JPH06235422A - Rotation shaft deviation correction control device - Google Patents

Rotation shaft deviation correction control device

Info

Publication number
JPH06235422A
JPH06235422A JP1913393A JP1913393A JPH06235422A JP H06235422 A JPH06235422 A JP H06235422A JP 1913393 A JP1913393 A JP 1913393A JP 1913393 A JP1913393 A JP 1913393A JP H06235422 A JPH06235422 A JP H06235422A
Authority
JP
Japan
Prior art keywords
rotation shaft
rotary shaft
bearing
axis deviation
control device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1913393A
Other languages
Japanese (ja)
Inventor
Toshio Takitani
俊夫 滝谷
Tsutomu Fujita
藤田  勉
Shigeo Takamatsu
繁男 高松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP1913393A priority Critical patent/JPH06235422A/en
Publication of JPH06235422A publication Critical patent/JPH06235422A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Position Or Direction (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)

Abstract

PURPOSE:To provide a rotation shaft deviation correction control device which can highly accurately measure in real time axis deviation of a rotation shaft rotating at high speed regardless of a shape of a reference ring to suppress the axis deviation at a low value so as to enhance rotary motion accuracy. CONSTITUTION:This device is provided with a reference ring 14 fixed concentrically with a rotation shaft 4 to an end thereof, three proximity sensors 16 arranged in a row on a circumference of the reference ring 14, and a controller 18 for successively measuring an axis deviation locus of the rotation shaft 4 by means of a three-point problem based on measured data of the proximity sensors 16, and separating the measured data to fitting direction component data of a piezo-actuator to control the piezo-actuator based on these data. A bearing clearance of an air bearing is thus controlled in accordance with the axis deviation locus obtained in real time by the three-point problem, and axis deviation of the rotation shaft 4 rotating at high speed can be thereby suppressed at a low value and a rotary motion mechanism with extremely high accuracy can be realized.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、空気軸受によって潤滑
される高速回転軸の軸芯振れを高精度に測定し、回転運
動をできる限り真円に補正する回転軸振れ補正制御装置
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rotary shaft shake correction control device for accurately measuring the shaft runout of a high speed rotary shaft lubricated by an air bearing and correcting the rotary motion to a perfect circle as much as possible. is there.

【0002】[0002]

【従来の技術】旋削加工機械などの回転運動機構要素に
おいて、その回転精度は工作物の加工精度に直接関わる
ため、高精度の加工を行おうとすれば少なくとも回転運
動を測定し、できるだけ軸芯振れが少なくなるように制
御する必要がある。
2. Description of the Related Art In a rotary motion mechanism element such as a turning machine, its rotational accuracy is directly related to the machining accuracy of a workpiece. Therefore, if highly accurate machining is to be performed, at least the rotational motion should be measured and the axial center runout should be as great as possible. Need to be controlled so that

【0003】回転運動機構要素、特に軸受で支持される
回転軸の回転精度測定法としては、基準球、あるいは基
準リングを回転軸に、その重心を回転軸の回転中心(軸
芯)に一致させて取付け、回転軸の軸芯に垂直な基準
球、あるいは基準リングの外壁面の円周上のx軸、y軸
にそれぞれ1台の近接センサを取付け、回転軸を一定速
度で回転させ、2台の近接センサにより基準球、あるい
は基準リングの外壁面(表面)との距離を測ることによ
り回転運動精度を測定する方法がよく使用されている。
このように測定したx方向とy方向の距離データを基に
リサージュ図形を描かせると、リサージュ図形の外接円
と内接円の半径差が回転運動要素の軸芯振れに等しくな
る。
As a method of measuring the rotational accuracy of a rotary motion mechanism element, particularly a rotary shaft supported by bearings, a reference sphere or a reference ring is used as the rotary shaft, and its center of gravity is made to coincide with the center of rotation of the rotary shaft. And attach one proximity sensor to each of the x-axis and the y-axis on the circumference of the outer wall of the reference ring or the reference sphere perpendicular to the axis of the rotating shaft, and rotate the rotating shaft at a constant speed. A method of measuring the rotational motion accuracy by measuring the distance from the reference sphere or the outer wall surface (surface) of the reference ring by a proximity sensor on the table is often used.
When a Lissajous figure is drawn based on the distance data in the x direction and the y direction thus measured, the radius difference between the circumscribed circle and the inscribed circle of the Lissajous figure becomes equal to the axial runout of the rotary motion element.

【0004】また、回転軸の運動誤差の補正制御として
は、測定した軸芯振れに基づいてフィードバックコント
ロールした信号を油圧サーボ弁のコントローラに送り、
油圧により空気軸受と回転軸間の軸受隙間を変化させ、
空気圧力を制御することによって軸芯振れ軌跡を小さく
し、回転運動精度を高める方法が使用されている。
Further, as the correction control of the motion error of the rotating shaft, a signal which is feedback-controlled based on the measured shaft center runout is sent to the controller of the hydraulic servo valve,
By changing the bearing clearance between the air bearing and the rotating shaft by hydraulic pressure,
A method is used in which the axial runout locus is reduced by controlling the air pressure to improve the rotational motion accuracy.

【0005】[0005]

【発明が解決しようとする課題】しかし、上記のよう
に、回転軸の軸芯振れを基準球、あるいは基準リングを
用いて測定する場合は、基準球、あるいは基準リングの
重心と回転軸の軸芯を一致させる必要があるが、これを
一致させることは極めて難しく、測定誤差は避けられな
い。また、回転軸の回転運動精度が非常に高精度で、基
準球の形状精度、すなわち真球度に近づいた場合は基準
球の形状誤差と、回転運動誤差の分離検出が不可能とな
るため、測定精度が制約される。また、基準リングの重
心の偏心により、測定データから得られるリサージュ図
形から直ちに回転軸の軸芯振れが必ずしもわからず、加
工中の回転運動精度をリアルタイムで測定することは難
しい。
However, as described above, in the case of measuring the axial runout of the rotating shaft using the reference sphere or the reference ring, the center of gravity of the reference sphere or the reference ring and the axis of the rotating shaft are measured. It is necessary to match the cores, but it is extremely difficult to match them, and measurement error is unavoidable. In addition, the rotational accuracy of the rotary shaft is very high, and the shape accuracy of the reference sphere, that is, when the shape accuracy of the reference sphere approaches, it becomes impossible to detect the shape error of the reference sphere and the rotational motion error separately. Measurement accuracy is limited. In addition, due to the eccentricity of the center of gravity of the reference ring, it is not always possible to immediately know the runout of the rotary shaft from the Lissajous figure obtained from the measurement data, and it is difficult to measure the rotary motion accuracy during processing in real time.

【0006】また従来の油圧による回転体の回転運動誤
差の補正制御では、数10rpm程度の低速回転の制御に
は効果的であるが、通常空気軸受などで使用されている
数1000rpmの回転運動制御では軸芯振れの速度に追従
できない。
Further, in the conventional correction control of the rotational movement error of the rotating body by the hydraulic pressure, it is effective for the control of the low speed rotation of about several tens of rpm, but the rotational movement control of the several thousand rpm which is usually used in the air bearing etc. Can not follow the speed of shaft runout.

【0007】したがって、従来の回転軸の軸芯振れの測
定、および回転体の回転運動誤差の補正制御では、高速
回転する回転軸の軸芯振れの測定と回転軸振れ補正制御
を高精度で行うことは難しいという問題があった。
Therefore, in the conventional measurement of the shaft runout of the rotary shaft and the correction control of the rotational motion error of the rotating body, the measurement of the shaft runout of the rotating shaft rotating at high speed and the rotary shaft runout correction control are performed with high accuracy. The problem was that it was difficult.

【0008】本発明は上記問題を解決するものであり、
数1000rpm程度の高速回転をする空気軸受の回転軸の
軸芯振れを、基準球、あるいは基準リングの形状精度と
関わりなく、高精度でリアルタイムに計測し、軸芯振れ
を小さく抑えるようなフィードバック制御を高速に行う
ことによって回転運動精度を高めることのできる回転軸
振れ補正制御装置を提供することを目的とするものであ
る。
The present invention solves the above problems,
Feedback control that measures the axial runout of the rotating shaft of the air bearing that rotates at high speed of several thousand rpm in real time with high accuracy regardless of the accuracy of the shape of the reference sphere or the reference ring, and suppresses the runout It is an object of the present invention to provide a rotation axis shake correction control device capable of increasing the rotational motion accuracy by performing the rotation at high speed.

【0009】[0009]

【課題を解決するための手段】上記問題を解決するため
本発明の回転軸振れ補正制御装置は、複数のピエゾアク
チュエータの伸縮により回転軸との軸受隙間を変化させ
る空気軸受における回転軸振れ補正制御装置であって、
前記回転軸の一端に軸心を一致させて装着された基準リ
ングと、この基準リングの円筒面の円周上に1列に配置
された3本の近接センサと、この近接センサにより測定
される変位データにより3点法に基づいて前記回転軸の
軸芯振れ軌跡を逐次測定し、この測定データを前記ピエ
ゾアクチュエータの取付け方向成分データに分離し、前
記取付け方向成分データに基づいて前記ピエゾアクチュ
エータを駆動する制御手段を設けたことを特徴とするも
のである。
In order to solve the above problems, a rotary shaft shake correction control apparatus of the present invention is a rotary shaft shake correction control in an air bearing for changing a bearing gap between the rotary shaft and the rotary shaft by expanding and contracting a plurality of piezoelectric actuators. A device,
A reference ring mounted on one end of the rotary shaft with its axis aligned, three proximity sensors arranged in a line on the circumference of the cylindrical surface of the reference ring, and the proximity sensor measures. The axial deviation trajectory of the rotary shaft is sequentially measured based on the displacement data based on a three-point method, the measurement data is separated into attachment direction component data of the piezo actuator, and the piezo actuator is determined based on the attachment direction component data. It is characterized in that a control means for driving is provided.

【0010】[0010]

【作用】上記構成により、3点法により測定された回転
軸の軸芯振れ軌跡が軸受中心からずれると、軸受中心か
らのずれ量をピエゾアクチュエータ取付け方向に成分分
離し、この成分量に応じてそれぞれのピエゾアクチュエ
ータを伸縮させ、軸受隙間を変化させ、軸受の空気圧力
を制御することによって、回転軸の軸芯振れ軌跡が小さ
くなるように補正される。
With the above construction, when the axis deviation trajectory of the rotary shaft measured by the three-point method deviates from the bearing center, the deviation amount from the bearing center is separated into components in the piezo actuator mounting direction, and according to this component amount. By expanding and contracting each piezo actuator, changing the bearing clearance, and controlling the air pressure of the bearing, it is corrected so that the axis runout locus of the rotating shaft becomes smaller.

【0011】[0011]

【実施例】以下、本発明の一実施例を図面に基づいて説
明する。図1は本発明の回転軸振れ補正制御装置を使用
した、オリフィス絞りの多数の給気孔を持つ2列給気方
式のラジアル形静圧空気軸受の断面図、図2は図1のA
−A断面図、図3は図1のB−B断面図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a cross-sectional view of a two-row air supply type radial static pressure air bearing having a large number of air supply holes of an orifice throttle using the rotary shaft shake correction control device of the present invention, and FIG.
-A sectional view, FIG. 3 is a BB sectional view of FIG.

【0012】図1〜図3において、1は円周方向に8個
の給気孔2を2列ずつ有する空気軸受であり、給気孔2
より供給される高圧空気によって回転軸4が潤滑され
る。また、5は空気軸受1を固定する軸受ケーシングで
あり、空気軸受1の給気孔2に高圧空気3を供給するた
めの給気溝6が給気孔2の入口を含むように円周上に形
成され、給気溝6は全て給気口7に導通されている。ま
た、2個の空気軸受1と軸受ケーシング5に挟まれた空
間は排気溝8であり、給気口7から入って給気孔2を通
り、軸受隙間から流出する高圧空気3を逃がして排気口
9に導く働きをする。また、10は軸受隙間を補正制御す
るピエゾアクチュエータ11を配置するための溝であり、
この溝10にピエゾアクチュエータ11をx軸およびy軸方
向に2個配置している。また、12は回転軸4のスラスト
方向の力を受けるためのスラスト軸受であり、このスラ
スト軸受12には、それぞれ給気口7に導通した給気孔13
が軸受面の円周上に多数設けられている。14は、回転軸
4のラジアル方向の軸芯振れを計測するために、回転軸
4の端部に回転軸4の軸芯にその重心に一致させて固定
された基準リングであり、円筒面は鏡面に近く高い真円
度を持っている。
1 to 3, reference numeral 1 is an air bearing having eight air supply holes 2 arranged in two rows in the circumferential direction.
The rotary shaft 4 is lubricated by the high-pressure air supplied from the rotary shaft 4. Further, 5 is a bearing casing for fixing the air bearing 1, and an air supply groove 6 for supplying the high pressure air 3 to the air supply hole 2 of the air bearing 1 is formed on the circumference so as to include the inlet of the air supply hole 2. The air supply groove 6 is entirely connected to the air supply port 7. Further, the space sandwiched between the two air bearings 1 and the bearing casing 5 is the exhaust groove 8, and the high pressure air 3 that enters from the air supply port 7 and passes through the air supply hole 2 and flows out from the bearing gap is exhausted. It works to lead to 9. Further, 10 is a groove for arranging the piezo actuator 11 for correcting and controlling the bearing gap,
Two piezo actuators 11 are arranged in the groove 10 in the x-axis and y-axis directions. Further, 12 is a thrust bearing for receiving a force in the thrust direction of the rotary shaft 4, and each of the thrust bearings 12 has an air supply hole 13 communicating with the air supply port 7.
Are provided on the circumference of the bearing surface. Reference numeral 14 denotes a reference ring fixed to the end of the rotary shaft 4 at the end of the rotary shaft 4 so as to match the center of gravity thereof in order to measure the radial runout of the rotary shaft 4. It has a high roundness near the mirror surface.

【0013】また、空気軸受1には、その断面のx軸の
正方向、およびy軸の負方向の給気孔2の両側にくり抜
き孔部15が形成されており、このくり抜き孔部15により
空気軸受1は内壁と外壁の一部が板ばね構造に形成され
ており、この領域を外側からピエゾアクチュエータ11の
伸縮により動作させることにより、軸受隙間が制御され
る。
Further, the air bearing 1 is formed with hollow holes 15 on both sides of the air supply hole 2 in the positive direction of the x-axis and the negative direction of the y-axis in its cross section. A part of the inner wall and the outer wall of the bearing 1 is formed in a leaf spring structure, and the bearing gap is controlled by operating this region by expanding and contracting the piezo actuator 11 from the outside.

【0014】また、基準リング14の円筒面の円周上に
は、図4に示すように、円弧状の治具16Aに支持されて
3本の近接センサ16が1列に配置されており、これら
近接センサ16により測定された変位信号は近接センサア
ンプ17に入力され、この近接センサアンプ17により増幅
されて、マイクロコンピュータからなるコントローラ18
に入力される。コントローラ18は、入力した変位信号に
より3点法の測定原理に基づいて、回転軸4の軸芯振れ
量を演算し、ピエゾアクチュエータ11の取付け方向であ
る、x軸、およびy軸方向の偏心成分に分離し、このx
軸、およびy軸方向の偏心成分を零にする制御信号をピ
エゾアクチュエータ駆動装置19へ出力する。ピエゾアク
チュエータ駆動装置19はこの制御信号に応じてx軸、お
よびy軸のピエゾアクチュエータ11を伸縮させる。
Further, as shown in FIG. 4, three proximity sensors 16 supported by an arcuate jig 16A are arranged in a line on the circumference of the cylindrical surface of the reference ring 14, The displacement signals measured by these proximity sensors 16 are input to a proximity sensor amplifier 17, amplified by this proximity sensor amplifier 17, and a controller 18 including a microcomputer is provided.
Entered in. The controller 18 calculates the axial runout amount of the rotary shaft 4 based on the measurement principle of the three-point method based on the input displacement signal, and the eccentric components in the x-axis and y-axis directions, which are the mounting directions of the piezo actuator 11. Separated into this x
A control signal for zeroing the eccentricity components in the axial and y-axis directions is output to the piezo actuator driving device 19. The piezo actuator driving device 19 expands and contracts the x-axis and y-axis piezo actuators 11 according to the control signal.

【0015】これら近接センサ16、近接センサアンプ1
7、コントローラ18、およびピエゾアクチュエータ駆動
装置19からなる補正制御装置の出力により、応答時間が
極めて速いピエゾアクチュエータ11を駆動することによ
って、空気軸受1の軸受隙間が高速で制御され、高速回
転する回転軸4の軸芯振れを小さく抑えることがてき、
極めて高精度な回転運動機構を実現することができる。
These proximity sensor 16 and proximity sensor amplifier 1
By driving the piezo actuator 11 whose response time is extremely fast by the output of the correction control device including the controller 7, and the piezo actuator drive device 19, the bearing clearance of the air bearing 1 is controlled at high speed and the rotation speed is high. The shaft runout of the shaft 4 can be kept small,
It is possible to realize a highly accurate rotary motion mechanism.

【0016】ただし、3点法では、フーリエ級数展開を
して測定した変位信号から軸芯振れ量と基準リング14の
形状データを抽出しているため、リアルタイムの軸芯振
れ計測制御は困難であり、したがって、軸芯振れ計測制
御に先立って基準リング14の形状データと3点計測用近
接センサ16の半径方向の位置関係を求め、制御時には、
3本の近接センサ16からの計測データに対して基準リン
グ14の形状データと近接センサ16の位置ずれ量を差し引
き、こうして得られた軸芯振れ量を用いてピエゾアクチ
ュエータ11を駆動している。この演算処理は簡単な減算
と、乗算であり、マイクロコンピュータを用いることに
より、8000rpm程度の回転に関しては十分リアルタイ
ム制御を行うことができる。
However, in the three-point method, since the axial runout amount and the shape data of the reference ring 14 are extracted from the displacement signal measured by Fourier series expansion, real-time axial runout measurement control is difficult. Therefore, prior to the axial runout measurement control, the positional relationship between the shape data of the reference ring 14 and the three-point measurement proximity sensor 16 in the radial direction is obtained, and at the time of control,
The shape data of the reference ring 14 and the positional deviation amount of the proximity sensor 16 are subtracted from the measurement data from the three proximity sensors 16, and the piezo actuator 11 is driven by using the shaft center shake amount thus obtained. This arithmetic processing is simple subtraction and multiplication, and by using a microcomputer, real-time control can be sufficiently performed for rotation of about 8000 rpm.

【0017】なお、本発明は、ピエゾアクチュエータ11
をx軸、およびy軸方向に取付けているが、任意の角度
で取付けることもでき、また2台以上の台数とすること
も可能である。このとき、軸芯振れ量をピエゾアクチュ
エータ11の取付け方向、および台数に応じて偏心成分に
分離する。また、本発明を真円度測定機のような低速回
転運動機構にも適用することができることはいうまでも
ない。
The present invention is based on the piezo actuator 11
Are mounted in the x-axis and y-axis directions, but they can be mounted at any angle, and two or more units can be mounted. At this time, the axial runout amount is separated into eccentric components according to the mounting direction of the piezoelectric actuators 11 and the number of the piezoelectric actuators 11. Further, it goes without saying that the present invention can be applied to a low speed rotary motion mechanism such as a roundness measuring machine.

【0018】[0018]

【発明の効果】以上述べたように本発明によれば、3点
法により測定された回転軸の軸芯振れ軌跡が軸受中心か
らずれると、軸受中心からのずれ量をピエゾアクチュエ
ータの取付け方向に成分分離し、この成分量に応じてそ
れぞれのピエゾアクチュエータを伸縮させ、軸受隙間を
変化させ、軸受の空気圧力を制御することによって、従
来のような応答遅れもなく、高速で回転軸の軸芯振れ軌
跡を小さくなるように補正でき、極めて高精度な空気軸
受を実現することができる。
As described above, according to the present invention, when the axial runout locus of the rotary shaft measured by the three-point method deviates from the bearing center, the deviation amount from the bearing center is changed in the mounting direction of the piezo actuator. By separating the components, expanding and contracting each piezo actuator according to the amount of this component, changing the bearing clearance, and controlling the air pressure of the bearing, there is no response delay as in the past, and the axis of the rotating shaft is at high speed. The shake locus can be corrected to be small, and an extremely highly accurate air bearing can be realized.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の回転軸振れ補正制御装置を使用した、
オリフィス絞りの多数の給気孔を持つ2列給気方式のラ
ジアル形静圧空気軸受の断面図である。
FIG. 1 is a block diagram of a rotary shaft shake correction control device according to the present invention,
FIG. 3 is a cross-sectional view of a two-row air supply type radial static pressure air bearing having a large number of air supply holes of an orifice throttle.

【図2】図1のA−A断面図である。FIG. 2 is a sectional view taken along line AA of FIG.

【図3】図1のB−B断面図である。FIG. 3 is a sectional view taken along line BB of FIG.

【図4】本発明の回転軸振れ補正制御装置の構成図であ
る。
FIG. 4 is a configuration diagram of a rotation axis shake correction control device of the present invention.

【符号の説明】[Explanation of symbols]

1 空気軸受 2 給気孔 3 高圧空気 4 回転軸 5 軸受ケーシング 6 給気溝 7 給気口 8 排気溝 9 排気口 10 ピエゾアクチュエータ取付け溝 11 ピエゾアクチュエータ 12 スラスト軸受 13 給気孔 14 基準リング 15 くり抜き部 16 近接センサ 17 近接センサアンプ 18 コントローラ 19 ピエゾアクチュエータ駆動装置 1 Air Bearing 2 Air Supply Hole 3 High Pressure Air 4 Rotating Shaft 5 Bearing Casing 6 Air Supply Groove 7 Air Supply Port 8 Exhaust Groove 9 Exhaust Port 10 Piezo Actuator Mounting Groove 11 Piezo Actuator 12 Thrust Bearing 13 Air Supply Hole 14 Reference Ring 15 Cutout 16 Proximity sensor 17 Proximity sensor amplifier 18 Controller 19 Piezo actuator drive

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 複数のピエゾアクチュエータの伸縮によ
り回転軸との軸受隙間を変化させる空気軸受における回
転軸振れ補正制御装置であって、 前記回転軸の一端に軸心を一致させて装着された基準リ
ングと、この基準リングの円筒面の円周上に1列に配置
された3本の近接センサと、この近接センサにより測定
される変位データにより3点法に基づいて前記回転軸の
軸芯振れ軌跡を逐次測定し、この測定データを前記ピエ
ゾアクチュエータの取付け方向成分データに分離し、前
記取付け方向成分データに基づいて前記ピエゾアクチュ
エータを駆動する制御手段を設けたことを特徴とする回
転軸振れ補正制御装置。
1. A rotary shaft runout correction control device in an air bearing for changing a bearing clearance between the rotary shaft and the rotary shaft by expanding and contracting a plurality of piezoelectric actuators, wherein the reference is mounted at one end of the rotary shaft such that the shaft centers thereof are aligned with each other. A ring, three proximity sensors arranged in a row on the circumference of the cylindrical surface of this reference ring, and displacement data measured by this proximity sensor, based on the three-point method, the axis deviation of the rotary shaft. Rotational axis shake correction, characterized in that a control means for sequentially measuring a locus, separating the measured data into mounting direction component data of the piezo actuator, and driving the piezo actuator based on the mounting direction component data is provided. Control device.
JP1913393A 1993-02-08 1993-02-08 Rotation shaft deviation correction control device Pending JPH06235422A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1913393A JPH06235422A (en) 1993-02-08 1993-02-08 Rotation shaft deviation correction control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1913393A JPH06235422A (en) 1993-02-08 1993-02-08 Rotation shaft deviation correction control device

Publications (1)

Publication Number Publication Date
JPH06235422A true JPH06235422A (en) 1994-08-23

Family

ID=11990971

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1913393A Pending JPH06235422A (en) 1993-02-08 1993-02-08 Rotation shaft deviation correction control device

Country Status (1)

Country Link
JP (1) JPH06235422A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1082691A (en) * 1996-07-10 1998-03-31 Matsushita Electric Ind Co Ltd Method and device for inspecting high speed dynamic runout
JP2000515231A (en) * 1996-12-04 2000-11-14 ベントリー・ネバダ・コーポレーション Hydrostatic bearings for supporting rotating equipment, associated fluid treatment systems, control systems therefor, and methods and apparatus
JP2003004042A (en) * 2001-06-19 2003-01-08 Nsk Ltd Spindle apparatus and correction method of its rotating shaft vibration
GB2436600A (en) * 2006-03-29 2007-10-03 Hitachi Via Mechanics Ltd Air bearing arrangement
JP2011073118A (en) * 2009-10-01 2011-04-14 Jtekt Corp Fluid holding device
JP2011075072A (en) * 2009-10-01 2011-04-14 Jtekt Corp Fluid holding device
KR101495553B1 (en) * 2014-03-14 2015-02-26 한양대학교 에리카산학협력단 Error mesurement apparatus of rotating body
US10197376B2 (en) 2016-08-04 2019-02-05 Denso Corporation Runout detection device configured to detect runout of the rotating member based on the heat flux detected by the heat
JP2020024187A (en) * 2018-06-15 2020-02-13 フランツ ケスラー ゲーエムベーハー Machine-tool unit with runout error check mechanism and testing method of clamping state

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1082691A (en) * 1996-07-10 1998-03-31 Matsushita Electric Ind Co Ltd Method and device for inspecting high speed dynamic runout
JP2000515231A (en) * 1996-12-04 2000-11-14 ベントリー・ネバダ・コーポレーション Hydrostatic bearings for supporting rotating equipment, associated fluid treatment systems, control systems therefor, and methods and apparatus
JP2003004042A (en) * 2001-06-19 2003-01-08 Nsk Ltd Spindle apparatus and correction method of its rotating shaft vibration
GB2436600A (en) * 2006-03-29 2007-10-03 Hitachi Via Mechanics Ltd Air bearing arrangement
JP2011073118A (en) * 2009-10-01 2011-04-14 Jtekt Corp Fluid holding device
JP2011075072A (en) * 2009-10-01 2011-04-14 Jtekt Corp Fluid holding device
KR101495553B1 (en) * 2014-03-14 2015-02-26 한양대학교 에리카산학협력단 Error mesurement apparatus of rotating body
US10197376B2 (en) 2016-08-04 2019-02-05 Denso Corporation Runout detection device configured to detect runout of the rotating member based on the heat flux detected by the heat
JP2020024187A (en) * 2018-06-15 2020-02-13 フランツ ケスラー ゲーエムベーハー Machine-tool unit with runout error check mechanism and testing method of clamping state
US11123834B2 (en) 2018-06-15 2021-09-21 Franz Kessler Gmbh Machine tool unit with axial run-out error monitoring, and testing method for the clamping state

Similar Documents

Publication Publication Date Title
WO2021022866A1 (en) Long-stroke high-precision micro-nano motion servo feed system and control method
KR20080002859A (en) Hybrid orbiting spindle for shaping non-circular holes
CN109488689B (en) Bearing compensation device and method for air floatation spindle
CN108620948B (en) Detection compensation control system for air static pressure main shaft
US4193644A (en) Servo control system
JPH06235422A (en) Rotation shaft deviation correction control device
US20030181134A1 (en) High-precision machining system
CN102267011A (en) Mirror angular-positioning apparatus and processing apparatus
JP6723013B2 (en) Fluid pressure actuator
JPH02136729A (en) Apparatus for compensating eccentricity of rotor dynamically
JP2005121114A (en) Spindle device
JP3039738B2 (en) Hydrostatic bearing
JP2001277059A (en) Turntable
JP4170730B2 (en) Hydrostatic bearing and air spindle motor using the same
JP2003004042A (en) Spindle apparatus and correction method of its rotating shaft vibration
JP7490366B2 (en) Actuator
JP2948010B2 (en) Linear driving apparatus
JP2000337375A (en) Static pressure gas bearing
JP2008275102A (en) Bearing device
JPH03530Y2 (en)
JPS62246403A (en) Control device for spindle axial center
JPH0899254A (en) Spindle device
JP2000280112A (en) Accurate machining device
JPH0612111A (en) Position controlling method for robot arm and position controller
JPH05269604A (en) Support device of rotary shaft at machine tool