JP7090507B2 - Painted steel material with chemical conversion coating, and its manufacturing method - Google Patents

Painted steel material with chemical conversion coating, and its manufacturing method Download PDF

Info

Publication number
JP7090507B2
JP7090507B2 JP2018153364A JP2018153364A JP7090507B2 JP 7090507 B2 JP7090507 B2 JP 7090507B2 JP 2018153364 A JP2018153364 A JP 2018153364A JP 2018153364 A JP2018153364 A JP 2018153364A JP 7090507 B2 JP7090507 B2 JP 7090507B2
Authority
JP
Japan
Prior art keywords
layer
coating
chemical conversion
steel material
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018153364A
Other languages
Japanese (ja)
Other versions
JP2020026564A (en
Inventor
信樹 吉崎
康弘 木下
元博 天満屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Parkerizing Co Ltd
Nippon Steel Corp
Original Assignee
Nihon Parkerizing Co Ltd
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Parkerizing Co Ltd, Nippon Steel Corp filed Critical Nihon Parkerizing Co Ltd
Priority to JP2018153364A priority Critical patent/JP7090507B2/en
Priority to CN201910729440.3A priority patent/CN110835753B/en
Publication of JP2020026564A publication Critical patent/JP2020026564A/en
Application granted granted Critical
Publication of JP7090507B2 publication Critical patent/JP7090507B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/34Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/73Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals characterised by the process

Description

本発明は、有機樹脂塗装鋼材において、特定の化成処理被膜を表面に有する塗装鋼材及びその製造方法に関する。特にラインパイプの有機樹脂被覆で近年要求される高温性能に対して、耐熱性の高い樹脂との組み合わせで耐剥離効果に優れた化成処理被膜を有する塗装鋼材に関する。 The present invention relates to a coated steel material having a specific chemical conversion coating film on its surface in an organic resin coated steel material and a method for producing the same. In particular, the present invention relates to a coated steel material having a chemical conversion coating having an excellent peeling resistance effect in combination with a resin having high heat resistance for the high temperature performance required in recent years for the organic resin coating of line pipes.

従来、海洋構造物やラインパイプ等では防食性能を高めるために被覆材料の耐熱性向上や厚みを増す対策が行われている。しかしながら、高温では有機樹脂の防食性は通常低下するため、鋼材露出部と塗膜下のマクロ腐食電流に起因する電気化学的反応を完全に抑制する事は難しい。また、防食性を高めるために厚い有機樹脂を使用すると、内部応力が大きくなる結果、鋼材と厚い有機樹脂塗膜との密着性確保が困難となり、何らかの対策が必要となる。これらの要求に対しては、鋼材表面に化成処理を設ける方法が有効で、従来はブラスト処理又は酸洗によってスケールを除去し、その後、特開平07-195612号公報(特許文献1)に示されるように、クロム酸を含有するクロメート化成処理を施していた。このクロメート処理は、塗布後に乾燥するだけで鋼材とその上の防食塗膜等との間に良好な密着性を提供し、耐剥離性を大幅に向上させることが出来るため、数mmの厚みを有するポリオレフィン樹脂塗装鋼管の下地処理としても一般的である。しかしながら、クロメート化成処理被膜は環境負荷物質である6価クロムを含むことから、代替えの化成処理が望まれる。 Conventionally, in marine structures, line pipes, etc., measures have been taken to improve the heat resistance and thickness of the covering material in order to improve the anticorrosion performance. However, since the corrosion resistance of the organic resin usually decreases at high temperatures, it is difficult to completely suppress the electrochemical reaction caused by the macrocorrosion current between the exposed steel material and the coating film. Further, if a thick organic resin is used to improve the corrosion resistance, the internal stress becomes large, and as a result, it becomes difficult to secure the adhesion between the steel material and the thick organic resin coating film, and some measures are required. To meet these demands, a method of providing a chemical conversion treatment on the surface of a steel material is effective, and conventionally, scale is removed by blasting or pickling, and then, it is shown in Japanese Patent Application Laid-Open No. 07-195612 (Patent Document 1). As described above, a chromate chemical conversion treatment containing chromic acid was performed. This chromate treatment provides good adhesion between the steel material and the anticorrosion coating film, etc. on it only by drying after application, and can greatly improve the peeling resistance, so the thickness is several mm. It is also common as a base treatment for a steel pipe coated with a polyolefin resin. However, since the chromate chemical conversion treatment film contains hexavalent chromium, which is an environmentally hazardous substance, an alternative chemical conversion treatment is desired.

6価クロムを含まない代表的な化成処理としてリン酸亜鉛処理がある。リン酸亜鉛処理は加温した亜鉛を含むリン酸塩処理浴中に鋼材を浸漬して、鋼材表面にリン酸亜鉛の結晶を析出させて被膜を形成した後、余分な成分を水洗する。ところが、ラインパイプに使用する大径鋼管の浸漬処理は設備や時間の面で難しく、また析出したリン酸亜鉛結晶被膜が脆いことから、密着性にも問題があった。 Zinc phosphate treatment is a typical chemical conversion treatment that does not contain hexavalent chromium. In the zinc phosphate treatment, the steel material is immersed in a phosphate treatment bath containing heated zinc to precipitate zinc phosphate crystals on the surface of the steel material to form a film, and then the excess components are washed with water. However, the dipping treatment of the large-diameter steel pipe used for the line pipe is difficult in terms of equipment and time, and the precipitated zinc phosphate crystal coating is brittle, so that there is a problem in adhesion.

一方、防食被覆鋼材の製造方法として特開2009-209393号公報(特許文献2)に開示されているように、ジルコンフッ化水素酸、チタンフッ化水素酸、ヘキサフルオロリン酸、リン酸、縮合リン酸、シュウ酸のいずれかの酸1種以上と、V系化合物、Mo系化合物、W系化合物、Y系化合物、Zr系化合物、Bi系化合物のなかの1種以上を含有する水溶液で水洗する洗浄処理が提案されている。しかし、洗浄処理では化成処理被膜を形成しないので電気化学反応による塗膜の剥離を抑制出来ない。このため、依然として6価クロムを含有せず、かつ水洗等の行程上の制約が無い鋼材表面の化成処理方法が求められている。 On the other hand, as disclosed in Japanese Patent Application Laid-Open No. 2009-209393 (Patent Document 2) as a method for producing an anticorrosion coated steel material, zircon hydrofluoric acid, titanium hydrofluoric acid, hexafluorophosphate, phosphoric acid, condensed phosphoric acid. Wash with an aqueous solution containing one or more of oxalic acid and one or more of V-based compound, Mo-based compound, W-based compound, Y-based compound, Zr-based compound, and Bi-based compound. Processing is proposed. However, since the chemical conversion treatment film is not formed in the cleaning treatment, the peeling of the coating film due to the electrochemical reaction cannot be suppressed. Therefore, there is still a demand for a chemical conversion treatment method for the surface of steel materials, which does not contain hexavalent chromium and has no restrictions on the process such as washing with water.

6価のクロム酸を使用しない鋼材の化成処理は、特開2006-249459号公報(特許文献3)に記載されている。この化成処理は、鋼材表面にリン酸金属化合物に、水分散性シリカの微粒子を質量比で0.3~4.0の割合で添加した水溶液を塗布し、水洗等の工程を必要とせず、塗布と乾燥のみで処理を行うことが可能であり、クロメート処理と同等の樹脂塗膜の耐水密着性と耐陰極剥離性を有す鋼材表面処理を提供する。 A chemical conversion treatment for a steel material that does not use hexavalent chromic acid is described in JP-A-2006-249459 (Patent Document 3). In this chemical conversion treatment, an aqueous solution prepared by adding fine particles of water-dispersible silica at a mass ratio of 0.3 to 4.0 to a metal phosphate compound is applied to the surface of a steel material, and a step such as washing with water is not required. The treatment can be performed only by coating and drying, and provides a steel material surface treatment having water adhesion resistance and cathode peeling resistance of a resin coating film equivalent to chromate treatment.

また、特開2009-209394号公報(特許文献4)にはクロムを含む化成処理層を用いない樹脂被覆鋼材の製造方法が記載されており、Al系リン酸塩、Ca系リン酸塩、Mg系リン酸塩、Zn系リン酸塩のうち少なくとも1種のリン酸塩とV系化合物、Mo系化合物、W系化合物、Y系化合物、Zr系化合物、Bi系化合物の少なくとも1種の化合物を含有する化合物、およびシリカを含有する、化成処理用水溶液が開示されている。 Further, Japanese Patent Application Laid-Open No. 2009-209394 (Patent Document 4) describes a method for producing a resin-coated steel material that does not use a chemical conversion-treated layer containing chromium, and describes Al-based phosphate, Ca-based phosphate, and Mg. At least one of the phosphates and Zn phosphates and at least one of the V-based compounds, Mo-based compounds, W-based compounds, Y-based compounds, Zr-based compounds, and Bi-based compounds. An aqueous solution for chemical treatment containing a compound contained and silica is disclosed.

しかしながら、上記公報(特許文献3、特許文献4)に記載されるリン酸塩から成る化成処理被膜では、余剰リン酸成分が残存し易く不溶性となる被膜を形成し難い。このため、電気化学的反応による被膜の溶出が多くなる高温領域の塗膜剥離抑制に課題があった。 However, in the chemical conversion coated film made of phosphate described in the above publications (Patent Documents 3 and 4), it is difficult to form an insoluble film in which excess phosphoric acid components tend to remain. Therefore, there is a problem in suppressing the peeling of the coating film in a high temperature region where the elution of the film due to an electrochemical reaction increases.

また、不溶性の酸化ジルコニウムを主体とする化成処理膜を得る方法として特許第5946358号公報(特許文献5)には炭酸ジルコニウムアンモニウム、メタバナジン酸アンモニウム、リン酸アンモニウム、シランカップリング剤を利用する方法が開示されている。本方法では厚膜の絶縁塗膜形成には有効であるが、化成処理液のpHが8から12のアルカリ析出型であるため、析出酸化物膜と鋼材との密着性に問題があった。 Further, as a method for obtaining an insoluble zirconium oxide-based chemical conversion treatment film, Japanese Patent No. 5946358 (Patent Document 5) describes a method using zirconium carbonate, ammonium metavanadate, ammonium phosphate, and a silane coupling agent. It has been disclosed. This method is effective for forming an insulating coating film of a thick film, but since the pH of the chemical conversion treatment liquid is an alkali precipitation type of 8 to 12, there is a problem in the adhesion between the precipitated oxide film and the steel material.

特開平07-195612号公報Japanese Unexamined Patent Publication No. 07-195612 特開2009-209393号公報JP-A-2009-209393 特開2006-249459号公報Japanese Unexamined Patent Publication No. 2006-249459 特開2009-209394号公報Japanese Unexamined Patent Publication No. 2009-209394 特許第5946358号公報Japanese Patent No. 5946358

本発明の目的は、ラインパイプの外面防食に用いられる粉体エポキシ樹脂塗装、あるいは粉体エポキシ樹脂塗料を用いたプライマーを有する3層ポリオレフィン樹脂塗装等の有機樹脂塗装との密着性に優れ、高温使用でも耐陰極剥離性等の防食性が良好な鋼材表面の化成処理被膜を有する塗装鋼材と、その製造方法を提供するものである。 An object of the present invention is excellent adhesion to organic resin coating such as powder epoxy resin coating used for outer surface corrosion protection of line pipes or three-layer polyolefin resin coating having a primer using powder epoxy resin coating, and high temperature. It provides a coated steel material having a chemical conversion coating on the surface of a steel material having good corrosion resistance such as cathode peeling resistance even in use, and a method for producing the same.

本発明者らは鋼材表面に塗膜下での電気化学的反応を抑制し、且つ塗膜との密着性を高める方法として、電気絶縁性が高く、安定な金属酸化物を主とし、且つ鋼材と反応した緻密な処理層である第1層を設けた。さらに、反応で溶出した鉄酸化物が作る弱い層は接着力を低下させることから、ポーラスな多孔層を形成する微粒子シリカ(SiO)、例えば線状シリカ微粒子を加えて弱い酸化物層を骨格補強した第2層を設けて、鉄との反応及び、塗膜との密着、の相反する問題を解決した。
防食特性として重要な陰極剥離を抑制する被膜には、鋼材との密着性と化学的、電気的な安定性が必要である。このためには鉄表面と反応し、かつ安定な金属酸化物層の形成が有効となる。そこで、まず鉄との親和性である相互作用パラメーターを見ると、大きく負の値を示す金属としては、Sc、Ti、Zr,Nb、Al、Si、Asがあげられる。このうち、安定な酸化物を形成する金属として、Ti、Zr、Al、Siが選択される。中でもTiは常温でも安定な金属酸化物を形成しやすく、陰極剥離でカソードの鋼材表面での電気化学反応でアルカリが発生しても溶解が生じ難いと考えられる。また、同じチタン族元素であるジルコニウムも耐酸性、耐アルカリ性に優れる。以上の観点からチタン、ジルコニウムを主とする酸化物被膜を鋼材表面に設けた。中でもジルコニウムはアルミニウムの化成処理としても用いられ、Zr3(PO4)・nH2Oを主体としたZr量が5~30mg/m (0.005~0.03μm)の薄い膜で用いられるが、処理する表面の影響を受けやすく、洗浄を含めた処理条件の管理が性能を大きく左右する。特に被膜が薄いと耐食性が劣り、被膜が厚いとその上層である塗膜との密着性が劣ることから被膜厚の制御が重要な管理項目となっている。本発明の鋼材の化成処理では、第一にブラスト処理を施した粗い粗面であること、第二に化成処理をする素材が鉄であるためにアルミニウムや亜鉛に比べて反応性が低いこと、第三に化成処理被膜の上に塗装する塗膜がラインパイプの場合厚膜であることからその応力が大きく、その結果高い密着性が要求されるといった点でアルミニウムや亜鉛の化成処理とは異なるため、新たな化成処理技術が必要とされた。
As a method of suppressing an electrochemical reaction under a coating film on the surface of a steel material and improving the adhesion to the coating film, the present inventors mainly use a stable metal oxide having high electrical insulation and a steel material. The first layer, which is a dense treatment layer that reacted with the above, was provided. Furthermore, since the weak layer formed by the iron oxide eluted by the reaction reduces the adhesive strength, fine particle silica (SiO 2 ) forming a porous porous layer, for example, linear silica fine particles is added to form a weak oxide layer. The reinforced second layer was provided to solve the conflicting problems of reaction with iron and adhesion with the coating film.
The coating film that suppresses cathode peeling, which is important as an anticorrosion property, requires adhesion to steel materials and chemical and electrical stability. For this purpose, it is effective to form a stable metal oxide layer that reacts with the iron surface. Therefore, looking at the interaction parameter, which is the affinity with iron, Sc, Ti, Zr, Nb, Al, Si, and As are examples of metals that show a large negative value. Of these, Ti, Zr, Al, and Si are selected as the metals that form stable oxides. Above all, Ti tends to form a stable metal oxide even at room temperature, and it is considered that dissolution is unlikely to occur even if an alkali is generated by an electrochemical reaction on the surface of the steel material of the cathode due to cathode peeling. Zirconium, which is the same titanium group element, also has excellent acid resistance and alkali resistance. From the above viewpoint, an oxide film mainly composed of titanium and zirconium was provided on the surface of the steel material. Among them, zirconium is also used as a chemical conversion treatment for aluminum, and is used for a thin film having a Zr amount of 5 to 30 mg / m 2 (0.005 to 0.03 μm) mainly composed of Zr 3 (PO 4 ) and nH 2 O. However, it is easily affected by the surface to be treated, and the management of treatment conditions including cleaning greatly affects the performance. In particular, if the film is thin, the corrosion resistance is inferior, and if the film is thick, the adhesion to the coating film, which is the upper layer thereof, is inferior. Therefore, control of the film thickness is an important control item. In the chemical conversion treatment of the steel material of the present invention, firstly, it is a rough rough surface that has been blasted, and secondly, because the material to be chemical conversion treatment is iron, its reactivity is lower than that of aluminum or zinc. Thirdly, when the coating film to be coated on the chemical conversion treatment film is a line pipe, the stress is large because it is a thick film, and as a result, high adhesion is required, which is different from the chemical conversion treatment of aluminum and zinc. Therefore, a new chemical conversion treatment technology was required.

鋼材表面はブラスト処理で除錆を行っても、空気中ではブラスト処理後短時間に薄い酸化物で覆われてしまうため、密着性に優れる化成処理被膜形成には強い酸を用いて酸化膜を除去する必要がある。その一方、塗布型化成処理の場合強い酸で反応性を高めようとすると、未反応の溶解性酸成分が残存し、溶解した鉄による析出物も多くなって密着を阻害する。そのため、これまで酸としては弱酸で鉄と化合するリン酸、又はその化合物を中心とした検討が行われて来た。しかしながら、リン酸は鉄との反応には液濃度を高くしなければならず、余剰リン酸成分が残りやすく、膜が溶解して陰極剥離性能が低下するといった問題があった。これに対して本発明では、反応性が高いフッ酸成分を含むジルコンフッ化水素酸又はチタンフッ化水素酸を用い、且つ塗布時の鋼板温度を40~80℃と高めて塗布することで鋼材表面にジルコニウムあるいはチタン元素を鉄元素に対して7%以上含んだ均一に薄い絶縁性の不溶解被膜を形成する。ジルコンフッ化水素酸又はチタンフッ化水素酸の濃度不足や、鉄との反応が不十分であるとジルコニウム又はチタンの比率が7%未満になって防食性が低下する。
更に、この第1層には第3成分としてジルコニウム酸化膜あるいはチタン酸化膜の欠陥部を補填するためにマグネシウム、亜鉛、アルミニウムから選ばれる少なくとも1種の金属を含んでも良い。
Even if the surface of the steel material is rust-removed by blasting, it will be covered with a thin oxide in a short time after blasting in the air. Need to be removed. On the other hand, in the case of coating-type chemical conversion treatment, if an attempt is made to increase the reactivity with a strong acid, an unreacted soluble acid component remains, and the amount of precipitates due to the dissolved iron increases, which hinders adhesion. Therefore, studies have been conducted focusing on phosphoric acid, which is a weak acid that combines with iron, or a compound thereof. However, phosphoric acid has a problem that the liquid concentration must be increased in order to react with iron, excess phosphoric acid component tends to remain, the film is dissolved, and the cathode peeling performance is deteriorated. On the other hand, in the present invention, zircon hydrofluoric acid or titanium hydrofluoric acid containing a highly reactive hydrofluoric acid component is used, and the steel plate temperature at the time of coating is raised to 40 to 80 ° C. for coating on the surface of the steel material. It forms a uniformly thin insulating insoluble film containing 7% or more of zirconium or titanium element with respect to iron element. If the concentration of zirconium hydrofluoric acid or titanium hydrofluoric acid is insufficient or the reaction with iron is insufficient, the ratio of zirconium or titanium becomes less than 7% and the corrosion resistance is lowered.
Further, the first layer may contain at least one metal selected from magnesium, zinc and aluminum as a third component in order to fill the defective portion of the zirconium oxide film or the titanium oxide film.

フッ酸成分が鋼材表面を溶解することで、ジルコニウム、あるいはチタンを主とする緻密な絶縁酸化膜が形成される一方、反応で溶出した鉄は、液の乾燥時に前記の緻密な絶縁酸化膜層の上に堆積して脆弱な鉄酸化物層が形成される。防食に有効な反応層の厚みを増やすには、塗布するジルコンフッ化水素酸又はチタンフッ化水素酸の液濃度を上げる必要があるが、必然的に鉄の溶解量が増えて脆弱な鉄酸化物層が増加して上部塗膜との密着性が低下する。この相反する課題に対し、溶出した鉄を取り込み、且つ上部塗膜との密着性を確保するために多孔状被膜を形成する方法を検討した。その結果、微粒子シリカが有効であって、中でも強度のある接着性被膜を形成する線状(パールネックレス状を含む)微粒子シリカ添加が有効であることを見出した。線状(パールネックレス状を含む)の微粒子シリカはシリカ粒子同士が強固に結合した2次構造をもつことから、脆弱な鉄酸化物の内部がシリカ骨格で補強される。更には多孔状被膜を形成することが出来ることから、多孔状の空隙に上層のエポキシ樹脂が浸透して一体になって密着性が向上する効果が得られる。すなわち、前記の第1層の絶縁酸化被膜の上に第2層被膜として、鉄、珪素、酸素を含有する粒状物が連結した多孔層を形成することで密着性課題を解決した。この時の粒状物が占める断面の面積割合は透過型電子顕微鏡(TEM)での観察では30~80%である。
上記の第2層被膜を形成する処理液としては、ジルコンフッ化水素酸又はチタンフッ化水素酸の質量濃度Aに対して多孔状を形成する線状(あるいはパールネックレス状)シリカ微粒子の濃度BがB/Aの質量比で0.2~2.5の範囲内であると良い。この時の膜厚としては、鉄酸化物層とその上層の塗装(エポキシ樹脂)をバランス良く結合するために0.2~2μmが好ましい。0.2μm以下では鉄酸化物を吸収しきれない場合がある。一方2μmを越えると、膜強度が低下して密着力も低下する場合がある。これらの膜厚は断面TEMによって膜厚の直接測定が可能であると供に、シリカ付着量で管理することが可能である。シリカ付着量としては100~500mg/mの範囲が好ましい。
When the hydrofluoric acid component dissolves the surface of the steel material, a dense insulating oxide film mainly composed of zirconium or titanium is formed, while the iron eluted by the reaction is the above-mentioned dense insulating oxide film layer when the liquid dries. A fragile iron oxide layer is formed by depositing on top of it. In order to increase the thickness of the reaction layer that is effective for anticorrosion, it is necessary to increase the concentration of the dilyconium hydrofluoric acid or titanium hydrofluoric acid to be applied, but inevitably the amount of iron dissolved increases and the fragile iron oxide layer Increases and the adhesion to the upper coating film decreases. To solve this contradictory problem, a method of taking in the eluted iron and forming a porous film in order to secure the adhesion with the upper coating film was investigated. As a result, it was found that fine particle silica is effective, and in particular, addition of linear (including pearl necklace-like) fine particle silica that forms a strong adhesive film is effective. Since the linear (including pearl necklace-like) fine particle silica has a secondary structure in which silica particles are strongly bonded to each other, the inside of the fragile iron oxide is reinforced by a silica skeleton. Further, since the porous film can be formed, the effect that the upper layer epoxy resin permeates into the porous voids and becomes one with each other to improve the adhesion can be obtained. That is, the problem of adhesion was solved by forming a porous layer in which granules containing iron, silicon, and oxygen were connected as a second layer film on the above-mentioned insulating oxide film of the first layer. The area ratio of the cross section occupied by the granules at this time is 30 to 80% when observed with a transmission electron microscope (TEM).
As the treatment liquid for forming the second layer film, the concentration B of the linear (or pearl necklace-like) silica fine particles forming a porous shape with respect to the mass concentration A of zircon hydrofluoric acid or titanium hydrofluoric acid is B. The mass ratio of / A is preferably in the range of 0.2 to 2.5. The film thickness at this time is preferably 0.2 to 2 μm in order to bond the iron oxide layer and the coating (epoxy resin) on the iron oxide layer in a well-balanced manner. If it is 0.2 μm or less, iron oxide may not be completely absorbed. On the other hand, if it exceeds 2 μm, the film strength may decrease and the adhesion may also decrease. These film thicknesses can be directly measured by the cross-sectional TEM, and can also be controlled by the amount of silica adhered. The amount of silica adhered is preferably in the range of 100 to 500 mg / m 2 .

本発明の要旨は次のとおりである。
ブラスト処理を施した鋼材の上に、順に化成処理被膜、エポキシ樹脂塗装、又は順に化成処理被膜、エポキシ樹脂塗装、変性ポリオレフィン接着剤、ポリオレフィン樹脂からなる3層ポリオレフィン樹脂塗装であって、前記化成処理被膜が、鉄、フッ素、ジルコニウムあるいはチタン、酸素を含む第1層の酸化物被膜と、鉄、珪素、酸素を含む粒状物が連結した多孔層の第2層とから成る2層構造を有しており、この第2層の上に積層されている塗装層を形成するエポキシ樹脂が第2層の多孔の隙間に浸透固化し充填された構造を持つことを特徴とする化成処理被膜を有する塗装鋼材である。更に第1層にマグネシウム、亜鉛、アルミニウムから成る群より選ばれる少なくとも1種の金属を含有させると良い。この化成処理層の第1層はエネルギー分散型X線分析(EDS分析)から得られる値として、ジルコニウム又はチタン元素の比率が鉄元素に対して7%以上の比率を持ち、第2層は粒状物で形成される多孔状物が占める断面積は30~80%である。
なお、第1層に、鉄、フッ素、ジルコニウムあるいはチタン、酸素を含んでおり、かつ第2層に鉄、珪素、酸素を含む粒状物が連結した多孔層を形成する場合は、他の成分は任意に選択できる。
前記化成処理被膜構造を得る化成処理方法としては、鋼材を40~80℃に加熱して処理液を塗布、乾燥すると良い。塗布する処理液は、ジルコンフッ化水素酸あるいはチタンフッ化水素酸の質量濃度Aと線状(パールネックレス状を含む)シリカ微粒子の質量濃度BをB/Aが0.2~2.5の質量比である化成処理液を用いる。更に前述のマグネシウム、亜鉛又はアルミニウム金属を酸化物換算の総質量濃度CがC/Aの質量比で0.03~0.5の範囲内で含有させれば更に良い。
The gist of the present invention is as follows.
A three-layer polyolefin resin coating composed of a chemical conversion coating, an epoxy resin coating, or a chemical conversion coating, an epoxy resin coating, a modified polyolefin adhesive, and a polyolefin resin in order on a blasted steel material, wherein the chemical conversion treatment is performed. The coating film has a two-layer structure consisting of a first layer oxide coating containing iron, fluorine, zirconium or titanium, and oxygen, and a second layer of a porous layer in which granules containing iron, silicon, and oxygen are connected. A coating having a chemical conversion coating film, characterized in that the epoxy resin forming the coating layer laminated on the second layer has a structure in which the epoxy resin permeates and solidifies into the porous gaps of the second layer and is filled. It is a steel material. Further, it is preferable that the first layer contains at least one metal selected from the group consisting of magnesium, zinc and aluminum. The first layer of this chemical conversion treatment layer has a ratio of zirconium or titanium element of 7% or more to iron element as a value obtained from energy dispersive X-ray analysis (EDS analysis), and the second layer is granular. The cross-sectional area occupied by the porous material formed of the material is 30 to 80%.
When the first layer contains iron, fluorine, zirconium or titanium, and oxygen, and the second layer is connected with granules containing iron, silicon, and oxygen, the other components are not included. It can be selected arbitrarily.
As a chemical conversion treatment method for obtaining the chemical conversion coating structure, it is preferable to heat the steel material to 40 to 80 ° C., apply the treatment liquid, and dry it. The treatment liquid to be applied has a mass concentration A of zircon hydrofluoric acid or titanium hydrofluoric acid and a mass concentration B of linear (including pearl necklace-shaped) silica fine particles in a mass ratio of B / A of 0.2 to 2.5. The chemical conversion treatment liquid is used. Further, it is further preferable that the above-mentioned magnesium, zinc or aluminum metal is contained in the range of the total mass concentration C in terms of oxide in the range of 0.03 to 0.5 in terms of mass ratio of C / A.

以上述べたように、本発明によると、防食塗装を行う鋼材の化成処理液として、クロム酸を用いる必要が無く、また、化成処理後に水洗を必要とせず、塗布および乾燥のみで被膜形成が可能で、高温環境での電気防食による剥離を防止する塗装鋼材を提供できる。 As described above, according to the present invention, it is not necessary to use chromic acid as a chemical conversion treatment liquid for steel materials to be subjected to anticorrosion coating, and no water washing is required after the chemical conversion treatment, and a film can be formed only by coating and drying. Therefore, it is possible to provide a coated steel material that prevents peeling due to electric corrosion protection in a high temperature environment.

図1は、本発明の一つの実施態様を示す粉体エポキシ樹脂を塗装層として用いた鋼材の構成断面図である。FIG. 1 is a structural cross-sectional view of a steel material using a powder epoxy resin showing one embodiment of the present invention as a coating layer. 図2は、本発明の一つの実施態様を示す3層ポリオレフィン樹脂を塗装層として用いた鋼材の構成断面図である。FIG. 2 is a structural cross-sectional view of a steel material using a three-layer polyolefin resin as a coating layer, which shows one embodiment of the present invention. 図3は、実施例1の処理条件での化成処理膜断面を示す透過型電子顕微鏡(TEM)写真である。FIG. 3 is a transmission electron microscope (TEM) photograph showing a cross section of a chemical conversion-treated membrane under the treatment conditions of Example 1. 図4は、実施例1の処理条件での化成処理膜断面の2層構造の元素分布をエネルギー分散型X線分析(EDS分析)で示す写真である。FIG. 4 is a photograph showing the element distribution of the two-layer structure of the cross section of the chemical conversion-treated membrane under the treatment conditions of Example 1 by energy dispersive X-ray analysis (EDS analysis).

以下、本発明につき詳細に説明を行なう。
図1及び図2は、本発明の一つの実施態様を示す塗装鋼材の構成断面図である。本発明に使用する鋼材1としては普通鋼、あるいは高合金鋼などどのような鋼種でも適用可能である。鋼材種としては何でも良いが、長期の防食性が要求されるものとしてはラインパイプ用の鋼管がある。
Hereinafter, the present invention will be described in detail.
1 and 2 are structural cross-sectional views of a coated steel material showing one embodiment of the present invention. As the steel material 1 used in the present invention, any steel type such as ordinary steel or high alloy steel can be applied. Any steel grade may be used, but steel pipes for line pipes are required to have long-term corrosion resistance.

本発明に係る、鉄、ジルコニウムあるいはチタン、フッ素、酸素からなる酸化物被膜層2、及び、鉄、珪素、酸素からなる粒状物が連結した多孔状の被膜層3を形成する化成処理を行う場合、その前に、鋼材1表面のスケール、汚染物等を除去する必要があるため、サンド、アルミナ、グリッド、あるいはショットを用いたブラスト処理を行う。化成処理被膜が形成された後、塗装を行う。塗装としては粉体エポキシ樹脂塗料を塗布した粉体エポキシ樹脂層4を形成する。なお耐疵性などの防食性を高める場合、塗装として粉体エポキシ樹脂塗料を比較的薄く塗布した粉体エポキシ樹脂層4、変性ポリオレフィン接着剤層5,ポリオレフィン樹脂層6を順次積層して3層ポリオレフィン樹脂塗装を施す。 When performing a chemical conversion treatment for forming an oxide coating layer 2 made of iron, zirconium or titanium, fluorine, and oxygen and a porous coating layer 3 in which granules made of iron, silicon, and oxygen are connected according to the present invention. Before that, since it is necessary to remove scale, contaminants, etc. on the surface of the steel material 1, blast treatment using sand, alumina, grid, or shot is performed. After the chemical conversion coating film is formed, painting is performed. For painting, the powder epoxy resin layer 4 coated with the powder epoxy resin paint is formed. In order to improve corrosion resistance such as scratch resistance, a powder epoxy resin layer 4 coated with a powder epoxy resin paint relatively thinly, a modified polyolefin adhesive layer 5, and a polyolefin resin layer 6 are sequentially laminated to form three layers. Apply a polyolefin resin coating.

化成処理被膜の形成には、化成処理液を鋼材に塗布して乾燥する。その場合に、化成処理液塗布後の水洗を必要としない。特に本化成処理の被膜形成には乾燥工程が必要なため、水洗を行うと化成処理被膜構造が形成されない。本発明の2層構造を有する化成処理被膜を形成するための処理条件と、化成処理液について詳細に説明する。 To form a chemical conversion coating film, a chemical conversion treatment liquid is applied to a steel material and dried. In that case, washing with water after application of the chemical conversion treatment liquid is not required. In particular, since a drying step is required to form a film in this chemical conversion treatment, a chemical conversion coating structure is not formed by washing with water. The treatment conditions for forming the chemical conversion treatment film having the two-layer structure of the present invention and the chemical conversion treatment liquid will be described in detail.

本発明の粉体エポキシ樹脂塗装鋼管あるいはポリオレフィン樹脂塗装鋼管は、化成処理を行う前に、鋼管表面の錆や汚れを除去するだけでなく、接着に必要な表面粗さを確保するために、ブラスト処理を行う。ブラスト処理に用いる研掃材としては、一般的には鋼製グリッド又はショット粒を用いる。更に清浄な表面が要求される場合には、アルミナ等のセラミック素材を用いても良い。また、サンドを用いることも出来る。ブラスト処理後の表面に、鉄粉等の汚れが付着している場合、ブラシ、吸引、液体による洗浄等の処理を行うことができる。 The powder epoxy resin-coated steel pipe or the polyolefin resin-coated steel pipe of the present invention is blasted not only to remove rust and dirt on the surface of the steel pipe but also to secure the surface roughness required for adhesion before chemical conversion treatment is performed. Perform processing. As the polishing material used for the blasting treatment, a steel grid or shot grains are generally used. If a cleaner surface is required, a ceramic material such as alumina may be used. You can also use sandwiches. If dirt such as iron powder adheres to the surface after the blasting treatment, treatments such as brushing, suctioning, and cleaning with a liquid can be performed.

ブラスト処理後の表面に不溶性の化成処理被膜を鋼材表面に形成する。この不溶性被膜は均一に薄膜である必要があるが、塗布型では鋼材表面に塗布出来る液量と乾燥までの時間に制限があり、短時間での反応には酸成分を増やす必要がある。しかしながら、酸成分が多過ぎると、水素が発生し均一な膜形成が難しい。また、可溶性である酸成分が化成処理被膜中に残存して性能が低下するという課題がある。これに対して、本発明では、酸及び析出するジルコニウム又はチタンを供給するために、ジルコンフッ化水素酸又はチタンフッ化水素酸を用いる。フッ酸成分が鋼材表面を溶解することによるpH上昇によってジルコニウム又はチタンが鋼材表面に析出し、密着した均一な不溶性被膜を形成する。またマグネシウム、アルミニウム、亜鉛といった金属を処理液に添加しておくと、ジルコニウム又はチタンと同時に析出して表面を覆うことにより被膜の欠陥部が補完される。これらの金属成分は酸化物として添加した方が安全なので添加量は金属酸化物で計算する。金属酸化物の質量濃度Cとしては、少ないと効果が不足し、多すぎるとジルコニウム又はチタンの絶縁被膜効果を減じるので、ジルコンフッ化水素酸又はチタンフッ化水素酸の質量濃度Aに対して、C/Aの質量比で0.03~0.5の範囲で添加する。 An insoluble chemical conversion treatment film is formed on the surface of the steel material after the blast treatment. This insoluble film needs to be a uniform thin film, but in the coating type, there is a limit to the amount of liquid that can be applied to the surface of the steel material and the time until drying, and it is necessary to increase the acid component for the reaction in a short time. However, if the acid component is too large, hydrogen is generated and it is difficult to form a uniform film. Further, there is a problem that the soluble acid component remains in the chemical conversion coating film and the performance is deteriorated. On the other hand, in the present invention, zircon hydrofluoric acid or titanium hydrofluoric acid is used to supply the acid and the precipitated zirconium or titanium. Zirconium or titanium precipitates on the surface of the steel due to the increase in pH caused by the hydrofluoric acid component dissolving on the surface of the steel, forming a uniform insoluble film in close contact. Further, when a metal such as magnesium, aluminum, or zinc is added to the treatment liquid, the defect portion of the coating film is complemented by precipitating at the same time as zirconium or titanium and covering the surface. Since it is safer to add these metal components as oxides, the amount added is calculated using metal oxides. If the mass concentration C of the metal oxide is too small, the effect is insufficient, and if it is too large, the effect of the insulating coating of zirconium or titanium is reduced. Add in the range of 0.03 to 0.5 by mass ratio of A.

第1層の密着性の良い不溶性酸化被膜の形成には鉄の溶解反応が不可欠であるが、溶解した鉄成分は液乾燥時に被膜強度が小さい酸化物を形成する。特に鋼材の温度が低い状態で処理液を塗布した場合、被膜強度が小さい錆(鉄酸化層)が増加して密着力が低下するので、処理温度は40℃以上が必要である。また鋼材温度が高すぎても均一な反応が得られないことから80℃以下とする。但し、40~80℃の温度で処理液を塗布した場合でも反応酸化物層の上の塗膜の接着を阻害する被膜強度が小さい鉄酸化物層を完全に抑制することは難しい。そこで、本発明では密着性を改善する第2層形成のため、化成処理液に多孔層を形成するシリカ微粒子を添加する。 A dissolution reaction of iron is indispensable for the formation of an insoluble oxide film having good adhesion in the first layer, but the dissolved iron component forms an oxide having a small film strength when the liquid is dried. In particular, when the treatment liquid is applied in a state where the temperature of the steel material is low, rust (iron oxide layer) having a small film strength increases and the adhesion is lowered, so that the treatment temperature needs to be 40 ° C. or higher. Further, even if the temperature of the steel material is too high, a uniform reaction cannot be obtained, so the temperature is set to 80 ° C. or lower. However, even when the treatment liquid is applied at a temperature of 40 to 80 ° C., it is difficult to completely suppress the iron oxide layer having a small film strength that inhibits the adhesion of the coating film on the reactive oxide layer. Therefore, in the present invention, silica fine particles forming a porous layer are added to the chemical conversion treatment liquid in order to form a second layer for improving adhesion.

多孔層を形成するためのシリカ微粒子としては、液相法により合成した5~50nm径の1次粒子が線状につらなり凝集体(2次粒子径:40~150nm)を形成する線状シリカ(パールネックレス状を含む)を用いると良い。予め強く結合した線状構造を持つシリカを用いることで凝集力が増すと同時に鉄酸化物と供に多孔状の混合被膜を形成し、その上の塗料であるエポキシ樹脂層との密着性を向上させる。シリカ微粒子としては、例えば日産化学のスノーテックス(登録商標)-OUP、スノーテックス(登録商標)PS-SO、スノーテックス(登録商標)PS-MO、スノーテックス(登録商標)AK-PS-S、日揮触媒化成のCataloid S-20L、等を用いることができる。
多孔層に占める多孔状物の断面積の割合は30~80%が適する。この範囲をはずれると、その上に塗装するエポキシ樹脂の浸透・充填が不十分となり塗装層との密着力が低下する。
気相法シリカ微粒子も多孔状被膜は形成されるが、気相法シリカでは数10nmの1次粒子が結合して空隙の多い比重の軽い凝集体を形成しており、非常に嵩高く、凝集体同士の結合力が弱いため十分な被膜の強度が得られない。このため、密着力は前述の線状(パールネックレス状を含む)シリカよりも劣る。
一方、例えば凝集体を形成しない液相法の単粒子シリカでは本発明の必要条件である塗膜との密着に必要な多孔層が形成されない。
As the silica fine particles for forming the porous layer, linear silica (secondary particle diameter: 40 to 150 nm) in which primary particles having a diameter of 5 to 50 nm synthesized by the liquid phase method are linearly arranged to form an aggregate (secondary particle diameter: 40 to 150 nm). (Including pearl necklace) is recommended. By using silica having a linear structure strongly bonded in advance, the cohesive force is increased, and at the same time, a porous mixed film is formed together with the iron oxide, and the adhesion with the epoxy resin layer which is the paint on the silica is improved. Let me. Examples of silica fine particles include Nissan Chemical's Snowtex (registered trademark) -OUP, Snowtex (registered trademark) PS-SO, Snowtex (registered trademark) PS-MO, and Snowtex (registered trademark) AK-PS-S. Catalog S-20L of JGC Catalysts and Chemicals, etc. can be used.
The ratio of the cross-sectional area of the porous material to the porous layer is preferably 30 to 80%. If it deviates from this range, the penetration and filling of the epoxy resin to be coated on it will be insufficient, and the adhesion to the coating layer will decrease.
A porous film is also formed in the vapor phase silica fine particles, but in the vapor phase silica, primary particles having a diameter of several tens of nm are bonded to form an agglomerate having many voids and a light specific density, which is very bulky and coagulated. Sufficient film strength cannot be obtained because the bonding force between the aggregates is weak. Therefore, the adhesion is inferior to the above-mentioned linear (including pearl necklace-like) silica.
On the other hand, for example, in the liquid phase single particle silica that does not form aggregates, the porous layer required for adhesion to the coating film, which is a necessary condition of the present invention, is not formed.

化成処理液中のジルコンフッ化水素酸又はチタンフッ化水素酸の質量濃度A、線状シリカ微粒子の質量濃度Bとした時にB/Aの添加量比を0.2~2.5で添加する。添加量比が0.2に満たない、あるいは2.5を越えた場合にはジルコンフッ化水素酸又はチタンフッ化水素酸によって生じる脆弱な鉄酸化物層と、その鉄酸化物内部に網目状の補強骨格として入るシリカ微粒子の量が少なすぎると有効な補強にならず、また多すぎると上部がシリカ微粒子のみの構造となることから、同様に弱い膜となって密着性が低下する。 When the mass concentration A of zircon hydrofluoric acid or titanium hydrofluoric acid in the chemical conversion treatment liquid and the mass concentration B of the linear silica fine particles are set, the addition amount ratio of B / A is 0.2 to 2.5. When the addition amount ratio is less than 0.2 or more than 2.5, a fragile iron oxide layer generated by zircon hydrofluoric acid or titanium hydrofluoric acid and a mesh-like reinforcement inside the iron oxide. If the amount of silica fine particles entering as a skeleton is too small, it will not be effective reinforcement, and if it is too large, the upper part will have a structure of only silica fine particles, so that the film will be weak and the adhesion will be reduced.

更に化成処理液にシランカップリング剤を添加しても問題無い。但し、シランカップリング剤の分子構造中にアミノ基やイソシアネート基を有すると化成処理被膜の構造が変化するため、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルトリエトキシシラン等のエポキシ基を有するシランカップリング剤を用いるのが良い。 Further, there is no problem even if a silane coupling agent is added to the chemical conversion treatment liquid. However, if the molecular structure of the silane coupling agent has an amino group or an isocyanate group, the structure of the chemical conversion coating film changes. Therefore, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane and 3-glycidoxypropyl It is preferable to use a silane coupling agent having an epoxy group such as methyldimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, and 3-glycidoxypropyltriethoxysilane.

化成処理液の鋼材への塗布方法に関しては、スプレー、刷毛、ロール、流し塗り後のしごき等、塗布量を調整出来る方法であれば何でも良い。この時の膜厚管理としては、接着性に影響の大きいシリカの付着量で管理を行い、第2層に密着性の良い断面TEMで観察される0.2~2μmの膜厚が得られるように100~500mg/mの付着量範囲で塗布するのが好ましい。付着量が100mg/m未満では処理の効果が充分得られない場合があり、500mg/mを大きく超えると化成処理被膜のシリカ微粒子を主とする2層目の部分の強度が低下することにより密着力が低下する場合がある。シリカの付着量測定には蛍光X線分析装置を用いると容易に測定可能である。蛍光X線分析装置は、近年性能が向上し、大気中でも軽元素までの分析が出来るようになって来ている。このため予め鋼板表面を溶解して化学分析を行って検量線を作製して利用する。 As for the method of applying the chemical conversion treatment liquid to the steel material, any method such as spraying, brushing, rolling, ironing after casting, etc., which can adjust the coating amount may be used. At this time, the film thickness is controlled by the amount of silica adhered, which has a large effect on the adhesiveness, so that the film thickness of 0.2 to 2 μm observed by the cross-sectional TEM having good adhesion to the second layer can be obtained. It is preferable to apply the mixture in an adhesion range of 100 to 500 mg / m 2 . If the adhesion amount is less than 100 mg / m 2 , the effect of the treatment may not be sufficiently obtained, and if it greatly exceeds 500 mg / m 2 , the strength of the second layer mainly composed of silica fine particles of the chemical conversion treatment coating decreases. May reduce the adhesion. The amount of silica adhered can be easily measured by using a fluorescent X-ray analyzer. The performance of fluorescent X-ray analyzers has improved in recent years, and it has become possible to analyze even light elements even in the atmosphere. Therefore, the surface of the steel sheet is melted in advance and chemical analysis is performed to prepare a calibration curve for use.

次に、上記化成処理液を塗布して形成した化成処理被膜の上に施す塗装層について説明する。塗装層の形成には防食性、接着性に優れるエポキシ樹脂を用いた塗料を用いることができる。この時、高い防食性を得るためには100μm以上の膜厚を確保する必要があることから、厚膜を確保し易い粉体型のエポキシ樹脂塗料を用いて塗装する。粉体エポキシ樹脂塗料の主成分のビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂を単独、もしくは混合し、更に多官能性のフェノールノボラックやハロゲン化エポキシ樹脂を組み合わせたものに、フェノール系硬化剤を組み合わせたものが一般的である。硬化速度はアミン系やイミダゾール化合物、ジシアンジアミド等を添加して調整する。さらに無機顔料を全体積に対して3~30vol%の範囲で添加してもよい。無機顔料として、シリカ、酸化チタン、ウォラストナイト、マイカ、タルク、カオリン、酸化クロム、ホウ酸亜鉛、燐酸亜鉛等の顔料、もしくは亜鉛、Al等の金属粉、あるいはセラミック粉等、その他にバナジウムリン系化合物等の防錆顔料を適宜用いることができる。粉体エポキシ樹脂塗料は、国内では、日本ペイント株式会社、もしくは関西ペイント株式会社から入手できる。海外では、JOUTAN、KCC、Arsonnsisi、3M Co.、等のメーカーで鋼管被覆用として販売されている銘柄を適宜用いることができる。 Next, a coating layer applied on the chemical conversion coating film formed by applying the chemical conversion treatment liquid will be described. A paint using an epoxy resin having excellent corrosion resistance and adhesiveness can be used to form the coating layer. At this time, since it is necessary to secure a film thickness of 100 μm or more in order to obtain high corrosion resistance, coating is performed using a powder-type epoxy resin paint that makes it easy to secure a thick film. A phenol-based curing agent is added to a mixture of bisphenol A-type epoxy resin and bisphenol F-type epoxy resin, which are the main components of powdered epoxy resin paint, alone or in combination, and further combined with polyfunctional phenol novolac and halogenated epoxy resin. A combination is common. The curing rate is adjusted by adding an amine-based compound, an imidazole compound, dicyandiamide, or the like. Further, the inorganic pigment may be added in the range of 3 to 30 vol% with respect to the total volume. As inorganic pigments, pigments such as silica, titanium oxide, wollastonite, mica, talc, kaolin, chromium oxide, zinc borate, zinc phosphate, metal powders such as zinc and Al, ceramic powders, etc., and vanadium phosphorus. A rust-preventive pigment such as a system compound can be appropriately used. The powder epoxy resin paint can be obtained from Nippon Paint Co., Ltd. or Kansai Paint Co., Ltd. in Japan. Overseas, JOUTAN, KCC, Arsonnissi, 3M Co., Ltd. Brands sold for steel pipe coating by manufacturers such as, etc. can be appropriately used.

本発明の塗装鋼材では、粉体エポキシ樹脂塗料を、化成処理後に160~270℃に加熱した鋼材に静電粉体塗装機を用いて塗布することができる。厚みは、通常100μm~500μmである。100μm未満の厚みは、未塗装部分(ピンホール)が出来るために防食欠陥部となり好ましくない。また厚みが500μmを超えると、塗膜の内部応力の増加とコストの面から好ましくない。粉体エポキシ樹脂塗料は一度溶融状態となることで、2層構造の化成処理被膜の2層目の多孔状のシリカ被膜に浸透して、化成処理被膜と一体化する。これにより、塗装膜と鋼材の高い密着性が得られる。 In the coated steel material of the present invention, the powder epoxy resin paint can be applied to a steel material heated to 160 to 270 ° C. after chemical conversion treatment using an electrostatic powder coating machine. The thickness is usually 100 μm to 500 μm. A thickness of less than 100 μm is not preferable because an unpainted portion (pinhole) is formed, which is an anticorrosion defect portion. Further, if the thickness exceeds 500 μm, it is not preferable from the viewpoint of an increase in internal stress of the coating film and cost. Once the powder epoxy resin paint is in a molten state, it permeates into the porous silica coating of the second layer of the chemical conversion treatment coating having a two-layer structure and is integrated with the chemical conversion treatment coating. As a result, high adhesion between the coating film and the steel material can be obtained.

有機樹脂塗装として3層ポリオレフィン樹脂塗装を行う場合は、粉体エポキシ樹脂塗料を塗布後、更に変性ポリオレフィン接着剤を介してポリオレフィン樹脂を積層する。変性ポリオレフィン接着剤は、ポリエチレン、ポリプロピレンなどの公知のポリオレフィン類を無水マレイン酸で変性したもの、あるいはオレフィン類と無水マレイン酸との共重合体、オレフィン類とアクリル酸エステルと、無水マレイン酸との共重合体を用いる。その後に被覆するポリオレフィン樹脂と異種のポリオレフィン樹脂を用いる(例えばポリエチレンとポリプロピレン)と、接着に問題が生じるので、同種のポリオレフィンを変性したものが好ましい。 When a three-layer polyolefin resin coating is performed as an organic resin coating, a powder epoxy resin paint is applied, and then the polyolefin resin is further laminated via a modified polyolefin adhesive. The modified polyolefin adhesive is obtained by modifying known polyolefins such as polyethylene and polypropylene with maleic anhydride, a copolymer of olefins and maleic anhydride, olefins and acrylic acid ester, and maleic anhydride. A copolymer is used. If a polyolefin resin to be coated thereafter and a polyolefin resin of a different type are used (for example, polyethylene and polypropylene), a problem occurs in adhesion, so that a modified polyolefin of the same type is preferable.

熱可塑性の変性ポリオレフィン接着剤は、ペレットで供給される場合、押出機を用いて加熱溶融した接着剤樹脂ダイスを用いてフィルム状にして塗装する。その他、変性ポリオレフィン接着剤を粉砕して粉体化し塗布する方法もある。これらの方法により0.1~0.4mmの膜厚の接着剤層を形成する。 When supplied as pellets, the thermoplastic modified polyolefin adhesive is coated in a film form using an adhesive resin die that has been heated and melted using an extruder. In addition, there is also a method of crushing the modified polyolefin adhesive into powder and applying it. By these methods, an adhesive layer having a film thickness of 0.1 to 0.4 mm is formed.

変性ポリオレフィン接着剤層の上に積層するポリオレフィン樹脂としては、例えば、低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、直鎖状低密度ポリエチレン、ポリプロピレンなどの従来公知のポリオレフィン樹脂、並びにエチレン-プロピレンブロックまたはランダム共重合体、ポリアミド-プロピレンブロック又はランダム共重合体等の公知のポリオレフィン共重合体を含む樹脂を挙げることができる。 Examples of the polyolefin resin laminated on the modified polyolefin adhesive layer include conventionally known polyolefin resins such as low-density polyethylene, medium-density polyethylene, high-density polyethylene, linear low-density polyethylene, and polypropylene, and ethylene-propylene blocks. Alternatively, a resin containing a known polyolefin copolymer such as a random copolymer, a polyamide-propylene block or a random copolymer can be mentioned.

ポリオレフィン樹脂層には、ポリオレフィン樹脂以外の成分として、耐熱性、耐候性対策として、カーボンブラック又はその他の着色顔料、充填強化剤、酸化防止剤、紫外線吸収剤、ヒンダードアミン系の耐候剤等を任意に組み合わせて添加することができる。 In the polyolefin resin layer, carbon black or other coloring pigments, filling enhancers, antioxidants, ultraviolet absorbers, hindered amine-based weather resistant agents, etc. can be optionally added as components other than the polyolefin resin as heat resistance and weather resistance measures. It can be added in combination.

ポリオレフィン樹脂を、変性ポリオレフィン接着剤と同様の押出し被覆方法でJIS G3469-1に規定される最小全膜厚である1.2mm以上になるように塗装する。ポリオレフィン樹脂層は厚い程、耐疵性と防食性に優れるが、厚膜になると内部応力が大きくなるため、5mm以下が望ましい。 The polyolefin resin is coated by the same extrusion coating method as the modified polyolefin adhesive so as to have a minimum total film thickness of 1.2 mm or more specified in JIS G3469-1. The thicker the polyolefin resin layer, the better the flaw resistance and corrosion resistance, but the thicker the film, the larger the internal stress, so 5 mm or less is desirable.

以下、本発明を表1及び表2に基づき、実施例によって具体的に説明する。
〔化成処理液の調製〕
本発明の実施例1~12及び17、処理成分又は処理条件が異なる比較例1~8、特許文献2に相当する比較例10及び14、の化成処理液の原料としては、森田化学工業製のチタンフッ化水素酸溶液(40%)を用いた。一方、本発明の実施例13~16及び18の化成処理液の原料には同じく森田化学工業製のジルコンフッ化水素酸溶液(40%)を用いた。次に実施例1~18、比較例1~6に用いる液相法の線状シリカは日産化学製のスノーテックス(登録商標)PS-MOを用いた。比較例7の液相法単粒子シリカ微粒子としては液相法で合成された日産化学製のスノーテックス(登録商標)O、比較例8、11、15の乾式法シリカ微粒子としては気相法で合成された日本アエロジル製のAEROSIL(登録商標) 200を使用した。添加金属としては酸化物を用い、酸化アルミニウム、酸化亜鉛、酸化マグネシウムの粉末を添加して溶解させた。比較例10、14の硝酸ジルコニウム、比較例11,15の重リン酸マグネシウムは市販の試薬を使用した。
比較例10、14として、特許文献2表1の実施例17に相当する処理液を製造した。これはチタンフッ化水素酸4N溶液でチタンフッ化水素酸は分子量が163.9なのでグラム当量を82として計算し、森田化学工業製のチタンフッ化水素酸 40%溶液(比重1.38)の1リットルに対して、0.68リットルの水を加えて1.68倍とした希釈溶液を用い、これに硝酸ジルコニウムを5重量%加えて調整した。
また、比較例11、15として特許文献3に示される、塗布型の化成処理溶液として重リン酸マグネシウム溶液と気相法で合成された日本アエロジル製のAEROSIL(登録商標) 200を混合して1:1となるように調整した。)
比較例12、16として特許文献5の実施例6に相当する化成処理液としては、炭酸ジルコニウムアンモニウムをジルコニウム濃度で7%、メタバナジン酸アンモニウムをバナジウム濃度で0.0022%、第2リン酸アンモニウムをPO濃度で0.74%、3-グリシドキシプロピルトリメトキシシランを1.5%で調整した。塗布温度は実施例と同じく60℃とし、ジルコニウム付着量で800mg/mとなるように塗布した。
Hereinafter, the present invention will be specifically described with reference to Tables 1 and 2.
[Preparation of chemical conversion treatment liquid]
The raw materials for the chemical conversion treatment liquids of Examples 1 to 12 and 17 of the present invention, Comparative Examples 1 to 8 having different treatment components or treatment conditions, and Comparative Examples 10 and 14 corresponding to Patent Document 2 are manufactured by Morita Chemical Industries, Ltd. A titanium hydrofluoric acid solution (40%) was used. On the other hand, a zircon hydrofluoric acid solution (40%) also manufactured by Morita Chemical Industries, Ltd. was used as a raw material for the chemical conversion treatment liquids of Examples 13 to 16 and 18 of the present invention. Next, Snowtex (registered trademark) PS-MO manufactured by Nissan Chemical Industries, Ltd. was used as the linear silica of the liquid phase method used in Examples 1 to 18 and Comparative Examples 1 to 6. As the liquid phase method single particle silica fine particles of Comparative Example 7, Snowtex (registered trademark) O manufactured by Nissan Chemical Co., Ltd. synthesized by the liquid phase method, and as the dry method silica fine particles of Comparative Examples 8, 11 and 15, the vapor phase method was used. Synthesized AEROSIL® 200 manufactured by Aerosil Japan was used. Oxide was used as the added metal, and powders of aluminum oxide, zinc oxide, and magnesium oxide were added and dissolved. Commercially available reagents were used for zirconium nitrate of Comparative Examples 10 and 14 and magnesium heavy phosphate of Comparative Examples 11 and 15.
As Comparative Examples 10 and 14, treatment liquids corresponding to Example 17 in Table 1 of Patent Document 2 were produced. This is a 4N solution of titanium hydrofluoride, and since titanium hydrofluoride has a molecular weight of 163.9, the gram equivalent is calculated as 82, and it is added to 1 liter of a 40% solution of hydrogen fluoride (specific gravity 1.38) manufactured by Morita Chemical Industry. On the other hand, 0.68 liters of water was added to make a 1.68-fold diluted solution, and 5% by weight of zirconium nitrate was added thereto to prepare the solution.
Further, as Comparative Examples 11 and 15, AEROSIL (registered trademark) 200 manufactured by Aerosil Japan, which was synthesized by the vapor phase method, was mixed with a magnesium dibasic phosphate solution as a coating type chemical conversion treatment solution. It was adjusted to be 1. )
As the chemical conversion treatment liquid corresponding to Example 6 of Patent Document 5 as Comparative Examples 12 and 16, zirconium carbonate ammonium carbonate was used at a zirconium concentration of 7%, ammonium metavanadate was used at a vanadium concentration of 0.0022%, and second ammonium phosphate was used. The PO4 concentration was adjusted to 0.74%, and 3 -glycidoxypropyltrimethoxysilane was adjusted to 1.5%. The coating temperature was set to 60 ° C. as in the examples, and the zirconium was applied so as to have an adhesion amount of 800 mg / m 2 .

〔実施例、比較例の作製方法〕
鋼材として鋼管は200AのJISG3452の配管用炭素鋼管5.5m長を用いた。鋼管外面にブラスト処理を行って除錆した。鋼管を加温後、本発明の実施例及び比較例の化成処理液を刷毛で塗布して乾燥した。一部の水洗工程を含む比較例については、十分な水道水で粗洗浄した後に純水で洗浄後、熱風乾燥を行った。
[Methods for producing Examples and Comparative Examples]
As the steel material, a 200A JISG3452 carbon steel pipe for piping with a length of 5.5 m was used. The outer surface of the steel pipe was blasted to remove rust. After heating the steel pipe, the chemical conversion treatment liquids of Examples and Comparative Examples of the present invention were applied with a brush and dried. For the comparative example including a part of the washing steps, after rough washing with sufficient tap water, washing with pure water, and then hot air drying were performed.

有機樹脂塗装として3層ポリオレフィン樹脂塗装を行う場合は、化成処理後の鋼管を200℃に加温後、粉体エポキシ樹脂塗料(3M製226N 8G)を、目標膜厚200μmで静電粉体塗装を実施した。その後、変性ポリエチレン接着剤(ADMERTM NE065、三井化学製)とポリエチレン(NOVATECTM ER002S、日本ポリエチレン製)のペレットを押出機とTダイスを用いてシート状の半溶融状態成形し、巻き付け被覆を行った。接着剤膜厚は200μm、ポリエチレン膜厚は3mmになるように調整した。その後、外面水冷を行って本発明の実施例1~16及び比較例1~12の3層ポリオレフィン樹脂塗装鋼管を製造した。
有機樹脂塗装として粉体エポキシ樹脂のみを塗装する場合は、化成処理後の鋼管を220℃に加温後、粉体エポキシ樹脂塗料(3M製226N 8G)を、目標膜厚350μmで静電粉体塗装を実施した後、水冷を行って、本発明の実施例17,18及び比較例13~16の粉体エポキシ樹脂塗装鋼管を製造した。
When performing 3-layer polyolefin resin coating as organic resin coating, heat the steel tube after chemical conversion treatment to 200 ° C, and then apply powder epoxy resin paint (226N 8G manufactured by 3M) to electrostatic powder coating with a target thickness of 200 μm. Was carried out. After that, pellets of modified polyethylene adhesive (ADMER TM NE065, manufactured by Mitsui Chemicals) and polyethylene (NOVATEC TM ER002S, manufactured by Japan Polyethylene) were formed into a sheet-like semi-molten state using an extruder and a T-die, and wrapped and coated. rice field. The adhesive film thickness was adjusted to 200 μm, and the polyethylene film thickness was adjusted to 3 mm. Then, the outer surface was water-cooled to produce the three-layer polyolefin resin-coated steel pipes of Examples 1 to 16 and Comparative Examples 1 to 12 of the present invention.
When coating only powder epoxy resin as organic resin coating, heat the steel pipe after chemical conversion treatment to 220 ° C, and then apply powder epoxy resin paint (226N 8G made by 3M) to electrostatic powder with a target thickness of 350 μm. After coating, water cooling was performed to produce powder epoxy resin-coated steel pipes of Examples 17 and 18 and Comparative Examples 13 to 16 of the present invention.

〔シリカ付着量測定〕
化成処理の膜厚目安として、化成処理後にマスキングを行って樹脂を塗装しない部分を作り、5×5cmのクーポン状に切断加工して膜厚測定用試験片を作製した。試験片は予めシリカ付着量での検量線を作製した蛍光X線装置(XGT-7200V:堀場製作所製)で1試料に付き9点測定して平均した。
〔被膜の分析〕
実施例、比較例の塗装鋼材の一部を切り出し、透過型電子顕微鏡(TEM)として日本電子製JEM-2100Fを用いて化成処理被膜の断面構造を観察した。得られた画像を数値化して画像解析によって多孔質第2層の断面占有率を求めた。また、エネルギー分散型X線分析(EDS分析)装置として日本電子製のJED-2300Tを用いて、化成処理の第1層と第2層についてプローブ径約2nmで元素分析を行った。計測は5点行い、測定の中央値によって元素比率の代表値とした。
〔評価試験方法〕
陰極剥離試験としては製造した3層ポリオレフィン樹脂塗装鋼管及び粉体エポキシ樹脂塗装鋼管を長さ方向に150mm、円周方向に8分割して試験片を作製した。作製した1水準に対して3個の試験片をISO 21809のAnnex H に示される方法で試験片中央の塗膜にドリルで穴を開けた後に試験用セルを立て、内部に3%食塩水電解液を満たした後に全体を60℃のオーブンに入れて温度を制御し、銀塩化銀電極に対して-1.45Vの陰極防食を鋼材露出部に施した。試験を30日行った後に3層ポリオレフィン樹脂塗装鋼管ではポリオレフィンを除去し、穴を中心として8方向にカッターでプライマーに切り込みを入れ、プライマーを疵穴部からはつって容易に剥離する陰極剥離部分を露出させた。剥離直径を4方向で測定して平均し、初期穴からの剥離距離を算出した。粉体エポキシ樹脂塗装鋼管についても同様の手順で評価を行った。剥離距離が13mm未満を合格とした。
更に、密着性及び防食性能を確認する方法として、前述の8分割した150mm長の試験サンプルを80℃の温水に50日間浸漬し、塗膜の切断端面からの剥離距離(mm)を測定した。剥離距離が5mm未満のものを合格とした。
以上の実施例及び比較例の試験結果を表1及び表2に示す。
[Measurement of silica adhesion]
As a guideline for the film thickness of the chemical conversion treatment, masking was performed after the chemical conversion treatment to prepare a portion not coated with the resin, and a 5 × 5 cm coupon was cut to prepare a test piece for film thickness measurement. The test pieces were averaged by measuring 9 points per sample with a fluorescent X-ray apparatus (XGT-7200V: manufactured by HORIBA, Ltd.) in which a calibration curve with the amount of silica adhered was prepared in advance.
[Analysis of coating]
A part of the coated steel material of Examples and Comparative Examples was cut out, and the cross-sectional structure of the chemical conversion coating film was observed using JEM-2100F manufactured by JEOL as a transmission electron microscope (TEM). The obtained image was quantified and the cross-sectional occupancy of the porous second layer was obtained by image analysis. Further, using JED-2300T manufactured by JEOL as an energy dispersive X-ray analysis (EDS analysis) apparatus, elemental analysis was performed on the first layer and the second layer of the chemical conversion treatment with a probe diameter of about 2 nm. Five points were measured, and the median value of the measurement was used as the representative value of the element ratio.
[Evaluation test method]
As a cathode peeling test, the manufactured three-layer polyolefin resin-coated steel tube and powder epoxy resin-coated steel tube were divided into eight parts in the length direction and the circumferential direction to prepare test pieces. After drilling holes in the coating film in the center of the test piece by the method shown in Annex H of ISO 21809, set up a test cell for 3 test pieces for the prepared level, and electrolyze 3% saline solution inside. After filling the liquid, the whole was placed in an oven at 60 ° C. to control the temperature, and a cathode corrosion protection of −1.45 V was applied to the exposed portion of the steel material with respect to the silver chloride electrode. After performing the test for 30 days, the polyolefin is removed from the 3-layer polyolefin resin coated steel pipe, the primer is cut in 8 directions around the hole with a cutter, and the primer is easily peeled off from the flawed hole. Was exposed. The peeling diameter was measured in four directions and averaged to calculate the peeling distance from the initial hole. The powder epoxy resin coated steel pipe was also evaluated by the same procedure. A peeling distance of less than 13 mm was regarded as acceptable.
Further, as a method for confirming the adhesion and the anticorrosion performance, the above-mentioned eight-divided 150 mm long test sample was immersed in warm water at 80 ° C. for 50 days, and the peeling distance (mm) from the cut end face of the coating film was measured. Those with a peeling distance of less than 5 mm were considered acceptable.
The test results of the above Examples and Comparative Examples are shown in Tables 1 and 2.

Figure 0007090507000001
Figure 0007090507000001

Figure 0007090507000002
Figure 0007090507000002

〔実施例、比較例の内容〕
本発明の実施例1~4と比較例1~3は処理液成分のシリカ添加量比範囲を示すもので、添加量比(B/A)の適正範囲は0.2~2.5である。本発明の実施例2及び実施例5~7では化成処理のシリカ付着量の範囲を示すもので、実施例7で付着量が多い場合には陰極剥離性能が悪くなることから、100~500mg/mがより適正な範囲である。
本発明の実施例8~9、比較例4~5は化成処理液塗布時の鋼材の温度範囲を示すもので、適正な温度範囲である40~80℃を外れた比較例4、5では本発明の化成処理被膜を形成することが難しく、陰極剥離性及び端部剥離性が悪くなる。
比較例6は化成処理後に本発明の処理方法とは異なる水洗を行った処理工程を示すもので、陰極剥離性及び端部剥離性が悪い。
実施例10~12は化成処理の成分として添加金属成分無し、あるいは亜鉛、マグネシウムを用いた例であり、いずれも性能が良好である。
比較例7、8は化成処理の処理成分であるシリカ微粒子に本発明に必要な粒状物が連結した多孔状層を形成しないシリカ微粒子を使用した例であり、陰極剥離性及び端部剥離性が悪い。
比較例9、13は化成処理の無い場合、比較例10、14は特許文献2に相当する洗浄処理、比較例11、15は特許文献3に相当するリン酸系の塗布型化成処理、比較例12、16は特許文献5の例であり、いずれも陰極剥離性及び端部剥離性が悪い。
実施例13~16、18はチタンフッ化水素酸に代えて、ジルコンフッ化水素酸を用いた本発明の化成処理を使用した例であり、いずれも性能が良好である。
実施例17は実施例2と同じ化成処理で、塗装が3層ポリオレフィン樹脂に対して粉体エポキシ樹脂の場合である。
[Contents of Examples and Comparative Examples]
Examples 1 to 4 and Comparative Examples 1 to 3 of the present invention show the silica addition amount ratio range of the treatment liquid component, and the appropriate range of the addition amount ratio (B / A) is 0.2 to 2.5. .. In Examples 2 and 5 to 7 of the present invention, the range of the silica adhesion amount in the chemical conversion treatment is shown. In Example 7, if the adhesion amount is large, the cathode peeling performance is deteriorated. Therefore, 100 to 500 mg / mg / m 2 is a more appropriate range.
Examples 8 to 9 and Comparative Examples 4 to 5 of the present invention show the temperature range of the steel material at the time of coating the chemical conversion treatment liquid, and in Comparative Examples 4 and 5 outside the appropriate temperature range of 40 to 80 ° C. It is difficult to form the chemical conversion treatment film of the present invention, and the cathode peeling property and the edge peeling property are deteriorated.
Comparative Example 6 shows a treatment step in which water washing is performed after the chemical conversion treatment, which is different from the treatment method of the present invention, and the cathode peeling property and the edge peeling property are poor.
Examples 10 to 12 are examples in which no additive metal component is used or zinc and magnesium are used as the components of the chemical conversion treatment, and all of them have good performance.
Comparative Examples 7 and 8 are examples in which silica fine particles that do not form a porous layer in which the granules required for the present invention are linked to silica fine particles that are treatment components of chemical conversion treatment are used, and have excellent cathode peeling property and edge peeling property. bad.
In Comparative Examples 9 and 13, when there is no chemical conversion treatment, Comparative Examples 10 and 14 are cleaning treatments corresponding to Patent Document 2, and Comparative Examples 11 and 15 are phosphoric acid-based coating type chemical conversion treatments corresponding to Patent Document 3, Comparative Examples. 12 and 16 are examples of Patent Document 5, and both have poor cathode peeling property and edge peeling property.
Examples 13 to 16 and 18 are examples in which the chemical conversion treatment of the present invention using zircon hydrofluoric acid was used instead of titanium hydrofluoric acid, and all of them have good performance.
Example 17 is the same chemical conversion treatment as in Example 2, and the coating is a powder epoxy resin with respect to a three-layer polyolefin resin.

〔実施例、比較例の評価の結果〕
表1及び表2の結果から明らかな様に、本発明の化成処理液成分と処理工程を行った実施例によって本発明の2層化成処理被膜が鋼材上に形成され、高温の陰極剥離や浸漬での耐剥離性能が無処理、あるいは他の処理である比較例に比べて優れている。従来技術である洗浄処理工程のある特許文献2に相当する比較例では有効な処理被膜が形成されないため、陰極剥離性能や浸漬での耐剥離性能が十分では無い。一方で特許文献3に相当する比較例のリン酸系化成処理では浸漬後の剥離は小さいが、陰極剥離試験で発生するアルカリで被膜が溶解するため性能が十分では無い。これに対して特許文献5に相当する比較例のジルコニウムを主とする不溶性酸化被膜を形成する方法は、陰極剥離には有効だが、浸漬での耐剥離性能に課題があることがわかる。
[Results of evaluation of Examples and Comparative Examples]
As is clear from the results in Tables 1 and 2, the two-layer chemical conversion coating film of the present invention is formed on the steel material by the chemical conversion treatment liquid component of the present invention and the example in which the treatment step is performed, and the cathode is peeled off or immersed at a high temperature. The peeling resistance performance in the above is superior to that of the comparative example in which no treatment is performed or other treatments are used. In the comparative example corresponding to Patent Document 2 having a cleaning treatment step which is a conventional technique, an effective treatment film is not formed, so that the cathode peeling performance and the peeling resistance in immersion are not sufficient. On the other hand, in the phosphoric acid-based chemical conversion treatment of the comparative example corresponding to Patent Document 3, the peeling after immersion is small, but the performance is not sufficient because the film is dissolved by the alkali generated in the cathode peeling test. On the other hand, it can be seen that the method of forming an insoluble oxide film mainly composed of zirconium, which corresponds to Patent Document 5, is effective for cathode peeling, but has a problem in peeling resistance in immersion.

本発明の被膜構造として、実施例2の処理条件での化成処理膜断面TEM写真を図3、その元素分布分析写真を図4に示す。図3のTEM像で鋼材1の表面に化成処理被膜の酸化物被膜層2と被膜層3が形成され、その上層に樹脂層4が見られる。図4の元素分析によって鋼材1の表面の第1層には鉄、フッ素、チタン、酸素が検出され、緻密な金属酸化物が形成されていることがわかる。その上の第2層は成分が異なり、鉄、珪素、酸素が検出される。珪素は粒状で、同位置に酸素が強く検出されることから、添加したシリカ微粒子を示しており、多孔状の被膜が形成されている。第2層の隙間に炭素が検出されることから、粉体エポキシ樹脂塗料の樹脂層4と第2層の多孔状の被膜層3は一体となっていることがわかる。
以上の結果からも明らかなように、本発明の化成処理によって2層の化成処理被膜構造が形成される。これによって、ラインパイプの防食被覆に要求される高温陰極剥離性と浸漬後の耐剥離性能を両立することが可能となる。
As the coating film structure of the present invention, a TEM photograph of a cross section of the chemical conversion-treated film under the treatment conditions of Example 2 is shown in FIG. 3, and an element distribution analysis photograph thereof is shown in FIG. In the TEM image of FIG. 3, the oxide coating layer 2 and the coating layer 3 of the chemical conversion treatment coating are formed on the surface of the steel material 1, and the resin layer 4 can be seen on the upper layer thereof. By the elemental analysis of FIG. 4, iron, fluorine, titanium, and oxygen are detected in the first layer on the surface of the steel material 1, and it can be seen that a dense metal oxide is formed. The second layer above it has different components, and iron, silicon, and oxygen are detected. Since silicon is granular and oxygen is strongly detected at the same position, it indicates added silica fine particles, and a porous film is formed. Since carbon is detected in the gaps of the second layer, it can be seen that the resin layer 4 of the powder epoxy resin paint and the porous coating layer 3 of the second layer are integrated.
As is clear from the above results, a two-layer chemical conversion coating structure is formed by the chemical conversion treatment of the present invention. This makes it possible to achieve both the high-temperature cathode peeling property required for the anticorrosion coating of the line pipe and the peeling resistance after immersion.

1 鋼材
2 鉄、ジルコニウム又はチタン、フッ素、酸素からなる酸化物被膜層
3 鉄、珪素、酸素からなる多孔状の被膜層
4 粉体エポキシ樹脂層
5 変性ポリオレフィン接着剤層
6 ポリオレフィン樹脂層
1 Steel material 2 Oxide coating layer composed of iron, zirconium or titanium, fluorine and oxygen 3 Porous coating layer composed of iron, silicon and oxygen 4 Powder epoxy resin layer 5 Modified polyolefin adhesive layer 6 Polyolefin resin layer

Claims (5)

鋼材表面に、鉄、ジルコニウムあるいはチタン、フッ素及び酸素を含み、ジルコニウム元素あるいはチタン元素の比率が鉄元素に対して7%以上の比率となる酸化被膜層からなる第1層と、前記第1層の上に鉄、珪素、及び酸素を含む粒状物が連結して形成され、多孔状物が断面積の30~80%を占める多孔層からなる第2層と、さらに前記第2層の上
に積層されている塗装層が第2層の多孔の隙間に充填された構造を持つ事を特徴とする化成処理被膜を有する塗装鋼材。
A first layer composed of an oxide film layer containing iron, zirconium or titanium, fluorine and oxygen on the surface of the steel material and having a ratio of the zirconium element or the titanium element to 7% or more with respect to the iron element, and the first layer. On top of the second layer, which is formed by connecting granules containing iron, silicon, and oxygen, and the porous material occupies 30 to 80% of the cross-sectional area, and further on the second layer. A coated steel material having a chemical conversion treatment film, characterized in that the laminated coating layer has a structure in which the porous gaps of the second layer are filled.
前記請求項1の塗装鋼材表面の化成処理被膜層の第1層が、マグネシウム、亜鉛、アルミニウムから成る群より選ばれる少なくとも1種の金属を含むことを特徴とする化成処理被膜を有する塗装鋼材。 A coated steel material having a chemical conversion treatment coating, wherein the first layer of the chemical conversion treatment coating layer on the surface of the coated steel material according to claim 1 contains at least one metal selected from the group consisting of magnesium, zinc and aluminum. 前記請求項1の塗装鋼材の製造方法であって、成分として、ジルコンフッ化水素酸又はチタンフッ化水素酸、及び線状シリカ微粒子を含み、ジルコンフッ化水素酸又はチタンフッ化水素酸の質量濃度をA、線状シリカの質量濃度をBとそれぞれした時、B/Aの添加量比で0.2~2.5の範囲で含有する処理液を40℃~80℃に加熱した鋼材表面に塗布後、乾燥することで化成処理被膜を形成し、ついで前記化成処理被膜の上に塗装を行うことを特徴とする塗装鋼材の製造方法。 The method for producing a coated steel material according to claim 1, which comprises zircon hydrofluoric acid or titanium hydrofluoric acid and linear silica fine particles as components, and the mass concentration of zircon hydrofluoric acid or titanium hydrofluoric acid is A. When the mass concentration of linear silica is B, a treatment solution containing a B / A addition amount ratio in the range of 0.2 to 2.5 is applied to the surface of a steel material heated to 40 ° C to 80 ° C, and then applied. A method for producing a coated steel material, which comprises forming a chemical-treated coating by drying and then coating on the chemical-treated coating. 前記請求項3記載の処理液が、マグネシウム、亜鉛、アルミニウムから成る群より選ばれる少なくとも1種の金属を含み、ジルコンフッ化水素酸又はフッ化チタン水素酸の質量濃度をA、前記金属の酸化物換算での総質量濃度をCとそれぞれした時、C/Aの添加量比で0.03~0.5の範囲内であることを特徴とする、請求項3記載の化成処理被膜を有する塗装鋼材の製造方法。 The treatment liquid according to claim 3 contains at least one metal selected from the group consisting of magnesium, zinc, and aluminum, and has a mass concentration of zircon hydrofluoric acid or titanium hydrofluoric acid A, an oxide of the metal. The coating having a chemical conversion coating according to claim 3, wherein the total mass concentration in terms of conversion is in the range of 0.03 to 0.5 in terms of the addition amount ratio of C / A, respectively. Manufacturing method of steel materials. 請求項3又は4記載の塗装鋼材の製造方法において、前記第2層におけるシリカ成分分析の付着量が100~500mg/m2の範囲内である化成処理被膜を有する塗装鋼材の製造方法。 The method for producing a coated steel material according to claim 3 or 4, wherein the coated steel material has a chemical conversion coating film in which the adhesion amount of the silica component analysis in the second layer is in the range of 100 to 500 mg / m 2 .
JP2018153364A 2018-08-17 2018-08-17 Painted steel material with chemical conversion coating, and its manufacturing method Active JP7090507B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018153364A JP7090507B2 (en) 2018-08-17 2018-08-17 Painted steel material with chemical conversion coating, and its manufacturing method
CN201910729440.3A CN110835753B (en) 2018-08-17 2019-08-08 Coated steel material having chemical conversion coating and method for producing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018153364A JP7090507B2 (en) 2018-08-17 2018-08-17 Painted steel material with chemical conversion coating, and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2020026564A JP2020026564A (en) 2020-02-20
JP7090507B2 true JP7090507B2 (en) 2022-06-24

Family

ID=69574525

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018153364A Active JP7090507B2 (en) 2018-08-17 2018-08-17 Painted steel material with chemical conversion coating, and its manufacturing method

Country Status (2)

Country Link
JP (1) JP7090507B2 (en)
CN (1) CN110835753B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113118715B (en) * 2021-04-23 2022-09-06 上海明勤金属制品有限公司 Processing method of metal display rack

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004218072A (en) 2002-12-24 2004-08-05 Nippon Paint Co Ltd Pretreatment method for coating
JP2007238976A (en) 2006-03-06 2007-09-20 Nippon Parkerizing Co Ltd Non-chromate aqueous surface treating agent for surface treatment of metallic material

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200417419A (en) * 2002-12-24 2004-09-16 Nippon Paint Co Ltd Chemical conversion coating agent and surface-treated metal
JP4416167B2 (en) * 2005-03-08 2010-02-17 新日本製鐵株式会社 Chemically treated ground treatment agent for anticorrosion coated steel, chemical groundwork treatment method for anticorrosive coated steel, and anticorrosive coated steel
CN101326308B (en) * 2005-12-15 2010-09-29 日本帕卡濑精株式会社 Surface treatment for metal materials, surface treatment process, and surface- treated metal materials
KR101185997B1 (en) * 2008-07-11 2012-09-26 니혼 파커라이징 가부시키가이샤 Chemical conversion treatment solution for steel material and chemical conversion treatment method
WO2010070730A1 (en) * 2008-12-16 2010-06-24 日本パーカライジング株式会社 Surface treating agent for galvanized steel sheet
CN102257178B (en) * 2008-12-16 2014-05-07 日本帕卡濑精株式会社 Surface treating agent for metallic materials
CN101701336B (en) * 2009-11-26 2011-04-13 芜湖市瑞杰环保材料科技有限公司 Environment-friendly metal surface treating agent and using method thereof
JP5854505B2 (en) * 2010-01-29 2016-02-09 日本パーカライジング株式会社 Metal surface treatment agent and metal surface treatment method
JP5168332B2 (en) * 2010-09-24 2013-03-21 Jfeスチール株式会社 Surface treatment liquid for galvanized steel sheet, galvanized steel sheet and method for producing the same
US9073083B2 (en) * 2010-12-15 2015-07-07 Bulk Chemicals, Inc. Process and seal coat for improving paint adhesion
CN103014691A (en) * 2012-12-10 2013-04-03 中国科学院金属研究所 TiZr conversion coating/organic coating double-layered prevention method applied to steel fasteners
WO2016136834A1 (en) * 2015-02-26 2016-09-01 新日鐵住金株式会社 Metal-surface treatment agent for zinc-coated steel or zinc-based-alloy-coated steel, coating method, and coated steel
US9915006B2 (en) * 2015-07-10 2018-03-13 Yuken Industry Co., Ltd. Reactive-type chemical conversion treatment composition and production method of member with chemical conversion coated surface

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004218072A (en) 2002-12-24 2004-08-05 Nippon Paint Co Ltd Pretreatment method for coating
JP2007238976A (en) 2006-03-06 2007-09-20 Nippon Parkerizing Co Ltd Non-chromate aqueous surface treating agent for surface treatment of metallic material

Also Published As

Publication number Publication date
CN110835753A (en) 2020-02-25
JP2020026564A (en) 2020-02-20
CN110835753B (en) 2022-05-27

Similar Documents

Publication Publication Date Title
JP4416167B2 (en) Chemically treated ground treatment agent for anticorrosion coated steel, chemical groundwork treatment method for anticorrosive coated steel, and anticorrosive coated steel
JP2003105555A (en) Surface treated steel sheet having excellent white rust resistance, and production method therefor
KR20090023213A (en) Method for surface modifying hot dip coated steel materials and surface modified hot dip coated steel materials
Xia et al. Titanium conversion coatings on the aluminum foil AA 8021 used for lithium–ion battery package
JP4935103B2 (en) Surface-treated steel sheet
JP7090507B2 (en) Painted steel material with chemical conversion coating, and its manufacturing method
TW200307056A (en) Heat-resistance-treated metal sheet, organic coated metal sheet and phosphate treated zinc-based plated metal sheet each excellent in corrosion resistance
Xu et al. Microstructure and adhesion properties of cerium conversion coating modified with silane coupling agent on the aluminum foil for lithium ion battery
JP6441655B2 (en) Ground treatment liquid, method for producing organic coated galvanized steel pipe using ground treatment liquid, and organic coated galvanized steel pipe
JP6398851B2 (en) Polyolefin-coated steel with base conversion treatment
JP2000179752A (en) Coated steel pipe
JP6583012B2 (en) Polyolefin-coated steel pipe and method for producing the same
JP6623543B2 (en) Organic resin coated steel
JPH0373340A (en) Polyolefin clad steel material excellent in resistance to hot salt water
JP5293050B2 (en) Automotive parts
JP3787047B2 (en) Anticorrosive paint composition for steel
JP5640960B2 (en) Heavy duty anti-corrosion coated steel pipe
JP6607265B2 (en) Polyethylene-coated steel pipe and method for producing the same
JP3893964B2 (en) Polyethylene film coated tin alloy plated steel sheet
JP3873733B2 (en) Polyethylene film coated tinned steel sheet
Nilsson et al. Characterization of chromatized hot‐dip‐galvanized steel and 55% AlZn‐coated steel using ESCA and AES
JP4299575B2 (en) Heavy anti-corrosion coated steel with excellent anti-peeling resistance
JP2005042190A (en) Surface treated steel sheet having excellent white rust resistance
CN105814238A (en) Flat product with a coating system and process for coating said flat product
JPH08300562A (en) Polypropylene coated steel tube

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180913

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210525

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220301

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220524

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220614

R150 Certificate of patent or registration of utility model

Ref document number: 7090507

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150