JP5391978B2 - Fluid holding device - Google Patents

Fluid holding device Download PDF

Info

Publication number
JP5391978B2
JP5391978B2 JP2009229639A JP2009229639A JP5391978B2 JP 5391978 B2 JP5391978 B2 JP 5391978B2 JP 2009229639 A JP2009229639 A JP 2009229639A JP 2009229639 A JP2009229639 A JP 2009229639A JP 5391978 B2 JP5391978 B2 JP 5391978B2
Authority
JP
Japan
Prior art keywords
displacement
pocket
main shaft
volume
recess
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009229639A
Other languages
Japanese (ja)
Other versions
JP2011073118A (en
Inventor
良太 棚瀬
康生 新野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JTEKT Corp
Original Assignee
JTEKT Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JTEKT Corp filed Critical JTEKT Corp
Priority to JP2009229639A priority Critical patent/JP5391978B2/en
Publication of JP2011073118A publication Critical patent/JP2011073118A/en
Application granted granted Critical
Publication of JP5391978B2 publication Critical patent/JP5391978B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Turning (AREA)
  • Machine Tool Units (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)
  • Machine Tool Sensing Apparatuses (AREA)

Description

本発明は、静圧軸受けや静圧案内のような流体保持装置の外乱負荷による案内精度低下の抑制に関するものである。   The present invention relates to suppression of a reduction in guiding accuracy due to a disturbance load of a fluid holding device such as a static pressure bearing or a static pressure guide.

静圧軸受けに加わる外乱負荷による軸受け精度低下の抑制技術として、主軸の外乱負荷による変位に応じて流体軸受けへの供給圧力を制御して精度低下を抑制する従来技術(例えば、特許文献1参照)や、主軸の外乱負荷によるポケット圧力変動に応じて流体軸受けへの供給圧力を制御して精度低下を抑制する従来技術(例えば、特許文献2参照)がある。   As a technology for suppressing a decrease in bearing accuracy due to a disturbance load applied to a hydrostatic bearing, a conventional technology for controlling a supply pressure to a fluid bearing according to a displacement due to a disturbance load on the main shaft and suppressing a decrease in accuracy (see, for example, Patent Document 1) In addition, there is a conventional technique (for example, see Patent Document 2) that controls the supply pressure to the fluid bearing in accordance with the pocket pressure fluctuation due to the disturbance load on the main shaft to suppress the accuracy reduction.

特許文献1に記載の従来技術の場合、具体的には図4において、主軸3はポンプ13、圧力制御弁14により所定の圧力に保持された圧油が絞りを介して供給された静圧軸受け16、17により回転自在に支持されており、主軸回転モータ15により駆動され、静圧軸受け16、17と主軸3の相対変位は変位センサ9、10により計測される。
このように構成された静圧軸受けにおいて、その精度低下が抑制される原理は以下のようなものである。
定常加工中の加工力をF、主軸3の変位をE、軸受け剛性をKとし、外乱力をΔF、外乱力が作用した主軸3の変位増加量をΔEとした場合、E=F/K、E+ΔE=(F+ΔF)/Kが成り立つ。ここで、主軸剛性をΔK大きくしてE=(F+ΔF)/(K+ΔK)を成立させると、外乱力ΔFが作用しても主軸3の変位量が変動しないので主軸回転精度(軸受け精度)が低下しない。静圧軸受けの剛性は供給圧力に比例するので初期供給圧力をP、増加供給圧力をΔPとすると(K+ΔK)=K(P+ΔP)/PとなりΔK=K・ΔP/Pが成り立つ。E=(F+ΔF)/(K+ΔK)からΔK=ΔF/E、またΔF=K・ΔEなのでΔK=K・ΔE/Eが成り立つ。よってK・ΔP/P=K・ΔE/Eとなり増加供給圧力ΔPはΔP=P・ΔE/Eとなる。
以上より外乱力ΔFによる主軸3の変位増加をなくすには供給圧力をΔP=P・ΔE/Eだけ増加させればよい。
外乱負荷による軸受け精度の低下が抑制される具体的作用を以下に説明する。
変位センサ9、10が計測した変位増加量ΔEに基づき、制御装置18では定常加工時の標準変位位置まで主軸を押し戻すに必要な軸受け剛性になる増大供給圧力ΔPをΔP=P・ΔE/Eから計算し圧力制御弁14へ指令する。圧力制御弁14がΔPだけ昇圧した圧油を軸受け16、17へ供給すると軸受け16、17の剛性が高くなり外乱力による主軸3の変位量を小さくする。以上の制御を連続して行うことで外乱力による軸受け精度低下を抑制する。
In the case of the prior art described in Patent Document 1, specifically, in FIG. 4, the main shaft 3 is a hydrostatic bearing in which pressure oil held at a predetermined pressure by a pump 13 and a pressure control valve 14 is supplied via a throttle. 16 and 17 are rotatably supported by the main shaft rotating motor 15, and the relative displacement between the static pressure bearings 16 and 17 and the main shaft 3 is measured by the displacement sensors 9 and 10.
In the static pressure bearing configured as described above, the principle of suppressing the decrease in accuracy is as follows.
When the machining force during steady machining is F, the displacement of the main shaft 3 is E, the bearing stiffness is K, the disturbance force is ΔF, and the displacement increase amount of the main shaft 3 to which the disturbance force is applied is ΔE, E = F / K, E + ΔE = (F + ΔF) / K is established. Here, if the main shaft rigidity is increased by ΔK and E = (F + ΔF) / (K + ΔK) is established, the displacement amount of the main shaft 3 does not change even when the disturbance force ΔF is applied, so that the main shaft rotation accuracy (bearing accuracy) decreases. do not do. Since the rigidity of the hydrostatic bearing is proportional to the supply pressure, assuming that the initial supply pressure is P and the increased supply pressure is ΔP, (K + ΔK) = K (P + ΔP) / P and ΔK = K · ΔP / P is established. From E = (F + ΔF) / (K + ΔK), ΔK = ΔF / E, and ΔF = K · ΔE, so ΔK = K · ΔE / E holds. Therefore, K · ΔP / P = K · ΔE / E, and the increased supply pressure ΔP becomes ΔP = P · ΔE / E.
From the above, in order to eliminate the increase in displacement of the main shaft 3 due to the disturbance force ΔF, the supply pressure may be increased by ΔP = P · ΔE / E.
A specific action that suppresses a decrease in bearing accuracy due to a disturbance load will be described below.
Based on the displacement increase amount ΔE measured by the displacement sensors 9, 10, the control device 18 increases the increased supply pressure ΔP that becomes bearing rigidity necessary to push back the main shaft to the standard displacement position at the time of steady machining from ΔP = P · ΔE / E. Calculate and command the pressure control valve 14. When the pressure control valve 14 supplies pressure oil whose pressure has been increased by ΔP to the bearings 16 and 17, the rigidity of the bearings 16 and 17 is increased, and the displacement of the main shaft 3 due to the disturbance force is reduced. By continuously performing the above control, a decrease in bearing accuracy due to disturbance force is suppressed.

特許文献2に記載の従来技術の場合、静圧ポケットへの給油管路の複数の絞りの少なくとも1個を可動に支持し、外乱負荷によるポケット内圧力の変動に応じて供給管路の終端の絞りへの供給圧力を制御して外乱力による軸受け精度低下を抑制する。   In the case of the prior art described in Patent Document 2, at least one of a plurality of throttles of the oil supply pipe line to the static pressure pocket is movably supported, and the terminal end of the supply pipe line is changed according to the fluctuation of the pressure in the pocket due to the disturbance load. Controls the pressure supplied to the throttle to suppress a decrease in bearing accuracy due to disturbance force.

特開2003−89026号公報JP 2003-89026 A 特開2002−286037号公報JP 2002-286037 A

流体保持装置に外乱力が作用すると、流体保持装置剛性と外乱力の大きさにより決定される変位が生じ、流体保持精度が低下してしまい、例えば、工作機械の主軸装置に使用した場合は、流体保持精度の低下は工作物の加工精度低下に直結する。上記特許文献1および特許文献2に記載の従来技術では、流体保持精度の低下の抑制をするための静圧軸受けの圧力制御を絞りへの供給圧力の制御により実施するので、絞りによる流量制限によりポケット内圧力応答速度に限界があり、外乱力変動が高速の場合応答性が悪く十分に精度低下を抑制できなかった。
本発明は上記事情に鑑みてなされたものであり、高速の外乱力変動に対しても外乱力による精度低下を抑制できる流体保持装置を提供することを目的とする。
When a disturbance force is applied to the fluid holding device, a displacement determined by the fluid holding device rigidity and the magnitude of the disturbance force is generated, and the fluid holding accuracy is lowered.For example, when used for a spindle device of a machine tool, A decrease in fluid holding accuracy directly leads to a decrease in machining accuracy of the workpiece. In the prior art described in Patent Document 1 and Patent Document 2 described above, the pressure control of the hydrostatic bearing for suppressing the decrease in fluid holding accuracy is performed by controlling the supply pressure to the throttle. There was a limit to the pressure response speed in the pocket, and when the disturbance force fluctuation was high, the response was poor and the deterioration in accuracy could not be suppressed sufficiently.
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a fluid holding device that can suppress a decrease in accuracy due to a disturbance force even with a high-speed disturbance force fluctuation.

上記の課題を解決するため、請求項1に係る発明の特徴は、リセスと前記リセスの周囲に設けられたランドとからなる静圧ポケットと、前記リセスへ圧油を供給する圧油供給手段と、前記静圧ポケットの圧油により支持される移動体と、前記リセスの体積を増減できる体積増減手段と、前記移動体と前記静圧ポケットの相対変位を計測する変位計測手段と、前記変位計測手段の計測した変位量に応じて前記体積増減手段の増減量を演算し作動指令を出力する制御手段と、前記制御手段の作動指令に基づき前記体積増減手段を駆動する駆動手段と、を備え、前記移動体が前記ポケットに近づく場合は近づく側の前記リセスの体積を減少させ、前記移動体が前記ポケットから離れる場合は離れる側の前記リセスの体積を増加させる、ことである。   In order to solve the above problems, the invention according to claim 1 is characterized in that a static pressure pocket comprising a recess and a land provided around the recess, and a pressure oil supply means for supplying pressure oil to the recess. A moving body supported by pressure oil in the static pressure pocket, a volume increasing / decreasing means capable of increasing / decreasing the volume of the recess, a displacement measuring means for measuring a relative displacement between the moving body and the static pressure pocket, and the displacement measurement. Control means for calculating an increase / decrease amount of the volume increasing / decreasing means according to a displacement amount measured by the means and outputting an operation command; and a driving means for driving the volume increasing / decreasing means based on the operation command of the control means, When the moving body approaches the pocket, the volume of the recess on the approaching side is decreased, and when the moving body moves away from the pocket, the volume of the recess on the leaving side is increased.

請求項2に係る発明の特徴は、請求項1に係る発明において、前記移動体が回転する主軸であって、前記静圧ポケットと、前記体積増減手段と、前記主軸と前記静圧ポケットの相対変位を計測する前記変位計測手段と、を前記主軸の外周に円筒状に配置したことである。   According to a second aspect of the invention, there is provided a main shaft on which the moving body rotates in the first aspect of the invention, wherein the static pressure pocket, the volume increasing / decreasing means, and the relative relationship between the main shaft and the static pressure pocket. The displacement measuring means for measuring the displacement is arranged in a cylindrical shape on the outer periphery of the main shaft.

請求項3に係る発明の特徴は、請求項2に係る発明において、前記体積増減手段と、前記変位計測手段と、をそれぞれ複数備えるとともに、前記制御手段は複数の前記変位計測手段の変位量から複数の前記体積増減手段の体積増減量を演算し作動指令を出力することである。   The invention according to claim 3 is characterized in that, in the invention according to claim 2, a plurality of the volume increasing / decreasing means and the displacement measuring means are provided, respectively, and the control means is based on a displacement amount of the plurality of displacement measuring means. The volume increasing / decreasing amount of the plurality of volume increasing / decreasing means is calculated and an operation command is output.

請求項4に係る発明の特徴は、請求項1〜3のいずれか1項に係る発明において、前記体積増減手段は、ピストンと、前記ピストンを駆動する圧電素子と、からなることである。   A feature of the invention according to claim 4 is that, in the invention according to any one of claims 1 to 3, the volume increasing / decreasing means includes a piston and a piezoelectric element that drives the piston.

請求項1に係る発明によれば、移動体に外乱力が作用した場合に、移動体と静圧ポケットの相対変位を変位計測手段により計測し、計測した変位量は制御装置に送られる。制御手段は変位量から体積増減手段の体積増減量を演算して体積増減手段に作動指令を出力する。外乱力が移動体に作用し移動体がポケットに近づく場合は、近づく側の体積増減手段にリセスの体積を減少さる指令が発せられ、リセス体積が減少して該当ポケットからの油流出量が増大する。ポケット内圧が一定でポケットからの油流出量が増大するので移動体とランドの隙間が増大する。すなわち移動体がポケットから離れる方向へ移動する。反対に外乱力が移動体に作用し移動体がポケットから離れる場合は、離れる側の体積増減手段にリセスの体積を増加さる指令が発せられ、リセス体積が増大して該当ポケットからの油流出量が減少する。ポケット内圧が一定でポケットからの油流出量が減少するので移動体とランドの隙間が減少する。すなわち移動体がポケットに近づく方向へ移動する。以上のように外乱力による移動体の変位を打ち消す方向に体積増減手段を作用させることで移動体の外乱変位を抑制する。直接静圧ポケット部でリセス体積を増減制御して外乱変位を抑制するため応答性が速く制御精度が高い、従来の絞りによる流量制限を受ける外部供給圧力制御方式に比較して、高速の外乱力変動にも高精度の移動体精度低下抑制が可能となる。   According to the invention of claim 1, when a disturbance force acts on the moving body, the relative displacement between the moving body and the static pressure pocket is measured by the displacement measuring means, and the measured displacement amount is sent to the control device. The control means calculates the volume increase / decrease amount of the volume increase / decrease means from the displacement amount and outputs an operation command to the volume increase / decrease means. When disturbance force acts on the moving body and the moving body approaches the pocket, a command to reduce the volume of the recess is issued to the volume increasing / decreasing means on the approaching side, and the recess volume decreases and the amount of oil spill from the corresponding pocket increases. To do. Since the pocket internal pressure is constant and the amount of oil outflow from the pocket increases, the gap between the moving body and the land increases. That is, the moving body moves away from the pocket. On the other hand, when a disturbance force acts on the moving body and the moving body leaves the pocket, a command to increase the recess volume is issued to the volume increasing / decreasing means on the far side, and the recess volume increases to increase the oil spill amount from the corresponding pocket. Decrease. Since the pocket internal pressure is constant and the amount of oil outflow from the pocket decreases, the gap between the moving body and the land decreases. That is, the moving body moves in a direction approaching the pocket. As described above, the disturbance displacement of the moving body is suppressed by applying the volume increasing / decreasing means in a direction that cancels the displacement of the moving body due to the disturbance force. High-speed disturbance force compared to the conventional externally supplied pressure control method that restricts the flow rate by the throttle, which has high responsiveness and high control accuracy because the recess volume is controlled by directly increasing and decreasing the recess volume in the static pressure pocket. It is possible to suppress a decrease in accuracy of the moving body with high accuracy even with fluctuations.

請求項2に係る発明によれば、移動体が回転軸で、静圧ポケットを前記回転軸の外周に円筒状に配置することにより高速回転で使用されることが多い回転軸受けの精度低下を抑制することができる。   According to the second aspect of the present invention, the moving body is a rotating shaft, and a static pressure pocket is arranged in a cylindrical shape on the outer periphery of the rotating shaft, thereby suppressing deterioration in accuracy of the rotating bearing that is often used at high speed rotation. can do.

請求項3に係る発明によれば、制御手段は複数の変位計測手段の計測した複数の変位量を用いて演算できるので変位方向と変位量を判定でき、また、複数の体積増減手段の体積増減の組み合わせによりどの方向へも所定の量の補正が可能であるので、円周上のいかなる方向からの外乱力変動に対しても軸受け精度低下の抑制が可能である。   According to the invention of claim 3, since the control means can calculate using the plurality of displacement amounts measured by the plurality of displacement measurement means, the displacement direction and the displacement amount can be determined, and the volume increase / decrease of the plurality of volume increase / decrease means. Since a predetermined amount can be corrected in any direction by the combination of the above, it is possible to suppress a decrease in bearing accuracy against disturbance force fluctuations from any direction on the circumference.

請求項4に係る発明によれば、体積増減手段をピストンで構成するので作動量の自由度が大きく、圧電素子で駆動するので高速の作動が可能であり、適応範囲の広い高速作動の体積増減手段をコンパクトに構成できる。
According to the invention of claim 4, since the volume increasing / decreasing means is constituted by a piston, the degree of freedom of operation is large, and since it is driven by a piezoelectric element, high speed operation is possible and the volume increase / decrease of high speed operation with a wide adaptive range. The means can be made compact.

本実施形態の静圧軸受け装置の全体構成を示す概略図である。It is the schematic which shows the whole structure of the static pressure bearing apparatus of this embodiment. 本実施形態の静圧ポケット部の構成を示す断面詳細図である。It is a cross-sectional detail drawing which shows the structure of the static pressure pocket part of this embodiment. 本実施形態の静圧ポケット部の構成を示す図2のA矢視詳細図である。FIG. 3 is a detailed view taken from the direction of the arrow A in FIG. 2 showing the configuration of the static pressure pocket portion of the present embodiment. 従来技術の全体構成を示す概略図である。It is the schematic which shows the whole structure of a prior art.

以下、本発明の流体保持装置の実施の形態として、静圧軸受けを例にして、図1〜図3を参照しつつ説明する。
図1に示すように、本実施形態による静圧軸受け装置1は、工具2を保持する主軸3(本発明における移動体)が軸受けハウジング6に保持されている静圧軸受け4、5により回転自在に保持され、回転モータ15により駆動される。静圧軸受け4、5には、ポンプ13と圧力制御弁14により所定の圧力の圧油が供給される。さらに、主軸3と静圧軸受け4、5の相対変位を計測する変位センサ9、10と、変位センサ9、10の変位量に基づき変位指令を出力する制御装置11と、制御装置11の変位指令に基づき体積増減手段7、8を駆動する圧電素子ドライバ12を備える。
Hereinafter, as an embodiment of the fluid holding device of the present invention, a static pressure bearing will be described as an example with reference to FIGS.
As shown in FIG. 1, the hydrostatic bearing device 1 according to the present embodiment is rotatable by hydrostatic bearings 4 and 5 in which a main shaft 3 (moving body in the present invention) holding a tool 2 is held by a bearing housing 6. And is driven by the rotary motor 15. The hydrostatic bearings 4 and 5 are supplied with pressure oil of a predetermined pressure by the pump 13 and the pressure control valve 14. Furthermore, displacement sensors 9 and 10 that measure relative displacement between the main shaft 3 and the static pressure bearings 4 and 5, a control device 11 that outputs a displacement command based on the amount of displacement of the displacement sensors 9 and 10, and a displacement command of the control device 11 The piezoelectric element driver 12 for driving the volume increasing / decreasing means 7 and 8 is provided.

静圧軸受け4は静圧軸受け5と同一構造であるので、静圧軸受け4の例で図2、図3に基づき以下にその詳細を説明する。
静圧軸受け4は、複数のランド42a〜42dとリセス41a〜41dからなる静圧ポケット20a〜20dを備えている。ランド42a〜42dとはポケット20a〜20d外周の全周に設けられた凸状の部位で、リセス41a〜41dとはランド42a〜42dに囲まれた凹状の部位である。リセス41a〜41dには、圧力制御弁14からの圧油を供給する圧油供給管路19a〜19dが接続されており、この圧油供給管路19a〜19dのポケット20a〜20dの近傍には絞りが備えられている。ポケット20a、20bのリセス底面には、体積増減手段7a、7bが設けられている。ポケット20a〜20dの外周には、油排出溝21が形成されており、この油排出溝21には、主軸3と静圧軸受け4の相対変位を計測する概略90度の相対角度で配置された変位センサ9a、9bが取り付けられている。ここで変位センサ配置の相対角度は90度に限定されるものではなく、180度以外であればどのような角度でもよい。
Since the hydrostatic bearing 4 has the same structure as the hydrostatic bearing 5, the details of the hydrostatic bearing 4 will be described below with reference to FIGS.
The static pressure bearing 4 includes static pressure pockets 20a to 20d including a plurality of lands 42a to 42d and recesses 41a to 41d. The lands 42a to 42d are convex portions provided on the entire outer periphery of the pockets 20a to 20d, and the recesses 41a to 41d are concave portions surrounded by the lands 42a to 42d. Pressure oil supply pipes 19a to 19d for supplying pressure oil from the pressure control valve 14 are connected to the recesses 41a to 41d. In the vicinity of the pockets 20a to 20d of the pressure oil supply pipes 19a to 19d, A diaphragm is provided. Volume increasing / decreasing means 7a and 7b are provided on the recess bottom surfaces of the pockets 20a and 20b. An oil discharge groove 21 is formed on the outer periphery of the pockets 20a to 20d, and the oil discharge groove 21 is disposed at a relative angle of approximately 90 degrees for measuring the relative displacement between the main shaft 3 and the hydrostatic bearing 4. Displacement sensors 9a and 9b are attached. Here, the relative angle of the displacement sensor arrangement is not limited to 90 degrees, and may be any angle other than 180 degrees.

リセスの体積を増減させる体積増減手段7aは、静圧軸受け4の外周からリセス41aに通じる放射状の穴を形成し、この穴の静圧軸受け4の外周側口元に圧電素子駆動部72aを固定し、圧電素子駆動部72aにシール73aでシールされたピストン71aを、静圧軸受け4に対して摺動自在に接合した構造である。なお、体積増減手段7bは体積増減手段7aと同一構造である。   The volume increasing / decreasing means 7a for increasing / decreasing the volume of the recess forms a radial hole from the outer periphery of the static pressure bearing 4 to the recess 41a, and fixes the piezoelectric element driving portion 72a to the outer peripheral side mouth of the static pressure bearing 4 in this hole. The piston 71a sealed with the seal 73a is joined to the hydrostatic bearing 4 in a slidable manner. The volume increasing / decreasing means 7b has the same structure as the volume increasing / decreasing means 7a.

上述のように構成された静圧軸受け4、5の作用について説明する。
通常使用時には、ポンプ13からの圧油が圧力制御弁14で所定の圧力に保持され、絞りを設けた圧油供給管路19a〜19dを介してリセス41a〜41dに供給される。リセス41a〜41d内の油はランド42a〜42dと主軸3の隙間から流出する。主軸3は、圧油供給管路19a〜19dからの流入油量とランド42a〜42dと主軸3の隙間からの流出油量とがバランスするポケット内圧により、所定の位置に保持される。
The operation of the static pressure bearings 4 and 5 configured as described above will be described.
During normal use, the pressure oil from the pump 13 is held at a predetermined pressure by the pressure control valve 14, and is supplied to the recesses 41a to 41d via the pressure oil supply pipes 19a to 19d provided with throttles. The oil in the recesses 41 a to 41 d flows out from the gap between the lands 42 a to 42 d and the main shaft 3. The main shaft 3 is held at a predetermined position by a pocket internal pressure in which the inflow oil amount from the pressure oil supply pipes 19a to 19d and the outflow oil amount from the gaps between the lands 42a to 42d and the main shaft 3 are balanced.

加工負荷変動、外部振動伝達等の外乱力F0が主軸3に作用した場合に軸受け精度の低下が抑制される原理について、以下に説明する。
主軸3にポケット20b方向への外乱力が作用すると、主軸3はポケット20b方向へ変位し、ポケット20bのランド42bと軸受け3の隙間が前記変位相当分減少し、ポケット20bからの油流出量が減少するためポケット20b内の圧力が上昇する。また、ポケット20bと対向した位置のポケット20dでは、逆にランド42dと主軸3の隙間が前記変位相当分増加し、ポケット20d内の圧力が減少する。これにより、主軸3はポケット20bの圧力上昇による増加保持力F1とポケット20dの圧力減少による減少保持力F2の合計が前記外乱力F0と等しくなるランド隙間で釣り合う。ここで、体積増減手段7bのピストン71bを前進させるとリセス41bの体積が減少し、ポケット20b内の油の流出量が増加する。ポケット20b内の油圧力が一定なのでランド42bと主軸3の隙間が増大する、すなわち、主軸3を押し戻し、外乱力による主軸3の変位を減少させる。
The principle of suppressing a decrease in bearing accuracy when disturbance force F0 such as machining load fluctuation or external vibration transmission acts on the main shaft 3 will be described below.
When a disturbance force in the pocket 20b direction acts on the main shaft 3, the main shaft 3 is displaced in the pocket 20b direction, the gap between the land 42b of the pocket 20b and the bearing 3 is reduced by the amount corresponding to the displacement, and the amount of oil outflow from the pocket 20b is reduced. Since the pressure decreases, the pressure in the pocket 20b increases. On the other hand, in the pocket 20d at a position facing the pocket 20b, the gap between the land 42d and the main shaft 3 increases corresponding to the displacement, and the pressure in the pocket 20d decreases. As a result, the main shaft 3 is balanced by the land clearance where the sum of the increased holding force F1 due to the pressure increase of the pocket 20b and the decreased holding force F2 due to the pressure decrease of the pocket 20d becomes equal to the disturbance force F0. Here, when the piston 71b of the volume increasing / decreasing means 7b is advanced, the volume of the recess 41b is decreased, and the amount of oil flowing out of the pocket 20b is increased. Since the oil pressure in the pocket 20b is constant, the gap between the land 42b and the main shaft 3 increases, that is, the main shaft 3 is pushed back, and the displacement of the main shaft 3 due to disturbance force is reduced.

反対に、主軸3にポケット20d方向への外乱力が作用した場合は、主軸3はポケット20d方向へ変位し、ポケット20bのランド42bと主軸3の隙間が前記変位相当分増大する。ここで体積増減手段7bのピストン71bを後退させるとリセス41bの体積が増大し、ポケット20b内の油の流出量が減少する。ポケット20b内の油圧力を一定としたままポケット20b内の油の流出量が減少するので、ランド42bと主軸3の隙間が減少する、すなわち、主軸3をポケット20b方向へ引き戻し、外乱力による主軸3の変位を減少させる。   On the contrary, when a disturbance force in the pocket 20d direction acts on the main shaft 3, the main shaft 3 is displaced in the pocket 20d direction, and the gap between the land 42b of the pocket 20b and the main shaft 3 increases by the amount corresponding to the displacement. Here, when the piston 71b of the volume increasing / decreasing means 7b is retracted, the volume of the recess 41b increases and the amount of oil flowing out of the pocket 20b decreases. Since the oil outflow amount in the pocket 20b is reduced while the oil pressure in the pocket 20b is kept constant, the gap between the land 42b and the main shaft 3 is reduced. 3 is reduced.

体積増減手段7a、7bにおいて、ピストン71a、71bの前後進送りは、圧電素子ドライバ12の指令に基づき圧電素子駆動部72a、72bが前後進送りされることで行う。   In the volume increasing / decreasing means 7a and 7b, the forward and backward advancement of the pistons 71a and 71b is performed by the forward and backward advancement of the piezoelectric element driving units 72a and 72b based on a command from the piezoelectric element driver 12.

以下に、外乱力による主軸精度の低下が抑制される作用について具体的に説明する。
主軸3が外乱力により変位すると、その変位が変位センサ9aと9bにより計測される。計測された変位量は制御装置11に転送され、制御装置11により各々の変位量が合成されて、主軸3の変位量と変位方向が演算される。演算された主軸3の変位をポケット20a、20bの円周方向中心位置の半径方向変位に分解換算することにより、ポケット20aに対する主軸3の変位、ポケット20bに対する主軸3の変位を求める。次にポケット20aに対する主軸3の変位を最小とするような体積増減手段7aの体積増減量を演算し、体積増減手段7aのピストン71aの送り量の指令値を決定する。同様にポケット20bについてもピストン71bの送り量の指令値を決定する。
Below, the effect | action which suppresses the fall of the spindle precision by disturbance force is demonstrated concretely.
When the main shaft 3 is displaced by a disturbance force, the displacement is measured by the displacement sensors 9a and 9b. The measured displacement amount is transferred to the control device 11, and the displacement amounts of the main shaft 3 and the displacement direction are calculated by synthesizing the displacement amounts by the control device 11. The calculated displacement of the main shaft 3 is decomposed and converted into the radial displacement of the circumferential center positions of the pockets 20a and 20b, thereby obtaining the displacement of the main shaft 3 with respect to the pocket 20a and the displacement of the main shaft 3 with respect to the pocket 20b. Next, the volume increase / decrease amount of the volume increasing / decreasing means 7a that minimizes the displacement of the main shaft 3 with respect to the pocket 20a is calculated, and the command value of the feed amount of the piston 71a of the volume increasing / decreasing means 7a is determined. Similarly, the command value for the feed amount of the piston 71b is determined for the pocket 20b.

制御装置11により演算されたピストン71aの送り量の指令値に基づき、圧電素子ドライバ12を介して圧電素子駆動部72aを駆動させ、ポケット20aのピストン71aを前後進し、ポケット20a方向の主軸3の変位を抑制する。ポケット20bにおいても、同様にしてポケット20b方向の主軸3の変位を抑制する。
以上の結果、静圧軸受け4に対する主軸3の外乱力に起因する変位を抑制でき、静圧軸受け5についても同様の制御を行い、外乱力に起因する変位を抑制する。静圧軸受け4、5での外乱力に起因する主軸変位を最小化することで、主軸3のアキシャル方向を除く2軸の併進と、主軸3のピッチングとヨーイングにおける、外乱力による軸受け精度の低下を抑制できる。
Based on the command value of the feed amount of the piston 71a calculated by the control device 11, the piezoelectric element driving unit 72a is driven via the piezoelectric element driver 12, and the piston 71a of the pocket 20a moves forward and backward, and the main shaft 3 in the pocket 20a direction. Suppresses displacement. Similarly, in the pocket 20b, the displacement of the main shaft 3 in the pocket 20b direction is suppressed.
As a result, the displacement caused by the disturbance force of the main shaft 3 with respect to the static pressure bearing 4 can be suppressed, and the same control is performed on the static pressure bearing 5 to suppress the displacement caused by the disturbance force. By minimizing the main shaft displacement caused by the disturbance force in the hydrostatic bearings 4 and 5, the accuracy of the bearing is reduced due to the disturbance force in the translation of the two shafts excluding the axial direction of the main shaft 3 and the pitching and yawing of the main shaft 3. Can be suppressed.

以上の構造によれば、ポケット20a、20bの体積をピストン71a、71bを前後進させることにより直接増減し主軸3の外乱変位を抑制するため、従来の外部供給圧力制御方式のような絞りによる流量制限による応答遅れが無い。したがって、従来技術よりも高速の外乱力変動にも追従して高精度の主軸変位抑制が可能で、高周波の振動や加工力の高速変動が生じても軸受け精度低下抑制が可能で高精度な高速加工を実現できる。   According to the above structure, the volume of the pockets 20a, 20b is directly increased / decreased by moving the pistons 71a, 71b back and forth to suppress disturbance displacement of the main shaft 3, so that the flow rate by the throttle as in the conventional external supply pressure control system is reduced. There is no response delay due to restrictions. Therefore, it is possible to suppress spindle displacement with high accuracy following high-speed disturbance force fluctuations compared to the conventional technology, and it is possible to suppress deterioration in bearing accuracy even when high-frequency vibrations or high-speed fluctuations in machining force occur, and high accuracy and high speed. Processing can be realized.

主軸3の外乱力による変位を2個の変位センサ9aと9bにより計測することで主軸3の変位量と変位方向を計測し、体積増減手段の設けられたポケット20a、20bの円周方向中心位置の半径方向変位に換算して、ポケット20a、20bの変位抑制制御を実施するので、円周上のいかなる方向からの外乱力変動に対しても軸受け精度低下抑制ができる。
体積増減手段7a、7bをピストンで構成するので作動量の自由度が大きく、圧電素子で駆動するので高速の作動が可能であり、適応範囲の広い高速作動の体積増減手段をコンパクトに構成できる。
The displacement due to the disturbance force of the main shaft 3 is measured by the two displacement sensors 9a and 9b to measure the displacement amount and the direction of the main shaft 3, and the circumferential center positions of the pockets 20a and 20b provided with the volume increasing / decreasing means. Since the displacement suppression control of the pockets 20a, 20b is performed in terms of the radial displacement of the bearing, it is possible to suppress a decrease in bearing accuracy against disturbance force fluctuations from any direction on the circumference.
Since the volume increasing / decreasing means 7a, 7b is constituted by a piston, the degree of freedom of operation is large, and since it is driven by a piezoelectric element, high speed operation is possible, and a high speed operating volume increasing / decreasing means having a wide adaptive range can be configured compactly.

<本実施形態の変形態様>
上記の実施形態は回転式の静圧軸受けについて説明したが、これに限定されるものではなく、主軸3を併進運動体とし静圧ポケットを平面状に配置した静圧案内にも適用可能である。
変位センサ9、10の出力にハイパスフィルタを付加し、外乱力の高周波成分のみを体積増減手段7、8により抑制するようにしてもよい。(この場合、外乱力の低周波成分は本来の静圧軸受けの求心作用により抑制される)
また、圧電素子駆動部72a、72bを電磁ソレノイドやモータなど他の駆動手段に置き換えてもよい。
上述の実施形態では体積増減手段7、8に移動するピストン71a、71bを用いているが、リセス壁面を弾性変形可能な構造(例えば薄肉化やダイヤフラム)とすることでリセス41a、41bの体積を増減させるように構成してもよい。
例えば、静圧軸受け4、5を研削盤の砥石軸に用いる場合のように、外乱力に起因する変位の方向が特定の方向に限定できる場合、変位センサ9、10はその方向の変位を検知できる1セットのみ備える構成でもよい。
同様に、外乱力に起因する変位を抑制する方向が特定の方向に限定できる場合、体積増減手段7、8はその方向に位置するリセスに1セットのみ備える構成でもよい。
<Deformation of this embodiment>
The above embodiment has been described with respect to the rotary hydrostatic bearing. However, the present invention is not limited to this, and can be applied to a hydrostatic guide in which the main shaft 3 is a translational motion body and static pressure pockets are arranged in a plane. .
A high-pass filter may be added to the outputs of the displacement sensors 9 and 10 so that only the high frequency component of the disturbance force is suppressed by the volume increasing / decreasing means 7 and 8. (In this case, the low frequency component of the disturbance force is suppressed by the centripetal action of the original static pressure bearing)
Further, the piezoelectric element driving units 72a and 72b may be replaced with other driving means such as an electromagnetic solenoid or a motor.
In the above-described embodiment, the pistons 71a and 71b moving to the volume increasing / decreasing means 7 and 8 are used. However, by making the recess wall surface elastically deformable (for example, thinning or diaphragm), the volume of the recesses 41a and 41b can be reduced. You may comprise so that it may increase / decrease.
For example, when the direction of the displacement due to the disturbance force can be limited to a specific direction as in the case where the static pressure bearings 4 and 5 are used for the grindstone shaft, the displacement sensors 9 and 10 detect the displacement in that direction. A configuration with only one set is possible.
Similarly, when the direction in which the displacement due to the disturbance force can be suppressed can be limited to a specific direction, the volume increasing / decreasing means 7 and 8 may be configured to have only one set in the recess located in that direction.

1:静圧軸受け装置 3:主軸 7、8:体積増減手段 9、10:変位センサ 11:制御装置 12:圧電素子ドライバ 13:ポンプ 14:圧力制御弁 20a〜20d:静圧ポケット 72a、72b:圧電素子駆動部 41a〜41d:リセス 42a〜42d:ランド 1: Static pressure bearing device 3: Main shaft 7, 8: Volume increasing / decreasing means 9, 10: Displacement sensor 11: Control device 12: Piezoelectric element driver 13: Pump 14: Pressure control valve 20a-20d: Static pressure pockets 72a, 72b: Piezoelectric element driving units 41a to 41d: recesses 42a to 42d: lands

Claims (4)

リセスと前記リセスの周囲に設けられたランドとからなる静圧ポケットと、前記リセスへ圧油を供給する圧油供給手段と、前記静圧ポケットの圧油により支持される移動体と、前記リセスの体積を増減できる体積増減手段と、前記移動体と前記静圧ポケットの相対変位を計測する変位計測手段と、前記変位計測手段の計測した変位量に応じて前記体積増減手段の増減量を演算し作動指令を出力する制御手段と、前記制御手段の作動指令に基づき前記体積増減手段を駆動する駆動手段と、を備え、前記移動体が前記ポケットに近づく場合は近づく側の前記リセスの体積を減少させ、前記移動体が前記ポケットから離れる場合は離れる側の前記リセスの体積を増加させる、ことを特徴とする流体保持装置。   A static pressure pocket comprising a recess and a land provided around the recess, a pressure oil supply means for supplying pressure oil to the recess, a movable body supported by the pressure oil in the static pressure pocket, and the recess A volume increasing / decreasing means capable of increasing / decreasing the volume of the moving body, a displacement measuring means for measuring a relative displacement between the movable body and the static pressure pocket, and calculating an increase / decrease amount of the volume increasing / decreasing means according to a displacement amount measured by the displacement measuring means. Control means for outputting an operation command, and drive means for driving the volume increasing / decreasing means based on the operation command of the control means, and when the movable body approaches the pocket, the volume of the recess on the approaching side is set. The fluid holding device, wherein the volume of the recess on the side of the moving body is increased when the moving body moves away from the pocket. 前記移動体が回転する主軸であって、前記静圧ポケットと、前記体積増減手段と、前記主軸と前記静圧ポケットの相対変位を計測する変位計測手段と、を前記主軸の外周に円筒状に配置したことを特徴とする請求項1記載の流体保持装置。   A main shaft on which the movable body rotates, and the static pressure pocket, the volume increasing / decreasing means, and a displacement measuring means for measuring relative displacement between the main shaft and the static pressure pocket are formed in a cylindrical shape on the outer periphery of the main shaft. The fluid holding device according to claim 1, wherein the fluid holding device is arranged. 前記体積増減手段と、前記変位計測手段と、をそれぞれ複数備えるとともに、前記制御手段は複数の前記変位計測手段の変位量から複数の前記体積増減手段の増減量を演算し作動指令を出力することを特徴とする請求項2記載の流体保持装置。   A plurality of the volume increasing / decreasing means and the displacement measuring means are provided, and the control means calculates an increase / decrease amount of the plurality of volume increasing / decreasing means from a displacement amount of the plurality of displacement measuring means and outputs an operation command. The fluid holding device according to claim 2. 前記体積増減手段は、ピストンと、前記ピストンを駆動する圧電素子と、からなることを特徴とする請求項1〜3のいずれか1項に記載の流体保持装置。   The fluid holding apparatus according to claim 1, wherein the volume increasing / decreasing means includes a piston and a piezoelectric element that drives the piston.
JP2009229639A 2009-10-01 2009-10-01 Fluid holding device Expired - Fee Related JP5391978B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009229639A JP5391978B2 (en) 2009-10-01 2009-10-01 Fluid holding device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009229639A JP5391978B2 (en) 2009-10-01 2009-10-01 Fluid holding device

Publications (2)

Publication Number Publication Date
JP2011073118A JP2011073118A (en) 2011-04-14
JP5391978B2 true JP5391978B2 (en) 2014-01-15

Family

ID=44017660

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009229639A Expired - Fee Related JP5391978B2 (en) 2009-10-01 2009-10-01 Fluid holding device

Country Status (1)

Country Link
JP (1) JP5391978B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6520500B2 (en) * 2015-07-10 2019-05-29 株式会社ジェイテクト Machine Tools
JP6790574B2 (en) * 2016-08-12 2020-11-25 株式会社ジェイテクト Spindle device and grinder equipped with the spindle device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0348016A (en) * 1989-07-13 1991-03-01 Toyoda Mach Works Ltd Static pressure fluid bearing
JP2554794B2 (en) * 1991-06-03 1996-11-13 株式会社東芝 Static pressure fluid support device
US5238308A (en) * 1992-05-04 1993-08-24 Rockwell International Corporation Adjustable gap hydrostatic element
JPH06235422A (en) * 1993-02-08 1994-08-23 Hitachi Zosen Corp Rotation shaft deviation correction control device
JPH0828565A (en) * 1994-07-18 1996-02-02 Sony Corp Static pressure gas bearing
JP3106189B1 (en) * 1999-10-05 2000-11-06 工業技術院長 Hydrostatic bearing
JP5121047B2 (en) * 2007-11-02 2013-01-16 株式会社不二越 Spindle device using hydrodynamic bearing and radial hydrodynamic bearing

Also Published As

Publication number Publication date
JP2011073118A (en) 2011-04-14

Similar Documents

Publication Publication Date Title
CN106984836A (en) A kind of built-in dynamic/static piezoelectric main shaft of high-speed, high precision
CN109488689B (en) Bearing compensation device and method for air floatation spindle
JP5391978B2 (en) Fluid holding device
JP5375491B2 (en) Fluid holding device
JP5598078B2 (en) Machine tool spindle equipment
WO2013183518A1 (en) Bearing device
JP6000453B2 (en) Spindle device of machine tool and machine tool
JP5499328B2 (en) Variable preload spindle
WO2013153836A1 (en) Surface grinder
JP2011075072A (en) Fluid holding device
Pham et al. Numerical and experimental analysis of hybrid lubrication regime for internal gear motor and pump
JP2009285777A (en) Spindle device
JP4845114B2 (en) Spindle device
JP6009770B2 (en) Hydraulic closed circuit system
JP2021084153A (en) Grinding device and vibration grinding method
JP4811657B2 (en) Spindle device
JP6726565B2 (en) Machine tool spindle device
JP2009034804A (en) Working machine
JP6645048B2 (en) Hydrostatic bearing, method of manufacturing the same, and machine tool using the same
JP6492699B2 (en) Thrust support device for operating member, and machine tool provided with the support device
CN109765016B (en) Method and device for testing axial dynamic stiffness of main shaft
TWI649545B (en) Smart sensing device and smart sensing method for hydrostatic bearing
JP5812826B2 (en) Fluid pressure actuator
JP6141157B2 (en) High frequency vibration assisted processing apparatus and processing method thereof
CN113210642B (en) High-precision machine tool spindle rotation system and control method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120924

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130903

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130917

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130930

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees