JP6726565B2 - Machine tool spindle device - Google Patents

Machine tool spindle device Download PDF

Info

Publication number
JP6726565B2
JP6726565B2 JP2016157968A JP2016157968A JP6726565B2 JP 6726565 B2 JP6726565 B2 JP 6726565B2 JP 2016157968 A JP2016157968 A JP 2016157968A JP 2016157968 A JP2016157968 A JP 2016157968A JP 6726565 B2 JP6726565 B2 JP 6726565B2
Authority
JP
Japan
Prior art keywords
vibration
spindle
damping member
main shaft
damping
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016157968A
Other languages
Japanese (ja)
Other versions
JP2018024063A (en
Inventor
直樹 川田
直樹 川田
一成 小池
一成 小池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okuma Corp
Original Assignee
Okuma Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okuma Corp filed Critical Okuma Corp
Priority to JP2016157968A priority Critical patent/JP6726565B2/en
Publication of JP2018024063A publication Critical patent/JP2018024063A/en
Application granted granted Critical
Publication of JP6726565B2 publication Critical patent/JP6726565B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、加工中に発生する振動を抑制することができる工作機械の主軸装置に関する。 The present invention relates to a spindle device for machine tools capable of suppressing vibrations generated during machining.

工具又はワークを回転させながら加工を行う工作機械においては、加工中にいわゆるびびり振動が発生して、加工面の仕上げ精度の悪化、工具摩耗、工具欠損といった問題が生じる。このようなびびり振動を抑制する方法として、例えば特許文献1には、振動センサ等によって検出された時間領域の振動に基づいて、びびり振動の発生を検出すると、k値及び位相情報を用いて最適回転速度を算出すると共に、位相情報からびびり振動の種類を特定し、過去に特定したびびり振動と異なるびびり振動が発生した場合には、k値を変更して最適回転速度を算出し直す発明が開示されている。また、特許文献2には、主軸を支持するハウジングに、ハウジングと主軸との隙間に油を周方向の三箇所以上から供給する機構を設け、変位センサにより検出された主軸の径方向の振動方向に応じて油圧及び油量を変更することで主軸の振動を抑制する発明が開示されている。 In a machine tool that performs machining while rotating a tool or a work, so-called chatter vibration occurs during machining, which causes problems such as deterioration in finishing accuracy of a machined surface, tool wear, and tool loss. As a method for suppressing such chatter vibration, for example, in Patent Document 1, when occurrence of chatter vibration is detected based on time-domain vibration detected by a vibration sensor or the like, it is optimal using k value and phase information. In addition to calculating the rotation speed, the type of chatter vibration is specified from the phase information, and when chatter vibration different from the specified chatter vibration occurs in the past, the invention changes the k value and recalculates the optimum rotation speed. It is disclosed. Further, in Patent Document 2, a mechanism for supplying oil to a gap between the housing and the main shaft from three or more circumferential positions is provided in a housing supporting the main shaft, and a radial vibration direction of the main shaft detected by a displacement sensor. There is disclosed an invention that suppresses the vibration of the main shaft by changing the oil pressure and the oil amount according to the above.

特許第4743646号公報Japanese Patent No. 4734646 特開2011−235404号公報JP, 2011-235404, A

特許文献1の発明においては、振動抑制に回転速度等の加工条件の変更を伴うため、加工精度の低下や加工時間の延長に繋がるおそれがある。特許文献2の発明においては、油圧供給の方向が一定で変更できないため、発生した振動によっては効果的な減衰が行えない場合がある。 In the invention of Patent Document 1, since vibration suppression is accompanied by a change in processing conditions such as rotation speed, there is a possibility that the processing accuracy may be reduced and the processing time may be extended. In the invention of Patent Document 2, since the direction of hydraulic pressure supply is constant and cannot be changed, effective damping may not be performed depending on the generated vibration.

そこで、本発明は、加工条件の変更を伴うことなく効果的な振動抑制を行うことができる工作機械の主軸装置を提供することを目的としたものである。 Therefore, an object of the present invention is to provide a spindle device of a machine tool that can effectively suppress vibration without changing machining conditions.

上記目的を達成するために、請求項1に記載の発明は、工具が着脱可能で、ハウジング内で軸受を介して回転可能に支持される主軸と、前記主軸を回転させるモータと、前記モータを制御する制御装置とを含んでなる工作機械の主軸装置であって、
前記主軸内に形成された中空部内に収容され、前記主軸の回転軸方向で前後移動可能な制振部材と、前記主軸の回転速度及び前記工具の寸法を含む加工条件と、前記軸受の支持剛性及び減衰係数を含む軸受特性とに基づいて前記主軸の振動形態を解析する振動解析手段と、前記制御装置が有するNC装置を含んで形成され、前記振動解析手段の解析結果に基づいて前記制振部材を前記回転軸方向での所定位置へ移動させる移動手段とを備えることを特徴とする。
請求項2に記載の発明は、請求項1の構成において、加工中に前記主軸に発生した振動を検知する振動検知手段をさらに備え、前記振動解析手段は、前記振動検知手段によって検知された加工中の振動を解析し、前記移動手段は、前記振動解析手段の解析結果に基づいて前記制振部材を前記所定位置と異なる位置へ移動させることを特徴とする。
請求項3に記載の発明は、請求項1又は2の構成において、前記制振部材は、前記主軸内に形成された中空部内へ前後移動可能に収容され、前記移動手段は、前記中空部内に設けられ、前記制振部材を前後何れか一方側へ付勢する付勢手段と、前記制振部材を挟んで前記付勢手段の反対側に形成され、流体が供給される加圧室と、前記加圧室への流体圧を調整可能な流体圧調整機構とを含んでなることを特徴とする。
In order to achieve the above-mentioned object, the invention according to claim 1 includes a main shaft to which a tool is detachably attached and which is rotatably supported via a bearing in a housing, a motor for rotating the main shaft, and the motor. A spindle device of a machine tool including a control device for controlling,
A damping member that is housed in a hollow portion formed in the main shaft and is movable back and forth in the rotation axis direction of the main shaft, processing conditions including the rotation speed of the main shaft and the dimensions of the tool, and support rigidity of the bearing. And a vibration analysis means for analyzing a vibration form of the main shaft based on a bearing characteristic including a damping coefficient, and an NC device included in the control device. The vibration analysis means is formed based on an analysis result of the vibration analysis means. And a moving means for moving the member to a predetermined position in the rotation axis direction.
According to a second aspect of the present invention, in the structure of the first aspect, a vibration detection unit that detects vibration generated in the spindle during processing is further provided, and the vibration analysis unit detects the processing detected by the vibration detection unit. The internal vibration is analyzed, and the moving unit moves the damping member to a position different from the predetermined position based on an analysis result of the vibration analyzing unit.
According to a third aspect of the present invention, in the configuration of the first or second aspect, the damping member is housed in a hollow portion formed in the main shaft so as to be movable back and forth, and the moving unit is provided in the hollow portion. An urging means that is provided and urges the damping member to one of the front and rear sides, and a pressurizing chamber that is formed on the opposite side of the urging means with the damping member interposed therebetween and to which a fluid is supplied, And a fluid pressure adjusting mechanism capable of adjusting the fluid pressure to the pressurizing chamber.

本発明によれば、加工条件と軸受特性とに基づいて主軸の振動形態を解析し、その解析結果に基づいて制振部材を所定位置へ移動させるので、加工条件を変更することなく、制振部材による減衰効果を発揮させて効果的な振動抑制を行うことができる。
特に、加工中に発生した振動を解析し、その解析結果に基づいて制振部材を所定位置と異なる位置へ移動させることで、加工中に主軸の固有振動数を変動させ続けて振動を効果的に抑制することができる。
According to the present invention, the vibration form of the spindle is analyzed based on the processing conditions and the bearing characteristics, and the vibration damping member is moved to a predetermined position based on the analysis result. Therefore, the vibration damping can be performed without changing the processing conditions. The damping effect of the member can be exerted to effectively suppress the vibration.
Especially, by analyzing the vibration generated during machining and moving the damping member to a position different from the predetermined position based on the analysis result, the natural frequency of the spindle can be continuously changed during machining to effectively vibrate the vibration. Can be suppressed.

工作機械の主軸装置の説明図である。It is explanatory drawing of the spindle device of a machine tool. 制振カラーの位置制御のフローチャートである。It is a flow chart of position control of a damping color.

以下、本発明の実施の形態を図面に基づいて説明する。
図1は、マシニングセンタ等の工作機械に設けられる主軸装置の一例を示す説明図である。この主軸装置1において、2は主軸で、モータ3によって図示しないハウジング内で軸受4,4を介して回転可能に支持される。この主軸2は中空となっており、軸心にはドローバー5が、進退動可能且つ主軸2内の後部に設けられた皿バネ7,7・・を用いた押圧機構6によって後退位置に付勢された状態で設けられている。このドローバー5は、後退位置で主軸2の前部に設けたチャック機構8をクランプ動作させて主軸2先端で工具ホルダ9をクランプするもので、図示しない油圧機構によって前進することでチャック機構8をアンクランプ動作させる。10は、ドローバー5の軸心に設けられた冷却液供給路である。
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is an explanatory diagram showing an example of a spindle device provided in a machine tool such as a machining center. In the spindle device 1, 2 is a spindle, which is rotatably supported by a motor 3 in a housing (not shown) via bearings 4 and 4. The main shaft 2 is hollow, and a draw bar 5 is urged to the retracted position by a pressing mechanism 6 which is movable in the shaft center and which uses disc springs 7, 7... Installed at the rear portion of the main shaft 2. It is provided in the state where it was opened. This draw bar 5 clamps the tool holder 9 at the tip of the main spindle 2 by clamping the chuck mechanism 8 provided at the front of the main spindle 2 at the retracted position, and the chuck mechanism 8 is moved forward by a hydraulic mechanism (not shown). Perform unclamp operation. Reference numeral 10 is a cooling liquid supply passage provided at the axial center of the draw bar 5.

また、主軸2内で押圧機構6の前側には、押圧機構6の前端に位置する仕切板11で仕切られる中空部12が同軸で形成されて、その中空部12内に、制振機構13が設けられている。この制振機構13は、ドローバー5が貫通して中空部12の前端に固定される固定カラー14と、その後方でドローバー5が貫通して軸方向へ移動自在な制振部材としての制振カラー15と、固定カラー14と制振カラー15との間に介在されて制振カラー15を後方へ付勢する付勢手段としての複数の皿バネ16,16・・と、制振カラー15の後方で仕切板11との間に形成される加圧室17とからなる。冷却液供給路10の外側でドローバー5内には、ドローバー5の前後ストロークの範囲に亘って前端が加圧室17と連通する圧油供給路18が形成されている。
制振カラー15は、円筒形状の鋼材からなり、内周及び外周には、リング状の溝が形成されて、各溝に樹脂製のシール部材19,19が組み込まれて、加圧室17をシールしている。
A hollow portion 12 partitioned by a partition plate 11 located at the front end of the pressing mechanism 6 is coaxially formed in the main shaft 2 on the front side of the pressing mechanism 6, and the vibration damping mechanism 13 is provided in the hollow portion 12. It is provided. The damping mechanism 13 includes a fixing collar 14 which is penetrated by the draw bar 5 and fixed to the front end of the hollow portion 12, and a damping collar which is a damping member which is movable axially through which the draw bar 5 penetrates behind. 15, a plurality of coned disc springs 16, 16 as biasing means interposed between the fixed collar 14 and the damping collar 15 to bias the damping collar 15 rearward, and the rear of the damping collar 15. And a pressure chamber 17 formed between the partition plate 11 and the partition plate 11. A pressure oil supply passage 18 having a front end communicating with the pressurizing chamber 17 is formed inside the drawbar 5 outside the cooling liquid supply passage 10 over the range of the stroke of the drawbar 5.
The vibration damping collar 15 is made of a cylindrical steel material, and ring-shaped grooves are formed on the inner circumference and the outer circumference, and resin-made sealing members 19 and 19 are incorporated in the respective grooves to form a pressurizing chamber 17. It is sealed.

圧油供給路18は、制御弁20を介して油圧ユニット21に接続されており、油圧ユニット21から送られる圧油が圧油供給路18を介して加圧室17に供給される。よって、皿バネ16,16・・による付勢力と、加圧室17からの油圧とがバランスする位置で制振カラー15の前後位置が決定される。そして、加圧室17からの油圧の変更により、制振カラー15を軸方向へ前後移動させることで、主軸2の曲げ剛性と減衰特性とを変更可能となっている。 The pressure oil supply passage 18 is connected to the hydraulic unit 21 via the control valve 20, and the pressure oil sent from the hydraulic unit 21 is supplied to the pressurizing chamber 17 via the pressure oil supply passage 18. Therefore, the front-rear position of the damping collar 15 is determined at the position where the urging force of the disc springs 16, 16... Balances the hydraulic pressure from the pressurizing chamber 17. By changing the hydraulic pressure from the pressurizing chamber 17, the damping collar 15 is moved back and forth in the axial direction, so that the bending rigidity and the damping characteristic of the main shaft 2 can be changed.

次に、主軸装置1の制御系について説明する。
22は制御装置で、ここには入力装置23と、演算装置24と、記憶装置25と、NC装置26とが設けられている。
入力装置23は、オペレータによって主軸2の回転速度や工具寸法等の加工条件が入力可能であると共に、ハウジングに設けた図示しない振動センサ等の振動検知手段からの振動検知信号が入力可能となっている。
振動解析手段としての演算装置24は、入力装置23から入力される回転速度と工具寸法とを含む加工条件及び、記憶装置25に記録された後述する解析用データに基づいて主軸2の振動形態を解析し、解析した振動形態と皿バネ16のばね定数とから、制振カラー15を最大限に減衰効果を発揮する位置に移動させるための加圧室17への油圧を決定する。また、振動センサからの振動を解析してびびり振動の発生の有無も判定する。
Next, the control system of the spindle device 1 will be described.
Reference numeral 22 denotes a control device, which is provided with an input device 23, a computing device 24, a storage device 25, and an NC device 26.
The input device 23 allows an operator to input processing conditions such as the rotation speed of the spindle 2 and the tool size, and a vibration detection signal from a vibration detection means such as a vibration sensor (not shown) provided in the housing. There is.
The calculation device 24 as a vibration analysis means determines the vibration form of the spindle 2 based on the processing conditions including the rotation speed and the tool size input from the input device 23 and the analysis data recorded in the storage device 25, which will be described later. The analyzed hydraulic form and the spring constant of the disc spring 16 are used to determine the hydraulic pressure to the pressurizing chamber 17 for moving the damping collar 15 to the position where the damping effect is maximized. In addition, the vibration from the vibration sensor is analyzed to determine whether chatter vibration has occurred.

記憶装置25は、主軸2の形状、軸受4の支持剛性及び減衰係数を含む軸受特性、皿バネ16のばね定数等からなる解析用データを予め記憶すると共に、演算装置24で決定された油圧を記憶する。併せて加工プログラムも記憶する。
NC装置26は、記憶装置25に記憶された加工プログラムに従ってモータ3等の制御を行うと共に、加圧室17が記憶装置25に記憶された油圧となるように制御弁20を制御する。ここでは圧油供給路18、制御弁20、油圧ユニット21、NC装置26が本発明の流体圧調整機構となり、これに皿バネ16を含めた構成が制振カラー15の移動手段となっている。
The storage device 25 stores in advance analysis data such as the shape of the main shaft 2, the bearing rigidity including the support rigidity and damping coefficient of the bearing 4, the spring constant of the disc spring 16, and the hydraulic pressure determined by the arithmetic unit 24. Remember. The machining program is also stored.
The NC device 26 controls the motor 3 and the like in accordance with the machining program stored in the storage device 25, and also controls the control valve 20 so that the pressurizing chamber 17 has the hydraulic pressure stored in the storage device 25. Here, the pressure oil supply passage 18, the control valve 20, the hydraulic unit 21, and the NC device 26 are the fluid pressure adjusting mechanism of the present invention, and the structure including the disc spring 16 is the moving means of the damping collar 15. ..

以上の如く構成された主軸装置1において、制御装置22は、上述した解析用データに基づいて主軸2の振動形態を解析し、解析した振動形態と皿バネ16のばね定数とから、制振カラー15を移動させて制振効果を発揮させる位置制御を実行する。以下、制振カラー15の位置制御を、図2のフローチャートに基づいて説明する。
まず、S1で、入力装置23により、主軸2の回転速度と工具寸法とが入力されて加工条件が設定される。
次に、S2で、演算装置24が、入力装置23から入力される加工条件と、記憶装置25に記憶された解析用データとに基づいて主軸2の振動形態を解析して記憶装置25へ記憶する。
In the spindle device 1 configured as described above, the control device 22 analyzes the vibration form of the spindle 2 based on the above-described analysis data, and based on the analyzed vibration form and the spring constant of the disc spring 16, the damping collar Position control is performed to move 15 to exert a damping effect. The position control of the damping collar 15 will be described below with reference to the flowchart of FIG.
First, in S1, the input device 23 inputs the rotation speed of the spindle 2 and the tool size to set machining conditions.
Next, in S2, the arithmetic unit 24 analyzes the vibration mode of the spindle 2 based on the processing conditions input from the input unit 23 and the analysis data stored in the storage unit 25, and stores it in the storage unit 25. To do.

次に、S3で、解析した振動形態と皿バネ16のばね定数とから、制振カラー15を最大限に減衰効果を発揮する位置に移動させるための加圧室17へ付加する油圧を算出し、記憶装置25へ記憶する。
そして、S4で、NC装置26が、記憶装置25に記憶された油圧となるように制御弁20へ指令を送り、制振カラー15を初期位置へ移動させる。この初期位置は、解析された振動の最大振幅の腹の位置となっている。
Next, in S3, the hydraulic pressure applied to the pressurizing chamber 17 for moving the damping collar 15 to the position where the damping effect is maximized is calculated from the analyzed vibration form and the spring constant of the disc spring 16. , In the storage device 25.
Then, in S4, the NC device 26 sends a command to the control valve 20 so that the hydraulic pressure stored in the storage device 25 is reached, and moves the damping collar 15 to the initial position. This initial position is the position of the antinode of the maximum amplitude of the analyzed vibration.

こうして制振カラー15を初期位置へ移動させた後、S5で加工を開始する。
加工中にS6でびびり振動を検知すると、S7で、演算装置24が、振動検知手段から得られる主軸2の振動や付加情報等をFFT解析してびびり周波数を特定した後、以下の式(1)に示すように、特定したびびり周波数fchatterに任意の係数αを乗算することで、制振カラー15に付加する油圧の変動周波数fcolorを決定する。
color=α・fchatter ・・(1)
次に、S8で、演算装置24から付加油圧の変動周波数を得たNC装置26が、変動周波数に基づいて制御弁20を制御して付加する油圧を変化させ、制振カラー15を初期位置から前後何れかへスライドさせる。
この制振カラー15の移動によって振動形態が変化するため、初期位置で発生したびびり振動が抑制されることになる。
After the damping collar 15 is moved to the initial position in this way, processing is started in S5.
When chatter vibration is detected during processing in S6, the computing device 24 performs FFT analysis of the vibration of the spindle 2 and additional information obtained from the vibration detection means to specify the chatter frequency, and then calculates the following formula (1). ), the specified chatter frequency f chatter is multiplied by an arbitrary coefficient α to determine the fluctuation frequency f color of the hydraulic pressure to be added to the damping collar 15.
f color = α · f chatter · · (1)
Next, in S8, the NC device 26, which has obtained the variable frequency of the additional hydraulic pressure from the arithmetic device 24, controls the control valve 20 based on the variable frequency to change the additional hydraulic pressure, and moves the damping collar 15 from the initial position. Slide it back or forth.
Since the vibration form changes due to the movement of the damping collar 15, the chatter vibration generated at the initial position is suppressed.

その後、S9で加工終了が確認されると位置制御は終了する。加工終了でない場合はS6へ戻ってびびり振動の検知を判別し、検知したら再びS7で付加油圧の振動周波数を決定してS8で付加油圧を変化させ、制振カラー15を直前の位置から前後何れかへスライドさせる。なお、S6でびびり振動を検知しない場合は、S9で加工終了を確認し、ここで加工終了でない場合はS6へ戻って再びびびり振動の検知を判別する。加工終了であれば位置制御を終了する。 After that, when it is confirmed in S9 that the processing is completed, the position control ends. If the processing is not completed, the process returns to S6 to determine the detection of chatter vibration, and if detected, the vibration frequency of the additional hydraulic pressure is determined again in S7, the additional hydraulic pressure is changed in S8, and the damping collar 15 is moved from the previous position to the front or rear. Slide to. If chatter vibration is not detected in S6, the end of machining is confirmed in S9. If not, the process returns to S6 to determine chatter vibration detection again. If the processing is finished, the position control is finished.

このように、上記形態の工作機械の主軸装置1によれば、主軸2内に設けられ、主軸2の回転軸方向で前後移動可能な制振カラー15と、主軸2の回転速度及び工具の寸法を含む加工条件と、軸受4の支持剛性及び減衰係数を含む軸受特性とに基づいて主軸2の振動形態を解析する演算装置24と、演算装置24の解析結果に基づいて制振カラー15を回転軸方向での所定位置(初期位置)へ移動させる移動手段(皿バネ16、加圧室17、圧油供給路18、制御弁20、油圧ユニット21、NC装置26)とを備えることで、加工条件を変更することなく、制振カラー15による減衰効果を発揮させて効果的な振動抑制を行うことができる。 As described above, according to the spindle device 1 for a machine tool of the above-described embodiment, the vibration damping collar 15 provided in the spindle 2 and movable back and forth in the rotation axis direction of the spindle 2, the rotation speed of the spindle 2, and the size of the tool. The calculation device 24 for analyzing the vibration form of the main shaft 2 based on the processing conditions including the above and the bearing characteristics including the support rigidity and the damping coefficient of the bearing 4, and the damping collar 15 is rotated based on the analysis result of the calculation device 24. By providing a moving means (disc spring 16, pressurizing chamber 17, pressure oil supply path 18, control valve 20, hydraulic unit 21, NC device 26) for moving to a predetermined position (initial position) in the axial direction, processing Without changing the conditions, the damping effect of the damping collar 15 can be exerted to effectively suppress the vibration.

特にここでは、加工中に発生したびびり振動を演算装置24で解析し、その解析結果に基づいて制振カラー15を初期位置と異なる位置へ移動させるので、加工中に主軸2の固有振動数を変動させ続けてびびり振動を効果的に抑制することができる。 Particularly here, the chatter vibration generated during machining is analyzed by the arithmetic unit 24, and the damping collar 15 is moved to a position different from the initial position based on the analysis result, so that the natural frequency of the spindle 2 is changed during machining. The chatter vibration can be effectively suppressed by continuously changing the vibration.

なお、上記形態では、付勢手段である皿バネ16を前側に、加圧室17を後側に配置しているが、前後逆にしてもよい。付勢手段としては皿バネ以外にコイルバネ等も使用できる。また、加圧室へ供給する流体は油に限らず、空気やガス等の他の流体を使用してもよいし、加圧室への流体の供給路もドローバーに限らず、主軸に設けてもよい。
制振部材も上記形態の制振カラーに限らず、鋼材以外の金属を使用したり、複数の金属を組み合わせたりする変更は可能である。また、ドローバーが貫通するリング状でなく、ドローバーの周囲で同心円上に、球体等の制振部材を主軸の軸方向へ前後移動可能に収容した複数の中空部を設けて、各中空部ごとに付勢手段と加圧室とを設けて制振部材の位置制御を行うことも可能である。
In the above embodiment, the disc spring 16 as the urging means is arranged on the front side and the pressurizing chamber 17 is arranged on the rear side. A coil spring or the like can be used as the biasing means in addition to the disc spring. Further, the fluid supplied to the pressurizing chamber is not limited to oil, other fluids such as air and gas may be used, and the fluid supply path to the pressurizing chamber is not limited to the drawbar, but may be provided on the main shaft. Good.
The damping member is not limited to the damping collar of the above-described embodiment, but a metal other than steel or a combination of a plurality of metals can be used. Further, instead of a ring shape through which the drawbar penetrates, a plurality of hollow parts that accommodate vibration damping members such as spheres so as to be movable back and forth in the axial direction of the main shaft are provided on concentric circles around the drawbar, and for each hollow part. It is also possible to control the position of the damping member by providing a biasing means and a pressurizing chamber.

1・・主軸装置、2・・主軸、3・・モータ、4・・軸受、5・・ドローバー、6・・押圧機構、7,16・・皿バネ、12・・中空部、13・・制振機構、14・・固定カラー、15・・制振カラー、17・・加圧室、18・・圧油供給路、19・・シール部材、20・・制御弁、21・・油圧ユニット、22・・制御装置、23・・入力装置、24・・演算装置、25・・記憶装置、26・・NC装置。 1・・Main spindle device, 2・・Main shaft, 3・・Motor, 4・・Bearing, 5・・Drawbar, 6・・Pressing mechanism, 7,16・・Disc spring, 12・・Hollow part, 13・・Control Vibration mechanism, 14・・Fixed collar, 15・・Vibration suppression collar, 17・・Pressurizing chamber, 18・・Pressure oil supply passage, 19・・Seal member, 20・・Control valve, 21・・Hydraulic unit, 22 ..Control device, 23..input device, 24..arithmetic device, 25..memory device, 26..NC device

Claims (3)

工具が着脱可能で、ハウジング内で軸受を介して回転可能に支持される主軸と、前記主軸を回転させるモータと、前記モータを制御する制御装置とを含んでなる工作機械の主軸装置であって、
前記主軸内に形成された中空部内に収容され、前記主軸の回転軸方向で前後移動可能な制振部材と、
前記主軸の回転速度及び前記工具の寸法を含む加工条件と、前記軸受の支持剛性及び減衰係数を含む軸受特性とに基づいて前記主軸の振動形態を解析する振動解析手段と、
前記制御装置が有するNC装置を含んで形成され、前記振動解析手段の解析結果に基づいて前記制振部材を前記回転軸方向での所定位置へ移動させる移動手段とを備えることを特徴とする工作機械の主軸装置。
A spindle device for a machine tool, comprising a spindle in which a tool is detachable and rotatably supported in a housing via a bearing, a motor for rotating the spindle, and a controller for controlling the motor. ,
A damping member that is housed in a hollow portion formed in the main shaft and is movable back and forth in a rotation axis direction of the main shaft,
Vibration analysis means for analyzing a vibration form of the spindle based on machining conditions including the rotation speed of the spindle and the dimensions of the tool, and bearing characteristics including the support rigidity and damping coefficient of the bearing,
A machine including an NC device included in the control device, and a moving unit that moves the vibration damping member to a predetermined position in the rotation axis direction based on an analysis result of the vibration analysis unit. Machine spindle device.
加工中に前記主軸に発生した振動を検知する振動検知手段をさらに備え、前記振動解析手段は、前記振動検知手段によって検知された加工中の振動を解析し、前記移動手段は、前記振動解析手段の解析結果に基づいて前記制振部材を前記所定位置と異なる位置へ移動させることを特徴とする請求項1に記載の工作機械の主軸装置。 A vibration detecting means for detecting vibration generated on the spindle during processing is further provided, the vibration analyzing means analyzes vibration during processing detected by the vibration detecting means, and the moving means is the vibration analyzing means. The spindle device for a machine tool according to claim 1, wherein the vibration damping member is moved to a position different from the predetermined position based on the analysis result of 1. 前記制振部材は、前記主軸内に形成された中空部内へ前後移動可能に収容され、前記移動手段は、前記中空部内に設けられ、前記制振部材を前後何れか一方側へ付勢する付勢手段と、前記制振部材を挟んで前記付勢手段の反対側に形成され、流体が供給される加圧室と、前記加圧室への流体圧を調整可能な流体圧調整機構とを含んでなることを特徴とする請求項1又は2に記載の工作機械の主軸装置。 The vibration damping member is housed in a hollow portion formed in the main shaft so as to be movable back and forth, and the moving means is provided in the hollow portion and biases the vibration damping member forward or backward. A biasing unit, a pressurizing chamber formed on the opposite side of the biasing unit with the damping member interposed therebetween, to which a fluid is supplied, and a fluid pressure adjusting mechanism capable of adjusting the fluid pressure to the pressurizing chamber. The spindle device for a machine tool according to claim 1 or 2, comprising:
JP2016157968A 2016-08-10 2016-08-10 Machine tool spindle device Active JP6726565B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016157968A JP6726565B2 (en) 2016-08-10 2016-08-10 Machine tool spindle device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016157968A JP6726565B2 (en) 2016-08-10 2016-08-10 Machine tool spindle device

Publications (2)

Publication Number Publication Date
JP2018024063A JP2018024063A (en) 2018-02-15
JP6726565B2 true JP6726565B2 (en) 2020-07-22

Family

ID=61193570

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016157968A Active JP6726565B2 (en) 2016-08-10 2016-08-10 Machine tool spindle device

Country Status (1)

Country Link
JP (1) JP6726565B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113059201A (en) * 2021-04-16 2021-07-02 哈尔滨理工大学 High-speed electric spindle

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61252044A (en) * 1985-05-02 1986-11-10 Toshiba Mach Co Ltd Rotary body having vibration insulating effect
JPH074088Y2 (en) * 1988-01-13 1995-02-01 セイコー精機株式会社 Magnetic bearing spindle
JP2003166535A (en) * 2001-11-30 2003-06-13 Mitsubishi Heavy Ind Ltd Magnetic bearing damping mechanism of rotary apparatus
US7730813B2 (en) * 2004-07-08 2010-06-08 University Of Florida Research Foundation, Inc. Variable tuned holder for machine tools
US8229598B2 (en) * 2007-09-06 2012-07-24 Okuma Corporation Vibration suppressing device for machine tool
SE533786C2 (en) * 2009-05-25 2011-01-11 Sandvik Intellectual Property Apparatus and method for milling material
JP5598078B2 (en) * 2010-05-11 2014-10-01 株式会社ジェイテクト Machine tool spindle equipment

Also Published As

Publication number Publication date
JP2018024063A (en) 2018-02-15

Similar Documents

Publication Publication Date Title
JP5644082B2 (en) Machine tool spindle equipment
JP5117260B2 (en) Rotational resistance device for spindle drive in machine tool
JP5971854B2 (en) Machine tool spindle equipment
KR102518998B1 (en) Main spindle device and machine tool
JP2013059839A (en) Machining control method of machine tool
JP6726565B2 (en) Machine tool spindle device
JP6000453B2 (en) Spindle device of machine tool and machine tool
JP4730944B2 (en) Multi-head grinding machine and grinding method using multi-head grinding machine
JP2018012145A (en) Main spindle device of machine tool
JP5499328B2 (en) Variable preload spindle
JP6131139B2 (en) Spindle device
JP5782942B2 (en) Structural equipment design method for processing apparatus and processing machine
JP4978912B2 (en) Work machine
JP2007044768A (en) Grinding device and its control method
JP6957247B2 (en) Machine tools and machine tool control methods
JP6492699B2 (en) Thrust support device for operating member, and machine tool provided with the support device
JP6141157B2 (en) High frequency vibration assisted processing apparatus and processing method thereof
JP5391978B2 (en) Fluid holding device
JP5051503B2 (en) Fine recess processing apparatus and fine recess processing method
WO2020075701A1 (en) Main spindle device
JP2009297811A (en) Main spindle device of machine tool
JP4103568B2 (en) Grinding wheel pressing device of super finishing machine
JP5863862B2 (en) Friction stir welding tool dimension setting method
JPH05177406A (en) Bearing preloading method and its device
JP2020142320A (en) Anti-vibration device, grinding machine comprising anti-vibration device, and anti-vibration device control method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190328

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200303

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200417

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200602

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200629

R150 Certificate of patent or registration of utility model

Ref document number: 6726565

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150