材または亜鉛基合金めっき鋼材の耐食性を向上させるために、シラン化合物(F)を上記金属表面処理剤にさらに添加してもよい。   In the present invention, in order to improve the corrosion resistance of the galvanized steel material or the zinc base alloy plated steel material, a silane compound (F) may be further added to the metal surface treatment agent.

本発明に用いるシラン化合物(F)の配合量は、金属表面処理剤を構成する各成分における固形分の合計100質量%に対して、固形分質量換算で25質量%以下となるように含ませることが好ましく、8〜20質量%で含ませることがより好ましい。シラン化合物(F)の配合量が25質量%以下である場合に、より優れた耐食性を得ることができるからである。なお、シラン化合物(F)としては、例えば、ビニルトリス(2−メトキシエトキシシラン)、ビニルトリエトキシシラン、ビニルトリメトキシシラン、3−(メタクリロイルオキシプロピル)トリメトキシシラン、2−(3、4−エポキシシクロヘキシル)エチルトリメトキシシラン、3−グリキシドキシプロピルトリメトキシシラン、3−グリキシドキシプロピルトリエトキシシラン、3−グリシドキシプロピルメチルジエトキシシラン、N−(2−アミノエチル)−3−アミノプロピルトリメトキシシラン、N−(2−アミノエチル)−3−アミノプロピルメチルジメトキシシラン、3−アミノプロピルトリメトキシシラン、3−アミノプロピルトリエトキシシラン、N−フェニル−3−アミノプロピルトリメトキシシラン、3−メルカプトプロピルトリメトキシシラン、3−クロロプロピルトリメトキシシラン、ウレイドプロピルトリエトキシシラン、テトラメトキシシラン、テトラエトキシシラン、メチルトリメトキシシラン、エチルトリメトキシシラン、n−プロピルトリメトキシシラン等を挙げることができるが、これらに限定されるものではない。   The compounding quantity of the silane compound (F) used for this invention is included so that it may become 25 mass% or less in conversion of solid content with respect to total 100 mass% of solid content in each component which comprises a metal surface treating agent. It is preferable that it is contained at 8 to 20% by mass. This is because when the amount of the silane compound (F) is 25% by mass or less, more excellent corrosion resistance can be obtained. Examples of the silane compound (F) include vinyl tris (2-methoxyethoxysilane), vinyltriethoxysilane, vinyltrimethoxysilane, 3- (methacryloyloxypropyl) trimethoxysilane, and 2- (3,4-epoxy. (Cyclohexyl) ethyltrimethoxysilane, 3-glyoxydoxypropyltrimethoxysilane, 3-glyxidoxypropyltriethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, N- (2-aminoethyl) -3-amino Propyltrimethoxysilane, N- (2-aminoethyl) -3-aminopropylmethyldimethoxysilane, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, N-phenyl-3-aminopropyltrimethoxysilane, 3-mel Examples include puttopropyltrimethoxysilane, 3-chloropropyltrimethoxysilane, ureidopropyltriethoxysilane, tetramethoxysilane, tetraethoxysilane, methyltrimethoxysilane, ethyltrimethoxysilane, and n-propyltrimethoxysilane. However, it is not limited to these.

また、本発明において、亜鉛めっき鋼材または亜鉛基合金めっき鋼材の耐傷つき性を向上させるために、ポリオレフィンワックス(G)を上記金属表面処理剤(シラン化合物(F)を含んでいてもよい。)にさらに添加してもよい。   In the present invention, in order to improve the scratch resistance of the galvanized steel material or the zinc base alloy plated steel material, the polyolefin wax (G) may contain the metal surface treatment agent (which may contain the silane compound (F)). It may be further added to.

ポリオレフィンワックス(G)としては、例えば、ポリエチレンワックス、ポリプロピレンワックス、パラフィンワックス、フィッシャートロプシュワックス、マイクロクリスタリンワックス等のポリオレフィンワックス、あるいはこれらの変性ポリオレフィンワックスを用いることができる。変性ポリオレフィンワックスとしては、例えば、ポリオレフィンワックスに極性基を付与したものを挙げることができる。極性基は、触媒存在下で、ポリオレフィンワックスを酸素、オゾンあるいは硝酸等の酸化剤で酸化処理することによって導入することができる。また、アクリル酸、メタクリル酸、クロトン酸、マレイン酸、フマル酸、イタコン酸等のエチレン性不飽和カルボン酸モノマーとポリオレフィンワックスとをベンゾール等に溶解させ、重合開始剤(例えば、パーオキサイド、レドックス、重金属触媒等)と共に窒素気流中で加熱することによりグラフト化することができる。なお、ポリオレフィンワックス(G)は、水または水溶液に分散させてから用いてもよい。ポリオレフィンワックス(G)の分散は、乳化剤を用いて行ってもよいし、乳化剤を用いることなく行ってもよい。   As the polyolefin wax (G), for example, polyolefin waxes such as polyethylene wax, polypropylene wax, paraffin wax, Fischer-Tropsch wax and microcrystalline wax, or modified polyolefin waxes thereof can be used. As modified polyolefin wax, what gave the polar group to polyolefin wax can be mentioned, for example. The polar group can be introduced by oxidizing the polyolefin wax with an oxidizing agent such as oxygen, ozone or nitric acid in the presence of a catalyst. Further, an ethylenically unsaturated carboxylic acid monomer such as acrylic acid, methacrylic acid, crotonic acid, maleic acid, fumaric acid, itaconic acid and a polyolefin wax are dissolved in benzol and the like, and a polymerization initiator (for example, peroxide, redox, Grafting can be carried out by heating in a nitrogen stream together with a heavy metal catalyst or the like. The polyolefin wax (G) may be used after being dispersed in water or an aqueous solution. The dispersion of the polyolefin wax (G) may be performed using an emulsifier or may be performed without using an emulsifier.

ポリオレフィンワックス(G)の質量平均粒径は0.1〜5.0μmが好ましく、0.1〜3.0μmのものがさらに好ましい。質量平均粒径が0.1μm〜5.0μmの範囲内であれば、分散安定性に優れているからである。   The polyolefin wax (G) preferably has a mass average particle size of 0.1 to 5.0 μm, more preferably 0.1 to 3.0 μm. This is because the dispersion stability is excellent when the mass average particle diameter is in the range of 0.1 μm to 5.0 μm.

ポリオレフィンワックス(G)の配合量は、特に限定されるものではないが、金属表面処理剤を構成する各成分における固形分の合計100質量%に対して、固形分換算で15質量%以下の範囲で配合させることが好ましい。15質量%以下であれば、より優れた塗料密着性、耐溶剤性等を得ることができるからである。   The blending amount of the polyolefin wax (G) is not particularly limited, but is a range of 15% by mass or less in terms of solid content with respect to a total of 100% by mass of solid content in each component constituting the metal surface treatment agent. It is preferable to mix with. This is because if it is 15% by mass or less, more excellent paint adhesion, solvent resistance and the like can be obtained.

また、その他の成分として、被塗面に均一な皮膜を得るための濡れ性向上剤と呼ばれる界面活性剤や増粘剤、溶接性向上のための導電性物質、意匠性向上のための着色顔料や艶消し材料、造膜性向上のための溶剤等を、本発明の効果を損なわない限り添加しても構わない。   In addition, as other components, surfactants and thickeners called wettability improvers for obtaining a uniform film on the surface to be coated, conductive materials for improving weldability, and colored pigments for improving design Matting materials, solvents for improving film-forming properties, etc. may be added as long as the effects of the present invention are not impaired.

本発明の亜鉛めっき鋼材及び亜鉛基合金めっき鋼材用の金属表面処理剤は、前記(A)〜(E)、前記(A)〜(F)又は前記(A)〜(G)に加えて、更に、水を含有してもよい。   In addition to (A) to (E), (A) to (F), or (A) to (G), the metal surface treatment agent for the galvanized steel material and the zinc-based alloy plated steel material of the present invention, Furthermore, you may contain water.

(亜鉛めっき鋼材及び亜鉛基合金めっき鋼材用の金属表面処理剤の製造方法)
本発明の金属表面処理剤は、例えば、前記アクリル樹脂(A)の樹脂粒子が分散した水分散液に、前記水ガラス化合物(B)、前記ジルコニウム化合物(C)、前記リン化合物(D)、及び前記バナジウム化合物(E)を混合して前記金属表面処理剤を調製し、更に、必要に応じて、前記シラン化合物(F)、前記ポリオレフィンワックス(G)、水、その他の成分から選ばれる1種以上を混合することにより製造できる。
(Method for producing metal surface treatment agent for galvanized steel and zinc-base alloy-plated steel)
In the metal surface treatment agent of the present invention, for example, in the water dispersion in which the resin particles of the acrylic resin (A) are dispersed, the water glass compound (B), the zirconium compound (C), the phosphorus compound (D), And the vanadium compound (E) are mixed to prepare the metal surface treating agent, and if necessary, further selected from the silane compound (F), the polyolefin wax (G), water, and other components. It can be produced by mixing seeds or more.

[亜鉛めっき鋼材及び亜鉛基合金めっき鋼材の被覆方法]
本発明の被覆方法は、本発明の金属表面処理剤を、亜鉛めっき鋼材及び亜鉛基合金めっき鋼材の表面に塗布して皮膜を形成する工程を含む。この工程を行うことによって平面部耐食性、加工部耐食性、耐指紋性、塗装密着性、耐洗浄性、耐傷付き性、耐溶剤性及び耐熱性に優れた性能を亜鉛めっき鋼材及び亜鉛基合金めっき鋼材に付与することができる。
[Coating method of galvanized steel and zinc-base alloy-plated steel]
The coating method of this invention includes the process of apply | coating the metal surface treating agent of this invention to the surface of a galvanized steel material and a zinc base alloy plating steel material, and forming a membrane | film | coat. By performing this process, the galvanized steel material and the zinc-base alloy-plated steel material have excellent performance in the corrosion resistance of the flat part, corrosion resistance of the processed part, fingerprint resistance, paint adhesion, cleaning resistance, scratch resistance, solvent resistance and heat resistance. Can be granted.

前記皮膜が、優れた平面部耐食性、加工部耐食性、耐指紋性、塗装密着性、耐洗浄性、耐傷付き性、耐溶剤性及び耐熱性を示す理由は以下のように推定されるが、本発明はかかる推定によって何ら制限されるものではなく、また、かかる推定は本発明の特許性に何ら不利な影響を及ぼすものではない。   The reason why the film exhibits excellent planar part corrosion resistance, processed part corrosion resistance, fingerprint resistance, paint adhesion, cleaning resistance, scratch resistance, solvent resistance, and heat resistance is estimated as follows. The invention is not limited in any way by such estimation, and such estimation does not adversely affect the patentability of the present invention.

アクリル樹脂(A)と、水ガラス化合物(B)と、ジルコニウム化合物(C)により皮膜の骨格が形成される。ジルコニウム化合物(C)によりバリア的皮膜が形成されると考えられるが、それだけではプレス成形時の応力で皮膜に細かなクラックが形成され、耐食性が得られにくい。そこで、皮膜に特定の樹脂(アクリル樹脂(A))を適量配合することにより、皮膜中でバインダーとして機能するとともに、皮膜が受ける応力を緩和できるようになる。さらに、クラックが発生した場合、腐食環境下においてクラック部に水ガラス化合物(B)が徐々に溶出され、耐食性の低下を防ぐことができる。
また、一般的なアクリル樹脂は直鎖構造であるため、溶剤により膨潤されやすく、耐溶剤性が低い。しかしながら、上述したアクリル樹脂(A)は、溶解性パラメータの異なる各種モノマーがバランス良く配合されているので、複数の溶剤に対する耐溶剤性に優れている。
また、上述したようにジルコニウム化合物(C)とアクリル樹脂(A)は皮膜の骨格を形成する成分であり、一旦乾燥すると再度水には溶解せずバリア的効果を有すると考えられる。これに対して、バナジウム化合物(E)とリン化合物(D)は、皮膜中に均一に分散し、水に溶けやすい形態で存在し、いわゆる亜鉛腐食時のインヒビター効果を有する。すなわち、バナジウム化合物(E)は不動態化作用により亜鉛の腐食自体を抑制する。また、リン化合物(D)は、亜鉛と接触した際に亜鉛をエッチングして、溶解してきた亜鉛と難溶性の金属塩を形成して、あるいは亜鉛の腐食が起きた時に、亜鉛イオンを皮膜中で捕捉して、それ以上の腐食を抑制するものと考えられる。このように腐食抑制機構の異なるインヒビターを併用することで、優れた耐食性を得ることができる。また、アクリル樹脂(A)を配合すると、バナジウム化合物(E)とリン化合物(D)が水に溶出するのを抑制する効果が発現するため、優れた耐食性を有するものと考えられる。
The skeleton of the film is formed by the acrylic resin (A), the water glass compound (B), and the zirconium compound (C). Although it is considered that a barrier film is formed by the zirconium compound (C), fine cracks are formed in the film by stress during press molding, and it is difficult to obtain corrosion resistance. Therefore, by blending an appropriate amount of a specific resin (acrylic resin (A)) into the film, it can function as a binder in the film and can relieve stress applied to the film. Furthermore, when a crack generate | occur | produces, a water glass compound (B) is gradually eluted to a crack part in a corrosive environment, and it can prevent a corrosion-resistant fall.
Moreover, since a general acrylic resin has a linear structure, it is easily swollen by a solvent and has low solvent resistance. However, the acrylic resin (A) described above is excellent in solvent resistance to a plurality of solvents because various monomers having different solubility parameters are blended in a well-balanced manner.
Further, as described above, the zirconium compound (C) and the acrylic resin (A) are components that form the skeleton of the film, and once dried, it is considered that they do not dissolve in water again and have a barrier effect. On the other hand, the vanadium compound (E) and the phosphorus compound (D) are uniformly dispersed in the film and exist in a form that is easily soluble in water, and have an inhibitory effect during so-called zinc corrosion. That is, the vanadium compound (E) suppresses corrosion of zinc itself by a passivating action. In addition, the phosphorus compound (D) etches zinc when it comes into contact with zinc to form a hardly soluble metal salt with dissolved zinc, or when zinc corrosion occurs, It is considered that the corrosion is further suppressed by corrosion. Thus, it is possible to obtain excellent corrosion resistance by using together inhibitors having different corrosion inhibition mechanisms. Moreover, when an acrylic resin (A) is mix | blended, since the effect which suppresses that a vanadium compound (E) and a phosphorus compound (D) elute to water expresses, it is thought that it has the outstanding corrosion resistance.

前記金属表面処理剤による皮膜の形成は、例えば、前記金属表面処理剤を亜鉛めっき鋼材または亜鉛基合金めっき鋼材の表面に塗布することによって行うことができる。なお、前記金属表面処理剤を亜鉛めっき鋼材または亜鉛基合金めっき鋼材の表面に塗布する前に、必要に応じて脱脂処理を行ってもよい。塗布の方法は特に限定されず、一般に使用されるロールコート、エアスプレー、エアレススプレー、浸漬等の方法を適宜採用することができる。皮膜の硬化性を高めるために、あらかじめ被塗物を加熱しておくか、塗布後に塗布物を熱乾燥させることが好ましい。加熱あるいは乾燥の温度は、亜鉛めっき鋼材または亜鉛基合金めっき鋼材の最高到達温度(PMT)が20〜250℃であることが好ましく、50〜220℃であることがより好ましい。上記温度が20℃以上において、水分の蒸発速度が速く充分な成膜性が得られ、その結果、耐溶剤性や耐アルカリ性が向上する。一方、250℃以下であると樹脂の熱分解が生じにくくなり耐溶剤性や耐アルカリ性が向上し、また黄変による外観不良を抑制できる。また、本発明の金属表面処理剤は、室温(20℃)付近での低温条件下であっても水分が蒸発して乾固することができ、優れた性能を有する皮膜を形成することができる。なお、塗布後に熱乾燥させる場合の乾燥時間は1秒〜5分が好ましい。   Formation of the film by the metal surface treatment agent can be performed, for example, by applying the metal surface treatment agent to the surface of a galvanized steel material or a zinc-base alloy plated steel material. In addition, before apply | coating the said metal surface treating agent to the surface of a zinc plating steel material or a zinc base alloy plating steel material, you may perform a degreasing process as needed. The method of application is not particularly limited, and generally used methods such as roll coating, air spray, airless spray, and immersion can be appropriately employed. In order to increase the curability of the film, it is preferable to heat the object to be coated in advance or to heat dry the coated object after coating. The heating or drying temperature is preferably 20 to 250 ° C., more preferably 50 to 220 ° C., as the maximum temperature (PMT) of the galvanized steel material or zinc-based alloy plated steel material. When the temperature is 20 ° C. or higher, the moisture evaporation rate is high and sufficient film formability is obtained. As a result, the solvent resistance and alkali resistance are improved. On the other hand, when the temperature is 250 ° C. or lower, the resin is hardly decomposed, the solvent resistance and alkali resistance are improved, and the appearance defect due to yellowing can be suppressed. Further, the metal surface treatment agent of the present invention can evaporate moisture to dryness even under a low temperature condition near room temperature (20 ° C.), and can form a film having excellent performance. . In addition, as for the drying time in the case of making it heat-dry after application | coating, 1 second-5 minutes are preferable.

[被覆鋼材]
本発明の被覆鋼材は、本発明の被覆方法により得られる。このようにして得られた、本発明の被覆鋼材は、平面部耐食性、加工部耐食性、耐指紋性、塗装密着性、耐洗浄性、耐傷付き性、耐溶剤性及び耐熱性の全てにおいて優れた性能を有する。
[Coated steel]
The coated steel material of the present invention is obtained by the coating method of the present invention. The coated steel material of the present invention thus obtained was excellent in all of the flat surface corrosion resistance, processed portion corrosion resistance, fingerprint resistance, paint adhesion, cleaning resistance, scratch resistance, solvent resistance and heat resistance. Has performance.

本発明では、亜鉛めっき鋼板または亜鉛基合金めっき鋼材の表面に皮膜が形成される。該皮膜の量としては、固形分質量換算で0.5〜2.0g/mであることが好ましい。これは、皮膜量が0.5g/m以上である場合に、より優れた耐傷つき性、加工部耐食性及び耐指紋性を得ることができるからである。また、皮膜量が2.0g/m以下である場合に、より優れた導電性を得ることができるからである。In the present invention, a film is formed on the surface of a galvanized steel sheet or a zinc-base alloy-plated steel material. The amount of the coating is preferably 0.5 to 2.0 g / m 2 in terms of solid content. This is because when the coating amount is 0.5 g / m 2 or more, better scratch resistance, processed portion corrosion resistance, and fingerprint resistance can be obtained. Moreover, it is because the more excellent electroconductivity can be obtained when the film | membrane amount is 2.0 g / m < 2 > or less.

また、本発明の被覆鋼材は、上記皮膜の上に上塗り塗料を塗布してさらに塗膜を形成したものであってもよい。上塗り塗料としては、例えば、アクリル樹脂、アクリル変性アルキッド樹脂、エポキシ樹脂、ウレタン樹脂、メラミン樹脂、フタル酸樹脂、アミノ樹脂、ポリエステル樹脂、塩化ビニル樹脂等を含む塗料などが挙げられる。   Further, the coated steel material of the present invention may be one in which a top coat is applied on the above film and a coating film is further formed. Examples of the top coat include paints including acrylic resins, acrylic-modified alkyd resins, epoxy resins, urethane resins, melamine resins, phthalic acid resins, amino resins, polyester resins, vinyl chloride resins, and the like.

上塗り塗料の塗膜の膜厚は、被覆鋼材の用途、使用する上塗り塗料の種類等によって適宜決定され、特に制限されない。通常、5〜300μm、より好ましくは10〜200μmである。上塗り塗料の塗膜の形成は、上記金属表面処理剤により形成された皮膜の上に上塗り塗料を塗布し、加熱乾燥して硬化させることにより行うことができる。乾燥温度及び時間は、塗布される上塗り塗料の種類、塗膜の膜厚等に応じて適宜調整されることになるが、通常、乾燥温度としては、50〜250℃が好ましく、乾燥時間としては、5分〜1時間が好ましい。上塗り塗料の塗布方法としては、塗料形態に応じて、従来公知の方法により行うことができる。   The film thickness of the coating film of the top coating is appropriately determined depending on the application of the coated steel material, the type of top coating used, and the like, and is not particularly limited. Usually, it is 5-300 micrometers, More preferably, it is 10-200 micrometers. Formation of the coating film of the top coating material can be performed by applying the top coating material on the film formed by the metal surface treatment agent, and heating and drying to cure. Although drying temperature and time will be suitably adjusted according to the kind of top coat applied, the film thickness of a coating film, etc., as a drying temperature, 50-250 degreeC is preferable normally as drying time. 5 minutes to 1 hour is preferred. As a method for applying the top coat, it can be performed by a conventionally known method according to the form of the paint.

本発明に用いられる亜鉛めっき鋼材または亜鉛基合金めっき鋼材としては、例えば、亜鉛−ニッケルめっき鋼材、亜鉛−鉄めっき鋼材、亜鉛−クロムめっき鋼材、亜鉛−アルミニウムめっき鋼材、亜鉛−チタンめっき鋼材、亜鉛−マグネシウムめっき鋼材、亜鉛−マンガンめっき鋼材、亜鉛−アルミニウム−マグネシウムめっき鋼材、亜鉛−アルミニウム−マグネシウム−シリコンめっき鋼材等の亜鉛系めっき鋼材、さらにはこれらのめっき層に、少量の異種金属元素又は不純物として、コバルト、モリブデン、タングステン、ニッケル、チタン、クロム、アルミニウム、マンガン、鉄、マグネシウム、鉛、ビスマス、アンチモン、錫、銅、カドミウム、ヒ素等が含有されたもの、シリカ、アルミナ、チタニア等の無機物が分散されたものが含まれる。
更には、上記めっき層と、他の種類のめっき層、例えば鉄めっき、鉄−りんめっき、ニッケルめっき、コバルトめっき等のめっき層と、を組み合わせた複層めっきにも適用可能である。めっき層の形成は特に限定されるものではなく、公知の電気めっき法、溶融めっき法、蒸着めっき法、分散めっき法、真空めっき法等のいずれの方法を用いて行うことができる。
Examples of the galvanized steel material or zinc base alloy plated steel material used in the present invention include zinc-nickel plated steel material, zinc-iron plated steel material, zinc-chromium plated steel material, zinc-aluminum plated steel material, zinc-titanium plated steel material, zinc -Magnesium-plated steel materials, zinc-manganese-plated steel materials, zinc-aluminum-magnesium-plated steel materials, zinc-plated steel materials such as zinc-aluminum-magnesium-silicon-plated steel materials, and small amounts of different metal elements or impurities As an inorganic substance such as cobalt, molybdenum, tungsten, nickel, titanium, chromium, aluminum, manganese, iron, magnesium, lead, bismuth, antimony, tin, copper, cadmium, arsenic, etc., silica, alumina, titania, etc. Is distributed Murrell.
Furthermore, the present invention can also be applied to multilayer plating in which the above plating layer and other types of plating layers such as iron plating, iron-phosphorus plating, nickel plating, and cobalt plating are combined. The formation of the plating layer is not particularly limited, and can be performed by any known method such as electroplating, hot dipping, vapor deposition, dispersion plating, and vacuum plating.

以下に本発明の実施例および比較例を挙げて本発明を具体的に説明するが、本発明はこれらの実施例によって制限されるものではない。   EXAMPLES The present invention will be specifically described below with reference to examples and comparative examples of the present invention, but the present invention is not limited to these examples.

<亜鉛めっき鋼材または亜鉛基合金めっき鋼材>
実施例および比較例で使用する亜鉛めっき鋼材または亜鉛基合金めっき鋼材を以下に示す。
新日鐵住金株式会社製の、電気亜鉛めっき鋼板「NSジンコート(登録商標)」(以降、「EG」と称する。)、溶融亜鉛めっき鋼板「NSシルバージンク(登録商標)」(以降、「GI」と称する。)、亜鉛−アルミニウム−マグネシウム−シリコン合金めっき鋼板「スーパーダイマ(登録商標)」(以降、「SD」と称する。)、及び亜鉛−ニッケル合金めっき鋼板「NSジンクライト(登録商標)」(以降、「ZL」と称する。)、並びに日鉄住金鋼板株式会社製の亜鉛−アルミニウム合金めっき鋼板「ガルバリウム鋼板(登録商標)」(以降、「GL」と称する。)を原板として使用した。
原板の板厚は、0.8mmのものを使用した。EGは、めっき付着量が片面20g/mのものを用いた。また、GI、SD、GLは、めっき付着量が片面60g/mのものを用いた。ZLは、めっき付着量が片面20g/mであり、めっき層中のニッケル量が12質量%のものを用いた。
<Galvanized steel or zinc-base alloy plated steel>
The galvanized steel material or zinc base alloy plated steel material used in Examples and Comparative Examples is shown below.
Electro-galvanized steel sheet “NS Zincoat (registered trademark)” (hereinafter referred to as “EG”) and hot-dip galvanized steel sheet “NS Silver Zinc (registered trademark)” (hereinafter referred to as “GI”) manufactured by Nippon Steel & Sumitomo Metal Corporation. ), Zinc-aluminum-magnesium-silicon alloy plated steel sheet “Superdimer (registered trademark)” (hereinafter referred to as “SD”), and zinc-nickel alloy plated steel sheet “NS Zinclite (registered trademark)”. (Hereinafter referred to as “ZL”) and a zinc-aluminum alloy plated steel sheet “Galvalium Steel Sheet (registered trademark)” (hereinafter referred to as “GL”) manufactured by Nippon Steel & Sumikin Steel Sheet Co., Ltd. were used as original sheets.
The thickness of the original plate was 0.8 mm. The EG used had a plating adhesion amount of 20 g / m 2 on one side. Moreover, GI, SD, and GL used the thing whose plating adhesion amount is 60g / m < 2 > on one side. ZL having a plating adhesion amount of 20 g / m 2 on one side and a nickel amount of 12% by mass in the plating layer was used.

<原板の洗浄>
上記各種鋼板を中アルカリ脱脂剤(ファインクリーナーE6406、日本パーカライジング(株)製)で脱脂処理した。尚、脱脂は、濃度20g/Lの中アルカリ脱脂剤を、温度60℃で10秒間スプレーすることにより行った。脱脂処理後、水道水を10秒間スプレーし、風乾した。
<Washing the original plate>
The various steel plates were degreased with a medium alkaline degreasing agent (Fine Cleaner E6406, manufactured by Nihon Parkerizing Co., Ltd.). In addition, degreasing was performed by spraying a medium alkaline degreasing agent at a concentration of 20 g / L for 10 seconds at a temperature of 60 ° C. After the degreasing treatment, tap water was sprayed for 10 seconds and air-dried.

表1にアクリル樹脂の合成に使用した各モノマーを示す。表2−1及び表2−2に実施例および比較例に使用した、アクリル樹脂(A)の各モノマーの配合比率あるいはアクリル樹脂(A)の情報を、表3に使用した水ガラス化合物(B)を、表4に使用したジルコニウム化合物(C)を、表5に使用したリン化合物(D)を、表6に使用したバナジウム化合物(E)を、表7に使用したシラン化合物(F)を、表8に使用したポリオレフィンワックス(G)を、それぞれ示す。なお、表2−1及び表2−2に示すA1〜A33の各種アクリル樹脂(A)は、表2−1及び表2−2に示す各モノマーと、反応性乳化剤とを用いて、乳化重合反応を行うことにより製造した。これらの各種アクリル樹脂(A)は、重量平均分子量が約30万(250000以上350000未満)となるように、乳化重合反応の温度及び時間を調整することにより得られた。   Table 1 shows the monomers used for the synthesis of the acrylic resin. Table 2-1 and Table 2-2 show the blending ratio of each monomer of acrylic resin (A) used in Examples and Comparative Examples or information on acrylic resin (A). ), The zirconium compound (C) used in Table 4, the phosphorus compound (D) used in Table 5, the vanadium compound (E) used in Table 6, and the silane compound (F) used in Table 7. Table 8 shows the polyolefin wax (G) used. In addition, various acrylic resins (A) of A1 to A33 shown in Table 2-1 and Table 2-2 are emulsion polymerizations using the monomers shown in Table 2-1 and Table 2-2 and reactive emulsifiers. It was produced by carrying out the reaction. These various acrylic resins (A) were obtained by adjusting the temperature and time of the emulsion polymerization reaction so that the weight average molecular weight was about 300,000 (250,000 to less than 350,000).

<金属表面処理剤の調製>
表9−1〜表9−4に調製した実施例および比較例の金属表面処理剤の組成を示す。なお、表9−1〜表9−4における各成分の量は、金属表面処理剤の固形分合計質量(W)に対する各成分の固形分質量の割合を意味する。金属表面処理剤は、攪拌しながら脱イオン水に各成分を順次添加し、固形分の最終の合計質量が15%となるように調整した。
<Preparation of metal surface treatment agent>
Tables 9-1 to 9-4 show the compositions of the metal surface treatment agents of Examples and Comparative Examples prepared. In addition, the quantity of each component in Table 9-1 to Table 9-4 means the ratio of the solid content mass of each component to the solid content total mass (W) of the metal surface treatment agent. The metal surface treatment agent was adjusted so that the final total mass of the solid content was 15% by sequentially adding each component to deionized water while stirring.

Figure 0006367462
Figure 0006367462

Figure 0006367462
Figure 0006367462

Figure 0006367462
Figure 0006367462

Figure 0006367462
Figure 0006367462

Figure 0006367462
Figure 0006367462

Figure 0006367462
Figure 0006367462

Figure 0006367462
Figure 0006367462

Figure 0006367462
Figure 0006367462

Figure 0006367462
Figure 0006367462

Figure 0006367462
Figure 0006367462

Figure 0006367462
Figure 0006367462

Figure 0006367462
Figure 0006367462

Figure 0006367462
Figure 0006367462

<試験板作製方法>
試験板作製方法としては、表9−1〜表9−4の組成比率で調製された各金属表面処理剤を、洗浄した原板にバーコーターを用いて塗布し、280℃で14秒間乾燥した。この時の到達板温度は140℃であった。なお、目標付着量は1.0g/mとした。尚、試験水準により到達板温度および付着量は適宜変更した。到達板温度および付着量は、乾燥時間および金属表面処理剤の固形分合計質量を適宜変更する事で調整した。
<Test plate production method>
As a test plate preparation method, each metal surface treating agent prepared with the composition ratio of Table 9-1 to Table 9-4 was applied to the cleaned original plate using a bar coater and dried at 280 ° C. for 14 seconds. The ultimate plate temperature at this time was 140 ° C. The target adhesion amount was 1.0 g / m 2 . In addition, the ultimate plate temperature and the adhesion amount were appropriately changed depending on the test level. The reaching plate temperature and the adhesion amount were adjusted by appropriately changing the drying time and the total solid mass of the metal surface treatment agent.

上記にて作製した各試験板を適宜切断加工して試験片を作製し、各種評価試験を行った。
(1)平面部耐食性
JIS Z 2371に記載されている塩水噴霧試験方法に準じて試験を行い、塩水噴霧72時間後の白錆発生率を測定した。その結果を下記評価基準に従い評価した。
<評価基準>
◎:白錆発生面積率が全面積の5%未満
○:白錆発生面積率が全面積の5%以上10%未満
△:白錆発生面積率が全面積の10%以上30%未満
×:白錆発生面積率が全面積の30%以上
Each test plate produced above was appropriately cut to produce a test piece, and various evaluation tests were performed.
(1) Flat surface corrosion resistance
A test was conducted according to the salt spray test method described in JIS Z 2371, and the white rust occurrence rate after 72 hours of salt spray was measured. The results were evaluated according to the following evaluation criteria.
<Evaluation criteria>
◎: White rust generation area ratio is less than 5% of the total area ○: White rust generation area ratio is 5% or more and less than 10% of the total area △: White rust generation area ratio is 10% or more and less than 30% of the total area ×: White rust generation area ratio is 30% or more of the total area

(2)加工部耐食性
試験片に6mmのエリクセン加工を施し、JIS Z 2371に記載されている塩水噴霧試験方法に準じて試験を行い、塩水噴霧48時間後の加工部における白錆発生率を測定した。その結果を下記評価基準に従い評価した。
<評価基準>
◎:白錆発生面積率が加工部面積の5%未満
○:白錆発生面積率が加工部面積の5%以上10%未満
△:白錆発生面積率が加工部面積の10%以上30%未満
×:白錆発生面積率が加工部面積の30%以上
(2) Corrosion resistance of the processed part The test piece is subjected to 6 mm Erichsen processing and tested according to the salt spray test method described in JIS Z 2371, and the white rust occurrence rate in the processed part 48 hours after the salt spray is measured. did. The results were evaluated according to the following evaluation criteria.
<Evaluation criteria>
◎: White rust generation area ratio is less than 5% of the processed area ○: White rust generation area ratio is 5% or more and less than 10% of the processed area △: White rust generation area ratio is 10% or more and 30% of the processed area Less than x: White rust generation area ratio is 30% or more of the processing part area

(3)耐溶剤性
試験片の表面に、各種溶剤(エタノール、メチルエチルケトン、キシレン、またはベンジン(JIS K 2201))を染み込ませたガーゼを荷重500gで押し付け、10回往復させて擦った。擦った後の外観を観察し、その結果を下記評価基準に従い評価した。
<評価基準>
◎:擦った部分を目視で判別することが出来ない
○:極僅かに擦った部分を目視で判別することが出来る
△:擦った部分を目視で容易に判別することが出来る
×:擦った部分に金属表面が露出していることが確認できる
(3) Solvent resistance Gauze impregnated with various solvents (ethanol, methyl ethyl ketone, xylene, or benzine (JIS K 2201)) was pressed against the surface of the test piece with a load of 500 g and rubbed by reciprocating 10 times. The appearance after rubbing was observed, and the results were evaluated according to the following evaluation criteria.
<Evaluation criteria>
◎: The rubbed part cannot be discriminated visually. ○: The rubbed part can be discriminated visually. △: The rubbed part can be discriminated easily visually. That the metal surface is exposed

(4)耐熱性
試験片を乾燥オーブンで加熱し、加熱前後の色調(L、a、b)を測定し、下記計算式によりΔEを算出し、その結果を下記評価基準に従い評価した。尚、加熱は、250℃で1時間行った。
<計算式>
ΔE=((ΔL+(Δa+(Δb0.5
ΔL=L(脱脂後)−L(脱脂前)
Δa=a(脱脂後)−a(脱脂前)
Δb=b(脱脂後)−b(脱脂前)
<評価基準>
◎:ΔEが1未満
○:ΔEが1以上3未満
△:ΔEが3以上5未満
×:ΔEが5以上
(4) Heat resistance The test piece is heated in a drying oven, the color tone (L * , a * , b * ) before and after heating is measured, ΔE * is calculated by the following formula, and the result is evaluated according to the following evaluation criteria. did. The heating was performed at 250 ° C. for 1 hour.
<Calculation formula>
ΔE * = ((ΔL * ) 2 + (Δa * ) 2 + (Δb * ) 2 ) 0.5
ΔL * = L * (after degreasing) −L * (before degreasing)
Δa * = a * (after degreasing) −a * (before degreasing)
Δb * = b * (after degreasing) −b * (before degreasing)
<Evaluation criteria>
◎: ΔE * is less than 1 ○: ΔE * is 1 or more and less than 3 △: ΔE * is 3 or more and less than 5 ×: ΔE * is 5 or more

(5)塗装密着性
試験片に、メラミンアルキッド樹脂塗料(関西ペイント(株)製、アミラック#1000)を乾燥膜厚が25μmとなるように塗布し、炉温130℃で20分間焼き付けた。次に、1晩放置した後、沸騰水に30分浸漬したものに対し、7mmエリクセン加工を施し、粘着テープ(ニチバン(株):商品名セロテープ)を試験片のエリクセン加工部に張り付けた。粘着テープを速やかに斜め45゜の方向に引っ張り、エリクセン加工部の外観を目視で観察した。その結果を下記評価基準に従い評価した。
<評価基準>
◎:剥離なし
○:剥離面積率が5%未満
△:剥離面積率が5%以上、50%未満
×:剥離面積率が50%以上
(5) Paint adhesion Melamine alkyd resin paint (Amirac # 1000, manufactured by Kansai Paint Co., Ltd.) was applied to the test piece so that the dry film thickness was 25 μm, and baked at a furnace temperature of 130 ° C. for 20 minutes. Next, after being left overnight, the product immersed in boiling water for 30 minutes was subjected to 7 mm Erichsen processing, and an adhesive tape (Nichiban Co., Ltd .: trade name cello tape) was attached to the Erichsen processed portion of the test piece. The adhesive tape was quickly pulled at an angle of 45 °, and the appearance of the Erichsen processed part was visually observed. The results were evaluated according to the following evaluation criteria.
<Evaluation criteria>
◎: No peeling ○: Peeling area ratio is less than 5% △: Peeling area ratio is 5% or more and less than 50% ×: Peeling area ratio is 50% or more

(6)耐洗浄性
試験片をアルカリ脱脂剤(登録商標:ファインクリーナーE6406、日本パーカライジング(株)製)で脱脂し、アルカリ脱脂前後の色調(L、a、b)を測定し、下記計算式によりΔEを算出し、その結果を下記評価基準に従い評価した。尚、脱脂は、濃度20g/Lのアルカリ脱脂剤を、温度60℃で2分間スプレーすることにより行った。
<計算式>
ΔE=((ΔL+(Δa+(Δb0.5
ΔL=L(脱脂後)−L(脱脂前)
Δa=a(脱脂後)−a(脱脂前)
Δb=b(脱脂後)−b(脱脂前)
<評価基準>
◎:ΔEが1未満
○:ΔEが1以上3未満
△:ΔEが3以上5未満
×:ΔEが5以上
(6) Washing resistance The test piece was degreased with an alkaline degreasing agent (registered trademark: Fine Cleaner E6406, manufactured by Nihon Parkerizing Co., Ltd.), and the color tone (L * , a * , b * ) before and after alkaline degreasing was measured. ΔE * was calculated by the following formula, and the result was evaluated according to the following evaluation criteria. The degreasing was performed by spraying an alkaline degreasing agent having a concentration of 20 g / L at a temperature of 60 ° C. for 2 minutes.
<Calculation formula>
ΔE * = ((ΔL * ) 2 + (Δa * ) 2 + (Δb * ) 2 ) 0.5
ΔL * = L * (after degreasing) −L * (before degreasing)
Δa * = a * (after degreasing) −a * (before degreasing)
Δb * = b * (after degreasing) −b * (before degreasing)
<Evaluation criteria>
◎: ΔE * is less than 1 ○: ΔE * is 1 or more and less than 3 △: ΔE * is 3 or more and less than 5 ×: ΔE * is 5 or more

(7)耐傷付き性
試験片同士を1cm×1cmの面積に対して1kgの荷重で押し当てて10回往復させて擦る摩擦摺動試験を行い、その結果を下記評価基準に従い評価した。
<評価基準>
◎:摺動跡なし
○:摺動跡はあるが、目立たない
△:摺動跡が確認できる
×:摺動跡が目立つ
(7) Scratch resistance A frictional sliding test was performed in which the test pieces were pressed against each other with a load of 1 kg against an area of 1 cm × 1 cm and rubbed back and forth 10 times, and the results were evaluated according to the following evaluation criteria.
<Evaluation criteria>
◎: No sliding trace ○: Although there is a sliding trace, it is not noticeable △: The sliding trace can be confirmed ×: The sliding trace is conspicuous

(8)耐指紋性
試験片に指を0.5kgの荷重で押し当て付着した指紋を観察し、その結果を下記評価基準に従い評価した。
<評価基準>
◎:指紋が見えない
○:指紋はあるが、目立たない
△:指紋が確認できる
×:指紋が目立つ
(8) Fingerprint resistance Fingers were pressed against the test piece with a load of 0.5 kg and observed, and the results were evaluated according to the following evaluation criteria.
<Evaluation criteria>
◎: Fingerprint is not visible ○: Fingerprint is present but not noticeable △: Fingerprint can be confirmed ×: Fingerprint is conspicuous

以上の評価結果を表10−1〜表10−6に示す。   The above evaluation results are shown in Table 10-1 to Table 10-6.

Figure 0006367462
Figure 0006367462

Figure 0006367462
Figure 0006367462

Figure 0006367462
Figure 0006367462

Figure 0006367462
Figure 0006367462

Figure 0006367462
Figure 0006367462

Figure 0006367462
Figure 0006367462

表10−1〜表10−6に示すように、No.1〜71の試験板は何れの評価項目においても◎もしくは○の評価(特に優れた評価もしくは優れた評価)であり、実用レベルの性能が得られている。一方、No.72〜97の試験板は評価項目の一部において△もしくは×の評価がなされており、実用レベルの性能が得られていなかった。   As shown in Table 10-1 to Table 10-6, no. The test plates 1 to 71 are evaluated as ◎ or ◯ (particularly excellent evaluation or excellent evaluation) in any evaluation item, and a practical level of performance is obtained. On the other hand, no. The test plates 72 to 97 were evaluated as Δ or × in some of the evaluation items, and performance at a practical level was not obtained.

Claims (6)

亜鉛めっき鋼材用または亜鉛基合金めっき鋼材用の金属表面処理剤であって、
アクリル樹脂(A)と、水ガラス化合物(B)と、ジルコニウム化合物(C)と、リン化合物(D)と、バナジウム化合物(E)とを含み、前記アクリル樹脂(A)が、原料モノマーの全質量を基準として、20〜70質量%の(メタ)アクリル酸エステル(a)と、2〜10質量%のカルボキシル基を含有するエチレン性不飽和モノマー(b)と、2〜10質量%の水酸基を含有するエチレン性不飽和モノマー(c)と、10〜30質量%のスチレン(d)と、10〜30質量%のアクリロニトリル(e)との乳化重合反応により得られる共重合体であり、前記金属表面処理剤の固形分合計質量(W)に対する前記アクリル樹脂(A)の固形分質量比である(A)/(W)が0.40〜0.60であり、前記金属表面処理剤の固形分合計質量(W)に対する前記水ガラス化合物(B)の固形分質量比である(B)/(W)が0.05〜0.25であり、前記金属表面処理剤の固形分合計質量(W)に対する前記ジルコニウム化合物(C)の固形分質量比である(C)/(W)が0.05〜0.2であり、前記金属表面処理剤の固形分合計質量(W)に対する前記リン化合物(D)の固形分質量比である(D)/(W)が0.01〜0.10であり、前記金属表面処理剤の固形分合計質量(W)に対する前記バナジウム化合物(E)の固形分質量比である(E)/(W)が0.001〜0.03である、ことを特徴とする金属表面処理剤。
A metal surface treatment agent for galvanized steel or zinc-base alloy plated steel,
An acrylic resin (A), a water glass compound (B), a zirconium compound (C), a phosphorus compound (D), and a vanadium compound (E), and the acrylic resin (A) is a total of raw material monomers 20 to 70% by mass of (meth) acrylic acid ester (a), 2 to 10% by mass of an ethylenically unsaturated monomer (b) containing a carboxyl group, and 2 to 10% by mass of a hydroxyl group based on the mass. A copolymer obtained by an emulsion polymerization reaction of ethylenically unsaturated monomer (c) containing 10 to 30% by mass of styrene (d) and 10 to 30% by mass of acrylonitrile (e), (A) / (W), which is the solid content mass ratio of the acrylic resin (A) to the total solid content mass (W) of the metal surface treatment agent, is 0.40 to 0.60, and Total solid content (B) / (W), which is the solid content mass ratio of the water glass compound (B) to (W), is 0.05 to 0.25, and is based on the total solid content mass (W) of the metal surface treatment agent. (C) / (W), which is the solid content mass ratio of the zirconium compound (C), is 0.05 to 0.2, and the phosphorus compound (D) relative to the total solid mass (W) of the metal surface treatment agent (D) / (W), which is a solid content mass ratio, is 0.01 to 0.10, and the solid content mass of the vanadium compound (E) with respect to the total solid content mass (W) of the metal surface treatment agent. (E) / (W) which is ratio is 0.001-0.03, The metal surface treating agent characterized by the above-mentioned.
追加成分としてシラン化合物(F)を含み、前記シラン化合物(F)を含む前記金属表面処理剤の固形分合計質量(W)に対する前記シラン化合物(F)の固形分質量比である(F)/(W)が0.25以下である請求項1に記載の金属表面処理剤。   It is a solid content mass ratio of the silane compound (F) to the solid mass total mass (W) of the metal surface treatment agent containing the silane compound (F) as an additional component and containing the silane compound (F) / The metal surface treating agent according to claim 1, wherein (W) is 0.25 or less. 追加成分としてポリオレフィンワックス(G)を含む請求項1または2に記載の金属表面処理剤。   The metal surface treating agent according to claim 1 or 2, comprising a polyolefin wax (G) as an additional component. 請求項1〜3のいずれかに記載の金属表面処理剤を、亜鉛めっき鋼材または亜鉛基合金めっき鋼材の表面に塗布して皮膜を形成することを特徴とする被覆方法。   The metal surface treating agent in any one of Claims 1-3 is apply | coated to the surface of a galvanized steel material or a zinc base alloy plated steel material, The coating method characterized by the above-mentioned. 請求項4に記載の被覆方法によって得られる被覆鋼材。   A coated steel material obtained by the coating method according to claim 4. 皮膜量が0.5〜2.0g/mである請求項5に記載の被覆鋼材。The coated steel material according to claim 5, wherein the coating amount is 0.5 to 2.0 g / m 2 .
JP2017502439A 2015-02-26 2016-02-24 Metal surface treatment agent for galvanized steel or zinc-base alloy plated steel, coating method and coated steel Active JP6367462B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2015037428 2015-02-26
JP2015037428 2015-02-26
PCT/JP2016/055514 WO2016136834A1 (en) 2015-02-26 2016-02-24 Metal-surface treatment agent for zinc-coated steel or zinc-based-alloy-coated steel, coating method, and coated steel

Publications (2)

Publication Number Publication Date
JPWO2016136834A1 JPWO2016136834A1 (en) 2017-09-28
JP6367462B2 true JP6367462B2 (en) 2018-08-01

Family

ID=56789528

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017502439A Active JP6367462B2 (en) 2015-02-26 2016-02-24 Metal surface treatment agent for galvanized steel or zinc-base alloy plated steel, coating method and coated steel

Country Status (3)

Country Link
JP (1) JP6367462B2 (en)
CN (1) CN107250434B (en)
WO (1) WO2016136834A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6895915B2 (en) * 2018-03-14 2021-06-30 株式会社オートネットワーク技術研究所 Surface protective agent composition and coated wire with terminals
JP7090507B2 (en) * 2018-08-17 2022-06-24 日本製鉄株式会社 Painted steel material with chemical conversion coating, and its manufacturing method
CN114351130A (en) * 2021-12-16 2022-04-15 山西汾西重工有限责任公司 Army green passivation solution, preparation method thereof and passivation method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3963683B2 (en) * 2001-02-22 2007-08-22 新日本製鐵株式会社 Aqueous surface treatment agent for plated metal plate, surface treated metal plate and method for producing the same
JP4607969B2 (en) * 2005-12-15 2011-01-05 日本パーカライジング株式会社 Surface treatment agent for metal material, surface treatment method and surface treatment metal material
MY153410A (en) * 2006-11-15 2015-02-13 Nippon Steel Corp Surface-treated material and method for producing the same
KR101146156B1 (en) * 2007-06-29 2012-05-24 니혼 파커라이징 가부시키가이샤 Aqueous fluid for surface treatment of zinc-plated steel sheets and zinc-plated steel sheets
JP5087760B2 (en) * 2007-11-07 2012-12-05 Jfe鋼板株式会社 Method for producing surface-treated steel sheet and surface-treated steel sheet
JP2014055319A (en) * 2012-09-12 2014-03-27 Kansai Paint Co Ltd Aqueous metal surface treatment

Also Published As

Publication number Publication date
CN107250434A (en) 2017-10-13
WO2016136834A1 (en) 2016-09-01
CN107250434B (en) 2020-05-08
JPWO2016136834A1 (en) 2017-09-28

Similar Documents

Publication Publication Date Title
KR101918879B1 (en) Surface treatment agent for zinc-plated steel sheets
JP4920625B2 (en) Surface-treated metal plate
JP5952877B2 (en) Surface treatment method for zinc-aluminum-magnesium alloy plated steel sheet
JP5509078B2 (en) Water-based metal surface treatment agent and surface-treated metal material
WO2010030022A1 (en) Black-coated steel sheet, processed article, and panel for thin-screen television set
JP6455855B2 (en) Aqueous metal surface treatment agent
WO2015080268A1 (en) Method for treating surface of zinc-aluminum-magnesium alloy-plated copper sheet
JP6367462B2 (en) Metal surface treatment agent for galvanized steel or zinc-base alloy plated steel, coating method and coated steel
JP4970773B2 (en) Metal surface treatment agent, metal material surface treatment method and surface treatment metal material
JP5099732B2 (en) Water-based metal surface treatment agent
JP5647326B1 (en) Surface treatment method for zinc-aluminum-magnesium alloy plated steel sheet
JP6943870B2 (en) Aqueous metal surface treatment agent, metal surface treatment method and surface treatment metal plate
JP2006272768A (en) Surface-treated metal sheet
KR100626417B1 (en) Water-based surface-treating agent for plated metal sheet, surface-treated metal sheet, and process for producing the same
JP7063298B2 (en) Surface treatment liquid for hot-dip galvanized steel sheet, zinc-based plated steel sheet and its manufacturing method
JP5309648B2 (en) Painted metal parts
JP6772943B2 (en) Painted steel plate
WO2021131690A1 (en) Coating composition, coated metal materials, and method for coating metal materials
JP2021050370A (en) Galvanized steel plate with surface treatment film, and manufacturing method thereof
JP5929746B2 (en) Surface-treated steel sheet
JP2004344779A (en) METAL PLATE COATED WITH Cr-FREE PIGMENT AND METHOD OF MANUFACTURING THE SAME
JP4298563B2 (en) Chromate-free surface-treated Al-Zn alloy-plated steel sheet with excellent corrosion resistance and method for producing the same
JPH09208859A (en) Composition for treating metal surface and surface-treated metal sheet
JPH0153110B2 (en)

Legal Events

Date Code Title Description
AA64 Notification of invalidation of claim of internal priority (with term)

Free format text: JAPANESE INTERMEDIATE CODE: A241764

Effective date: 20170627

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170721

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180626

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180704

R150 Certificate of patent or registration of utility model

Ref document number: 6367462

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250