JP5403039B2 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP5403039B2
JP5403039B2 JP2011262525A JP2011262525A JP5403039B2 JP 5403039 B2 JP5403039 B2 JP 5403039B2 JP 2011262525 A JP2011262525 A JP 2011262525A JP 2011262525 A JP2011262525 A JP 2011262525A JP 5403039 B2 JP5403039 B2 JP 5403039B2
Authority
JP
Japan
Prior art keywords
pipe
refrigerant
heat exchanger
vertical
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011262525A
Other languages
Japanese (ja)
Other versions
JP2013113559A (en
Inventor
幹夫 賀川
忠 竿尾
裕介 中川
克敏 櫻井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2011262525A priority Critical patent/JP5403039B2/en
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to EP12852894.0A priority patent/EP2787314B1/en
Priority to US14/358,527 priority patent/US20140326019A1/en
Priority to IN1172KON2014 priority patent/IN2014KN01172A/en
Priority to CN201280055516.5A priority patent/CN103930744B/en
Priority to PCT/JP2012/078678 priority patent/WO2013080754A1/en
Priority to AU2012345060A priority patent/AU2012345060B2/en
Priority to BR112014012826A priority patent/BR112014012826B8/en
Priority to KR1020147017504A priority patent/KR20140106609A/en
Publication of JP2013113559A publication Critical patent/JP2013113559A/en
Application granted granted Critical
Publication of JP5403039B2 publication Critical patent/JP5403039B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • F25B40/02Subcoolers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/005Compression machines, plants or systems with non-reversible cycle of the single unit type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/10Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/10Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically
    • F28D7/106Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically consisting of two coaxial conduits or modules of two coaxial conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/10Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically
    • F28D7/14Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically both tubes being bent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02741Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using one four-way valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers

Description

本発明は、二重管式熱交換器及びこれを備えた空気調和装置に関する。   The present invention relates to a double-pipe heat exchanger and an air conditioner including the same.

空気調和装置において、膨張弁に流入する前の高圧の液冷媒を過冷却する過冷却熱交換器を備えた冷媒回路が知られている。また、この過冷却熱交換器としては、下記特許文献1に開示されているように、高圧液冷媒を流動させる外管と、高圧液冷媒を減圧して得られる低圧の気液二相冷媒を流動させる内管とを備えた二重管式のものがある。具体的に、この特許文献1には、上下方向に配置された縦管形状の二重管式熱交換器と、逆U字形状の二重管式熱交換器とが開示されている。   In an air conditioner, a refrigerant circuit including a supercooling heat exchanger that supercools high-pressure liquid refrigerant before flowing into an expansion valve is known. Moreover, as this supercooling heat exchanger, as disclosed in the following Patent Document 1, an outer tube for flowing a high-pressure liquid refrigerant and a low-pressure gas-liquid two-phase refrigerant obtained by depressurizing the high-pressure liquid refrigerant are used. There is a double pipe type with an inner pipe to be flowed. Specifically, this Patent Document 1 discloses a vertical pipe-shaped double pipe heat exchanger arranged in the vertical direction and an inverted U-shaped double pipe heat exchanger.

特開2003−75026号公報JP 2003-75026 A

縦管形状の二重管式熱交換器は、空気調和装置における室外機のケーシング内に上下方向に広い配置スペースを確保する必要があるとともに、その上端部と下端部とにそれぞれ冷媒配管を接続しなければならないので、この冷媒配管の接続作業の際に二重管式熱交換器を上下反転させる工程が必要となり、作業が煩雑になるという欠点がある。   The vertical pipe-shaped double-pipe heat exchanger needs to secure a wide arrangement space in the vertical direction in the casing of the outdoor unit in the air conditioner, and refrigerant piping is connected to the upper end and the lower end respectively. Therefore, when connecting the refrigerant pipes, there is a disadvantage that a process of turning the double pipe heat exchanger upside down is required, and the work becomes complicated.

これに対して、逆U字形状の二重管式熱交換器は、上下方向に関してコンパクトに配置することができ、両端部がいずれも同じ側(下側)に配置されるため、冷媒配管の接続作業も容易になるという利点がある。しかし、内管の一方の端部(入口側端部)から流入した気液二相冷媒は、上向きに流れた後、U字状の湾曲部を経て下向きに流れ、他方の端部(出口側端部)から流出されるので、内管の内部で気液二相冷媒が十分に蒸発されなかった場合には、気液二相冷媒に含まれる液部分(液冷媒)が湾曲部を超えてしまうと内管内を下向きに流れて出口側端部から流出されやすくなり、圧縮機に流入してしまう可能性がある。このような現象は「液バック現象」と呼ばれ、圧縮機の性能低下の原因となるため、好ましくない。   On the other hand, the inverted U-shaped double tube heat exchanger can be arranged compactly in the vertical direction, and both ends are arranged on the same side (lower side). There is an advantage that the connection work becomes easy. However, the gas-liquid two-phase refrigerant that has flowed in from one end (inlet side end) of the inner tube flows upward, then flows downward through a U-shaped curved portion, and the other end (outlet side) Therefore, if the gas-liquid two-phase refrigerant is not sufficiently evaporated inside the inner pipe, the liquid portion (liquid refrigerant) contained in the gas-liquid two-phase refrigerant exceeds the curved portion. If this happens, it will flow downward in the inner pipe and will likely flow out of the outlet end, and may flow into the compressor. Such a phenomenon is called a “liquid back phenomenon” and is not preferable because it causes a reduction in the performance of the compressor.

本発明は、このような実情に鑑みてなされたものであり、コンパクトに構成することが可能でありながら、気液二相冷媒に含まれる液冷媒が内管から流出するのを抑制し、液バック現象の発生を防止することができる二重管式熱交換器を備えた空気調和装置を提供することを目的とする。 The present invention has been made in view of such a situation, and while being able to be compactly configured, the liquid refrigerant contained in the gas-liquid two-phase refrigerant is suppressed from flowing out of the inner pipe, and the liquid An object of the present invention is to provide an air conditioner including a double-pipe heat exchanger that can prevent the occurrence of a back phenomenon.

発明の空気調和装置は、圧縮機と、この圧縮機により圧縮された高圧ガス冷媒を凝縮する凝縮器と、凝縮された高圧液冷媒を減圧する減圧機構と、減圧された低圧冷媒を蒸発させる蒸発器と、前記凝縮器により凝縮された高圧液冷媒を前記減圧機構により減圧する前に過冷却する二重管式熱交換器と、を備え、前記二重管式熱交換器は、高圧液冷媒を流動させる外管と、前記高圧液冷媒を減圧して得られる低圧の気液二相冷媒を流入させる入口側端部、及び圧縮機の吸引側に接続される出口側端部を有する内管と、を備え、前記外管及び前記内管は、上下方向に配設された複数の縦管と、複数の縦管の端部同士を接続する曲管とからなり、前記内管の出口側端部が、一の縦管の上端部に設けられ、前記内管の入口側端部が、他の縦管の上端部に設けられ、前記二重管式熱交換器における複数の縦管の下端部に接続された前記曲管が、当該空気調和装置におけるケーシングの底フレーム上に支持部材を介して支持されていることを特徴とする。 The air conditioner of the present invention includes a compressor, a condenser that condenses the high-pressure gas refrigerant compressed by the compressor, a decompression mechanism that decompresses the condensed high-pressure liquid refrigerant, and evaporates the decompressed low-pressure refrigerant. An evaporator, and a double-tube heat exchanger that supercools the high-pressure liquid refrigerant condensed by the condenser before depressurization by the decompression mechanism, and the double-tube heat exchanger includes a high-pressure liquid An inner pipe having an outer tube for flowing the refrigerant, an inlet side end portion for introducing a low-pressure gas-liquid two-phase refrigerant obtained by depressurizing the high pressure liquid refrigerant, and an outlet side end portion connected to the suction side of the compressor A pipe, and the outer pipe and the inner pipe include a plurality of vertical pipes arranged in the vertical direction and a curved pipe connecting ends of the plurality of vertical pipes, and the outlet of the inner pipe A side end is provided at an upper end of one vertical pipe, and an inlet side end of the inner pipe is an upper end of another vertical pipe. Provided, the curved pipe connected to the lower end portions of a plurality of vertical tubes in the double-pipe heat exchanger, that is supported via a support member on the bottom frame of the casing in the air conditioner It is characterized by.

この構成によれば、内管の入口側端部から流入した気液二相冷媒は、内管を流れる間に外管を流れる高圧液冷媒と熱交換して蒸発し、ガス冷媒となって内管の出口側端部から流出する。この際、内管の出口側端部が一の縦管の上端部に形成されているので、気液二相冷媒が十分に蒸発されず液部分(液冷媒)が残った場合であっても、この液部分は一の縦管の内管内を上昇し難いため、出口側端部から流出され難くなる。そのため、圧縮機に液冷媒が収入してしまう「液バック現象」を防止することができる。
また、内管の入口側端部と出口側端部とがいずれも縦管の上端部に設けられるので、二重管式熱交換器を反転させることなく冷媒配管を接続することができ、配管接続作業を容易に行うことができる。
また、二重管式熱交換器における複数の縦管の下端部に接続された前記曲管が、当該空気調和装置におけるケーシングの底フレーム上に支持部材を介して支持されるので、比較的強度の高くなる曲管の部分において二重管式熱交換器を安定して支持することができる。
According to this configuration, the gas-liquid two-phase refrigerant that has flowed from the inlet side end of the inner pipe evaporates by exchanging heat with the high-pressure liquid refrigerant that flows through the outer pipe while flowing through the inner pipe, and becomes a gas refrigerant. Outflow from the outlet end of the tube. At this time, since the outlet side end portion of the inner pipe is formed at the upper end portion of one vertical pipe, even if the gas-liquid two-phase refrigerant is not sufficiently evaporated and the liquid portion (liquid refrigerant) remains. Since this liquid portion is unlikely to rise in the inner tube of one vertical tube, it is difficult for the liquid portion to flow out from the outlet side end. Therefore, it is possible to prevent a “liquid back phenomenon” in which liquid refrigerant is generated in the compressor.
In addition, since both the inlet side end and the outlet side end of the inner pipe are provided at the upper end of the vertical pipe, the refrigerant pipe can be connected without inverting the double pipe heat exchanger. Connection work can be performed easily.
Further, since the curved pipe connected to the lower ends of the plurality of vertical pipes in the double pipe heat exchanger is supported on the bottom frame of the casing in the air conditioner via a support member, it is relatively strong. Therefore, the double-pipe heat exchanger can be stably supported in the portion of the bent pipe where the height is high.

記構成において、前記支持部材は、ゴム又は合成樹脂からなり、その上面に、前記曲管を嵌合させる嵌合凹部が形成されていることが好ましい。
また、2本の前記縦管を備えるとともに、これらの縦管の下端部同士が前記曲管により接続されていることが好ましい。
このような構成によって、二重管式熱交換器を簡素の構成することができるとともに、曲管部分を少なくすることで冷媒の圧力損失を小さくすることができる。
In the above SL configuration, the support member is made of rubber or synthetic resin, on the upper surface, it is preferable that fitting concave portion for fitting the curved pipe is formed.
Moreover, it is preferable that the two vertical pipes are provided, and the lower ends of the vertical pipes are connected to each other by the curved pipe.
With such a configuration, the double-pipe heat exchanger can be configured simply, and the pressure loss of the refrigerant can be reduced by reducing the number of curved pipe portions.

本発明によれば、コンパクトに構成することが可能でありながら、気液二相冷媒に含まれる液冷媒が内管から流出するのを抑制し、液バック現象の発生を防止することができる。   According to the present invention, the liquid refrigerant contained in the gas-liquid two-phase refrigerant can be prevented from flowing out of the inner pipe, and the occurrence of the liquid back phenomenon can be prevented while being compact.

本発明の第1の実施の形態に係る空気調和装置の冷媒回路を示す模式図である。It is a schematic diagram which shows the refrigerant circuit of the air conditioning apparatus which concerns on the 1st Embodiment of this invention. 図1に示される空気調和装置の冷媒回路に設けられた二重管式熱交換器の概略図である。It is the schematic of the double pipe | tube type heat exchanger provided in the refrigerant circuit of the air conditioning apparatus shown by FIG. 本発明の第2の実施の形態に係る二重管式熱交換器の変形例を示す概略図である。It is the schematic which shows the modification of the double tube type heat exchanger which concerns on the 2nd Embodiment of this invention. 空気調和装置の冷媒回路の変形例を示す模式図である。It is a schematic diagram which shows the modification of the refrigerant circuit of an air conditioning apparatus.

図1は、本発明の第1の実施の形態に係る室外機を有する空気調和装置の冷媒回路を示す模式図である。
空気調和装置1は、例えばビル用のマルチタイプの空気調和装置であり、1つ又は複数の室外機2に対して複数の室内機3が並列に接続され、冷媒が流通できるように、冷媒回路10が形成されている。
Drawing 1 is a mimetic diagram showing the refrigerant circuit of the air harmony device which has the outdoor unit concerning a 1st embodiment of the present invention.
The air conditioner 1 is a multi-type air conditioner for buildings, for example, and is a refrigerant circuit so that a plurality of indoor units 3 are connected in parallel to one or a plurality of outdoor units 2 and refrigerant can flow. 10 is formed.

室外機2には、圧縮機11、四路切換弁12、室外熱交換器13、室外膨張弁14、過冷却熱交換器31等が設けられ、これらは冷媒配管によって接続されることによって冷媒回路を構成している。また、室外機2には送風ファン23が設けられている。室内機3には、室内膨張弁15および室内熱交換器16等が設けられている。四路切換弁12と室内熱交換器16とはガス側冷媒連絡配管17aにより接続され、室外膨張弁14と室内膨張弁15とは液側冷媒連絡配管17bにより接続されている。室外機2の内部冷媒回路の端末部には、ガス側閉鎖弁18と液側閉鎖弁19とが設けられている。ガス側閉鎖弁18は四路切換弁12側に配置されており、液側閉鎖弁19は室外膨張弁14側に配置されている。ガス側閉鎖弁18にはガス側冷媒連絡配管17aが接続され、液側閉鎖弁19には液側冷媒連絡配管17bが接続される。   The outdoor unit 2 is provided with a compressor 11, a four-way switching valve 12, an outdoor heat exchanger 13, an outdoor expansion valve 14, a supercooling heat exchanger 31, and the like, and these are connected by a refrigerant pipe to thereby form a refrigerant circuit. Is configured. The outdoor unit 2 is provided with a blower fan 23. The indoor unit 3 is provided with an indoor expansion valve 15, an indoor heat exchanger 16, and the like. The four-way switching valve 12 and the indoor heat exchanger 16 are connected by a gas side refrigerant communication pipe 17a, and the outdoor expansion valve 14 and the indoor expansion valve 15 are connected by a liquid side refrigerant communication pipe 17b. A gas side shut-off valve 18 and a liquid side shut-off valve 19 are provided at a terminal portion of the internal refrigerant circuit of the outdoor unit 2. The gas side closing valve 18 is arranged on the four-way switching valve 12 side, and the liquid side closing valve 19 is arranged on the outdoor expansion valve 14 side. A gas side refrigerant communication pipe 17 a is connected to the gas side shutoff valve 18, and a liquid side refrigerant communication pipe 17 b is connected to the liquid side shutoff valve 19.

上記構成の空気調和装置1において、冷房運転を行う場合には、四路切換弁12が図1において実線で示す状態に保持される。圧縮機11から吐出された高温高圧のガス冷媒は、四路切換弁12を経て室外熱交換器(凝縮器)13に流入し、送風ファン23の作動により室外空気と熱交換して凝縮・液化する。液化した冷媒は、全開状態の室外膨張弁14を通過し、液側冷媒連絡配管17bを通って各室内機3に流入する。室内機3において、冷媒は、室内膨張弁(減圧機構)15で所定の低圧に減圧され、さらに室内熱交換器(蒸発器)16で室内空気と熱交換して蒸発する。そして、冷媒の蒸発によって冷却された室内空気は、図示しない室内ファンによって室内に吹き出され、当該室内を冷房する。また、室内熱交換器16で蒸発した冷媒は、ガス側冷媒連絡配管17aを通って室外機2に戻り、四路切換弁12を経て圧縮機11に吸い込まれる。   In the air conditioner 1 having the above-described configuration, when the cooling operation is performed, the four-way switching valve 12 is held in a state indicated by a solid line in FIG. The high-temperature and high-pressure gas refrigerant discharged from the compressor 11 flows into the outdoor heat exchanger (condenser) 13 through the four-way switching valve 12 and exchanges heat with outdoor air by the operation of the blower fan 23 to condense and liquefy. To do. The liquefied refrigerant passes through the fully-expanded outdoor expansion valve 14 and flows into each indoor unit 3 through the liquid side refrigerant communication pipe 17b. In the indoor unit 3, the refrigerant is depressurized to a predetermined low pressure by an indoor expansion valve (decompression mechanism) 15, and is further evaporated by exchanging heat with indoor air in an indoor heat exchanger (evaporator) 16. The room air cooled by the evaporation of the refrigerant is blown into the room by an indoor fan (not shown) to cool the room. The refrigerant evaporated in the indoor heat exchanger 16 returns to the outdoor unit 2 through the gas-side refrigerant communication pipe 17a, and is sucked into the compressor 11 through the four-way switching valve 12.

他方、暖房運転を行う場合には、四路切換弁12が図1において破線で示す状態に保持される。圧縮機11から吐出された高温高圧のガス冷媒は、四路切換弁12を経て各室内機3の室内熱交換器(凝縮器)16に流入し、室内空気と熱交換して凝縮・液化する。冷媒の凝縮によって加熱された室内空気は、室内ファンによって室内に吹き出され、当該室内を暖房する。室内熱交換器16において液化した冷媒は、全開状態の室内膨張弁15から液側冷媒連絡配管17bを通って室外機2に戻る。室外機2に戻った冷媒は、室外膨張弁(減圧機構)14で所定の低圧に減圧され、さらに室外熱交換器(蒸発器)13で室外空気と熱交換して蒸発する。そして、室外熱交換器13で蒸発した冷媒は、四路切換弁12を経て圧縮機11に吸い込まれる。   On the other hand, when the heating operation is performed, the four-way switching valve 12 is held in a state indicated by a broken line in FIG. The high-temperature and high-pressure gas refrigerant discharged from the compressor 11 flows into the indoor heat exchanger (condenser) 16 of each indoor unit 3 through the four-way switching valve 12, and heat-condenses with indoor air to condense and liquefy. . The indoor air heated by the condensation of the refrigerant is blown into the room by an indoor fan to heat the room. The refrigerant liquefied in the indoor heat exchanger 16 returns from the fully opened indoor expansion valve 15 to the outdoor unit 2 through the liquid side refrigerant communication pipe 17b. The refrigerant returned to the outdoor unit 2 is depressurized to a predetermined low pressure by the outdoor expansion valve (decompression mechanism) 14 and further evaporated by exchanging heat with outdoor air by the outdoor heat exchanger (evaporator) 13. Then, the refrigerant evaporated in the outdoor heat exchanger 13 is sucked into the compressor 11 through the four-way switching valve 12.

本実施の形態の過冷却熱交換器31は、上述のような冷房運転の際に、室外熱交換器13から流出した高圧の液冷媒を室内膨張弁15によって減圧する前に過冷却するために使用される。本実施の形態において、過冷却熱交換器31は、室外膨張弁14と液側閉鎖弁19との間の冷媒配管(ここでは、主冷媒配管25と呼称する)に設けられている。
また、冷媒回路は、室外熱交換器13において凝縮した冷媒(高圧液冷媒)の一部を主冷媒配管25から分岐して、過冷却熱交換器31に対して冷却源となる冷却冷媒を供給し、その後、圧縮機11の吸入側に冷却冷媒を戻すバイパス冷媒回路26を有している。具体的に、バイパス冷媒回路26は、室外膨張弁14と過冷却熱交換器31との間の主冷媒配管25から冷媒を分岐させ、過冷却熱交換器31における冷却冷媒の入口に接続される分岐配管27と、過冷却熱交換器31における冷却冷媒の出口から圧縮機11の吸入側に配管に合流する合流配管28とを有する。
The supercooling heat exchanger 31 of the present embodiment is for supercooling the high-pressure liquid refrigerant that has flowed out of the outdoor heat exchanger 13 before the pressure is reduced by the indoor expansion valve 15 during the cooling operation as described above. used. In the present embodiment, the supercooling heat exchanger 31 is provided in a refrigerant pipe (referred to herein as the main refrigerant pipe 25) between the outdoor expansion valve 14 and the liquid side shut-off valve 19.
Further, the refrigerant circuit branches a part of the refrigerant (high-pressure liquid refrigerant) condensed in the outdoor heat exchanger 13 from the main refrigerant pipe 25 and supplies the cooling refrigerant as a cooling source to the supercooling heat exchanger 31. Thereafter, a bypass refrigerant circuit 26 is provided to return the cooling refrigerant to the suction side of the compressor 11. Specifically, the bypass refrigerant circuit 26 branches the refrigerant from the main refrigerant pipe 25 between the outdoor expansion valve 14 and the supercooling heat exchanger 31 and is connected to the cooling refrigerant inlet in the supercooling heat exchanger 31. It has a branch pipe 27 and a junction pipe 28 that joins the pipe from the outlet of the cooling refrigerant in the supercooling heat exchanger 31 to the suction side of the compressor 11.

分岐配管27には、冷媒を減圧するバイパス膨張弁29が設けられている。バイパス膨張弁29は電動弁等からなり、分岐配管27を流れる高圧液冷媒を減圧して、低圧の気液二相冷媒にする。そして、室外熱交換器13から室内膨張弁15へ向けて流動する高圧液冷媒は、過冷却熱交換器31において、低圧の気液二相冷媒によって過冷却される。気液二相冷媒に含まれる液部分(液冷媒)は高圧液冷媒との熱交換により蒸発し、ガス冷媒となって圧縮機11に吸入される。   The branch pipe 27 is provided with a bypass expansion valve 29 that depressurizes the refrigerant. The bypass expansion valve 29 is composed of an electric valve or the like, and depressurizes the high-pressure liquid refrigerant flowing through the branch pipe 27 to form a low-pressure gas-liquid two-phase refrigerant. The high-pressure liquid refrigerant flowing from the outdoor heat exchanger 13 toward the indoor expansion valve 15 is supercooled by the low-pressure gas-liquid two-phase refrigerant in the supercooling heat exchanger 31. The liquid part (liquid refrigerant) contained in the gas-liquid two-phase refrigerant evaporates by heat exchange with the high-pressure liquid refrigerant, and is sucked into the compressor 11 as a gas refrigerant.

図2は、図1に示される空気調和装置の冷媒回路に設けられた過冷却熱交換器(二重管式熱交換器)の概略図である。本実施の形態の過冷却熱交換器31は、二重管式の熱交換器とされている。すなわち、過冷却熱交換器31は、図1及び図2に示されるように、冷媒回路の主冷媒配管25に接続され、室外熱交換器13から流出した高温高圧の液冷媒を流動させる外管32と、バイパス冷媒回路26に接続され、バイパス膨張弁29によって減圧された冷却冷媒を流動させる内管33とからなる二重管によって構成されている。より具体的に、内管33は、一端部(入口側端部)33Aが分岐配管27に接続され、他端部(出口側端部)33Bが合流配管28に接続されている。そして、外管32を流動する高圧液冷媒と内管33を流動する気液二相冷媒とは、互いに熱交換されることによって、高圧液冷媒は過冷却され、気液二相冷媒は液部分が蒸発することによってガス冷媒となる。   FIG. 2 is a schematic view of a supercooling heat exchanger (double tube heat exchanger) provided in the refrigerant circuit of the air conditioner shown in FIG. The supercooling heat exchanger 31 of the present embodiment is a double tube heat exchanger. That is, as shown in FIGS. 1 and 2, the supercooling heat exchanger 31 is connected to the main refrigerant pipe 25 of the refrigerant circuit, and is an outer pipe through which the high-temperature and high-pressure liquid refrigerant flowing out of the outdoor heat exchanger 13 flows. 32 and an inner pipe 33 that is connected to the bypass refrigerant circuit 26 and flows the cooling refrigerant decompressed by the bypass expansion valve 29. More specifically, the inner pipe 33 has one end (inlet side end) 33A connected to the branch pipe 27 and the other end (outlet side end) 33B connected to the merging pipe 28. The high-pressure liquid refrigerant flowing in the outer pipe 32 and the gas-liquid two-phase refrigerant flowing in the inner pipe 33 are heat-exchanged with each other, whereby the high-pressure liquid refrigerant is supercooled, and the gas-liquid two-phase refrigerant is the liquid portion. Evaporates into a gas refrigerant.

過冷却熱交換器31は、U字状に湾曲した構造に形成されている。具体的に、過冷却熱交換器31は、2つの縦管34A,34Bと、この二つの縦管34A,34Bの端部同士を繋ぐ曲管35とからなっている。曲管35は、2つの縦管34A,34Bの下端部同士を接続している。したがって、冷媒の入口側端部32A,33A及び出口側端部32B,33Bは、2つの縦管34A,34Bの上端部に設けられている。   The supercooling heat exchanger 31 is formed in a U-shaped curved structure. Specifically, the supercooling heat exchanger 31 includes two vertical pipes 34A and 34B and a curved pipe 35 that connects the ends of the two vertical pipes 34A and 34B. The curved pipe 35 connects the lower ends of the two vertical pipes 34A and 34B. Accordingly, the refrigerant inlet side end portions 32A and 33A and the outlet side end portions 32B and 33B are provided at the upper ends of the two vertical tubes 34A and 34B.

過冷却熱交換器31の内管33には、バイパス膨張弁29によって減圧された気液二相の冷却冷媒が入口側端部33Aから流入し、内管33を流れる過程で外管32を流れる高圧液冷媒と熱交換し、ガス冷媒となって出口側端部33Bから流出する。しかしながら、高圧液冷媒との熱交換で気液二相冷媒の液部分が完全に蒸発されない場合に、当該液部分が出口側端部33Bから流出してしまうと、圧縮機11に吸引されて液バック現象が生じ、圧縮機11の性能低下の原因となる。   The gas-liquid two-phase cooling refrigerant depressurized by the bypass expansion valve 29 flows into the inner pipe 33 of the supercooling heat exchanger 31 from the inlet side end portion 33 </ b> A and flows through the outer pipe 32 in the process of flowing through the inner pipe 33. Heat exchange with the high-pressure liquid refrigerant becomes a gas refrigerant and flows out from the outlet side end portion 33B. However, when the liquid part of the gas-liquid two-phase refrigerant is not completely evaporated by heat exchange with the high-pressure liquid refrigerant, if the liquid part flows out from the outlet side end 33B, the liquid is sucked into the compressor 11 and liquid A back phenomenon occurs, causing the performance of the compressor 11 to deteriorate.

本実施の形態では、内管33の出口側端部33Bが縦管34Bの上端部に設けられているので、気液二相冷媒の液部分が蒸発せずに残ったとしても内管33の出口側端部33Bへ向けて上昇し難く、当該端部33Bから流出し難くなっている。そのため、圧縮機11への液バック現象を抑制することができる。また、気液二相冷媒の液部分は、曲管35に残存している間に外管32内の高圧液冷媒との間で熱交換し、やがてガス冷媒となって出口側端部33Bから流出される。一方、2本の縦管34A,34Bは、水平部分を備えない曲管35によって接続されているので、2本の縦管34A,34Bの間における気液二相冷媒の偏流(液部分とガス部分の上下分離)を可及的に抑制することができる。   In the present embodiment, since the outlet side end portion 33B of the inner tube 33 is provided at the upper end portion of the vertical tube 34B, even if the liquid portion of the gas-liquid two-phase refrigerant remains without being evaporated, It is difficult to rise toward the outlet side end portion 33B, and it is difficult to flow out from the end portion 33B. Therefore, the liquid back phenomenon to the compressor 11 can be suppressed. The liquid part of the gas-liquid two-phase refrigerant exchanges heat with the high-pressure liquid refrigerant in the outer pipe 32 while remaining in the curved pipe 35, and eventually becomes a gas refrigerant from the outlet side end portion 33B. Leaked. On the other hand, the two vertical pipes 34A and 34B are connected by a curved pipe 35 that does not have a horizontal portion, so that the gas-liquid two-phase refrigerant drift between the two vertical pipes 34A and 34B (liquid portion and gas). The vertical separation of the portion) can be suppressed as much as possible.

また、過冷却熱交換器31における外管32の入口側端部32A及び出口側端部32Bと、内管33の入口側端部33A及び出口側端部33Bとは、いずれも上下方向に関して同じ側(上側)に設けられているので、これらに対する冷媒配管の接続を、過冷却熱交換器31を上下反転することなく行うことができる。したがって、過冷却熱交換器31に対する冷媒配管の接続作業を作業性よく行うことができる。   Further, the inlet side end portion 32A and the outlet side end portion 32B of the outer tube 32 and the inlet side end portion 33A and the outlet side end portion 33B of the inner tube 33 in the supercooling heat exchanger 31 are all the same in the vertical direction. Since it is provided on the side (upper side), the refrigerant pipes can be connected to these without turning the supercooling heat exchanger 31 upside down. Therefore, the connection work of the refrigerant pipe to the supercooling heat exchanger 31 can be performed with good workability.

過冷却熱交換器31は、室外機2のケーシングにおける底フレーム43上に支持部材40を介して取り付けられている。この支持部材40は、ゴムや合成樹脂等から形成され、ボルト及びナット等からなる固定具42によって底フレーム43に固定されている。支持部材40の上面には、湾曲状に凹む嵌合凹部41が形成されている。過冷却熱交換器31は、曲管35を嵌合凹部41に嵌合させ、支持部材40と曲管35とを締結バンド等によって固定することで、支持部材40に支持されている。過冷却熱交換器31は、曲管35の部分において比較的強度が高くなるため、支持部材40により安定して過冷却熱交換器31を支持することができる。   The supercooling heat exchanger 31 is attached to the bottom frame 43 in the casing of the outdoor unit 2 via the support member 40. The support member 40 is made of rubber, synthetic resin, or the like, and is fixed to the bottom frame 43 by a fixture 42 made up of bolts and nuts. A fitting recess 41 that is recessed in a curved shape is formed on the upper surface of the support member 40. The subcooling heat exchanger 31 is supported by the support member 40 by fitting the bent tube 35 into the fitting recess 41 and fixing the support member 40 and the bent tube 35 with a fastening band or the like. Since the strength of the subcooling heat exchanger 31 is relatively high in the bent pipe 35, the subcooling heat exchanger 31 can be stably supported by the support member 40.

図3は、第2の実施の形態に係る過冷却熱交換器(二重管式熱交換器)を示す概略図である。
図3に示される過冷却熱交換器31は、4本の縦管34A〜34Dと、3本の曲管35A〜35Cを備えている。そして、隣接する縦管34A〜34Dの端部同士がそれぞれ曲管35A〜35Cによって接続され、全体として略W字状に形成されている。また、外管32及び内管33の入口側端部32A,33A及び出口側端部32B,33Bは、縦管34A,34Dの上端部に設けられている。また、過冷却熱交換器31の下部側に配置された曲管35A,35Cは、支持部材40を介してケーシングの底フレーム43に支持されている。したがって、本実施の形態の過冷却熱交換器31は、図2に示される過冷却熱交換器31と同様の作用効果を奏する。さらに、本実施の形態の過冷却熱交換器31は、第1の実施の形態の過冷却熱交換器31と比べて、配管長が同一である場合に上下方向に関してよりコンパクトに構成することが可能となる。ただし、本実施の形態では、曲管35A〜35Cの数が多い分だけ冷媒の圧力損失が生じやすくなるため、この点においては第1の実施の形態の方が有利である。
FIG. 3 is a schematic view showing a supercooling heat exchanger (double tube heat exchanger) according to the second embodiment.
The supercooling heat exchanger 31 shown in FIG. 3 includes four vertical tubes 34A to 34D and three curved tubes 35A to 35C. And the edge parts of adjacent vertical pipe 34A-34D are connected by the curved pipes 35A-35C, respectively, and are formed in the substantially W shape as a whole. Further, the inlet side end portions 32A and 33A and the outlet side end portions 32B and 33B of the outer tube 32 and the inner tube 33 are provided at the upper ends of the vertical tubes 34A and 34D. Further, the bent pipes 35 </ b> A and 35 </ b> C arranged on the lower side of the supercooling heat exchanger 31 are supported by the bottom frame 43 of the casing via the support member 40. Therefore, the supercooling heat exchanger 31 of the present embodiment has the same effects as the supercooling heat exchanger 31 shown in FIG. Furthermore, the supercooling heat exchanger 31 of the present embodiment can be configured more compactly in the vertical direction when the pipe length is the same as that of the supercooling heat exchanger 31 of the first embodiment. It becomes possible. However, in the present embodiment, the pressure loss of the refrigerant is likely to occur as much as the number of the curved pipes 35A to 35C increases, and therefore the first embodiment is more advantageous in this respect.

本発明は、上記各実施の形態に限定されるものではなく、特許請求の範囲に記載された発明の範囲内において、適宜変更することが可能である。
例えば、本発明の過冷却熱交換器(二重管式熱交換器)31は、図4に示される冷媒回路にも適用することができる。この冷媒回路において、過冷却熱交換器31は、室外熱交換器13から流出する高圧液冷媒と、室内膨張弁15によって減圧され、室内熱交換器16において一部が蒸発した気液二相冷媒との間で熱交換を行うように構成されている。なお、この冷媒回路においては、暖房運転の際にも好適に過冷却熱交換器31によって高圧液冷媒の過冷却を行うことができる。
The present invention is not limited to the above-described embodiments, and can be appropriately changed within the scope of the invention described in the claims.
For example, the supercooling heat exchanger (double tube heat exchanger) 31 of the present invention can also be applied to the refrigerant circuit shown in FIG. In this refrigerant circuit, the supercooling heat exchanger 31 is a high-pressure liquid refrigerant that flows out from the outdoor heat exchanger 13 and a gas-liquid two-phase refrigerant that is decompressed by the indoor expansion valve 15 and partially evaporated in the indoor heat exchanger 16. It is comprised so that heat exchange may be performed between. In this refrigerant circuit, the supercooling heat exchanger 31 can suitably supercool the high-pressure liquid refrigerant even during the heating operation.

図3に示される過冷却熱交換器31は、複数の縦管34A〜34D及び曲管35A〜35Cが平面視で一直線状に配設されているが、例えば、平面視で四角形状や略Z字状に配設されていてもよい。また、過冷却熱交換器31は、6本以上の縦管(5本以上の曲管)を備えていてもよい。   In the supercooling heat exchanger 31 shown in FIG. 3, a plurality of vertical tubes 34A to 34D and curved tubes 35A to 35C are arranged in a straight line in a plan view. It may be arranged in a letter shape. In addition, the supercooling heat exchanger 31 may include six or more vertical tubes (5 or more curved tubes).

1 空気調和装置
2 室外機
10 冷媒回路
11 圧縮機
12 四路切換弁
13 室外熱交換器
14 室外膨張弁
15 室内膨張弁
16 室内熱交換器
31 過冷却熱交換器(二重管式熱交換器)
32 外管
33 内管
33A 入口側端部
33B 出口側端部
34A〜34D 縦管
35 曲管
35A〜35C 曲管
40 支持部材
43 底フレーム
DESCRIPTION OF SYMBOLS 1 Air conditioning apparatus 2 Outdoor unit 10 Refrigerant circuit 11 Compressor 12 Four-way switching valve 13 Outdoor heat exchanger 14 Outdoor expansion valve 15 Indoor expansion valve 16 Indoor heat exchanger 31 Supercooling heat exchanger (double-tube heat exchanger )
32 Outer pipe 33 Inner pipe 33A Inlet side end 33B Outlet side end 34A to 34D Vertical pipe 35 Curved pipe 35A to 35C Curved pipe 40 Support member 43 Bottom frame

Claims (3)

圧縮機(11)と、この圧縮機(11)により圧縮された高圧ガス冷媒を凝縮する凝縮器(13,16)と、凝縮された高圧液冷媒を減圧する減圧機構(15,14)と、減圧された低圧冷媒を蒸発させる蒸発器(16,13)と、前記凝縮器(13,16)により凝縮された高圧液冷媒を前記減圧機構(15,14)により減圧する前に過冷却する二重管式熱交換器(31)と、を備え、
前記二重管式熱交換器(31)は、前記高圧液冷媒を流動させる外管(32)と、前記高圧液冷媒を減圧して得られる低圧の気液二相冷媒を流入させる入口側端部(33A)、及び前記圧縮機(11)の吸引側に接続される出口側端部(33B)を有する内管(33)と、を備え
前記外管(32)及び前記内管(33)は、上下方向に配設された複数の縦管(34A,34B,34C,34D)と、複数の縦管(34A,34B,34C,34D)の端部同士を接続する曲管(35,35A,35B,35C)とからなり、
前記内管(33)の出口側端部(33B)が、一の縦管(34B,34D)の上端部に設けられ、
前記内管(33)の入口側端部(33A)が、他の縦管(34A)の上端部に設けられ、
前記二重管式熱交換器(31)における複数の縦管(34A,34B,34C,34D)の下端部に接続された前記曲管(35)が、当該空気調和装置におけるケーシングの底フレーム(43)上に支持部材(40)を介して支持されていることを特徴とする空気調和装置
A compressor (11), a condenser (13, 16) for condensing the high-pressure gas refrigerant compressed by the compressor (11), a decompression mechanism (15, 14) for depressurizing the condensed high-pressure liquid refrigerant, The evaporator (16, 13) that evaporates the decompressed low-pressure refrigerant and the high-pressure liquid refrigerant condensed by the condenser (13, 16) are supercooled before being decompressed by the decompression mechanism (15, 14). A heavy pipe heat exchanger (31),
The double-pipe heat exchanger (31) includes an outer pipe (32) for flowing the high-pressure liquid refrigerant, and an inlet side end for flowing in a low-pressure gas-liquid two-phase refrigerant obtained by depressurizing the high-pressure liquid refrigerant. part (33A), and an inner tube having an outlet side end portion (33B) which is connected to the suction side of the compressor (11) and (33), provided with,
The outer pipe (32) and the inner pipe (33) include a plurality of vertical pipes (34A, 34B, 34C, 34D) and a plurality of vertical pipes (34A, 34B, 34C, 34D) arranged in the vertical direction. Consisting of curved pipes (35, 35A, 35B, 35C) connecting the ends of
The outlet side end (33B) of the inner pipe (33) is provided at the upper end of one vertical pipe (34B, 34D),
The inlet side end (33A) of the inner pipe (33) is provided at the upper end of the other vertical pipe (34A),
The curved pipe (35) connected to the lower ends of a plurality of vertical pipes (34A, 34B, 34C, 34D) in the double pipe heat exchanger (31) is a bottom frame of a casing in the air conditioner ( 43) An air conditioner supported on a support member (40) .
前記支持部材(40)は、ゴム又は合成樹脂からなり、その上面に、前記曲管(35)を嵌合させる嵌合凹部(41)が形成されている、請求項1に記載の空気調和装置The air conditioner according to claim 1, wherein the support member (40) is made of rubber or synthetic resin, and has a fitting recess (41) into which the bent pipe (35) is fitted. . 2本の前記縦管(34A,34B)を備えるとともに、これらの縦管(34A,34B)の下端部同士が前記曲管(35)により接続されている、請求項1又は2に記載の空気調和装置。 The air according to claim 1 or 2, wherein the two vertical tubes (34A, 34B) are provided, and lower ends of the vertical tubes (34A, 34B) are connected to each other by the curved tube (35). Harmony device.
JP2011262525A 2011-11-30 2011-11-30 Air conditioner Active JP5403039B2 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP2011262525A JP5403039B2 (en) 2011-11-30 2011-11-30 Air conditioner
US14/358,527 US20140326019A1 (en) 2011-11-30 2012-11-06 Double-pipe heat exchanger and air conditioner using same
IN1172KON2014 IN2014KN01172A (en) 2011-11-30 2012-11-06
CN201280055516.5A CN103930744B (en) 2011-11-30 2012-11-06 Double-wall-tube heat exchanger and comprise the aircondition of this Double-wall-tube heat exchanger
EP12852894.0A EP2787314B1 (en) 2011-11-30 2012-11-06 Double-pipe heat exchanger and air conditioner using same
PCT/JP2012/078678 WO2013080754A1 (en) 2011-11-30 2012-11-06 Double-pipe heat exchanger and air conditioner using same
AU2012345060A AU2012345060B2 (en) 2011-11-30 2012-11-06 Double-pipe heat exchanger and air conditioner using same
BR112014012826A BR112014012826B8 (en) 2011-11-30 2012-11-06 AIR CONDITIONING
KR1020147017504A KR20140106609A (en) 2011-11-30 2012-11-06 Double-pipe heat exchanger and air conditioner using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011262525A JP5403039B2 (en) 2011-11-30 2011-11-30 Air conditioner

Publications (2)

Publication Number Publication Date
JP2013113559A JP2013113559A (en) 2013-06-10
JP5403039B2 true JP5403039B2 (en) 2014-01-29

Family

ID=48535221

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011262525A Active JP5403039B2 (en) 2011-11-30 2011-11-30 Air conditioner

Country Status (9)

Country Link
US (1) US20140326019A1 (en)
EP (1) EP2787314B1 (en)
JP (1) JP5403039B2 (en)
KR (1) KR20140106609A (en)
CN (1) CN103930744B (en)
AU (1) AU2012345060B2 (en)
BR (1) BR112014012826B8 (en)
IN (1) IN2014KN01172A (en)
WO (1) WO2013080754A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6657613B2 (en) * 2015-06-18 2020-03-04 ダイキン工業株式会社 Air conditioner
DE102015215253A1 (en) 2015-08-11 2017-02-16 Bayerische Motoren Werke Aktiengesellschaft Cooling device for energy storage
KR102125025B1 (en) * 2018-05-08 2020-06-19 김봉석 Heat exahanging device
DE102020001338A1 (en) * 2020-02-29 2021-09-02 REGASCOLD GmbH Heat exchanger for the recovery of cooling capacity from the regasification of cryogenic liquefied gases
CN113184937B (en) * 2021-04-25 2023-09-26 清华大学 Method and device for realizing independent connection between different layers of two sets of vertical multilayer cavities
GB2614358B (en) * 2022-07-20 2024-01-10 Peak Scient Instruments Limited Improvements in or relating to gas apparatus

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3174301A (en) * 1963-10-07 1965-03-23 Gen Electric Heat exchanger structure
US3593782A (en) * 1969-09-08 1971-07-20 American Precision Ind Heat exchanger
US5095712A (en) * 1991-05-03 1992-03-17 Carrier Corporation Economizer control with variable capacity
FR2677113B1 (en) * 1991-06-03 1993-11-26 Puzio Jean Claude TUBULAR HEAT EXCHANGER WITH FINS FOR HEATING A LIQUID FLUID BY HOT GASES.
US5839295A (en) * 1997-02-13 1998-11-24 Frontier Refrigeration And Air Conditioning Ltd. Refrigeration/heat pump module
JP2003075026A (en) * 2001-08-31 2003-03-12 Daikin Ind Ltd Refrigeration unit
US6681597B1 (en) * 2002-11-04 2004-01-27 Modine Manufacturing Company Integrated suction line heat exchanger and accumulator
US6698221B1 (en) * 2003-01-03 2004-03-02 Kyung Kon You Refrigerating system
JP2005098581A (en) * 2003-09-24 2005-04-14 Hoshizaki Electric Co Ltd Freezing circuit and cooling device using the freezing circuit
JP4897298B2 (en) * 2006-01-17 2012-03-14 サンデン株式会社 Gas-liquid separator module
JP2008002771A (en) * 2006-06-23 2008-01-10 Denso Corp Component for refrigerating cycle
CN201003917Y (en) * 2006-06-30 2008-01-09 舒增鳌 Heat exchange for pipe discharge bushing
CN200941019Y (en) * 2006-07-20 2007-08-29 苏宇贵 Heat exchanger for air conditioner

Also Published As

Publication number Publication date
AU2012345060A1 (en) 2014-06-05
CN103930744A (en) 2014-07-16
JP2013113559A (en) 2013-06-10
US20140326019A1 (en) 2014-11-06
EP2787314A4 (en) 2015-08-05
IN2014KN01172A (en) 2015-10-16
BR112014012826A2 (en) 2017-06-13
WO2013080754A1 (en) 2013-06-06
EP2787314B1 (en) 2018-06-13
CN103930744B (en) 2016-01-06
BR112014012826B1 (en) 2020-12-15
KR20140106609A (en) 2014-09-03
EP2787314A1 (en) 2014-10-08
BR112014012826B8 (en) 2022-07-19
AU2012345060B2 (en) 2015-08-06

Similar Documents

Publication Publication Date Title
JP5403039B2 (en) Air conditioner
JP6045695B2 (en) Air conditioner
WO2007102463A1 (en) Refrigeration device
JP6179414B2 (en) Heat exchanger for heat source unit of refrigeration apparatus, and heat source unit including the same
JP6098951B2 (en) Heat exchanger and air conditioner
JP2011179689A (en) Refrigeration cycle device
WO2019043768A1 (en) Condenser and refrigeration device provided with condenser
JP5975971B2 (en) Heat exchanger and refrigeration cycle apparatus
WO2018138770A1 (en) Heat source-side unit and refrigeration cycle device
WO2018110103A1 (en) Compressor unit and outdoor unit provided therewith
WO2018110331A1 (en) Compressor unit and outdoor unit provided therewith
WO2013146415A1 (en) Heat pump-type heating device
JP2012002418A (en) Air conditioner and gas-liquid separator
JP6242289B2 (en) Refrigeration cycle equipment
JP6273838B2 (en) Heat exchanger
JP5916330B2 (en) Heat exchanger tube for supercooler and supercooler using the same
JP2016053473A (en) Heat exchanger and refrigeration cycle device
JP2007093167A (en) Liquid gas heat exchanger for air-conditioner
WO2021234961A1 (en) Heat exchanger, outdoor unit for air conditioning device, and air conditioning device
JP2015078777A (en) Pipe assembly and refrigeration device
JP2013015258A (en) Refrigerating cycle device
JP2008267731A (en) Air-conditioning device
JP2015055381A (en) Refrigeration unit
WO2016098204A1 (en) Heat exchanger and refrigeration cycle device provided with heat exchanger
KR20130051173A (en) Air conditioner

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131001

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131014

R151 Written notification of patent or utility model registration

Ref document number: 5403039

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151