JP5394150B2 - Inductance type rotation angle sensor and manufacturing method thereof - Google Patents

Inductance type rotation angle sensor and manufacturing method thereof Download PDF

Info

Publication number
JP5394150B2
JP5394150B2 JP2009165727A JP2009165727A JP5394150B2 JP 5394150 B2 JP5394150 B2 JP 5394150B2 JP 2009165727 A JP2009165727 A JP 2009165727A JP 2009165727 A JP2009165727 A JP 2009165727A JP 5394150 B2 JP5394150 B2 JP 5394150B2
Authority
JP
Japan
Prior art keywords
substrate
conductor
ears
thermosetting resin
stator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009165727A
Other languages
Japanese (ja)
Other versions
JP2011021940A (en
Inventor
聖 今井
雅英 三田
吉史 滝田
俊昭 高梨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Keihin Corp
Original Assignee
Keihin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Keihin Corp filed Critical Keihin Corp
Priority to JP2009165727A priority Critical patent/JP5394150B2/en
Priority to EP09252699.5A priority patent/EP2202491B1/en
Priority to US12/592,720 priority patent/US8269484B2/en
Publication of JP2011021940A publication Critical patent/JP2011021940A/en
Application granted granted Critical
Publication of JP5394150B2 publication Critical patent/JP5394150B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Description

本発明は、検出対象の回転体に取り付けられるロータと、非回転の制御ハウジングに取り付けられるステータとからなり、そのステータを、環状に形成される励磁導体と、この励磁導体に隣接配置される受信導体とをガラスエポキシ樹脂製の基板にプリントして構成する一方、ロータに前記励磁導体に対向する励起導体を付設し、その励起導体の回転に伴なう励磁導体のインダクタンスの変化を回転体の回転角度変化として受信導体より検出するインダクタンス式回転角度センサ及びその製造方法に関する。   The present invention includes a rotor attached to a rotating body to be detected and a stator attached to a non-rotating control housing, and the stator is formed in an annular shape and a receiving element disposed adjacent to the exciting conductor. The conductor is printed on a substrate made of glass epoxy resin, and an excitation conductor opposite to the excitation conductor is attached to the rotor, and the change in the inductance of the excitation conductor accompanying the rotation of the excitation conductor is The present invention relates to an inductance type rotation angle sensor that detects a change in rotation angle from a receiving conductor and a method for manufacturing the same.

かゝるインダクタンス式回転角度センサは、特許文献1に開示されるように知られている。   Such an inductance type rotation angle sensor is known as disclosed in Patent Document 1.

特開2008−96231号公報JP 2008-96231 A

かゝるインダクタンス式回転角度センサでは、ステータの励磁導体及び受信導体と、ロータの励起導体との対向間隙を極力狭く且つ安定させることが、回転体の角度変化の検出精度を高める上で重要であるが、励磁導体及び受信導体をプリントしたガラスエポキシ樹脂製の基板では、その内部のガラス繊維の方向により、板面方向では線膨張係数が極めて小さいが、板厚方向では線膨張係数が比較的大きいため、エンジン周囲のような温度変化の激しい環境でインダクタンス式回転角度センサを使用する場合には、基板の板厚の変化により前記対向間隙が変化し、回転体の角度変化の検出精度が低下することがある。しかしながら、従来のインダクタンス式回転角度センサでは、温度変化に起因する基板の板厚変化を防ぐ配慮が殆ど払われていないのが実情である。   In such an inductance-type rotation angle sensor, it is important to make the gap between the stator excitation conductor and the reception conductor and the rotor excitation conductor as narrow and stable as possible in order to improve the detection accuracy of the angle change of the rotating body. However, in the glass epoxy resin substrate on which the excitation conductor and the receiving conductor are printed, the linear expansion coefficient is extremely small in the plate surface direction due to the direction of the glass fiber inside, but the linear expansion coefficient is relatively small in the plate thickness direction. Due to its large size, when using an inductance rotation angle sensor in an environment where the temperature changes drastically, such as around the engine, the opposing gap changes due to a change in the board thickness, and the detection accuracy of the angle change of the rotating body decreases. There are things to do. However, in the conventional inductance type rotation angle sensor, in reality, little consideration has been given to preventing changes in the board thickness caused by temperature changes.

本発明は、かゝる事情に鑑みてなされたもので、温度変化に起因する基板の板厚変化を抑え、回転体の角度変化の検出精度を安定させ得るインダクタンス式回転角度センサを提供すること、並びにその回転角度センサの製造方法を提供することを目的とする。   The present invention has been made in view of such circumstances, and provides an inductance-type rotation angle sensor capable of suppressing the change in the thickness of the substrate due to a temperature change and stabilizing the detection accuracy of the angle change of the rotating body. An object of the present invention is to provide a method for manufacturing the rotation angle sensor.

上記目的を達成するために、本発明は、検出対象の回転体に取り付けられるロータと、ハウジング本体及びそのハウジング本体の開放面に接合されるハウジングカバーで構成した非回転の制御ハウジングに取り付けられるステータとからなり、そのステータを、環状に形成される励磁導体と、この励磁導体に隣接配置される受信導体とをガラスエポキシ樹脂製の基板にプリントして構成する一方、ロータに前記励磁導体に対向する励起導体を付設し、その励起導体の回転に伴なう励磁導体のインダクタンスの変化を回転体の回転角度変化として受信導体より検出するインダクタンス式回転角度センサにおいて、前記基板の表裏両面に、この基板の周辺部及び、この基板が有する貫通孔を通して互いに連結する被覆層を、前記基板の板厚方向の線膨張係数より小さい線膨張係数を有する熱硬化性樹脂でモールド形成すると共に、この被覆層のうち、前記励磁導体及び受信導体を被覆する部分を、肉厚が他の部分より薄い薄肉部に形成し、この薄肉部を露出状態にして、前記ステータを熱可塑性樹脂製の前記ハウジングカバーに埋設したことを第1の特徴とする。尚、前記回転角度センサは後述する本発明の実施例中のスロットル開度センサ22に対応し、また前記回転体はスロットル弁3に対応する。 To achieve the above object, the present invention provides a stator attached to a non-rotating control housing comprising a rotor attached to a rotating body to be detected, a housing body and a housing cover joined to an open surface of the housing body. The stator is formed by printing a ring-shaped exciting conductor and a receiving conductor arranged adjacent to the exciting conductor on a substrate made of glass epoxy resin, while the rotor faces the exciting conductor. In an inductance type rotation angle sensor that detects a change in inductance of an excitation conductor accompanying rotation of the excitation conductor from a receiving conductor as a change in rotation angle of the rotating body, both of the front and back surfaces of the substrate perimeter of the substrate and, to be Kutsugaeso you connected to each other through a through hole which the substrate has, in the substrate thickness direction of the A thermosetting resin having a thermal expansion coefficient smaller linear expansion coefficient as well as the mold form, of the coating layer, a portion that covers the excitation conductors and the reception conductors, the wall thickness is formed in a thin walled portion than other portions The first feature is that the thin portion is exposed and the stator is embedded in the housing cover made of thermoplastic resin. Incidentally, the rotation angle sensor corresponds to the throttle opening sensor 22 in the embodiment of the present invention to be described later, also the rotating body that corresponds to the throttle valve 3.

さらに本発明は、第1の特徴に加えて、一端部をカプラ端子とする複数のバスバーを前記基板上のバスバー接続部に接続すると共に、それらバスバー接続部を前記被覆層に埋設し、前記カプラ端子を保持するカプラを前記ハウジングカバーに一体に形成したことを第の特徴とする。 Furthermore, in addition to the first feature, the present invention connects a plurality of bus bars each having one end portion as a coupler terminal to the bus bar connection portion on the substrate, and embeds the bus bar connection portions in the coating layer. A first feature is that a coupler for holding a terminal is formed integrally with the housing cover .

さらにまた本発明は、第1の特徴のインダクタンス式回転角度センサの製造方法であって、前記ステータを被覆層成形用の固定型及び可動型間にセットして、固定型及び可動型間に画成されるキャビティに熱硬化性樹脂を充填することにより、前記基板の表裏両面を被覆する熱硬化性樹脂製の被覆層を成形するに当たり、前記複数本のバスバーを、前記基板の外側縁に近接した箇所でタイバーを介して相互に一体に連結すると共に、最外側に位置するバスバーに前記タイバーと並んで外側方に突出する耳部を形成する一方、前記バスバー、タイバー及び耳部を緩く収容する保持溝を固定型及び可動型の一方に形成しておき、前記ステータを固定型及び可動型間にセットして両型を閉じたとき、両型を前記バスバー及びタイバーの面に密着させると共に、前記耳部を押し潰して、それら耳部と、それら耳部に対向する前記保持溝の内側面との間の隙間を埋め、次いで前記キャビティに熱硬化性樹脂を充填したとき、そのキャビティから前記保持溝に流出する樹脂を前記タイバー及び耳部により堰き止めることを第の特徴とする。前記タイバーは、後述する本発明の実施例中の第1タイバー36に対応する。 Furthermore, the present invention is a method of manufacturing an inductance type rotational angle sensor according to the first feature, wherein the stator is set between a fixed mold and a movable mold for forming a coating layer, and is defined between the fixed mold and the movable mold. When forming a coating layer made of a thermosetting resin that covers both the front and back surfaces of the substrate by filling the formed cavity with a thermosetting resin, the plurality of bus bars are placed close to the outer edge of the substrate. The tie bars are integrally connected to each other through the tie bars, and the bus bars located on the outermost side are formed with ears protruding outward alongside the tie bars, while the bus bars, tie bars and ears are loosely accommodated. the holding grooves previously formed on one of the fixed mold and the movable mold, when sets the stator between the fixed mold and the movable mold was closed dies, is in close contact with both mold both sides of the bus bar and tie bar And crushing the ears to fill the gaps between the ears and the inner surface of the holding groove facing the ears, and then filling the cavity with a thermosetting resin, A third feature is that the resin flowing out from the cavity into the holding groove is blocked by the tie bar and the ear. The tie bar corresponds to a first tie bar 36 in an embodiment of the present invention described later.

さらにまた本発明は、第1の特徴のインダクタンス式回転角度センサの製造方法であって、前記ステータを被覆層成形用の固定型及び可動型間にセットして、固定型及び可動型間に画成されるキャビティに熱硬化性樹脂を充填することにより、前記基板の表裏両面を被覆する熱硬化性樹脂製の被覆層を成形するに当たり、前記複数本のバスバーの各外側面に、前記基板の外側縁に近接した箇所でこれらバスバーの配列方向に突出する一対の耳部を突設する一方、これらバスバー及びを耳部を緩く収容する保持溝を固定型及び可動型の一方に形成しておき、前記ステータを固定型及び可動型間にセットして両型を閉じたとき、両型を前記バスバーの面に密着させると共に、前記耳部を押し潰して、それら耳部と、各前記保持溝の内側面との間の隙間を埋め、次いで前記キャビティに熱硬化性樹脂を充填したとき、そのキャビティから前記保持溝に流出する樹脂を前記耳部により堰き止めることを第の特徴とする。 Furthermore, the present invention is a method of manufacturing an inductance type rotational angle sensor according to the first feature, wherein the stator is set between a fixed mold and a movable mold for forming a coating layer, and is defined between the fixed mold and the movable mold. In forming a coating layer made of a thermosetting resin that covers both the front and back surfaces of the substrate by filling the formed cavities with a thermosetting resin, the outer surfaces of the plurality of bus bars are formed on the outer surfaces of the substrate. A pair of ears projecting in the arrangement direction of the bus bars are projected at locations close to the outer edge, and a holding groove for loosely accommodating the bus bars and the ears is formed in one of the fixed type and the movable type. when closing the dies to set between the fixed mold and the movable mold the stator, the both types together is brought into close contact with both sides of the bus bar, by crushing the ear, and their ears, each of said retaining Between the inner surface of the groove Fills a gap, then when filled with a thermosetting resin in the cavity and that of blocking resin flowing out to the holding groove from the cavity by the ears and the fourth characteristic.

本発明の第1の特徴によれば、基板の表裏の熱硬化性樹脂製の被覆層が協働して基板の板厚方向の熱膨張を抑制することができる。しかも被覆層において、励磁導体を覆う薄肉部は、肉厚が他の部分より薄いので、励磁導体とロータの励起導体との対向間隙を狭めることができ、また環境の温度変化によるも、ステータの励磁導体と、ロータの励起導体との対向間隙の変化をなくし、もしくは極小に抑えることができ、インダクタンス式回転角度センサの回転角度検出精度を高めると共に安定させることができる。   According to the first feature of the present invention, the thermosetting resin coating layers on the front and back sides of the substrate can cooperate to suppress thermal expansion in the thickness direction of the substrate. In addition, in the coating layer, the thin part covering the exciting conductor is thinner than the other parts, so that the gap between the exciting conductor and the exciting conductor of the rotor can be narrowed, and the stator temperature can also be reduced by changing the environmental temperature. A change in the facing gap between the exciting conductor and the exciting conductor of the rotor can be eliminated or minimized, and the rotational angle detection accuracy of the inductance type rotational angle sensor can be increased and stabilized.

その上、被覆層を、線膨張係数が基板のガラスエポキシ樹脂の板厚方向の線膨張係数より小さい熱硬化性樹脂で成形することにより、基板の板厚方向の熱膨張を一層効果的に抑制することができる。 In addition, the thermal expansion in the board thickness direction of the substrate is further effectively suppressed by molding the coating layer with a thermosetting resin whose linear expansion coefficient is smaller than the linear expansion coefficient in the board thickness direction of the glass epoxy resin of the board. can do.

本発明の第の特徴によれば、一端部をカプラ端子とするバスバーの基板との接続部を前記被覆層に埋設することにより、バスバーと基板との接続不良や、水分の浸入によるバスバー相互の短絡を防ぐことができ、しかもウジングカバーのモールド成形と同時に基板及びカプラ端子の保持を行うことができ、構造の簡素化を図ることができる。 According to the second feature of the present invention, the connection portion between the bus bar and the substrate having one end as a coupler terminal is embedded in the coating layer, so that the connection between the bus bar and the substrate due to infiltration of moisture or the bus bar mutual. it is possible to prevent the short-circuit, moreover it is possible to simultaneously hold the substrate and the coupler pin and molding of housings cover, it is possible to simplify the structure.

本発明の第の特徴によれば、キャビティに熱硬化性樹脂を充填した際、各バスバーの根元と、各保持溝の内側面との間の隙間にバリとして流出しても、それを耳部付きのタイバーによって堰き止めることができ、したがって熱硬化性樹脂のタイバー以降への流出を防ぎ、バリの形成を最小限に押えることができる。 According to the third aspect of the present invention, when the cavity is filled with the thermosetting resin, even if it flows out as a burr in the gap between the base of each bus bar and the inner surface of each holding groove, it is heard. The tie bar with a portion can be dammed, so that the thermosetting resin can be prevented from flowing out from the tie bar and the formation of burrs can be minimized.

本発明の第の特徴によれば、キャビティへの熱硬化性樹脂の充填時、キャビティから各バスバーの根元の隙間に流出した熱硬化性樹脂を、耳部によって堰き止めることができ、バリの形成を最小限に押えることができる。 According to the fourth feature of the present invention, when the thermosetting resin is filled into the cavity, the thermosetting resin that has flowed out of the cavity into the base gap of each bus bar can be blocked by the ears, Formation can be minimized.

本発明を実施したスロットル開度センサを備えるエンジンの吸気制御装置の断面図。1 is a sectional view of an intake control device for an engine including a throttle opening sensor embodying the present invention. 図1の2−2線断面図。FIG. 2 is a sectional view taken along line 2-2 in FIG. 1. 図1中の制御ハウジングのハウジングカバー内側面図。The housing cover inner side view of the control housing in FIG. 図3の4−4線断面図。FIG. 4 is a sectional view taken along line 4-4 of FIG. 図3の5−5線断面図。FIG. 5 is a sectional view taken along line 5-5 of FIG. 図3中のステータを、被覆層の破断状態で示す平面図。The top view which shows the stator in FIG. 3 in the fracture | rupture state of a coating layer. 上記ステータへの被覆層の成形時、そのステータを被覆層成形用金型にセットした状態を示す平面図。The top view which shows the state which set the stator to the metal mold | die for coating layer shaping | molding at the time of shaping | molding the coating layer to the said stator. 図7の8−8線断面図で、(A)は金型を開いた状態、(B)は金型を閉じた状態を示す。FIG. 8 is a cross-sectional view taken along line 8-8 in FIG. 7, (A) shows a state where the mold is opened, and (B) shows a state where the mold is closed. 図7の9−9線断面図で、(A)は金型を開いた状態、(B)は金型を閉じた状態を示す。FIG. 9 is a cross-sectional view taken along line 9-9 in FIG. 7, (A) shows a state in which the mold is opened, and (B) shows a state in which the mold is closed. 図7の10−10線断面図で、(A)は金型を開いた状態、(B)は金型を閉じた状態を示す。FIG. 10 is a cross-sectional view taken along the line 10-10 in FIG. 7, (A) shows a state in which the mold is opened, and (B) shows a state in which the mold is closed. 被覆層成形直後のステータの平面図。The top view of the stator immediately after coating layer shaping | molding. ステータへの被覆層の別の成形方法を示す図7と対応した平面図。した状態を示す平面図。Shows another method of forming the coating layer to the stator, a plan view corresponding to FIG. 7. The top view which shows the state which carried out. 図12の13−13線断面図で、(A)は金型を開いた状態、(B)は金型を閉じた状態を示す。13A and 13B are cross-sectional views taken along line 13-13 of FIG. 12, in which (A) shows a state in which the mold is opened, and (B) shows a state in which the mold is closed.

本発明の実施の形態を、添付図面に示す本発明の好適な実施例に基づいて以下に説明する。   Embodiments of the present invention will be described below on the basis of preferred embodiments of the present invention shown in the accompanying drawings.

図1及び図2において、自動二輪車、自動車等の車両用エンジンの吸気マニフォルドMにスロットルボディ1が複数のボルト7により取り付けられる。このスロットルボディ1は、吸気路2を内側に有する吸気胴1aと、この吸気胴1aの水平方向一側から下部にかけて連設される制御ハウジング1bとよりなっている。吸気胴1aには、吸気路2を開閉するスロットル弁3が、その弁軸3aを吸気胴1aの左右両側壁に軸受4,5を介して回転自在に支承させることで、取り付けられる。   1 and 2, a throttle body 1 is attached by a plurality of bolts 7 to an intake manifold M of a vehicle engine such as a motorcycle or an automobile. The throttle body 1 includes an intake cylinder 1a having an intake passage 2 on the inside, and a control housing 1b provided continuously from one side in the horizontal direction to the lower part of the intake cylinder 1a. A throttle valve 3 for opening and closing the intake passage 2 is attached to the intake cylinder 1a by rotatably supporting the valve shaft 3a on the left and right side walls of the intake cylinder 1a via bearings 4 and 5.

スロットルボディ1の右側壁には、弁軸3aの右端部の外端及び軸受5を覆うキャップ6が嵌装される。弁軸3aの左端部は、スロットルボディ1の左側壁外方に突出しており、その突出端部に、スロットル弁3を開閉駆動するための電動モータ8が減速ギヤ機構9を介して連結される。   A cap 6 that covers the outer end of the right end portion of the valve shaft 3 a and the bearing 5 is fitted to the right side wall of the throttle body 1. The left end portion of the valve shaft 3 a protrudes outward from the left side wall of the throttle body 1, and an electric motor 8 for driving the throttle valve 3 to open and close is connected to the protruding end portion via a reduction gear mechanism 9. .

減速ギヤ機構9は、電動モータ8の出力軸10に固着される1次駆動ギヤ11、中間軸15に回転自在に支承されて1次駆動ギヤ11と噛合する1次従動ギヤ12、この1次従動ギヤ12の一側に一体に形成される2次駆動ギヤ13、弁軸3aの左端部に固着されて2次駆動ギヤ13と噛合するセクタ型の2次従動ギヤ14とで構成され、電動モータ8の出力軸10の回転を2段階減速して弁軸3aに伝達して、スロットル弁3を開閉し得るようになっている。減速ギヤ機構9の各ギヤはスパーギヤであり、弁軸3a、出力軸10及び中間軸15は、これらの軸線が前記吸気路2の軸線と直交して互いに平行に並ぶように配置される。2次従動ギヤ14には、これをスロットル弁3の閉じ方向に付勢する、捩じりコイルばねよりなる閉じばね17が接続される。   The reduction gear mechanism 9 includes a primary drive gear 11 fixed to the output shaft 10 of the electric motor 8, a primary driven gear 12 that is rotatably supported by the intermediate shaft 15 and meshes with the primary drive gear 11, and this primary A secondary drive gear 13 integrally formed on one side of the driven gear 12 and a sector type secondary driven gear 14 fixed to the left end portion of the valve shaft 3a and meshing with the secondary drive gear 13 are provided. The rotation of the output shaft 10 of the motor 8 is decelerated in two steps and transmitted to the valve shaft 3a so that the throttle valve 3 can be opened and closed. Each gear of the reduction gear mechanism 9 is a spur gear, and the valve shaft 3a, the output shaft 10 and the intermediate shaft 15 are arranged so that their axis lines are perpendicular to the axis line of the intake passage 2 and are parallel to each other. The secondary driven gear 14 is connected to a closing spring 17 made of a torsion coil spring that urges the secondary driven gear 14 in the closing direction of the throttle valve 3.

制御ハウジング1bは、吸気胴1aと一体に成形されるハウジング本体19と、このハウジング本体19の開放面に複数のビス35により接合される合成樹脂製のハウジングカバー20とで構成される。ハウジング本体19及びハウジングカバー20の接合面は、弁軸3aの軸線と直交するもので、それらの接合面間にはシール部材21が介装される。ハウジング本体19内の下部には電動モータ8が収容され、減速ギヤ機構9はハウジングカバー20からハウジング本体19にかけてそれらの内部に収容され、中間軸15は、ハウジング本体19及びハウジングカバー20により両端部が支承される。   The control housing 1b includes a housing body 19 formed integrally with the intake cylinder 1a, and a synthetic resin housing cover 20 joined to the open surface of the housing body 19 by a plurality of screws 35. The joint surfaces of the housing body 19 and the housing cover 20 are orthogonal to the axis of the valve shaft 3a, and a seal member 21 is interposed between the joint surfaces. The electric motor 8 is accommodated in the lower part of the housing body 19, the reduction gear mechanism 9 is accommodated in the housing cover 20 to the housing body 19, and the intermediate shaft 15 is supported at both ends by the housing body 19 and the housing cover 20. Is supported.

スロットル弁3の弁軸3a及びハウジングカバー20間には、スロットル弁3の開度を検出するインダクタンス式のスロットル開度センサ22が構成される。このスロットル開度センサ22及びその周辺部の構成について、図1〜図6により説明する。   Between the valve shaft 3a of the throttle valve 3 and the housing cover 20, an inductance type throttle opening sensor 22 for detecting the opening of the throttle valve 3 is configured. The configuration of the throttle opening sensor 22 and its peripheral part will be described with reference to FIGS.

図1において、弁軸3aの左端部には、それより小径のねじ軸3bが環状段部3cを介して一体に連設されている。一方、合成樹脂製の2次従動ギヤ14のボスは、その内周側に埋入されて一体化された金属製で環状の取り付け板14aを備えており、この取り付け板14aに上記ねじ軸3bを挿通させた後、そのねじ軸3bの先端部にソケットナット23を螺合緊締することにより、取り付け板14aは、前記環状段部3cとナット23間で挟持、固定される。そのソケットナット23の外端部外周にスロットル開度センサ22の合成樹脂製のロータ23が固着され、このロータ23の外端部に励起導体24が配設される。   In FIG. 1, a screw shaft 3b having a smaller diameter is integrally connected to the left end portion of the valve shaft 3a via an annular step portion 3c. On the other hand, the boss of the secondary driven gear 14 made of synthetic resin is provided with a metal annular mounting plate 14a embedded and integrated on the inner peripheral side thereof, and the screw shaft 3b is attached to the mounting plate 14a. Then, the mounting plate 14a is clamped and fixed between the annular step 3c and the nut 23 by screwing and tightening the socket nut 23 to the tip of the screw shaft 3b. A rotor 23 made of synthetic resin for the throttle opening sensor 22 is fixed to the outer periphery of the outer end of the socket nut 23, and an excitation conductor 24 is disposed on the outer end of the rotor 23.

図1、図3〜図6に示すように、スロットル開度センサ22のステータ25は、ガラスエポキシ樹脂製の基板26の表面に環状の励磁導体27と、その内側に隣接配置される環状の受信導体28とをプリントすると共に、その裏面に一対のマイクロコンピュータ29,29′を実装してなるもので、その励磁導体27が、前記ロータ23の励起導体24に間隙を存して対向配置される。而して、電源から励磁導体27に電流を供給し、ロータ23の励起導体24の回転に伴なう励磁導体27のインダクタンスの変化により、受信導体28に三相の交流電流波形を発生させ、コンピュータ29,29′は、その交流電流波形を処理して、ロータ23を取り付けた弁軸3aの回転角度、即ちスロットル弁3の開度に対応する信号を、電動モータ8の作動を制御する電子制御ユニット(図示せず)に出力する。   As shown in FIGS. 1 and 3 to 6, the stator 25 of the throttle opening sensor 22 includes an annular excitation conductor 27 on the surface of a glass epoxy resin substrate 26 and an annular reception arranged adjacent to the inside. The conductor 28 is printed and a pair of microcomputers 29 and 29 'are mounted on the back surface thereof, and the excitation conductor 27 is disposed opposite the excitation conductor 24 of the rotor 23 with a gap. . Thus, a current is supplied from the power source to the exciting conductor 27, and a three-phase alternating current waveform is generated on the receiving conductor 28 due to a change in the inductance of the exciting conductor 27 accompanying the rotation of the exciting conductor 24 of the rotor 23. The computers 29, 29 ′ process the alternating current waveform, and output a signal corresponding to the rotation angle of the valve shaft 3 a to which the rotor 23 is attached, that is, the opening degree of the throttle valve 3, to control the operation of the electric motor 8. Output to a control unit (not shown).

基板26の一隅部に集中的に配設されるバスバー接続部33a〜33dには、基板26の周縁外方に並んで突出する4本のバスバー30a〜30dが半田付けされ、これらバスバー30a〜30dの外端はカプラ端子31a〜31dに形成される。これらカプラ端子31a〜31dのうち,2本31a,31cは電源との接続に、残る2本31b,31dは回転角度信号の取り出しに供される。   Four bus bars 30a to 30d projecting along the outer periphery of the substrate 26 are soldered to the bus bar connection portions 33a to 33d that are intensively arranged at one corner of the substrate 26, and these bus bars 30a to 30d are soldered. Are formed at the coupler terminals 31a to 31d. Among these coupler terminals 31a to 31d, the two wires 31a and 31c are used for connection to the power source, and the remaining two wires 31b and 31d are used for extracting the rotation angle signal.

基板26の表裏両面には、基板26の周辺部及び貫通孔34(図3、図4参照)、並びに導線挿通用の多数のスルーホールとを通して互いに連結する熱硬化性樹脂製の被覆層32がモールド成形され、この被覆層32に、前記励磁導体27、受信導体28、マイクロコンピュータ29,29′及び、バスバー30a〜30dの基板26との接続部が全て埋設される。これによって基板26上での配線の接続不良や水分の浸入による電気的短絡を防ぐことができる。その際、被覆層32のうち、前記励磁導体27及び受信導体28を被覆する部分は、他の部分より肉厚が薄い薄肉部32aに形成される。   On both the front and back surfaces of the substrate 26, there are coating layers 32 made of a thermosetting resin that are connected to each other through the peripheral portion of the substrate 26, through holes 34 (see FIGS. 3 and 4), and a number of through holes for inserting conductive wires. In the covering layer 32, all of the excitation conductor 27, the reception conductor 28, the microcomputers 29 and 29 ', and the connection portions of the bus bars 30a to 30d with the substrate 26 are embedded. As a result, poor connection of wiring on the substrate 26 and electrical short-circuiting due to moisture intrusion can be prevented. At this time, a portion of the covering layer 32 that covers the exciting conductor 27 and the receiving conductor 28 is formed in a thin portion 32a that is thinner than other portions.

また基板26の貫通孔34を通して基板26表裏の被覆層32を互いに連結するということは、貫通孔34に充填した熱硬化性樹脂により、基板26表裏の被覆層32が一体に連結されることである。上記貫通孔34は励磁導体27及び受信導体28の中心部に設けられる。   Further, connecting the coating layers 32 on the front and back sides of the substrate 26 through the through holes 34 of the substrate 26 means that the coating layers 32 on the front and back sides of the substrate 26 are integrally connected by the thermosetting resin filled in the through holes 34. is there. The through hole 34 is provided at the center of the exciting conductor 27 and the receiving conductor 28.

こうして被覆層32を形成された基板26を持つステータ25は、熱可塑性樹脂製のハウジングカバー20のモールド成形時、そのハウジングカバー20に埋設されるもので、その際、上記薄肉部32aは、これを挟んで励磁導体27をロータの励起導体24に対向させるべく、ハウジングカバー20から露出した状態に置かれる。このハウジングカバー20には、上記バスバー30a〜30dの先端に形成されるカプラ端子31a〜31dと、前記電動モータ8の給電用カプラ端子52a,52bとを収容、保持するカプラ20aが一体成形される。したがって、ハウジングカバー20の成形と同時に、基板26及びカプラ端子31a〜31dの保持を行うことができ、構造の簡素化を図ることができる。   The stator 25 having the substrate 26 thus formed with the covering layer 32 is embedded in the housing cover 20 at the time of molding the housing cover 20 made of thermoplastic resin. At this time, the thin portion 32 a In order to make the excitation conductor 27 face the excitation conductor 24 of the rotor across the coil, it is placed in a state exposed from the housing cover 20. The housing cover 20 is integrally formed with a coupler 20a that houses and holds coupler terminals 31a to 31d formed at the ends of the bus bars 30a to 30d and power feeding coupler terminals 52a and 52b of the electric motor 8. . Accordingly, the substrate 26 and the coupler terminals 31a to 31d can be held simultaneously with the molding of the housing cover 20, and the structure can be simplified.

基板26の構成材料のガラスエポキシ樹脂としては、線膨張係数が、板面方向で12〜14PPM/度、板厚方向で35PPM/度の材料が使用される。このように、基板26のガラスエポキシ樹脂の線膨張係数は、板面方向で小さく、板厚方向で大きいのは、基板26の成形時、エポキシ樹脂に複合されるガラス繊維が基板26の面方向に配向することに起因する。   As the glass epoxy resin constituting the substrate 26, a material having a linear expansion coefficient of 12 to 14 PPM / degree in the plate surface direction and 35 PPM / degree in the plate thickness direction is used. As described above, the linear expansion coefficient of the glass epoxy resin of the substrate 26 is small in the plate surface direction and large in the plate thickness direction. When the substrate 26 is molded, the glass fiber combined with the epoxy resin is in the surface direction of the substrate 26. This is due to the orientation.

一方、被覆層32の構成材料の熱硬化性樹脂としては、線膨張係数が16PPM/度のものが使用される。即ち、被覆層32の熱硬化性樹脂は、その線膨張係数が基板26のガラスエポキシ樹脂の板厚方向の線膨張係数より小さいことが重要な点である。   On the other hand, as the thermosetting resin as the constituent material of the coating layer 32, one having a linear expansion coefficient of 16 PPM / degree is used. That is, it is important that the thermosetting resin of the coating layer 32 has a smaller linear expansion coefficient than the linear expansion coefficient in the plate thickness direction of the glass epoxy resin of the substrate 26.

而して、ガラスエポキシ樹脂製の基板26の表裏には、基板26の周辺部及び貫通孔34を通して互いに連結する熱硬化性樹脂製の被覆層32がモールド成形されるので、基板26の表裏の熱硬化性樹脂製の被覆層32が協働して基板26の板厚方向の熱膨張を抑制することができる。   Thus, the thermosetting resin coating layers 32 that are connected to each other through the peripheral portion of the substrate 26 and the through holes 34 are molded on the front and back of the substrate 26 made of glass epoxy resin. The coating layer 32 made of thermosetting resin can cooperate to suppress thermal expansion of the substrate 26 in the thickness direction.

特に、被覆層32を、線膨張係数が基板26のガラスエポキシ樹脂の板厚方向の線膨張係数より小さい熱硬化性樹脂で成形することにより、基板26の板厚方向の熱膨張を一層効果的に抑制することができる。しかも被覆層32において、励磁導体27及び受信導体28を覆う薄肉部32aは、肉厚が他の部分より薄いので、励磁導体27及び受信導体28とロータ23の励起導体24との対向間隙を狭めることができ、また環境の温度変化によるも、ステータ25の励磁導体27と、ロータ23の励起導体24との対向間隙の変化をなくし、もしくは極小に抑えることができ、インダクタンス式スロットル開度センサ22の開度検出精度を高めると共に安定させることができる。さらに基板26の前記貫通孔34は、被覆層32の薄肉部32aで被覆する励磁導体27の中心部に設けられるので、貫通孔34に充填される熱硬化性樹脂により薄肉部32aを効果的に強化でき、したがってこの薄肉部32aによっても励磁導体27周辺部の基板26の板厚方向の熱膨張を抑制することができる。   In particular, by forming the coating layer 32 with a thermosetting resin having a linear expansion coefficient smaller than the linear expansion coefficient in the plate thickness direction of the glass epoxy resin of the substrate 26, the thermal expansion in the plate thickness direction of the substrate 26 is more effective. Can be suppressed. In addition, in the coating layer 32, the thin portion 32a covering the excitation conductor 27 and the reception conductor 28 is thinner than the other portions, so that the facing gap between the excitation conductor 27 and the reception conductor 28 and the excitation conductor 24 of the rotor 23 is narrowed. In addition, even if the temperature of the environment changes, the change in the gap between the exciting conductor 27 of the stator 25 and the exciting conductor 24 of the rotor 23 can be eliminated or minimized. The degree of opening detection accuracy can be increased and stabilized. Further, since the through hole 34 of the substrate 26 is provided at the center of the exciting conductor 27 covered with the thin portion 32a of the covering layer 32, the thin portion 32a is effectively formed by the thermosetting resin filled in the through hole 34. Therefore, thermal expansion in the plate thickness direction of the substrate 26 around the exciting conductor 27 can also be suppressed by the thin portion 32a.

次に、図7〜図11を参照して、前記ステータ25の製造方法について説明する。
〔1〕ステータ25の組み立て(図7参照)
先ず、ガラスエポキシ樹脂製の基板26の一側面に、環状に形成される励磁導体27と、その内側に隣接配置される受信導体28とをプリントし、また一対のマイクロコンピュータ29,29′を実装する。基板26は方形をなしており、その隅には位置決め孔41を設けておく。
Next, a method for manufacturing the stator 25 will be described with reference to FIGS.
[1] Assembly of stator 25 (see FIG. 7)
First, an exciting conductor 27 formed in an annular shape and a receiving conductor 28 disposed adjacent to the inside are printed on one side surface of a substrate 26 made of glass epoxy resin, and a pair of microcomputers 29 and 29 'are mounted. To do. Substrate 26 has no square, preferably provided a positioning hole 41 in its three corners.

次いで、先端部をカプラ端子31a〜31dとした4本のバスバー30a〜30dを用意する。これらバスバー30a〜30dはAl等の導電板から打ち抜きにより製作するもので、その製作時、基板26の外側縁に近接した箇所においてバスバー30a〜30dを相互に一体に連結すべく直線状に並ぶ複数の第1タイバー36と、この第1タイバー36と直線状に並んで最外側のバスバー30a,30dの外側面より突出する一対の耳部37,37と、カプラ端子31a〜31dの近接した箇所においてバスバー30a〜30dを相互に一体に連結すべく直線状に並ぶ複数の第2タイバー38とが同時に形成される。そして基板26の一隅部に配設されたバスバー接続部33a〜33dに、これらバスバー30a〜30dの基端部を半田付けし、ステータ25の組み立てを完了する。
〔2〕被覆層32の成形準備(図7〜図10参照)
図7及び図8に示すように、ステータ25を、被覆層成形用金型40を構成する固定型40a及び可動型40b間にセットする。その際、基板26の三隅に設けられた位置決め孔41には、固定型40aに設けられた位置決めピン42が嵌合されると共に、位置決め孔41の周辺部は、固定型40a及び可動型40bに設けられた押えボス43,44によって挟持される。
Next, four bus bars 30a to 30d having tip portions as coupler terminals 31a to 31d are prepared. These bus bars 30a to 30d are manufactured by punching from a conductive plate such as Al. At the time of manufacture, a plurality of bus bars 30a to 30d are arranged in a straight line so as to integrally connect the bus bars 30a to 30d with each other at a position close to the outer edge of the substrate 26. The first tie bar 36, a pair of ears 37, 37 that are aligned with the first tie bar 36 and project from the outer surface of the outermost bus bars 30a, 30d, and the coupler terminals 31a-31d are adjacent to each other. A plurality of second tie bars 38 arranged in a straight line so as to integrally connect the bus bars 30a to 30d are formed simultaneously. Then, the base end portions of the bus bars 30a to 30d are soldered to the bus bar connection portions 33a to 33d arranged at one corner of the substrate 26, and the assembly of the stator 25 is completed.
[2] Preparation for forming the coating layer 32 (see FIGS. 7 to 10)
As shown in FIGS. 7 and 8, the stator 25 is set between the fixed mold 40 a and the movable mold 40 b that constitute the coating layer forming mold 40. At that time, the positioning holes 41 provided at the three corners of the substrate 26 are fitted with the positioning pins 42 provided on the fixed mold 40a, and the peripheral portions of the positioning holes 41 are connected to the fixed mold 40a and the movable mold 40b. It is clamped by the provided presser bosses 43 and 44.

一方、図7、図9及び図10に示すように、基板26から突出した4本のバスバー30a〜30d、耳部37,37、第1及び第2タイバー36,38は、固定型40aに設けられた保持溝15に収容されると共に、可動型40bの押え面46によって保持溝15の溝底側に押えつけられる。こうしてバスバー30a〜30d、耳部37,37、第1及び第2タイバー36,38の下面は固定型40aに、それらの上面は可動型40bにそれぞれ密着することになる。   On the other hand, as shown in FIGS. 7, 9 and 10, the four bus bars 30a to 30d, the ear portions 37 and 37, and the first and second tie bars 36 and 38 protruding from the substrate 26 are provided in the fixed mold 40a. The holding groove 15 is accommodated and pressed against the groove bottom side of the holding groove 15 by the pressing surface 46 of the movable mold 40b. Thus, the lower surfaces of the bus bars 30a to 30d, the ear portions 37 and 37, and the first and second tie bars 36 and 38 are in close contact with the fixed die 40a, and their upper surfaces are in close contact with the movable die 40b.

固定型40aの保持溝15は、バスバー30a〜30dや耳部37,37の収容及び位置決めを容易にすべく、両内側面が外開きに傾斜しており、その結果、各保持溝15の傾斜した内側面と、バスバー30a〜30d及び耳部37,37の外側面との間には隙間48ができる。一方、可動型40bには、前記耳部37,37との対応箇所において保持溝15に向かって突出する突起49,49が形成されており、固定及び可動型40a,40bを閉じたとき、これら突起49,49により耳部37,37を押し潰して、各耳部37,37の外側面と、それに隣接する保持溝15の傾斜した内側面との間の隙間48を埋めることになる(図10(B)参照)。
〔3〕被覆層32のモールド成形(図8(B)参照)
上記のように固定型40a及び可動型40bを閉じると、基板26の表裏両面及び周縁部、並びに励磁導体27、受信導体28及びマイクロコンピュータ29,29′等が臨むキャビティ50が形成される。而して、キャビティ50の、励磁導体27及び受信導体28に対応する部分の深さは、他の部分の深さより浅く形成される。そのキャビティ50に図示しないゲートから熱硬化性樹脂を充填することにより、基板26の周囲に熱硬化性樹脂製の被覆層32を成形すると共に、基板26の貫通孔34を熱硬化性樹脂で埋めることができ、しかも被覆層32において、励磁導体27及び受信導体28を被覆する部分は、他の部分より肉厚が薄い薄肉部32a(図4参照)となる。
The holding groove 15 of the fixed mold 40a has both inner side surfaces inclined outward so that the bus bars 30a to 30d and the ears 37 and 37 can be easily accommodated and positioned. As a result, the inclination of each holding groove 15 is increased. A gap 48 is formed between the inner side surface and the outer side surfaces of the bus bars 30 a to 30 d and the ear portions 37 and 37. On the other hand, the movable mold 40b is formed with projections 49, 49 projecting toward the holding groove 15 at locations corresponding to the ear portions 37, 37. When the fixed and movable molds 40a, 40b are closed, these projections 49, 49 are formed. The protrusions 49 and 49 crush the ears 37 and 37 to fill a gap 48 between the outer surface of each ear 37 and 37 and the inclined inner surface of the holding groove 15 adjacent thereto (see FIG. 10 (B)).
[3] Molding of coating layer 32 (see FIG. 8B)
When the fixed mold 40a and the movable mold 40b are closed as described above, the cavity 50 is formed where both the front and back surfaces and the peripheral portion of the substrate 26, the exciting conductor 27, the receiving conductor 28, the microcomputers 29 and 29 ', and the like face. Thus, the depth of the portion corresponding to the exciting conductor 27 and the receiving conductor 28 of the cavity 50 is formed shallower than the depth of the other portions. The cavity 50 is filled with a thermosetting resin from a gate (not shown), thereby forming a coating layer 32 made of a thermosetting resin around the substrate 26 and filling the through holes 34 of the substrate 26 with the thermosetting resin. In addition, in the covering layer 32, a portion covering the exciting conductor 27 and the receiving conductor 28 is a thin portion 32a (see FIG. 4) having a thinner thickness than the other portions.

その際、キャビティ50に充填された熱硬化性樹脂は、各バスバー30a〜30dの根元の外側面と、各保持溝15の内側面との間の隙間48にバリとして流出するが、これらバスバー30a〜30dは、第1タイバー36を介して相互に一体に連結すると共に、第1タイバー36と並んで最外側に位置する耳部37,37が前述のように潰されて、これら耳部37,37の両側の隙間を埋めてしまっているから、バスバー30a〜30dの根元の前記隙間48に流出した熱硬化性樹脂を、耳部37,37及び第1タイバー36によって堰き止めることができる。したがって熱硬化性樹脂の第1タイバー36以降への流出を防ぎ、バリの形成を最小限に押えることができる。
〔4〕第1、第2タイバー36,38の切除(図6参照)
被覆層32の成形後、固定型40a及び可動型40bを開いて、ステータ25を取り出し、バスバー30a〜30dを連結していた第1及び第2タイバー36,38をプレスにより切除してバスバー30a〜30dをそれぞれ独立させ、ステータ25の製作を完了する。
〕ハウジングカバー20のモールド成形(図3及び図4参照)
ハウジングカバー20を熱可塑性樹脂によりモールド成形する際には、その成形用金型(図示せず)内にステータ25をセットするが、被覆層32の、励磁導体27及び受信導体28を被覆する薄肉部32aをハウジングカバー成形用のキャビティ外に配置する。こうして、ハウジングカバー20を熱可塑性樹脂によりモールド成形することにより、上記薄肉部32aをハウジングカバー20の内側面から露出した状態でステータ25をカプラ20a付きのハウジングカバー20に埋設することができ、またインダクタンス式回転角度センサ22用の4本のカプラ端子31a〜31dと前記電動モータ8用の2本のカプラ端子52a,52bとをカプラ20aに保持させることができる。
At that time, the thermosetting resin filled in the cavity 50 flows out as burrs into the gaps 48 between the base outer surfaces of the bus bars 30a to 30d and the inner surfaces of the holding grooves 15, but these bus bars 30a. ˜30d are integrally connected to each other via the first tie bar 36, and the ears 37, 37 located on the outermost side along with the first tie bar 36 are crushed as described above, so that these ears 37, Since the gaps on both sides of 37 are filled, the thermosetting resin that has flowed into the gaps 48 at the bases of the bus bars 30 a to 30 d can be blocked by the ear portions 37 and 37 and the first tie bar 36. Accordingly, it is possible to prevent the thermosetting resin from flowing out from the first tie bar 36 onward, and to minimize the formation of burrs.
[4] Cutting the first and second tie bars 36, 38 (see FIG. 6)
After forming the coating layer 32, the fixed mold 40a and the movable mold 40b are opened, the stator 25 is taken out, and the first and second tie bars 36 and 38, which have connected the bus bars 30a to 30d, are cut off by a press and the bus bars 30a to 30b. 30d is made independent, and the manufacture of the stator 25 is completed.
[ 5 ] Molding of housing cover 20 (see FIGS. 3 and 4)
When the housing cover 20 is molded with a thermoplastic resin, the stator 25 is set in a molding die (not shown), but the coating layer 32 has a thin wall covering the exciting conductor 27 and the receiving conductor 28. The part 32a is disposed outside the cavity for molding the housing cover. Thus, by molding the housing cover 20 with the thermoplastic resin, the stator 25 can be embedded in the housing cover 20 with the coupler 20a in a state where the thin portion 32a is exposed from the inner surface of the housing cover 20. The four coupler terminals 31a to 31d for the inductance type rotation angle sensor 22 and the two coupler terminals 52a and 52b for the electric motor 8 can be held by the coupler 20a.

次に、図12及び図13に示す本発明の別の実施例について説明する。   Next, another embodiment of the present invention shown in FIGS. 12 and 13 will be described.

この別の実施例は、キャビティ50から保持溝15へ流出する熱硬化性樹脂の堰き止め方法において前実施例と相違する。即ち、複数のバスバー30a〜30dには、前記第1タイバー36に代えて、それぞれの外側面より突出する一対の耳部37,37を形成する一方、被覆層成形用金型40の可動型40bには、各耳部37,37との対応箇所において各保持溝15に向かって突出する複数の突起49,49…を形成しておき、固定及び可動型40a,40bを閉じたとき、各突起49,49…により各耳部37,37…を押し潰して、各耳部37,37と、それらに隣接する保持溝15の傾斜した内側面との間の隙間を埋める。こうすることで、キャビティ50への熱硬化性樹脂の充填時、キャビティ50から各バスバー30a〜30dの根元の隙間48に流出した熱硬化性樹脂を、耳部37,37によって堰き止めることができ、バリの形成を最小限に押えることができる。その他の構成は、前実施例と同様であるので、図12及び図13中、前実施例と対応する部分には同一の参照符号を付して、重複する説明を省略する。   This another embodiment is different from the previous embodiment in the method for damming the thermosetting resin flowing out from the cavity 50 into the holding groove 15. That is, instead of the first tie bar 36, the plurality of bus bars 30a to 30d are formed with a pair of ears 37 and 37 protruding from the outer side surfaces, while the movable mold 40b of the coating layer molding die 40 is formed. Are formed with a plurality of projections 49, 49... Projecting toward the holding grooves 15 at locations corresponding to the ears 37, 37, and when the fixed and movable molds 40a, 40b are closed, The ears 37, 37... Are crushed by 49, 49... To fill the gaps between the ears 37, 37 and the inclined inner surface of the holding groove 15 adjacent thereto. By doing this, when the thermosetting resin is filled into the cavity 50, the thermosetting resin that has flowed out from the cavity 50 into the gap 48 at the base of each of the bus bars 30 a to 30 d can be blocked by the ear portions 37 and 37. , Burr formation can be minimized. Since other configurations are the same as those of the previous embodiment, portions corresponding to those of the previous embodiment are denoted by the same reference numerals in FIG. 12 and FIG.

本発明は上記実施例に限定されるものではなく、その要旨を逸脱しない範囲で種々の設計変更が可能である。例えば、本発明は、スロットル開度センサ22以外の回転体の回転体の角度変化の検出するセンサにも適用することができる。   The present invention is not limited to the above embodiments, and various design changes can be made without departing from the scope of the invention. For example, the present invention can also be applied to a sensor that detects a change in the angle of a rotating body other than the throttle opening sensor 22.

1b・・・制御ハウジング
19・・・ハウジング本体
20・・・ハウジングカバー
20a・・カプラ
22・・・回転角度センサ(スロットル開度センサ)
23・・・ロータ
24・・・励磁導体
25・・・ステータ
26a・・基板
27・・・励磁導体
28・・・受信導体
30a〜30d・・・・バスバー
31a〜31d・・・・カプラ端子
32・・・被覆層
32a・・薄肉部
33a〜33d・・・・バスバー接続部
34・・・貫通孔
36・・・タイバー(第1タイバー)
37・・・耳部
40・・・被覆層成形用金型
40a・・固定型
40b・・可動型
45・・・保持溝
48・・・隙間
50・・・キャビティ
1b: Control housing
DESCRIPTION OF SYMBOLS 19 ... Housing main body 20 ... Housing cover 20a ... Coupler 22 ... Rotation angle sensor (throttle opening sensor)
23 ... rotor 24 ... exciting conductor 25 ... stator 26a ... substrate 27 ... exciting conductor 28 ... receiving conductors 30a-30d ... bus bars 31a-31d ... coupler terminal 32 ... Coating layer 32a ··· Thin portions 33a to 33d ··· Bus bar connecting portion 34 ··· Through hole 36 ··· Tie bar (first tie bar)
37... Ear 40... Cover layer molding die 40 a... Fixed die 40 b... Movable die 45... Holding groove 48.

Claims (4)

検出対象の回転体(3)に取り付けられるロータ(23)と、ハウジング本体(19)及びそのハウジング本体(19)の開放面に接合されるハウジングカバー(20)で構成した非回転の制御ハウジング(1b)に取り付けられるステータ(25)とからなり、そのステータ(25)を、環状に形成される励磁導体(27)と、この励磁導体(27)に隣接配置される受信導体(28)とをガラスエポキシ樹脂製の基板(26)にプリントして構成する一方、ロータ(23)に前記励磁導体(27)に対向する励起導体(24)を付設し、その励起導体(24)の回転に伴なう励磁導体(27)のインダクタンスの変化を回転体(3)の回転角度変化として受信導体(28)より検出するインダクタンス式回転角度センサにおいて、
前記基板(26)の表裏両面に、この基板(26)の周辺部及び、この基板(26)が有する貫通孔(34)を通して互いに連結する被覆層(32)を、前記基板(26)の板厚方向の線膨張係数より小さい線膨張係数を有する熱硬化性樹脂でモールド形成すると共に、この被覆層(32)のうち、前記励磁導体(27)及び受信導体(28)を被覆する部分を、肉厚が他の部分より薄い薄肉部(32a)に形成し、
この薄肉部(32a)を露出状態にして、前記ステータ(25)を熱可塑性樹脂製の前記ハウジングカバー(20)に埋設したことを特徴とするインダクタンス式回転角度センサ。
A non-rotating control housing comprising a rotor (23) attached to a rotating body (3) to be detected, a housing body (19) and a housing cover (20) joined to an open surface of the housing body (19). 1b). The stator (25) includes an exciting conductor (27) formed in an annular shape and a receiving conductor (28) disposed adjacent to the exciting conductor (27). On the other hand, it is constructed by printing on a substrate (26) made of glass epoxy resin, and an excitation conductor (24) facing the excitation conductor (27) is attached to the rotor (23), and the excitation conductor (24) is rotated. In the inductance type rotation angle sensor for detecting the change in inductance of the exciting conductor (27) from the reception conductor (28) as the change in rotation angle of the rotating body (3),
On both sides of the substrate (26), the peripheral portion of the substrate (26) and, to be Kutsugaeso (32) you connected to each other through the through-holes the substrate (26) having (34), said substrate (26) A portion of the coating layer (32) covering the exciting conductor (27) and the receiving conductor (28) is molded with a thermosetting resin having a linear expansion coefficient smaller than the linear expansion coefficient in the plate thickness direction. Is formed into a thin part (32a) whose wall thickness is thinner than other parts,
The thin portion (32a) in the exposed state, inductive rotational angle sensor, characterized in that the stator (25) embedded in the thermoplastic resin of the housing cover (20).
請求項1記載のインダクタンス式回転角度センサにおいて、
一端部をカプラ端子(31a〜31d)とする複数のバスバー(30a〜30d)を前記基板(26)上のバスバー接続部(33a〜33d)に接続すると共に、それらバスバー接続部(33a〜33d)を前記被覆層(32)に埋設し、前記カプラ端子(31a〜31d)を保持するカプラ(20a)を前記ハウジングカバー(20)に一体に形成したことを特徴とするインダクタンス式回転角度センサ。
The inductance type rotation angle sensor according to claim 1,
A plurality of bus bars (30a to 30d) having one end as a coupler terminal (31a to 31d) are connected to the bus bar connecting portions (33a to 33d) on the substrate (26), and the bus bar connecting portions (33a to 33d) are connected. Embedded in the coating layer (32), and a coupler (20a) for holding the coupler terminals (31a to 31d) is formed integrally with the housing cover (20) .
請求項1記載のインダクタンス式回転角度センサの製造方法であって、
前記ステータ(25)を被覆層成形用の固定型(40a)及び可動型(40b)間にセットして、固定型(40a)及び可動型(40b)間に画成されるキャビティ(50)に熱硬化性樹脂を充填することにより、前記基板(26)の表裏両面を被覆する熱硬化性樹脂製の被覆層(32)を成形するに当たり、
前記複数本のバスバー(30a〜30d)を、前記基板(26)の外側縁に近接した箇所でタイバー(36)を介して相互に一体に連結すると共に、最外側に位置するバスバー(30a,30d)に前記タイバー(36)と並んで外側方に突出する耳部(37,37)を形成する一方、前記バスバー(30a〜30d)、タイバー(36)及び耳部(37,37)を緩く収容する保持溝(45)を固定型(40a)及び可動型(40b)の一方に形成しておき、前記ステータ(25)を固定型(40a)及び可動型(40b)間にセットして両型(40a,40b)を閉じたとき、両型(40a,40b)を前記バスバー(30a〜30d)及びタイバー(36)の面に密着させると共に、前記耳部(37,37)を押し潰して、それら耳部(37,37)と、それら耳部(37,37)に対向する前記保持溝(45)の内側面との間の隙間(48)を埋め、次いで前記キャビティ(50)に熱硬化性樹脂を充填したとき、そのキャビティ(50)から前記保持溝(45)に流出する樹脂を前記タイバー(36)及び耳部(37,37)により堰き止めることを特徴とする、インダクタンス式回転角度センサの製造方法。
It is a manufacturing method of the inductance type rotation angle sensor according to claim 1,
The stator (25) is set between a fixed mold (40a) and a movable mold (40b) for forming a coating layer, and a cavity (50) defined between the fixed mold (40a) and the movable mold (40b) is formed. In forming a coating layer (32) made of a thermosetting resin that covers both the front and back surfaces of the substrate (26) by filling the thermosetting resin,
The plurality of bus bars (30a to 30d) are integrally connected to each other via a tie bar (36) at a position close to the outer edge of the substrate (26), and the outermost bus bars (30a, 30d). ) Along with the tie bar (36) are formed to protrude outwardly (37, 37), while the bus bar (30a-30d), tie bar (36) and ear (37, 37) are loosely accommodated. The holding groove (45) to be formed is formed in one of the fixed mold (40a) and the movable mold (40b), and the stator (25) is set between the fixed mold (40a) and the movable mold (40b) to form both molds. (40a, 40b) when closing, dies (40a, 40b) together is adhered to both sides of the bus bar (30 a to 30 d) and tie bars (36), crush and press the ear portions (37, 37) And those ears (37, 37) and the gap (48) between the inner surfaces of the holding grooves (45) facing the ears (37, 37) are filled, and then a thermosetting resin is filled in the cavity (50). Production of an inductance type rotation angle sensor characterized in that the resin flowing out from the cavity (50) into the holding groove (45) is blocked by the tie bar (36) and the ears (37, 37) when filled. Method.
請求項1記載のインダクタンス式回転角度センサの製造方法であって、
前記ステータ(25)を被覆層成形用の固定型(40a)及び可動型(40b)間にセットして、固定型(40a)及び可動型(40b)間に画成されるキャビティ(50)に熱硬化性樹脂を充填することにより、前記基板(26)の表裏両面を被覆する熱硬化性樹脂製の被覆層(32)を成形するに当たり、
前記複数本のバスバー(30a〜30d)の各外側面に、前記基板(26)の外側縁に近接した箇所でこれらバスバーの配列方向に突出する一対の耳部(37,37)を突設する一方、これらバスバー(30a〜30d)及びを耳部(37,37)を緩く収容する保持溝(45)を固定型(40a)及び可動型(40b)の一方に形成しておき、前記ステータ(25)を固定型(40a)及び可動型(40b)間にセットして両型(40a,40b)を閉じたとき、両型(40a,40b)を前記バスバー(30a〜30d)の面に密着させると共に、前記耳部(37,37)を押し潰して、それら耳部(37,37)と、各前記保持溝(45)の内側面との間の隙間(48)を埋め、次いで前記キャビティ(50)に熱硬化性樹脂を充填したとき、そのキャビティ(50)から前記保持溝(45)に流出する樹脂を前記耳部(37,37)により堰き止めることを特徴とする、インダクタンス式回転角度センサの製造方法。
It is a manufacturing method of the inductance type rotation angle sensor according to claim 1,
The stator (25) is set between a fixed mold (40a) and a movable mold (40b) for forming a coating layer, and a cavity (50) defined between the fixed mold (40a) and the movable mold (40b) is formed. In forming a coating layer (32) made of a thermosetting resin that covers both the front and back surfaces of the substrate (26) by filling the thermosetting resin,
A pair of ears (37, 37) projecting in the direction in which the bus bars are arranged are provided on the outer side surfaces of the plurality of bus bars (30a to 30d) at locations close to the outer edge of the substrate (26). On the other hand, the bus bar (30a-30d) and the holding groove (45) for loosely receiving the ears (37, 37) are formed in one of the fixed mold (40a) and the movable mold (40b), and the stator ( 25) the fixed (40a) and a movable mold (40b) is set between and dies (40a, when closed 40b), on both surfaces of the dies (40a, 40b) of said bus bar (30 a to 30 d) And tightly crushing the ears (37, 37) to fill a gap (48) between the ears (37, 37) and the inner surface of each holding groove (45), then Fill the cavity (50) with thermosetting resin When in, characterized in that damming by its cavity the ears the resin flowing in the holding groove (45) from (50) (37) The method of inductive rotational angle sensor.
JP2009165727A 2008-12-24 2009-07-14 Inductance type rotation angle sensor and manufacturing method thereof Active JP5394150B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2009165727A JP5394150B2 (en) 2009-07-14 2009-07-14 Inductance type rotation angle sensor and manufacturing method thereof
EP09252699.5A EP2202491B1 (en) 2008-12-24 2009-11-30 Inductance-type rotation angle sensor, method of manufacturing the same, and intake control system for engine including the sensor
US12/592,720 US8269484B2 (en) 2008-12-24 2009-12-01 Inductance-type rotation angle sensor, method of manufacturing the same, and intake control system for engine including the same sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009165727A JP5394150B2 (en) 2009-07-14 2009-07-14 Inductance type rotation angle sensor and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2011021940A JP2011021940A (en) 2011-02-03
JP5394150B2 true JP5394150B2 (en) 2014-01-22

Family

ID=43632164

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009165727A Active JP5394150B2 (en) 2008-12-24 2009-07-14 Inductance type rotation angle sensor and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5394150B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6352423B2 (en) 2014-07-30 2018-07-04 日立オートモティブシステムズ株式会社 Physical quantity detection device
JP2022156641A (en) * 2021-03-31 2022-10-14 日立Astemo株式会社 Shift sensor and adjustment method of the same

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03255970A (en) * 1990-03-07 1991-11-14 Asahi Chem Ind Co Ltd Magnetic detecting sensor and its manufacture
JPH05337991A (en) * 1992-06-12 1993-12-21 Apic Yamada Kk Resin mold
JP2598582Y2 (en) * 1993-02-24 1999-08-16 矢崎総業株式会社 Rotation sensor
JP3412276B2 (en) * 1994-08-31 2003-06-03 株式会社デンソー Rotation angle detector
JPH0979864A (en) * 1995-09-08 1997-03-28 Hitachi Ltd Rotational position detecting device
JP3699755B2 (en) * 1995-09-19 2005-09-28 アピックヤマダ株式会社 Resin mold
DE19852916A1 (en) * 1998-11-17 2000-05-18 Bosch Gmbh Robert Measuring device for contactless detection of an angle of rotation
JP2001289610A (en) * 1999-11-01 2001-10-19 Denso Corp Angle-of-rotation detector
JP4367473B2 (en) * 1999-11-01 2009-11-18 株式会社デンソー Rotation angle detector
JP3843969B2 (en) * 1999-11-01 2006-11-08 株式会社デンソー Rotation angle detector
JP2004077472A (en) * 1999-11-01 2004-03-11 Denso Corp Terminal unit
JP3553513B2 (en) * 2001-03-06 2004-08-11 株式会社日立製作所 Automotive electronic circuit devices
ITBO20020571A1 (en) * 2002-09-10 2004-03-11 Magneti Marelli Powertrain Spa METHOD FOR THE REALIZATION OF THE ROTORIC PART OF A
JP4218425B2 (en) * 2003-05-30 2009-02-04 日本精機株式会社 Magnetic sensor
JP2005048671A (en) * 2003-07-29 2005-02-24 Mitsubishi Electric Corp Engine intake control device
JP5147213B2 (en) * 2006-10-11 2013-02-20 日立オートモティブシステムズ株式会社 Inductance type rotation angle detection device and motor drive type throttle valve control device having the same
JP2008128646A (en) * 2006-11-16 2008-06-05 Aisan Ind Co Ltd Rotating angle sensor and throttle device
JP4851973B2 (en) * 2007-03-22 2012-01-11 本田技研工業株式会社 Rotation sensor and manufacturing method thereof
JP2008309598A (en) * 2007-06-14 2008-12-25 Hitachi Ltd Angle detecting sensor and take-in air amount control device having it

Also Published As

Publication number Publication date
JP2011021940A (en) 2011-02-03

Similar Documents

Publication Publication Date Title
EP3200286B1 (en) Vehicular electronic control device and motor drive device
CN105958717B (en) Electric machine structure component
EP2202491B1 (en) Inductance-type rotation angle sensor, method of manufacturing the same, and intake control system for engine including the sensor
JP2009033848A (en) Brushless motor
WO2020241027A1 (en) Dynamo-electrical machine
JP6997740B2 (en) Rotating machine and manufacturing method of rotating machine
JP2013099094A (en) Brushless motor
JP6343249B2 (en) Controller and controller manufacturing method
WO2016194598A1 (en) Pump device
JP5394150B2 (en) Inductance type rotation angle sensor and manufacturing method thereof
JP2011083063A (en) Drive controller and motor unit
JP4207753B2 (en) Resin housing structure for electrical circuit equipment
JP2008312369A (en) Motor and manufacturing method of motor
JP2019068521A (en) Motor, electric actuator
JP6978400B2 (en) Terminal block and electrical connection structure between devices
EP1546660B1 (en) Non-contacting sensor multichip module with integral heat-sinks
US20100282507A1 (en) Molded housing used in force fit method
JP2006274921A (en) Electric pump unit
US10895314B2 (en) Gear box, reduction gear equipped with gear box, motor unit, mold for manufacturing gear box, and manufacturing method of gear box
JP2003294488A (en) Stator structure for resolver
JP6082680B2 (en) motor
JP2006220649A (en) Rotation detection device
JP7218854B2 (en) Rotating electric machine, insulator, and assembly method thereof
JP2011083062A (en) Motor unit
JP5730726B2 (en) Rotation angle detector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120309

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130501

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131002

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131016

R150 Certificate of patent or registration of utility model

Ref document number: 5394150

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250