JP5403186B2 - 厚鋼板の高能率溶接方法 - Google Patents

厚鋼板の高能率溶接方法 Download PDF

Info

Publication number
JP5403186B2
JP5403186B2 JP2013513458A JP2013513458A JP5403186B2 JP 5403186 B2 JP5403186 B2 JP 5403186B2 JP 2013513458 A JP2013513458 A JP 2013513458A JP 2013513458 A JP2013513458 A JP 2013513458A JP 5403186 B2 JP5403186 B2 JP 5403186B2
Authority
JP
Japan
Prior art keywords
welding
electrode
less
groove
test
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013513458A
Other languages
English (en)
Other versions
JPWO2013073565A1 (ja
Inventor
一浩 児嶋
哲郎 野瀬
裕滋 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2013513458A priority Critical patent/JP5403186B2/ja
Application granted granted Critical
Publication of JP5403186B2 publication Critical patent/JP5403186B2/ja
Publication of JPWO2013073565A1 publication Critical patent/JPWO2013073565A1/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/18Submerged-arc welding
    • B23K9/186Submerged-arc welding making use of a consumable electrodes
    • B23K9/188Submerged-arc welding making use of a consumable electrodes making use of several electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3053Fe as the principal constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3053Fe as the principal constituent
    • B23K35/3093Fe as the principal constituent with other elements as next major constituents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/36Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
    • B23K35/3601Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest with inorganic compounds as principal constituents
    • B23K35/3602Carbonates, basic oxides or hydroxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/36Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
    • B23K35/3601Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest with inorganic compounds as principal constituents
    • B23K35/3607Silica or silicates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/36Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
    • B23K35/3601Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest with inorganic compounds as principal constituents
    • B23K35/361Alumina or aluminates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/36Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
    • B23K35/362Selection of compositions of fluxes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/23Arc welding or cutting taking account of the properties of the materials to be welded
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium

Description

本発明は、寒冷地に設置される風力発電設備の基礎部分を効率的に溶接施工できるような溶接技術に関する。
本願は、2011年11月15日に、日本に出願された特願2011−249928号に基づき優先権を主張し、その内容をここに援用する。
エネルギー供給の多様化を目指し、再生可能エネルギーの分野では、様々な研究開発が近年行われている。その有力候補の1つである風力発電に関して、より発電量の高い大型設備が注目されている。設備の大型化にともない、風車が設置される基礎部分では、設備の重量に耐える必要から、板厚が50mmから75mm程度の厚鋼板の使用が検討されている。将来的に、更なる極厚鋼板の使用、具体的には100mm程度の極厚鋼板の使用も考えられる状況である。風力発電用の厚鋼板の強度(引張強さ)のレベルは、一般的には400MPa以上700MPa以下である。450MPa以上650MPa以下の引張強さの鋼材が多く使用され、特に480MPa以上620MPa以下の引張強さの厚鋼板が使用されることが多い。
風力発電が今後広く普及するか否かは、経済合理性が重要である。この観点から、風力発電の基礎部における施工コスト削減も重要な課題であり、溶接の分野でもそのような厚鋼板を高能率で溶接施工することが求められている。
厚鋼板を高能率で溶接施工する方法の1つに大入熱溶接がある。しかし、大入熱溶接では、溶接金属の靭性確保が困難な場合も多い。しかも、風力発電設備が設置される場所は、欧州海洋区域のような寒冷地であることも考えられ、溶接金属に低温靭性も求められる。
このため、上述の社会的ニーズを満足するために、50mm超の厚鋼板を大入熱溶接しても、寒冷地での稼働にも耐え得る靭性の優れた溶接金属が得られるような溶接技術が必要となる。
従来の厚鋼板を大入熱溶接する技術としては、次のようなものが知られている。
例えば、特許文献1において、70mm厚の厚鋼板を片面1層で溶接できるサブマージアーク溶接方法が開示されている。
しかしながら、この方法は片面溶接であるため、開先断面積が非常に広く、780kJ/cmと溶接入熱も非常に高い。特許文献1で、溶接金属の靭性は開示されていないが、建築用途であることを考えれば0℃での靭性に対応するものと考えられ、寒冷地での使用に適さないと推測される。
特許文献2においても、建築はボックス柱を対象として大入熱サブマージアーク溶接が行われている。しかし、溶接金属のシャルピー試験は−5℃で評価されているにすぎず、しかも、特許文献1と同様に片面溶接であるため入熱が過大となるものと推測される。
溶接金属の靭性確保には、開先断面積を極力狭くすることで、不必要に大きな入熱を用いないことが有効である。開先断面積を抑制するためには、X開先のように鋼材の表裏両側から開先を加工したほうが、片面から開先を加工するより開先断面積を抑制できる。
このようなX開先を用いた両面1層溶接方法に関する技術としては、次のようなものが知られている。
例えば特許文献3では、両面1層溶接による溶接鋼管の製造方法として、板厚38mmまでの検討結果が開示されている。しかし、風力発電で使用されるようは極厚鋼板の溶接知見は記載されていない。
また、特許文献4では50mmの板厚が両面1層溶接で検討されている。しかし、風力発電では50mm超の板厚も検討されており、特許文献4も不十分な知見である。
特許文献5においては、30mm以上の板厚を両面1層溶接できる技術を開示するとしている。しかし、実際に実施例で検討されているのは31.8mmまでの知見であり、風力発電の分野に適用できる知見ではない。
このように、X開先で両面1層溶接を行う場合でも、風力発電を対象とした社会的ニーズに適用できる知見は開示されていない。
なお、ここでは大型構造物を想定しているため、電子ビーム溶接は真空チャンバー容積の観点から対象外としている。
以上に示したように、50mm超の板厚の鋼板を高能率で片面1層、又は両面1層で溶接し、且つ寒冷地での使用に耐えうる高靭性の溶接金属を得るのに有効な方法は、従来は開示されていない。
しかし、最近、サブマージアーク溶接の分野でも、特許文献6に示されるような、溶接電流の波形制御を駆使することで、同一溶接電流でも溶着量(ワイヤ送給速度)を増加させることが可能な大容量デジタル制御交流/直流溶接電源が開発され、そのような電源を用いてサブマージアーク溶接する技術が開発された。
そのような電源により出力される矩形波交流溶接電流の波形の一例を図2に示す。溶接電流は、プラス部分とマイナス部分を有する。そして、プラスの極性(逆極性)は溶接の溶け込み深さを制御し、マイナスの極性(正極性)は溶着量を制御する作用を有する。
この溶接電源では、電流波形の大きさa、bと幅(周期)c、dの4つのパラメータを自由に変更できるようになっており、プラス部分とマイナス部分の大きさを変更することにより、溶け込み深さあるいは溶着量を調整することができる。
このように波形制御した溶接電流を用いることで、同一溶接電流でワイヤ送給速度を速くできれば、開先断面積を埋めるのに必要な溶接金属量をより少ない電流で供給できるので、結果として溶接入熱が削減でき、溶接金属の靭性確保には有利となることが予想される。
上述のような電源を用いて、溶接電流波形を制御した知見としては、例えば特許文献7を挙げることができる。特許文献7において、多層盛り溶接を前提とした1層1パス溶接を開示している。しかし、大入熱溶接によって極厚鋼板を高能率施工する溶接方法ではなく、特許文献7から風力発電のような極厚鋼板の溶接能率を抜本的に改善できる知見は得られない。
更に、板厚が50mmを超えるような厚鋼材のX開先を、出力波形の制御できる溶接電源を用いて、多電極サブマージアーク溶接によってそれぞれの開先を1層のみで1パスつまり片面を1パスで溶接する場合、ワイヤ送給速度を向上させて入熱量を抑制する観点から、どのような溶材や溶接条件を用いるのが好ましいかについては知られていない。
日本国特開平9−206946号公報 日本国特開平−9−277083号公報 日本国特開2009−241128号公報 日本国特開2009−195957号公報 日本国特開2004−143556号公報 日本国特開2005−193299号公報 日本国特開2011−200920号公報
そこで、本発明は、出力波形の制御できる溶接電源を用いて厚鋼板のX開先を高能率で溶接でき、且つ低温においても靭性に優れる溶接金属を得ることができるサブマージアーク溶接方法を提供することを課題とする。
本発明者らは、出力波形の制御できる溶接電源を用いて、多電極サブマージアーク溶接によって開先を1パスで溶接する場合、同一溶接電流でワイヤ送給速度をより速くできる溶接条件について検討した。
その過程で、特に、フラックスの組成及び第1電極及び、第2電極以降に印加する溶接電流の波形に着目して検討を進めた結果、それらの最適な組み合わせによって上記課題を達成できることを見出した。
すなわち、本発明の要旨を好ましい実施形態とともに示すと、以下のとおりである。
(1)本発明の第一の態様に係るサブマージアーク溶接方法は、板厚が50mm超、100mm以下の一対の鋼材に、X開先を加工する加工工程と;前記一対の鋼材に対し、2電極以上、6電極以下の多電極サブマージアーク溶接で、フラックスを用いて表裏面からそれぞれ1パスの溶接を実施する溶接工程と;を備え、前記溶接工程に於いて、第1電極の溶接電流を、波形比率が60%以上、90%以下の交流電流とし、その他の電極の溶接電流を、波形比率が70%以上の交流電流あるいは、マイナスの直流電流として溶接し、前記フラックスが、前記フラックスの全質量に対する質量比で、Al:10%以上、50%以下、SiO:16%以上、30%以下を含有し、更に、MgO、TiO、CaF、MnOの内の1種以上を合計で10%以上、60%以下を含有し、前記MgOを40%以下に制限し、前記TiOを20%以下に制限し、前記CaFを30%以下に制限し、前記MnOを20%以下に制限する。
(2)上記(1)に記載のサブマージアーク溶接方法は、前記第1電極の前記溶接電流が2500A以上であってもよい。
(3)上記(1)又は(2)に記載のサブマージアーク溶接方法は、前記一対の鋼材間に複数形成される開先形状として、ルートフェイスの高さは5mm以上、前記板厚の25%以下であってもよい。
(4)上記(3)に記載のサブマージアーク溶接方法は、前記X開先の開先角度が、30°以上、50°以下であってもよい。
(5)上記(1)又は(2)に記載のサブマージアーク溶接方法は、前記X開先の開先角度が、30°以上、50°以下であってもよい。
上記(1)〜(5)に記載の態様によれば、厚鋼板のX開先を高能率で溶接でき、且つ低温においても靭性に優れる溶接金属を得ることができるので、寒冷地に設置される風力発電設備の基礎部分の製造を効率的に実施することができ、再生可能エネルギーの普及に大きく寄与することができる。
ワイヤ送給速度に及ぼすフラックス組成の影響を示す図である。 溶接電流の波形と波形比率の説明図である。 ワイヤ送給速度及びシャルピー吸収エネルギーに及ぼすフラックス成分のAl含有量の影響を示す図である。 ワイヤ送給速度及びシャルピー吸収エネルギーに及ぼすフラックス成分のSiO含有量の影響を示す図である。 ワイヤ送給速度に及ぼすフラックス組成の影響(Alを38%含有)を示す図である。 溶接金属の溶込形状を示す図であり、第1電極が直流プラスで融合不良が発生した例を示す図である。 溶接金属の溶込形状を示す図であり、第1電極の波形比率を60%として融合不良を回避した例を示す図である。 6電極に於ける第1電極の波形比率と融合不良発生率の関係を示す図である。 4電極に於ける第1電極の波形比率と融合不良発生率の関係を示す図である。 2電極に於ける第1電極の波形比率と融合不良発生率の関係を示す図である。 板厚100mmの開先形状を示す図である。 6電極に於ける第2電極から第6電極の波形比率とアンダーフィル発生率の関係を示す図である。 4電極に於ける第2電極から第4電極の波形比率とアンダーフィル発生率の関係を示す図である。 2電極に於ける第2電極の波形比率とアンダーフィル発生率の関係を示す図である。 板厚70mmの開先形状を示す図である。 板厚60mmの開先形状を示す図である。 板厚55mmの開先形状を示す図である。 板厚50mmの開先形状を示す図である。 板厚110mmの開先形状を示す図である。 試験片採取位置を説明する図である。 各電極の配置を説明する図である。
本発明者らは、出力波形の制御できる溶接電源を用いて、厚鋼板のX開先を多電極サブマージアーク溶接(以下、サブマージアーク溶接をSAWと略記する。)によって、それぞれの表裏面の開先を1パスずつ溶接する場合、同一溶接電流でワイヤ送給速度をより速くできる溶接条件について、特に、フラックスの成分及び第1電極1に印加する溶接電流の波形に着目して、それぞれについて必要な条件を求めた。
最初に、フラックス成分の条件について説明する。
本発明者らはフラックスの成分に関して、次のような実験的な検討を行った。
SAW用フラックスは、酸化物や弗化物などの各種の物質を配合して形成される。そのようなフラックス成分のうち、ワイヤ送給速度を上昇させるためにはどの物質が最も効果的かを調べるため、各物質単独で構成されたフラックスを実験に供して、そのワイヤ送給速度に対する影響を調査した。
サブマージアーク溶接は、図2に示すような矩形波交流溶接電流を用いて行った。その結果を図1に示す。なお、図1で使用している波形比率とは、式1及び図2に示すように交流電流のプラスとマイナスの面積比率であり、プラスの面積をP、マイナスの面積をNとしたとき、N/(N+P)で表される数値を%に換算したものである。波形比率0%は直流プラスを、波形比率100%は直流マイナスを意味している。
波形比率=面積N/(面積N+面積P)・・・・・・式(1)
図1の結果より、実験で用いた各種フラックス成分の中で、AlとSiOは他の成分と比較してワイヤ送給速度を増加させる効果が特に高い。またMgO、TiO、CaF、MnOも同様の効果を発現するとの結論に達した。逆に、ZrOはワイヤ送給速度を低減させる結果となった。
ワイヤ送給速度が大きくなれば、開先を埋める溶着金属を得るための電流を抑制できるので、溶接入熱の削減に利用することが可能である。上記の結果より、ワイヤ送給速度を大きくして、溶着量を増加されるためのフラックスの設計指針としては、Al、SiOを必須成分として含有し、MgO、TiO、CaF、MnOを選択的に含有することが見出された。
そして、さらに各成分の含有量について検討して、次のように定めた。
必須物質であるAl、SiOの含有量は、フラックス全質量に対する質量%(以下、フラックスの成分は全てフラックス全質量に対する質量%で表記する。)で、Alを10%以上、50%以下、SiOを16%以上、30%以下とした。
AlとSiOのそれぞれの下限値10%および16%は、それより少ない含有量では、ワイヤ送給速度増加の効果が明瞭に発現しないことを理由に規定した。ワイヤ送給速度の向上のために、Alの下限を15%、20%、25%又は30%に、SiOの下限を18%又は20%としてもよい。上限値については、Alでは、50%を超えて含有されると溶接金属8中のAl量が過剰となり低温靭性を確保できないので、上限を50%とした。低温靭性の向上のために、その上限を47%、45%又は40%に制限してもよい。SiOでは、30%を超えて含有されると溶接金属8の酸素量が過剰となって低温靭性の確保が困難となるので、上限を30%とした。低温靭性の向上のために、その上限を28%又は26%に制限してもよい。
また、図3、図4より、AlとSiOの上記の含有範囲において、Alは36%以上含有されていると、ワイヤ送給速度を増加する働きが更に高くなり好ましい。SiOは、22%以上含有されている場合に、AlとSiOとの複合作用で、波形比率を高めた場合のワイヤ送給速度向上効果が一層明瞭となり更に好ましい。図5に、Alを38%含有する場合、このようなワイヤ送給速度向上効果に対するAlとSiOとの複合作用に関する実験結果を示す。ワイヤ送給速度を高めるために、AlとSiOとの合計量を、30%以上80%以下に制限してもよい。ワイヤ送給速度をより高めるために、AlとSiOとの合計量の下限を35%、40%又は45%としてよく、その合計量の上限を75%、70%又は68%としてもよい。
本発明で用いるフラックスは、AlとSiOに加えて、さらに選択物質として、MgO、TiO、CaF、MnOの1種以上の物質を、MgO:40%以下、TiO:20%以下、CaF:30%以下、MnO:20%以下の範囲において、これら選択物質の合計が10%以上、60%以下の範囲で含有させる必要がある。
これらの物質はAlやSiOと比較すると、ワイヤ送給速度向上の効果は少ないが、ZrOのように波形比率を高めた場合にワイヤ送給速度を減少させる悪影響はなく、スラグの流動性や粘性を適正化する観点から適量含有させることが必要である。このスラグの流動性や粘性を適正化する観点から、これら選択物質の合計量の下限を13%、15%又は20%としてよく、その合計量の上限を55%、50%又は45%としてもよい。
MgOは40%を超えて含有させるとスラグの粘性が低くなり、アンダーカットを生じやすくなるため上限を40%以下とした。アンダーカットをより生じないようにするために、その上限を30%、25%又は20%に制限してもよい。TiO、MnOは過剰に含有させると溶接金属8の靭性が劣化するため上限を共に20%以下と規定した。溶接金属8の靭性の向上のために、TiO、MnOの上限をそれぞれ15%又は10%に制限してもよい。CaFは過剰に含有させるとアークが不安定となり融合不良が発生する可能性が高くなるため上限を30%以下と規定した。融合不良防止のために、CaFの上限を25%、20%又は15%に制限してもよい。
また、これらの選択物質の含有量の合計が10%未満の場合には、スラグの流動性や粘性適正化の効果発現が明瞭ではないためアンダーカットが生じやすくなるため、その下限を10%とした。アンダーカット防止のために、これらの選択物質の含有量の合計を13%以上、16%以上又は20%以上としてよい。60%を超えて含有させるとアークが不安定となり融合不良が生じやすくなるため、その合計含有量を60%以下とした。融合不良防止のために、これらの選択物質の含有量の合計を55%以下、50%以下又は45%以下に制限してよい。
本発明では、その他のフラックス成分について、特に制限するものではなく、SAW用のフラックス成分として一般に用いられている成分を適宜含有できる。
例えば、溶接金属8の成分調整を目的として、フラックス中にSi、Mn、Al、Ti、Mo、Cu、Ni、Cr、V等の金属粉が含有される場合がある。これらの含有量は、上述の特許文献等を参考に適宜調整することができる。また、溶着量の増大とアーク安定を目的として、フラックス中に鉄粉を含有することも可能である。その場合の鉄粉の含有量は10%以上、40%以下とすることが好ましい。大量に添加するとアークが不安定となり易くアークが溶接中に途切れやすくなるために、その含有量の上限を、必要に応じて30%、20%又は15%以下としてもよい。
続いて、電源条件について説明する。
特許文献6に記載されているような、大容量デジタル制御交流/直流溶接電源を用いて、多電極でサブマージアーク溶接(SAW)を行う場合に、各電極7の溶接電流波形は独立して制御することができる。しかし、多電極による一パス溶接では、第1電極1による溶け込みが重要であるので、第1電極1の電流条件について検討した。
特許文献6において、必要な溶け込み深さを得るために、第1電極1に直流を用いる例が記載されている。そこで、X開先の両面1パスSAWを、第1電極1を直流プラスとして行った結果、得られた溶接金属8の溶込み形状を図6Aに示す。開先角度は入熱抑制の観点から30°としたが、鋼材の残留磁気の影響でアークが乱れることがあり、溶接金属8の溶込み形状のセンターが表裏面で一致しない場合が認められた。更に、溶接金属8の溶込み形状の観点から、溶接金属8の底部が細くなりすぎるために、僅かに中心が外れただけで融合不良を起こす危険性が高いことが認められた。従って、この方法は深い溶込みを必要とする片面溶接の場合に有効な方法と考えられ、X開先による両面溶接では、適用が困難であり、現実的ではない。
一方、第1電極1に、プラス部分とマイナス部分の波形比率60%の交流溶接電流を適用した場合における溶接金属8の溶込み形状を図6Bに示す。この場合の溶込み深さは、第1電極1を直流プラスとした場合より減少する。しかし、ビード幅が太くなり、表裏面両側の溶接金属8で中心がずれた場合でも融合不良は起こりにくく、この波形制御が好ましいことが判明した。なお、第1電極1に直流マイナスを適用すると、高残留磁気の影響でアークが不安定となる場合があるので、本発明では対象外とした。
上述の理由により、第1電極1の溶接電流波形は、ワイヤ送給速度の向上効果があり、かつ、狭開先でも融合不良を回避しやすい溶接電流波形が好ましい。そのために条件として、波形比率60%以上、90%以下の交流電流とした。融合不良防止のために、波形比率の下限を65%、68%又は71%としてもよく、波形比率の上限を85%、82%又は78%としてもよい。
これを更に詳細に検証したデータを図7から図9に示す。図10の開先に第1電極1の条件を2500A、35Vとし、第2電極2以降を1500A、40V、波形比率を90%で固定して、50cm/分の溶接条件でアークを発生させた。第1電極1の波形比率を変えて5mの溶接長を作製し、10cm間隔でマクロ断面を50個切り出して、ルートフェイス(ルート面)部の融合不良の有無を確認した。評価は50個のマクロで1個融合不良があれば1/50で、2%の融合不良発生率として評価した。
図7から図9より、2電極溶接、4電極溶接、6電極溶接のいずれの場合に於いても、第1電極1の波形比率が60%以上、90%以下で、融合不良発生率が抑制されていることが確認された。
また、第2電極2以降は溶接金属8の溶込み形状に大きな影響を及ぼさず、ワイヤ送給速度の向上を考慮すればよいので、第2電極2以降の全電極7で、波形比率が70%以上(波形比率100%の直流マイナスを含む)とする。ワイヤ送給速度の向上のために、その波形比率を75%以上、80%以上又は85%以上としてもよい。なお、溶接に使用する電極数は、生産性(溶接速度)がある程度確保でき、且つ設備構成が過度に複雑となることを避ける観点から2電極以上、6電極以下とする。本願の特徴をより生かすため、電極数を3電極または4電極以上、若しくは鋼材の板厚を55mm以上、60mm以上又は65mm以上としてもよい。
第2電極2以降の波形比率に関して詳細に検討した結果を図11から図13に示す。6電極溶接には図10の開先を、4電極溶接には図14の開先を、2電極溶接には図15の開先を使用した。溶接条件は、第1電極1の条件を2500A、35V、波形比率70%とした。第2電極2以降は、1800A、40Vで、波形比率を変化せた。溶接速度は50cm/分で実施した。上述と同様に波形比率を変えて5mの溶接長を作製し、10cm間隔でマクロ断面を50個切り出して、アンダーフィルの有無を確認した。評価は、アンダーフィルが生じたマクロ試験片の比率で評価した。例えば、50個のマクロで1個アンダーフィルがあれば2%のアンダーフィル発生率として評価した。図11から図13より、波形比率の上昇にしたがってアンダーフィルは減少し、必要な溶着量が入熱を変化させることなく得られることが確認できた。
なお、本発明において、第1電極1から第2電極2以降の各電極7の間隔、配置、角度等について、特に制約を設ける必要はない。前記の溶接試験においては、各電極7の配置は図20に示すように、各電極7の間隔を70mmとし、開先幅の中央部に配置した。第1電極の角度は後退角10°とし、第2電極の角度は後退角7°とし、第3電極の角度は後退角4°とし、第4電極の角度は前進角4°とし、第5電極の角度は前進角7°とし、第6電極(最終極)の角度は前進角10°とした。
以上のような本発明の鋼材板厚の適用範囲は、風力発電機の風車の基礎部分に用いられる鋼材板厚を考慮して、50mm超、100mm以下とした。
板厚50mm超の鋼材の溶接で、特に本発明の効果が発揮されるようになることから、下限を50mm超と定めた。しかし、板厚が100mmを超えるようになると、本発明を適用しても入熱が過大となり必要な靭性が得られないため、100mmを上限とした。
一対の鋼材間に複数形成される開先形状として、ルートフェイス(具体的には、ルートフェイスの高さ)は5mm以上、板厚の25%以下が好ましい。その理由として、高さが5mm以下では、工作精度の観点から目違いに対して対応できない可能性があり、高さが板厚の25%を超えるとルートフェイスが過大となりすぎて、融合不良を生じる可能性が高くなる。ここで、ルートフェイスの高さとは、鋼材の板厚方向におけるルートフェイスの高さをいう。例えば、図10では、ルートフェイスの高さは14mmである。
また、開先角度は、入熱抑制の観点から30°以上、50°以下が好ましい。その理由として、角度が30°未満の狭開先では、溶接ビード幅のセンターが外れやすく、また十分な溶込深さを得るのも困難となるからであり、一方、角度が50°を超えると、開先断面積が広くなり溶接入熱が大きくなるため好ましくないからである。
以上、板厚が50mm超、100mm以下の一対の鋼材にX開先を加工し、これを多電極サブマージアーク溶接で表裏面からそれぞれ1パスの溶接を実施する際における、本発明で規定する形態及び好ましい形態について説明したが、以下、本発明の実施可能性及び効果を実施例においてさらに説明する。
試験に供した鋼材と溶接ワイヤの化学組成を表1に示し、フラックスの組成を表2に示す。表2中の値のゼロは、意図的に含有させていない事を示す。一対の鋼材の開先形状を図10、図14〜図18に示す。一対の鋼材の溶接は、溶接電流の波形制御ができる溶接電源を用いて、2電極から6電極のサブマージアーク溶接で、各面1パスの溶接を行った。波形比率以外の溶接条件を表3〜表8に、各電極7の溶接電流の波形比率を表9〜表13に示す。表3は、板厚100mm、6電極の溶接条件であり、表4は、板厚70mm、5電極の溶接条件であり、表5は、板厚60mm、4電極の溶接条件であり、表6は、板厚55mm、3電極の溶接条件であり、表7は、板厚51mm、2電極の溶接条件であり、表8は、板厚110mm、6電極の溶接条件である。
各電極7の角度に関して、第1電極1は溶込みを確保する目的で後退角10°とし、最終極をビード外観確保の観点から前進角10°を採用した。各極間の間隔は溶融金属の溜まり量を適正化するように考慮し、各極70mmの電極間隔を採用した。それぞれの電極7は、開先幅の中央部に配置した。
作製された溶接金属8は図19の位置から断片を切り出し、それを成分分析試料、JIS Z3111のA1号丸棒引張試験片(直径:12.5mm、標点間距離(GL):50mm)およびJIS Z2242のVノッチ試験片(10mmフルサイズ試験片)に加工して試験に供した。これらを表14の合否基準で判定した結果を表15〜表19に示す。シャルピー衝撃試験温度は、−40℃とした。
試験番号100−1番から100−37番、試験番号70−1番から70−37番、試験番号60−1番から60−37番、試験番号55−1番から55−37番、試験番号51−1番から51−37番に於いては、本発明の実施例であるため、ビードの余盛高さは適正であり、融合不良も無く、アンダーカットの発生も無く、溶接金属8の強度、靭性も良好な結果が得られた。特にAlが38%、SiOが22%以上である試験番号100−3番から100−6番、試験番号100−15番から100−18番、試験番号100−27番から100−30番、試験番号70−3番から70−6番、試験番号70−15番から70−18番、試験番号70−27番から70−30番、試験番号60−3番から60−6番、試験番号60−15番から60−18番、試験番号60−27番から60−30番、試験番号55−3番から55−6番、試験番号55−15番から55−18番、試験番号55−27番から55−30番、試験番号51−3番から51−6番、試験番号51−15番から51−18番、試験番号51−27番から51−30番では3mm以上の余盛高さが確保されており、フラックス組成によるワイヤ送給速度増加の効果が発現している。
また、試験番号100―11番、100―23番、100―35番、試験番号70―11番、70―23番、70―35番、試験番号60―11番、60―23番、60―35番、試験番号55―11番、55―23番、55―35番、試験番号51―11番、51―23番、51―35番、においては、鉄粉が含有されていないにも関わらず、Al3、SiOの効果により、余盛高さが2mm以上と優れた溶着量増加の効果を発現している。
更に試験番号100―12番、100―24番、100―36番、試験番号70―12番、70―24番、70―36番、試験番号60―12番、60―24番、60―36番、試験番号55―12番、55―24番、55―36番、試験番号51―12番、51―24番、51―36番、においては上記のAl3、SiOの効果に加え、鉄粉の含有量を20%に増加した試験番号では、余盛高さが4mm以上であり、更に高い溶着量増加の効果が認められている。
一方、試験番号100−38番、70−38番、60−38番、55−38番、51−38番は第1電極1の溶接電流の波形比率が50%と本発明の範囲を逸脱しているため、溶接金属8の溶込み形状の幅が狭くなり図6Aに示したように融合不良が発生し不合格となった。試験番号100−39番、70−39番、60−39番、55−39番、51−39番では、第1電極1の溶接電流として波形比率100%の直流マイナスを用いたため、アークが不安定で適正な溶接金属8の溶込み深さが得られず、融合不良を発生したため不合格となった。
試験番号100−40番から100−44番、試験番号70−40番から70−43番、試験番号60−40番から60−42番、試験番号55−40から55−41番、試験番号51−40番においては、第2電極2以降に、溶接電流の波形比率が60%という本発明を逸脱した電極7があったため、必要な溶着量が得られず、余盛高さがマイナスとなり鋼板9の表面まで溶着金属を盛ることができず不合格となった。
試験番号100−45番と試験番号100−46番、試験番号70−44番と試験番号70−45番、試験番号60−43番と試験番号60−44番、試験番号55−42番と試験番号55−43番、試験番号51−41番と試験番号51−42番では、AlあるいはSiOが本発明の下限値を下回ったため、必要な溶着量が得られず、余盛高さがマイナスとなり鋼板9の表面まで溶着金属を盛ることができず不合格となった。
試験番号100−47番と試験番号100−48番、試験番号70−46番と試験番号70−47番、試験番号60−45番と試験番号60−46番、試験番号55−44番と試験番号55−45番、試験番号51−43番と試験番号51−44番では、AlあるいはSiOが本発明の上限値を上回って過剰に含有されたため、溶接金属8の靭性が劣化して不合格となった。
試験番号100−49番から100−52番、試験番号70−48番から70−51番、試験番号60−47から60−50番、試験番号55−46番から55−49番、試験番号51−45番から51−48番においては、MgO、TiO、CaF、MnOの合計含有量が本発明の下限値である10%に満たないために、アンダーカットが発生し不合格となった。
試験番号100−53番、70−52番、60−51番、55−50番、試験番号51−49番は、MgOの含有量が本発明を逸脱して過剰であったために、アンダーカットが発生し不合格となった。
試験番号100−54番、70−53番、60−52番、試験番号55−51番、51−50番は、TiOの含有量が本発明を逸脱して過剰であったために、溶接金属8の靭性が劣化して不合格となった。
試験番号100−55番、70−54番、60−53番、55−52番、51−51番は、CaFの含有量が本発明を逸脱して過剰であったために、アークが不安定で適正な溶接金属8の溶込み深さが得られず、融合不良を発生したため不合格となった。
試験番号100−56番、70−55番、60−54番、55−53番、51−52番は、MnOの含有量が本発明を逸脱して過剰であったために、溶接金属8の靭性が劣化して不合格となった。
試験番号100−57番、70−56番、60−55番、55−54番、51−53番は、MgO、TiO、CaF、MnOの合計含有量が本発明の上限値である60%を超えて過剰であったために、アークが不安定で適正な溶接金属8の溶込み深さが得られず、融合不良を発生したため不合格となった。
試験番号100−58番は、本発明の範囲を逸脱し、板厚が過剰であったために入熱が多くなり、溶接金属8の靭性が劣化して不合格となった。
Figure 0005403186
Figure 0005403186
Figure 0005403186
Figure 0005403186
Figure 0005403186
Figure 0005403186
Figure 0005403186
Figure 0005403186
Figure 0005403186
Figure 0005403186
Figure 0005403186
Figure 0005403186
Figure 0005403186
Figure 0005403186
Figure 0005403186
Figure 0005403186
Figure 0005403186
Figure 0005403186
Figure 0005403186
本発明によれば、厚鋼板のX開先を高能率で溶接でき、且つ低温においても靭性に優れる溶接金属8を得ることができるので、寒冷地に設置される風力発電設備の基礎部分の製造を効率的に実施することができ、再生可能エネルギーの普及に大きく寄与することができる。
1 第1電極
2 第2電極
3 第3電極
4 第4電極
5 第5電極
6 第6電極
7 電極
8 溶接金属
9 鋼板
a、b 電流波形の大きさ
c、d 電流波形の幅(周期)

Claims (5)

  1. 板厚が50mm超、100mm以下の一対の鋼材に、X開先を加工する加工工程と;
    前記一対の鋼材に対し、2電極以上、6電極以下の多電極サブマージアーク溶接で、フラックスを用いて表裏面からそれぞれ1パスの溶接を実施する溶接工程と;
    を備え、
    前記溶接工程に於いて、第1電極の溶接電流を、波形比率が60%以上、90%以下の交流電流とし、その他の電極の溶接電流を、波形比率が70%以上の交流電流あるいは、マイナスの直流電流として溶接し、
    前記フラックスが、前記フラックスの全質量に対する質量比で、
    Al:10%以上、50%以下、
    SiO:16%以上、30%以下
    を含有し、
    更に、MgO、TiO、CaF、MnOの内の1種以上を合計で10%以上、60%以下を含有し、
    前記MgOを40%以下に制限し、前記TiOを20%以下に制限し、前記CaFを30%以下に制限し、前記MnOを20%以下に制限する
    ことを特徴とするサブマージアーク溶接方法。
  2. 前記第1電極の前記溶接電流が2500A以上であることを特徴とする請求項1に記載のサブマージアーク溶接方法。
  3. 前記一対の鋼材間に複数形成される開先形状として、ルートフェイスの高さは5mm以上、前記板厚の25%以下であることを特徴とする請求項1又は2に記載のサブマージアーク溶接方法。
  4. 前記X開先の開先角度が、30°以上、50°以下であることを特徴とする請求項3に記載のサブマージアーク溶接方法。
  5. 前記X開先の開先角度が、30°以上、50°以下であることを特徴とする請求項1又は2に記載のサブマージアーク溶接方法。
JP2013513458A 2011-11-15 2012-11-14 厚鋼板の高能率溶接方法 Active JP5403186B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013513458A JP5403186B2 (ja) 2011-11-15 2012-11-14 厚鋼板の高能率溶接方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011249928 2011-11-15
JP2011249928 2011-11-15
PCT/JP2012/079492 WO2013073565A1 (ja) 2011-11-15 2012-11-14 厚鋼板の高能率溶接方法
JP2013513458A JP5403186B2 (ja) 2011-11-15 2012-11-14 厚鋼板の高能率溶接方法

Publications (2)

Publication Number Publication Date
JP5403186B2 true JP5403186B2 (ja) 2014-01-29
JPWO2013073565A1 JPWO2013073565A1 (ja) 2015-04-02

Family

ID=48429621

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013513458A Active JP5403186B2 (ja) 2011-11-15 2012-11-14 厚鋼板の高能率溶接方法

Country Status (7)

Country Link
EP (1) EP2767361B1 (ja)
JP (1) JP5403186B2 (ja)
KR (1) KR101472722B1 (ja)
CN (1) CN103945973B (ja)
DK (1) DK2767361T3 (ja)
ES (1) ES2619031T3 (ja)
WO (1) WO2013073565A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104923892A (zh) * 2015-06-12 2015-09-23 中石化石油工程机械有限公司沙市钢管厂 优化设计管线钢埋弧焊工艺参数的方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101696025B1 (ko) * 2014-08-21 2017-01-13 주식회사 포스코 충격인성이 우수한 용접이음부 및 그 제조 방법
JP6383319B2 (ja) * 2015-03-31 2018-08-29 株式会社神戸製鋼所 多電極片面1層サブマージアーク溶接方法
KR101898159B1 (ko) 2016-06-21 2018-09-14 주식회사 포스코 용접 생산성 및 용접부 저온인성이 우수한 극후물 강판 용접이음부의 제조방법
US10974341B2 (en) * 2016-06-28 2021-04-13 Lincoln Global, Inc. Welding waveform for stainless steel applications
CN107553008A (zh) * 2017-10-30 2018-01-09 巩义市广大焊业有限责任公司 一种x70管线钢直缝埋弧焊用焊剂及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6245475A (ja) * 1985-08-24 1987-02-27 Nippon Steel Corp 厚板の両面1層サブマ−ジア−ク溶接法
JPH0673757B2 (ja) * 1988-12-28 1994-09-21 川崎製鉄株式会社 厚鋼板の大入熱潜弧溶接方法
JP2005193299A (ja) * 2003-12-15 2005-07-21 Lincoln Global Inc 電気アーク溶接システム
JP2006007313A (ja) * 2004-06-22 2006-01-12 Lincoln Global Inc 高電流溶接用電源

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5004884A (en) * 1988-12-28 1991-04-02 Kawasaki Steel Corporation Method of submerged arc welding a thick steel plate with large heat input and submerged arc welding flux
JPH09206946A (ja) 1996-02-05 1997-08-12 Nippon Steel Weld Prod & Eng Co Ltd 3電極サブマージアーク溶接方法
JPH09277083A (ja) 1996-04-16 1997-10-28 Nippon Steel Corp 大入熱用耐候性鋼サブマージアーク溶接方法
JP2000042741A (ja) * 1998-07-30 2000-02-15 Nkk Corp 極厚鋼板のサブマージアーク溶接方法
JP4016800B2 (ja) 2002-10-25 2007-12-05 Jfeスチール株式会社 内面溶接金属の原質部、再熱部とも厳格靭性要求を満たす厚肉大径ストレートuoe鋼管およびその製造方法
JP5223369B2 (ja) 2008-02-22 2013-06-26 Jfeスチール株式会社 鋼材の多電極サブマージアーク溶接方法
CN101952074B (zh) * 2008-02-22 2014-11-05 杰富意钢铁株式会社 钢材的多电极埋弧焊接方法
JP4998353B2 (ja) 2008-03-31 2012-08-15 Jfeスチール株式会社 溶接鋼管の製造方法
JP5489274B2 (ja) * 2010-02-22 2014-05-14 株式会社神戸製鋼所 多電極片面溶接装置のアークスタート方法および多電極片面溶接装置
JP5621961B2 (ja) 2010-03-26 2014-11-12 株式会社Ihi サブマージアーク溶接方法及び装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6245475A (ja) * 1985-08-24 1987-02-27 Nippon Steel Corp 厚板の両面1層サブマ−ジア−ク溶接法
JPH0673757B2 (ja) * 1988-12-28 1994-09-21 川崎製鉄株式会社 厚鋼板の大入熱潜弧溶接方法
JP2005193299A (ja) * 2003-12-15 2005-07-21 Lincoln Global Inc 電気アーク溶接システム
JP2006007313A (ja) * 2004-06-22 2006-01-12 Lincoln Global Inc 高電流溶接用電源

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104923892A (zh) * 2015-06-12 2015-09-23 中石化石油工程机械有限公司沙市钢管厂 优化设计管线钢埋弧焊工艺参数的方法
CN104923892B (zh) * 2015-06-12 2017-05-10 中石化石油工程机械有限公司沙市钢管厂 优化设计管线钢埋弧焊工艺参数的方法

Also Published As

Publication number Publication date
EP2767361B1 (en) 2017-01-04
DK2767361T3 (en) 2017-03-13
KR101472722B1 (ko) 2014-12-12
EP2767361A1 (en) 2014-08-20
JPWO2013073565A1 (ja) 2015-04-02
ES2619031T3 (es) 2017-06-22
WO2013073565A1 (ja) 2013-05-23
KR20140065481A (ko) 2014-05-29
CN103945973A (zh) 2014-07-23
CN103945973B (zh) 2015-07-01
EP2767361A4 (en) 2015-09-23

Similar Documents

Publication Publication Date Title
JP5403186B2 (ja) 厚鋼板の高能率溶接方法
KR100922095B1 (ko) 가스 실드 아크 용접 플럭스 함유 와이어
JP5521632B2 (ja) 厚鋼板の溶接方法
CN1276816C (zh) 埋弧焊用熔融焊剂
JP6766866B2 (ja) フラックス入りワイヤ、溶接継手の製造方法、及び溶接継手
JP6671157B2 (ja) ステンレス鋼溶接用フラックス入りワイヤ、ステンレス鋼溶接継手、及び、その製造方法
JP2012055899A (ja) フラックス入り溶接ワイヤ及びこれを用いた肉盛溶接のアーク溶接方法
CN102448655A (zh) 钢板的潜弧焊接方法
JP2010221298A (ja) ガスシールドアーク溶接とサブマージアーク溶接を組み合わせた複合溶接方法およびその複合溶接機
RU2014117665A (ru) Сварная стальная труба с превосходной ударной вязкостью околошовной зоны и способ ее производства
JP2013154363A (ja) 片面サブマージアーク溶接用フラックス
JP6290024B2 (ja) 高Cr系CSEF鋼のタンデムサブマージアーク溶接方法
JP5854145B2 (ja) サブマージアーク溶接方法ならびに溶接継手および鋼管の製造方法
JP6060604B2 (ja) サブマージアーク溶接方法
JP2009214127A (ja) 鋼材のサブマージアーク溶接方法
JP2018192518A (ja) ガスシールドアーク溶接用フラックス入りワイヤ、及び溶接継手の製造方法
JP2009233679A (ja) 鋼材のサブマージアーク溶接方法
JP2014198344A (ja) 高強度鋼のサブマージアーク溶接方法
EP3162489B1 (en) Method of butt welding steel plates and butt weld joint of steel plates
KR100709521B1 (ko) 대입열용접의 용접이음매 및 그 용접방법
JP5742090B2 (ja) 溶接熱影響部の靭性に優れた、鋼材のサブマージアーク溶接方法
JP5742091B2 (ja) 溶接熱影響部の靭性に優れた、鋼材のサブマージアーク溶接方法
JP2018065152A (ja) 多層サブマージアーク溶接方法
JP7423395B2 (ja) オーステナイト系ステンレス鋼溶接継手の製造方法
JP2015205303A (ja) ガスシールドアーク溶接用フラックス入りワイヤ

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131001

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131014

R151 Written notification of patent or utility model registration

Ref document number: 5403186

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350