JP5397264B2 - 放熱型流量センサのヒータ駆動回路 - Google Patents

放熱型流量センサのヒータ駆動回路 Download PDF

Info

Publication number
JP5397264B2
JP5397264B2 JP2010039089A JP2010039089A JP5397264B2 JP 5397264 B2 JP5397264 B2 JP 5397264B2 JP 2010039089 A JP2010039089 A JP 2010039089A JP 2010039089 A JP2010039089 A JP 2010039089A JP 5397264 B2 JP5397264 B2 JP 5397264B2
Authority
JP
Japan
Prior art keywords
resistor
heater
resistance
heat
indirectly heated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010039089A
Other languages
English (en)
Other versions
JP2011174814A (ja
Inventor
博海 有吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2010039089A priority Critical patent/JP5397264B2/ja
Publication of JP2011174814A publication Critical patent/JP2011174814A/ja
Application granted granted Critical
Publication of JP5397264B2 publication Critical patent/JP5397264B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Volume Flow (AREA)

Description

本発明は、ヒータ抵抗の発熱を制御する、放熱型流量センサのヒータ駆動回路に関するものである
従来、放熱型流量センサのヒータ抵抗の発熱を制御するヒータ駆動回路として、例えば特許文献1に示される構成が提案されている。
特許文献1では、流体温度補償用抵抗体と発熱用抵抗体温度モニターが、それぞれ他の抵抗体に連結されてブリッジ回路を構成している。そして、ブリッジ回路の出力が増幅器で差動増幅され、増幅器の出力によってスイッチング用トランジスタのベース電位が制御され、当該スイッチング用トランジスタに接続された発熱用抵抗体に印加される駆動電圧が制御されるようになっている。
特公平5−84867号公報
図1は、特許文献1に示されたフローセンサ(特許文献1の図6参照)のうち、ヒータ駆動回路の部分に相当する図である。
図1に示されるヒータ駆動回路10では、発熱用抵抗体(以下、ヒータ抵抗11と示す)の熱を受けて抵抗値が変化する発熱用抵抗体温度モニター12(以下、傍熱抵抗12と示す)と第1抵抗13とが、傍熱抵抗12を低電位側(グランド電位側)として直列に接続され、流体の温度によって抵抗値が変化する流体温度補償用抵抗体14(以下、温度計測抵抗14と示す)と第2抵抗15とが、温度計測抵抗14を低電位側(グランド電位側)として直列に接続されてブリッジ回路が構成されている。
このブリッジ回路における、傍熱抵抗12と第1抵抗13の接続点の電位(中点電位Vi)は、増幅器16(以下、アンプ16と示す)の反転入力端子に入力され、温度計測抵抗14と第2抵抗15の接続点の電位(中点電位Vk)は、アンプ16の非反転入力端子に入力されるようになっている。また、傍熱抵抗12及び温度計測抵抗14がいずれも正の温度係数を有している。
そして、アンプ16の出力に基づいて、ヒータ抵抗11に接続されたスイッチング用トランジスタ17(以下、ヒータ抵抗駆動用トランジスタ17と示す)が駆動され、傍熱抵抗12と温度計測抵抗14との温度差が一定となるように、ヒータ抵抗11の発熱が制御される構成となっている。
また、傍熱抵抗12の抵抗値をRi、温度計測抵抗14の抵抗値をRk、第1抵抗13の抵抗値をR1、第2抵抗15の抵抗値をR2とすると、無通電状態(同一温度)で、Rk>Riであり、且つ、電源電圧投入直後において、温度計測抵抗14側の中点電位Vkのほうが、傍熱抵抗12側の中点電位Viよりも高い(Vk>Vi)状態となるように、R1,R2が設定(例えばR1=R2)されている。
このようなヒータ駆動回路10では、同一温度でRk>Riであり、電源電圧Vccの投入時、ヒータ抵抗11から傍熱抵抗12への熱伝導に時間がかかるため、ヒータ抵抗11の温度は低い。したがって、図2に示されるように、電源電圧投入直後からしばらくの間は、中点電位Vkのほうが中点電位Viよりも高く(Vk>Vi)、特に電源電圧投入直後ほど中点電位Vk,Viの電位差(Vk−Vi)が大きい状態となる。
このため、電源電圧投入直後は、ヒータ抵抗11に印加される電位Veはほぼ電源電圧Vccとなる。そして、ヒータ抵抗11の発熱により、傍熱抵抗12の温度が上昇し、これにより中点電位Viが上昇して中点電位Vkと等しくなると、以後は、中点電位Vk,Viの等しい状態を維持するように、ヒータ抵抗駆動用トランジスタ17の駆動が制御される。なお、アンプ16が位相補償用コンデンサを有するため、図2では、便宜上、中点電位Viが中点電位Vkと等しくなった以後のVeを、電源電圧Vccとグランド電位との間の所定電位でほぼ一定と示している。
このように、電源電圧投入からVk=Viとなるまでは、ヒータ抵抗11に電流が流れる。特に電源電圧投入直後では、電位差(Vk−Vi)が大きいため、ヒータ抵抗11に過大な電流が流れる。なお、図2では、便宜上、電源電圧投入後からVk=Viとなるまでの電位Veを一定としている。
ところで、ヒータ抵抗11は、シリコンなどの半導体基板上に構成されたメンブレンに形成されており、半導体基板におけるメンブレンの周囲部位に対して熱的に遮断された構造となっている。したがって、上記したようにヒータ抵抗11の電位Veが電源電圧Vccになると、過大な電流がヒータ抵抗11に流れて、ヒータ抵抗11の温度は瞬時に上昇する。
このときのヒータ抵抗11の温度は、ヒータ抵抗11の通常動作時の温度よりはるかに高く、場合によっては500℃以上になることもありえる。従来のヒータ駆動回路10では、このような温度上昇によりヒータ抵抗11が劣化し、ヒータ駆動回路10の信頼性が低下するという問題があった。
本発明は上記問題点に鑑み、ヒータ抵抗の劣化を抑制することができる放熱型流量センサのヒータ駆動回路を提供することを目的とする。
上記目的を達成する為に、請求項1に記載の発明は、
通電による発熱するヒータ抵抗と、
ヒータ抵抗の熱を受けて抵抗値が変化する傍熱抵抗と第1抵抗とが直列に接続され、流体の温度によって抵抗値が変化する温度計測抵抗と第2抵抗とが直列に接続されて構成されたブリッジ回路と、
ブリッジ回路における、傍熱抵抗と第1抵抗の接続点の電位(以下、中点電位Viと示す)と、温度計測抵抗と第2抵抗の接続点の電位(以下、中点電位Vkと示す)とを差動増幅する差動増幅器と、
ヒータ抵抗に接続され、差動増幅器の出力に基づいてヒータ抵抗への通電状態を制御するヒータ抵抗駆動用トランジスタと、を備え、
傍熱抵抗と温度計測抵抗との温度差が一定となるように、ヒータ抵抗の発熱を制御する放熱型流量センサのヒータ駆動回路であって、
温度計測抵抗に対して遅延用コンデンサが並列に接続され、
温度計測抵抗の抵抗値と遅延用コンデンサの容量で決定される時定数τ1が、ヒータ抵抗から傍熱抵抗への熱伝導の時定数τ2、すなわち傍熱抵抗の抵抗値の温度上昇による変化の時定数τ2、と同じとされていることを特徴とする。
本発明によれば、電源電圧を投入すると、遅延用コンデンサを設けた効果により、中点電位Vkが0Vから時定数τ1をもって立ち上がる。これに対し、傍熱抵抗には遅延用コンデンサが接続されていないため、中点電位Viは、電源電圧投入とともに所定値(≠0V)を有することとなる。したがって、電源電圧投入直後から中点電位Vkが上昇して中点電位Viを超えるまでは、ヒータ抵抗には電流が流れない。
また、中点電位Vkが上昇して中点電位Viを超えると、ヒータ抵抗駆動用トランジスタがオンとなり、中点電位Vk,Viの差に応じてヒータ抵抗に電流が流れて発熱する。そして、熱伝導によって傍熱抵抗の抵抗値が変化し、中点電位Viが上昇する。この熱伝導は時定数τ2をもつので、中点電位Viも時定数τ2で上昇する。このとき、中点電位Vkも、時定数τ2と同じ時定数τ1で上昇するので、中点電位Vk,Viは僅かな差を有した状態で、ともに同じ時定数で上昇することとなる。
そして、時定数τ1によって中点電位Vkが所定の電位まで上昇しきり、熱伝導により、中点電位Viが時定数τ2をもってさらに上昇して中点電位Vkと一致すると、ヒータ抵抗駆動用トランジスタがオフとなる。以後は、中点電位Vk,Viが等しい状態を維持するように、すなわち、傍熱抵抗と温度計測抵抗との温度差が一定となるように、ヒータ抵抗の発熱が制御される。
このように本発明によれば、電源電圧投入直後に、ヒータ抵抗に過大な電流が流れるのを抑制することができる。したがって、異常発熱によるヒータ抵抗の劣化を抑制し、ひいてはヒータ駆動回路の信頼性低下を抑制することができる。
具体的には、請求項2に記載のように、ブリッジ回路では、傍熱抵抗を低電位側として傍熱抵抗と第1抵抗とが直列に接続されるとともに、温度計測抵抗を低電位側として温度計測抵抗と第2抵抗とが直列に接続され、ヒータ抵抗駆動用トランジスタがnpn型のバイポーラトランジスタであり、該バイポーラトランジスタのベースが差動増幅器の出力端子に接続された構成を採用することができる。
上記ブリッジ回路の構成においては、請求項3に記載のように、ヒータ抵抗駆動用トランジスタはnチャネル型のMOSFET若しくはIGBTであり、ヒータ抵抗駆動用トランジスタのゲートが差動増幅器の出力端子に接続された構成を採用することもできる。
また、請求項4に記載のように、ブリッジ回路では、第1抵抗を低電位側として傍熱抵抗と第1抵抗とが直列に接続されるとともに、第2抵抗を低電位側として温度計測抵抗と第2抵抗とが直列に接続され、ヒータ抵抗駆動用トランジスタがpnp型のバイポーラトランジスタであり、ヒータ抵抗駆動用トランジスタのベースが差動増幅器の出力端子に接続された構成を採用することもできる。
上記ブリッジ回路の構成においては、請求項5に記載のように、ヒータ抵抗駆動用トランジスタはpチャネル型のMOSFET若しくはIGBTであり、ヒータ抵抗駆動用トランジスタのゲートが差動増幅器の出力端子に接続された構成を採用することもできる。
遅延用コンデンサは、請求項6に記載のように、ヒータ抵抗、傍熱抵抗、温度計測抵抗、第1抵抗、及び第2抵抗の形成されたセンサチップに形成されても良いし、請求項7に記載のように、上記センサチップにディスクリート部品として実装されても良い。
従来のヒータ駆動回路を示す図である。 図1に示すヒータ駆動回路において、電源電圧投入後の各電位の変化を示すタイミングチャートである。 本発明の実施形態に係るヒータ駆動回路を備えた放熱型流量センサの概略構成を示す回路図である。 図3に示す放熱型流量センサのうちのセンサチップを示し、(a)は平面図、(b)は(a)のIVB−IVB千に沿う断面図である。 図3に示すヒータ駆動回路において、電源電圧投入後の各電位の変化を示すタイミングチャートである。
以下、本発明の実施形態を図に基づいて説明する。なお、以下の実施形態において、従来技術として示した構成(図1参照)と同一もしくは均等である部分には、同一符号を付与する。
図3は、本実施形態に係るヒータ駆動回路を備えた放熱型流量センサの概略構成を示している。この放熱型流量センサは、例えば車載内燃機関の吸気管に配置され、吸気管内を流れる流体の流量(吸入空気量)を検出するために用いられるものである。そして、検出された吸入空気量は、燃料噴射量の制御に用いられる。
図3に示すように、放熱型流量センサは、ヒータ駆動回路10と、流体の流量を検出するセンサ回路20と、を備えている。
ヒータ駆動回路10は、流量に応じてヒータ抵抗11を発熱させ、傍熱抵抗12と温度計測抵抗14との温度差が一定になるように制御する回路である。このヒータ駆動回路10の構成は、上記した図1とほぼ同じ構成となっている。すなわち、ヒータ抵抗11、傍熱抵抗12、第1抵抗13、温度計測抵抗14、第2抵抗15、アンプ16、ヒータ抵抗駆動用トランジスタ17を有している。
ヒータ抵抗11は、電流が流されることによって発熱する抵抗体である。傍熱抵抗12は、ヒータ抵抗11の熱が、後述するセンサチップ30のメンブレン31の部分を介して伝達され、この熱を受けて抵抗値が変化する抵抗体である。また、温度計測抵抗14は、周囲の温度(流体の温度)によって抵抗値が変化する抵抗体である。
傍熱抵抗12と第1抵抗13とは、傍熱抵抗12を低電位側(グランド電位側)、第1抵抗13を高電位側(定電位Vr側)として直列に接続され、温度計測抵抗14と第2抵抗15とは、温度計測抵抗14を低電位側(グランド電位側)、第2抵抗15を高電位側(定電位Vr側)として直列に接続されている。そして、これら直列に接続されたものが並列に接続されてブリッジ回路が構成されている。
ブリッジ回路における、傍熱抵抗12と第1抵抗13の接続点の電位(以下、中点電位Viと示す)は、アンプ16の反転入力端子に入力され、温度計測抵抗14と第2抵抗15の接続点の電位(以下、中点電位Vkと示す)は、アンプ16の非反転入力端子に入力されるようになっている。
アンプ16は、中点電位Vi,Vkの差(Vk−Vi)を増幅して出力する(差動増幅する)ものであり、特許請求の範囲に記載の差動増幅器に相当する。このアンプ16には、図示しない位相補償用コンデンサが内蔵されている。
ヒータ抵抗駆動用トランジスタ17は、アンプ16の出力に応じて駆動制御されることで、電源電圧Vccからヒータ抵抗11に電流を流す役割を果たすものである。このヒータ抵抗駆動用トランジスタ17は、アンプ16の出力に応じた大きさの電流を流す。すなわち、ヒータ抵抗11は、ヒータ抵抗駆動用トランジスタ17によって流される電流の大きさに応じて発熱する。本実施形態では、ヒータ抵抗駆動用トランジスタ17として、npn型のバイポーラトランジスタを採用しており、ベースがアンプ16の出力端子と接続され、エミッタがヒータ抵抗11と接続されている。このヒータ抵抗駆動用トランジスタ17は、中点電位Vkが中点電位Viよりも大きいとき(Vk>Vi)に、アンプ16の出力(ベース電位)に応じた大きさの電流を流す。
さらに、本実施形態では、ヒータ駆動回路10が、温度計測抵抗14に対して並列に接続された遅延用コンデンサ18を有している。この遅延用コンデンサ18は、一端がグランドに接続され、他端が温度計測抵抗14と第2抵抗15との接続点とアンプ16の非反転入力端子とを繋ぐ配線に接続されている。そして、温度計測抵抗14の抵抗値と遅延用コンデンサ18の容量で決定される時定数τ1が、ヒータ抵抗11から傍熱抵抗12への熱伝導の時定数τ2、すなわち傍熱抵抗12の抵抗値の、温度上昇による増加の時定数τ2、と同じとなっている。
センサ回路20は、4つの抵抗21〜24からなるブリッジ回路とアンプ25を有している。ブリッジ回路を構成する4つの抵抗21〜24の抵抗値は同じである。
抵抗21〜24のうち、抵抗21と抵抗24とが、抵抗24を低電位側(グランド電位側)として直列に接続され、抵抗22と抵抗23とが、抵抗22を低電位側(グランド電位側)として直列に接続されている。そして、これら直列に接続されたものが並列に接続されてブリッジ回路が構成されている。ブリッジ回路の接続点のうち、一方はブリッジ回路を駆動するための定電位Vrに接続され、他方はグランドに接続されている。
また、抵抗21と抵抗24との接続点の電位をVaとし、抵抗23と抵抗22との接続点の電位をVbとすると、電位Vaがアンプ25の非反転入力端子に入力され、電位Vbがアンプ25の反転入力端子に入力されるようになっている。
アンプ25は、ブリッジ回路から入力される電位Va,Vbの差(Va−Vb)を増幅して出力する(差動増幅する)ものである。アンプ25の出力が放熱型流量センサの出力Voutとして外部に出力される。
また、上記したヒータ抵抗11、傍熱抵抗12、第1抵抗13、温度計測抵抗14、第2抵抗15は、すべて同一種類の材質、同じ温度係数(本実施形態では正の温度係数)を有している。また、傍熱抵抗12の抵抗値をRi、温度計測抵抗14の抵抗値をRk、第1抵抗13の抵抗値をR1、第2抵抗15の抵抗値をR2とすると、無通電状態(同一温度)でRk>Riであり、且つ、電源電圧Vccの投入後において、時定数τ1で0Vから立ち上がる中点電位Vkが、電源電圧Vccの投入直後の中点電位Vi(ヒータ抵抗11が発熱しない状態での中点電位Vi)を上回るように、すなわち、ヒータ抵抗11に電流が流れるように、R1,R2の抵抗値が設定(本実施形態では、同一温度でR1=R2)されている。
上記構成のうち、ヒータ駆動回路10を構成するヒータ抵抗11、傍熱抵抗12、第1抵抗13、温度計測抵抗14、第2抵抗15、及び遅延用コンデンサ18と、センサ回路20を構成する4つの抵抗21〜24が、1つのセンサチップ30に作り込まれている。
図4(a)に示されるように、センサチップ30にはメンブレン31が形成されている。このメンブレン31は、図4(b)に示されるように、センサチップ30の一部が薄肉化されることにより構成されている。具体的には、シリコンなどの半導体基板の一面上にシリコン酸化膜などの絶縁膜が形成され、半導体基板の一部がエッチングなどにより除去されることで半導体基板からリリースされた絶縁膜の部分が、メンブレン31となっている。
本実施形態では、図4(a)に示すように平面長方形のセンサチップ30を採用しており、センサチップ30の短手方向(以下、短手方向と示す)が流体の流れに沿う方向となっている。メンブレン31は、センサチップ30の長手方向(以下、長手方向と示す)において一端側に形成されている。
センサチップ30におけるメンブレン31上には、ヒータ抵抗11、傍熱抵抗12、及び抵抗21〜24が形成されている。メンブレン31における短手方向の中央には、ヒータ抵抗11が長手方向に延びて形成されている。また、このヒータ抵抗11を短手方向において挟むように、傍熱抵抗12が、平面略コの字状に形成されている。さらに、短手方向において、傍熱抵抗12の上流側部分よりも流体の上流側に、傍熱抵抗12側から抵抗22、抵抗21が順に形成され、傍熱抵抗12の下流側部分よりも流体の下流側に、傍熱抵抗12側から抵抗23、抵抗23が順に形成されている。
また、センサチップ30におけるメンブレン31を除く部位には、長手方向においてヒータ抵抗11とほぼ同じ位置であり、短手方向においてメンブレン31よりも流体の上流側に、温度計測抵抗14が形成されている。それ以外にも、第1抵抗13、第2抵抗15、及び遅延用コンデンサ18が形成されている。
なお、本実施形態では、遅延用コンデンサ18がセンサチップ30に形成される例を示したが、遅延用コンデンサ18としてチップコンデンサなどのディスクリート部品を用いることもできる。
一方、放熱型流量センサのうち、アンプ16、ヒータ抵抗駆動用トランジスタ17、及びアンプ25は、回路チップに作り込まれている。そして、当該回路チップと図4に示したセンサチップ30とにより、1つの放熱型流量センサとなっている。
このように構成される放熱型流量センサでは、ヒータ駆動回路10によりヒータ抵抗11が加熱制御されると、センサ回路20の各抵抗21〜24が加熱される。流体が流れない場合、4つの抵抗21〜24の抵抗値は同じなので、これらの抵抗21〜24で構成されるブリッジ回路は平衡に保たれる。一方、流体が流れる場合、上流側に形成されている抵抗21、22と下流側に形成されている抵抗23、24とに温度差、すなわち抵抗値の差が生じ、ブリッジ回路が非平衡状態となる。すなわち、流体の流量によりメンブレン31上の温度分布が変化し、流量が大きくなると電位差(Va−Vb)が大きくなるため、流量が検知される。そして、流量に応じたブリッジ回路の電位差(Va−Vb)がアンプ25にて増幅されて出力Voutとして外部に出力される。
次に、図3に示される放熱型流量センサを構成するヒータ駆動回路10の作動について説明する。
上記したように、温度計測抵抗14には遅延用コンデンサ18が並列接続されている。したがって、電源電圧Vccを投入すると、遅延用コンデンサ18の充電のため、中点電位Vkは、図5に示すように0Vから時定数τ1をもって立ち上がる。
一方、中点電位Viは、傍熱抵抗12に遅延用コンデンサが接続されていないため、図5に示すように、電源電圧Vccの投入とともに所定値(≠0V)を有することとなる。この所定値は、このときの温度に応じた傍熱抵抗12の抵抗値Riにより、Vr×Ri/(R1+Ri)で決定される。
したがって、電源電圧Vccの投入直後においては、Vi>Vkの関係が成立することとなる。このため、アンプ16からの出力は負の信号となり、ヒータ抵抗駆動用トランジスタ17としてのnpn型バイポーラトランジスタはオフ状態となる。そして、ヒータ抵抗11に印加される電位Veがほぼ0Vとなり、ヒータ抵抗11には電流が流れない。
上記したように、中点電位Vkは時定数τ1をもって立ち上がり、中点電位Viは、ヒータ抵抗11に電流が流れて発熱しない限り上記所定値をほぼ維持する。したがって、時定数τ1をもって上昇する中点電位Vkが中点電位Viと等しくなり、そして中点電位Viを超えるまでは、ヒータ抵抗11に電流が流れない。
中点電位Vkが上昇して中点電位Viを超える(Vk>Vi)と、アンプ16からの出力は正の信号となり、ヒータ抵抗駆動用トランジスタ17としてのnpn型バイポーラトランジスタがオン状態となる。そして、ヒータ抵抗11に電流が流れてヒータ抵抗11が発熱する。
このとき、ヒータ抵抗11の熱は、センサチップ30のメンブレン31の部分を通じて、傍熱抵抗12に伝達される。この熱伝導によって傍熱抵抗12の抵抗値Riは上昇し、中点電位Viも上昇する。この熱伝導は時定数τ2をもつので、中点電位Viも時定数τ2で上昇する。しかしながら、無通電状態でVk>Viとなっており、中点電位Vkは、時定数τ2と同じ時定数τ1(τ1=τ2)で上昇する。したがって、中点電位Vkが中点電位Viを超えてからも、図5に示すように、中点電位Vk,Viは僅かな電位差を有した状態で、ともに同じ時定数で上昇する。
遅延用コンデンサ18の充電が完了すると、中点電位Vkの時定数τ1での上昇がとまり、これにより中点電位Vkは所定電位となる。一方、中点電位Viは、ヒータ抵抗11からの熱伝導により時定数τ2をもって上昇するため、所定電位となった中点電位Vkと一致することとなる。なお、中点電位Vkの所定電位とは、遅延用コンデンサ18の充電が完了した時点での、流体の温度に依存する温度計測抵抗14の抵抗値Rkと第2抵抗15の抵抗値R2により、Vr×Rk/(R1+Rk)で決定される。
このように、中点電位Viが中点電位Vkと一致すると、以後は、図5に示すように、中点電位Vkと中点電位Viが等しい状態を維持するように、すなわち、傍熱抵抗12と温度計測抵抗14との温度差が一定となるように、ヒータ抵抗11の発熱が制御される。なお、アンプ16が位相補償用コンデンサを有するため、図5では、便宜上、中点電位Viが中点電位Vkと等しくなった以後(Vk≒Viの期間)のVeを、電源電圧Vccとグランド電位との間の所定電位でほぼ一定と示している。
このように本実施形態に係る放熱型流量センサのヒータ駆動回路10によれば、温度計測抵抗14に遅延用コンデンサ18を並列に接続したので、中点電位Vk上昇して中点電位Viを超えると、ヒータ抵抗11に電流が流れるとともに、中点電位Vk,Viが僅かな電位差を有した状態でともに同じ時定数で上昇する。この結果、電位差(Vk−Vi)が、従来の電源電圧投入直後の電位差(Vk−Vi)よりも小さくなり、ヒータ抵抗11に過大な電流が流れるのを抑制することができる。すなわち、異常発熱によるヒータ抵抗11の劣化を抑制し、ひいてはヒータ駆動回路10の信頼性低下を抑制することができる。
以上、本発明の好ましい実施形態について説明したが、本発明は上述した実施形態になんら制限されることなく、本発明の主旨を逸脱しない範囲において、種々変形して実施することが可能である。
ヒータ抵抗駆動用トランジスタ17として、npn型のバイポーラトランジスタを採用する例を示したが、nチャネル型のMOSFETやIGBTを採用することもできる。
また、ヒータ駆動回路10の中点電位Vkがアンプ16の反転入力端子に入力され、中点電位Viがアンプ16の非反転入力端子に入力される構成を採用することもできる。この場合、ヒータ抵抗駆動用トランジスタ17として、pnp型のバイポーラトランジスタや、pチャネル型のMOSFET,IGBTを採用すれば良い。
また、傍熱抵抗12、温度計測抵抗14、第1抵抗13、第2抵抗15が負の温度係数を有する構成を採用することもできる。この場合、傍熱抵抗12に対して第1抵抗13を低電位側(グランド電位側)、温度計測抵抗14に対して第2抵抗15を低電位側(グランド電位側)とすれば良い。
10・・・ヒータ駆動回路
11・・・ヒータ抵抗
12・・・傍熱抵抗
14・・・温度計測抵抗
16・・・アンプ(差動増幅器)
17・・・ヒータ抵抗駆動用トランジスタ
18・・・遅延用コンデンサ
20・・・センサ回路

Claims (7)

  1. 通電により発熱するヒータ抵抗と、
    前記ヒータ抵抗の熱を受けて抵抗値が変化する傍熱抵抗と第1抵抗とが直列に接続され、流体の温度によって抵抗値が変化する温度計測抵抗と第2抵抗とが直列に接続されて構成されたブリッジ回路と、
    前記ブリッジ回路における、前記傍熱抵抗と前記第1抵抗の接続点の電位と、前記温度計測抵抗と前記第2抵抗の接続点の電位とを差動増幅する差動増幅器と、
    前記ヒータ抵抗に接続され、前記差動増幅器の出力に基づいて前記ヒータ抵抗への通電状態を制御するヒータ抵抗駆動用トランジスタと、を備え、
    前記傍熱抵抗と前記温度計測抵抗との温度差が一定となるように、前記ヒータ抵抗の発熱を制御する放熱型流量センサのヒータ駆動回路であって、
    前記温度計測抵抗に対して遅延用コンデンサが並列に接続され、
    前記温度計測抵抗の抵抗値と前記遅延用コンデンサの容量で決定される時定数が、前記ヒータ抵抗から前記傍熱抵抗への熱伝導の時定数と同じとされていることを特徴とする放熱型流量センサのヒータ駆動回路。
  2. 前記ブリッジ回路では、前記傍熱抵抗を低電位側として前記傍熱抵抗と前記第1抵抗とが直列に接続されるとともに、前記温度計測抵抗を低電位側として前記温度計測抵抗と前記第2抵抗とが直列に接続され、
    前記ヒータ抵抗駆動用トランジスタはnpn型のバイポーラトランジスタであり、前記ヒータ抵抗駆動用トランジスタのベースが前記差動増幅器の出力端子に接続されていることを特徴とする請求項1に記載の放熱型流量センサのヒータ駆動回路。
  3. 前記ブリッジ回路では、前記傍熱抵抗を低電位側として前記傍熱抵抗と前記第1抵抗とが直列に接続されるとともに、前記温度計測抵抗を低電位側として前記温度計測抵抗と前記第2抵抗とが直列に接続され、
    前記ヒータ抵抗駆動用トランジスタはnチャネル型のMOSFET若しくはIGBTであり、前記ヒータ抵抗駆動用トランジスタのゲートが前記差動増幅器の出力端子に接続されていることを特徴とする請求項1に記載の放熱型流量センサのヒータ駆動回路。
  4. 前記ブリッジ回路では、前記第1抵抗を低電位側として前記傍熱抵抗と前記第1抵抗とが直列に接続されるとともに、前記第2抵抗を低電位側として前記温度計測抵抗と前記第2抵抗とが直列に接続され、
    前記ヒータ抵抗駆動用トランジスタはpnp型のバイポーラトランジスタであり、前記ヒータ抵抗駆動用トランジスタのベースが前記差動増幅器の出力端子に接続されていることを特徴とする請求項1に記載の放熱型流量センサのヒータ駆動回路。
  5. 前記ブリッジ回路では、前記第1抵抗を低電位側として前記傍熱抵抗と前記第1抵抗とが直列に接続されるとともに、前記第2抵抗を低電位側として前記温度計測抵抗と前記第2抵抗とが直列に接続され、
    前記ヒータ抵抗駆動用トランジスタはpチャネル型のMOSFET若しくはIGBTであり、前記ヒータ抵抗駆動用トランジスタのゲートが前記差動増幅器の出力端子に接続されていることを特徴とする請求項1に記載の放熱型流量センサのヒータ駆動回路。
  6. 前記遅延用コンデンサは、前記ヒータ抵抗、前記傍熱抵抗、前記温度計測抵抗、前記第1抵抗、及び前記第2抵抗の形成されたセンサチップに形成されていることを特徴とする請求項1〜5いずれか1項に記載の放熱型流量センサのヒータ駆動回路。
  7. 前記遅延用コンデンサは、前記ヒータ抵抗、前記傍熱抵抗、前記温度計測抵抗、前記第1抵抗、及び前記第2抵抗の形成されたセンサチップに実装されていることを特徴とする請求項1〜5いずれか1項に記載の放熱型流量センサのヒータ駆動回路。
JP2010039089A 2010-02-24 2010-02-24 放熱型流量センサのヒータ駆動回路 Active JP5397264B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010039089A JP5397264B2 (ja) 2010-02-24 2010-02-24 放熱型流量センサのヒータ駆動回路

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010039089A JP5397264B2 (ja) 2010-02-24 2010-02-24 放熱型流量センサのヒータ駆動回路

Publications (2)

Publication Number Publication Date
JP2011174814A JP2011174814A (ja) 2011-09-08
JP5397264B2 true JP5397264B2 (ja) 2014-01-22

Family

ID=44687802

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010039089A Active JP5397264B2 (ja) 2010-02-24 2010-02-24 放熱型流量センサのヒータ駆動回路

Country Status (1)

Country Link
JP (1) JP5397264B2 (ja)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5965214A (ja) * 1982-10-06 1984-04-13 Japan Electronic Control Syst Co Ltd 内燃機関の吸入空気量測定用熱線流量計
JP3555013B2 (ja) * 1999-03-10 2004-08-18 三菱電機株式会社 感熱式流量計
JP2009097925A (ja) * 2007-10-15 2009-05-07 Denso Corp 放熱型流量センサ

Also Published As

Publication number Publication date
JP2011174814A (ja) 2011-09-08

Similar Documents

Publication Publication Date Title
US8689608B2 (en) Thermal gas sensor
JP3366818B2 (ja) 熱式空気流量計
US8981260B2 (en) Temperature control circuit of oven-controlled crystal oscillator
JP5712483B2 (ja) 過電流検出装置
US10712300B2 (en) Gas sensor device, and heating current control method for gas sensor device
US7631555B2 (en) Thermal flowmeter for measuring a flow rate of fluid
JP5961592B2 (ja) 熱式質量流量計
JP4470743B2 (ja) 流量センサ
JPS6135311A (ja) 熱式流速検出装置
JP2006201077A (ja) 熱式空気流量計
JP2009230421A (ja) 負荷電流供給回路
JP5397264B2 (ja) 放熱型流量センサのヒータ駆動回路
JP2009097925A (ja) 放熱型流量センサ
JP5029509B2 (ja) 流量センサ
JP5178261B2 (ja) 熱式流量計
JP2001165734A (ja) 熱抵抗式空気流量計
KR100337622B1 (ko) 감열식 유량계
JP2005092793A (ja) 電子機器回路
JP4222202B2 (ja) 熱式空気流量検出装置
WO2021079666A1 (ja) 半導体チップのチップ温度センサ、流量測定装置
JP5510311B2 (ja) 発熱抵抗式流量センサ及びその自己診断方法
JP2001141539A (ja) フローセンサの温度補正方法及びフローセンサ回路
JPH08193862A (ja) 感熱式流速測定装置
JPH1050993A (ja) 電流検出機能付き半導体装置
JPH06109510A (ja) 熱式流量計

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120717

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130913

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130924

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131007

R151 Written notification of patent or utility model registration

Ref document number: 5397264

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250