JP5391707B2 - Coal expansibility test method - Google Patents

Coal expansibility test method Download PDF

Info

Publication number
JP5391707B2
JP5391707B2 JP2009018913A JP2009018913A JP5391707B2 JP 5391707 B2 JP5391707 B2 JP 5391707B2 JP 2009018913 A JP2009018913 A JP 2009018913A JP 2009018913 A JP2009018913 A JP 2009018913A JP 5391707 B2 JP5391707 B2 JP 5391707B2
Authority
JP
Japan
Prior art keywords
coal
measurement
container
expansion
charged
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009018913A
Other languages
Japanese (ja)
Other versions
JP2009204609A (en
Inventor
広行 角
泉 下山
孝思 庵屋敷
喜代志 深田
英和 藤本
哲也 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2009018913A priority Critical patent/JP5391707B2/en
Publication of JP2009204609A publication Critical patent/JP2009204609A/en
Application granted granted Critical
Publication of JP5391707B2 publication Critical patent/JP5391707B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Coke Industry (AREA)

Description

この発明はコークス製造用石炭の品質評価法の一つとしての、石炭乾留時の膨張性を測定する石炭の膨張性試験方法に関するものである。   The present invention relates to a coal expansibility test method for measuring expansibility during coal dry distillation as one of quality evaluation methods for coal for coke production.

石炭は乾留することによりコークスとなる。石炭は300℃を過ぎると熱分解してガスや液状物質を発生し、軟化溶融し、膨張する。膨張と同時に粒子同士が接着、さらに脱ガスして収縮し、コークスとなる。   Coal becomes coke by dry distillation. When the temperature of the coal exceeds 300 ° C., the coal is pyrolyzed to generate a gas or a liquid substance, and is softened and melted and expanded. At the same time as the expansion, the particles adhere to each other, degas and shrink to form coke.

室炉式コークス炉内でのコークス化メカニズムについて以下に記述する。室炉式コークス炉内では、石炭は炉壁側から加熱される。これは石炭の熱伝導率が低いためであり、例えば、炉壁側はコークス化していても、炉内中心部は未加熱の石炭という場合もある。従って、乾留途中のコークス炉内における石炭は、炉壁側からコークス層、軟化溶融層、石炭層と状態が異なり、厚み約10mmと言われている軟化溶融層が、炉壁側から中心側へ移動し、乾留が進行して行く。軟化溶融時に発生したガス、軟化溶融物は、軟化溶融層を膨張させる因子として働き、軟化溶融層は隣接するコークス層、石炭層に拘束されつつ膨張する。軟化溶融層から発生したガス、軟化溶融物は、より通気性の高い石炭層、コークス層に浸透し、その一部は系外へ排出される。   The coking mechanism in the chamber type coke oven is described below. In the chamber type coke oven, the coal is heated from the furnace wall side. This is because the thermal conductivity of coal is low. For example, even if the furnace wall side is coked, the center part in the furnace may be unheated coal. Therefore, the coal in the coke oven in the middle of carbonization is different from the coke layer, softened molten layer, and coal layer from the furnace wall side, and the softened molten layer, which is said to have a thickness of about 10 mm, moves from the furnace wall side to the center side. Move and the carbonization proceeds. The gas and softened melt generated during softening and melting work as a factor for expanding the softened and melted layer, and the softened and melted layer expands while being constrained by the adjacent coke and coal layers. The gas and softened melt generated from the softened molten layer penetrate into the coal layer and the coke layer having higher air permeability, and a part thereof is discharged out of the system.

コークス化の過程の中で、軟化溶融時の石炭の挙動はコークスの特性に非常に重要な影響を及ぼす。中でも石炭の膨張性はコークス層を押し付けて圧縮させる働きがあり、高炉内での過酷な使用に耐えうる堅牢なコークスを製造する際の重要なパラメータである。また、膨張性は乾留後コークスを押出機により排出する際の押出負荷にも影響を及ぼしており、押出性判定のためにも重要な因子である。   During the coking process, the behavior of coal during softening and melting has a very important influence on the properties of coke. Among them, the expansibility of coal has a function of pressing and compressing the coke layer, and is an important parameter in producing a robust coke that can withstand severe use in a blast furnace. In addition, the expansibility has an influence on the extrusion load when the coke is discharged by the extruder after dry distillation, and is an important factor for judging the extrudability.

従来、膨張率を測定する方法として広く普及しているのはJISM8801に規定されているジラトメーター法である。ジラトメーター法は、金属製の細長い円筒管内に加圧成型した石炭を装入し、該石炭に垂直に金属製ピストンを設置し、該金属製円筒管を一定の加熱速度で加熱し、加熱中のピストンの変位で膨張率を検出する方法である。ジラトメーター法では石炭は金属製容器内に装入されており、該石炭の上部にはピストンが配置されている。ピストンの重量は、軟化溶融層を拘束するために十分であるが、ピストンの直径は金属製容器の内径とほぼ等しい。このため加熱時に石炭から発生したガスと液状物質は、ピストンと金属製容器の隙間しか排出経路がなく、石炭から発生したガスと軟化溶融物の大部分がピストンを押し上げる力として働くことになる。このため、ジラトメーター法での膨張挙動はコークス炉内とは大きく異なっている。   Conventionally, the dilatometer method defined in JISM8801 is widely used as a method for measuring the expansion coefficient. In the dilatometer method, pressurized metal is charged into a metal elongated cylindrical tube, a metal piston is installed perpendicularly to the coal, the metal cylindrical tube is heated at a constant heating rate, This is a method of detecting the expansion rate by the displacement of the piston. In the dilatometer method, coal is charged in a metal container, and a piston is disposed above the coal. The weight of the piston is sufficient to constrain the softened melt layer, but the diameter of the piston is approximately equal to the inner diameter of the metal container. For this reason, the gas and liquid substance generated from coal during heating have only a discharge path between the piston and the metal container, and most of the gas generated from the coal and the softened melt acts as a force for pushing up the piston. For this reason, the expansion behavior in the dilatometer method is significantly different from that in the coke oven.

上記の問題を解決する方法として、ガスの透過挙動を改善し、石炭層とピストンの間、もしくは石炭層とピストンの間と石炭層の下部に透過性材料を配置し、ガスと液状物質の透過経路を増やすことで、よりコークス炉内の膨張挙動に近づけた石炭の膨張性試験方法が知られている。そして、金属製容器の内径は8mm程度であれば、容器の中心部と周辺部の温度差は小さくほぼ均一と見なせるとした膨張性試験が行なわれている(例えば、特許文献1参照)。   As a method of solving the above problems, the gas permeation behavior is improved, and a permeable material is disposed between the coal bed and the piston, or between the coal bed and the piston and at the lower part of the coal bed, so that the gas and the liquid substance can permeate. Coal expansibility testing methods are known that increase the number of paths to bring them closer to the expansion behavior in a coke oven. And, if the inner diameter of the metal container is about 8 mm, an expansibility test has been conducted in which the temperature difference between the central part and the peripheral part of the container is small and can be regarded as almost uniform (for example, see Patent Document 1).

また、ジラトメーター法の改良法で、測定時間を短縮し、かつ測定精度と再現性を保つことを目的とした迅速な方法も存在する(例えば、特許文献2参照)。この方法では石炭の膨張率が加熱速度に依存することを利用している。特徴として、急速加熱に伴い石炭装入容器内の温度分布が不均一になる恐れがあるため、石炭装入用容器の内径を5〜12mmと細くしていること、また、再現性を保つため測定石炭の粉砕粒度を250〜840μmとしていることが上げられる。   There is also a rapid method aimed at reducing measurement time and maintaining measurement accuracy and reproducibility by improving the dilatometer method (see, for example, Patent Document 2). This method utilizes the fact that the expansion rate of coal depends on the heating rate. As a feature, the temperature distribution in the coal charging container may become non-uniform due to rapid heating, so that the inner diameter of the coal charging container is narrowed to 5 to 12 mm, and in order to maintain reproducibility It is raised that the pulverization particle size of the measurement coal is 250 to 840 μm.

一方で、石炭の加熱にマイクロ波を用いることができることが知られている。石炭のマイクロ波加熱については従来様々な検討が行われている(例えば、特許文献3、特許文献4参照)。特許文献4ではマイクロ波加熱の加熱対象物の温度不均一性を改善する提案をしている。   On the other hand, it is known that microwaves can be used for heating coal. Various studies have been made on the microwave heating of coal (see, for example, Patent Document 3 and Patent Document 4). Patent Document 4 proposes to improve the temperature non-uniformity of an object to be heated by microwave heating.

特許2855728号公報Japanese Patent No. 2855728 特公平4−69749号公報Japanese Examined Patent Publication No. 4-6949 特公昭52−44322号公報Japanese Patent Publication No. 52-44322 特開平9−176656号公報Japanese Patent Laid-Open No. 9-176656

ジラトメーター法で使用する金属製容器の内径は8mm、外径は20mmと細い。このように細いものを用いるのは、石炭の熱伝導率が低く、径を太くすると石炭層の温度分布が不均一になるためである。また、ジラトメーター法では石炭を粒径252μm以下に粉砕し、加圧成型して測定しており、実際のコークス炉で使用されている石炭の粒度(3mm以下、約80mass%)と大きく異なり、膨張挙動も異なる。もちろん、ジラトメーター法で粒度3mm以下、80mass%程度に粉砕した石炭の膨張率を測定することは可能である。しかし、容器の径が8mmであることから、粒径252μmの場合と異なり、膨張時に金属製容器の壁に接触する粒子の割合が高くなるため、石炭が膨張により粒子間空隙を埋める挙動をコークス炉内と同じく再現できるとは言いがたい。また一般にジラトメーター装置のような小容器内で熱処理したコークスは室炉式コークスに比べ気孔率が大きく、膨張率も大きいといわれている(例えば、鈴木喜夫、板垣省三、「石炭の膨張性に関する一考察」鉄と鋼、vol.72、No.4、1986年、pp.S29.参照。)。従って室炉コークス炉内での膨張挙動を精度よく測定するためには、容器の大型化と均一加熱を同時達成できる技術が必要であるといえる。   The metal container used in the dilatometer method has an inner diameter of 8 mm and an outer diameter of 20 mm. The reason why such a thin material is used is that the thermal conductivity of coal is low and the temperature distribution of the coal layer becomes non-uniform when the diameter is increased. In the dilatometer method, coal is pulverized to a particle size of 252 μm or less, measured by pressure molding, and differs greatly from the particle size of coal used in an actual coke oven (3 mm or less, about 80 mass%). The behavior is also different. Of course, it is possible to measure the expansion coefficient of coal pulverized to a particle size of 3 mm or less and about 80 mass% by the dilatometer method. However, since the diameter of the container is 8 mm, unlike the case of the particle diameter of 252 μm, the ratio of particles that contact the wall of the metal container during expansion increases, so the behavior of coal filling the interparticle voids due to expansion is coke. It is hard to say that it can be reproduced as in the furnace. In general, coke heat-treated in a small container such as a dilatometer device is said to have a larger porosity and a larger expansion rate than a chamber furnace coke (for example, Yoshio Suzuki, Shozo Itagaki, “ "Consideration" Iron and Steel, vol. 72, No. 4, 1986, pp. S29.). Therefore, in order to accurately measure the expansion behavior in the chamber furnace coke oven, it can be said that a technique capable of simultaneously achieving an increase in size and uniform heating of the container is necessary.

また、前述したようにジラトメーター法では石炭から発生したガスと液状物質の大部分がピストンを押し上げる力として働くことになる。この点でもジラトメーター法は室炉式コークス炉内の膨張挙動を再現しているとはいえない。このガスの通気性を改善するための透過性材料を使用する特許文献1に記載の方法についても、均一加熱の問題から小容器内で加熱することしかできず、ここでも容器の大型化と均一加熱技術が必要であるといえる。   Further, as described above, in the dilatometer method, most of the gas and liquid substance generated from coal work as a force for pushing up the piston. In this respect as well, the dilatometer method cannot be said to reproduce the expansion behavior in a chamber type coke oven. The method described in Patent Document 1 using a permeable material for improving the gas permeability can only be heated in a small container due to the problem of uniform heating. It can be said that heating technology is necessary.

さらに、特許文献2に記載の迅速測定法についてであるが、この方法では、容器の内径が5〜12mm、測定石炭の粉砕粒度が250〜840μmと規定されている。前述したように、実操業で使用されている粒度(3mm以下、約80mass%)で測定する場合、内径の大きさが不十分なため膨張挙動が異なってしまう。また、特許文献2によれば、測定石炭の粉砕粒度を840μm以上とすると再現性が大きく低下すると記載されており、実操業で使用されている粒度(3mm以下、約80mass%)で測定することは実用的といえない。   Furthermore, regarding the rapid measurement method described in Patent Document 2, in this method, the inner diameter of the container is defined as 5 to 12 mm, and the pulverized particle size of the measured coal is defined as 250 to 840 μm. As described above, when measuring with a particle size (3 mm or less, about 80 mass%) used in actual operation, the expansion behavior is different because the inner diameter is insufficient. Moreover, according to Patent Document 2, it is described that the reproducibility is greatly reduced when the pulverized particle size of the measured coal is 840 μm or more, and the measurement is performed at the particle size (3 mm or less, about 80 mass%) used in actual operation. Is not practical.

従って本発明の目的は、測定のための石炭装入容器を大型化、特に径方向に拡大し、これにより室炉式コークス炉内の石炭の膨張挙動を再現することで、石炭の膨張挙動を精度よく測定することができる、新しい膨張性測定試験方法を提供することにある。   Therefore, the purpose of the present invention is to enlarge the coal charging vessel for measurement, particularly in the radial direction, thereby reproducing the expansion behavior of the coal in the chamber coke oven, thereby improving the expansion behavior of the coal. It is an object of the present invention to provide a new expansibility measurement test method capable of measuring with high accuracy.

このような課題を解決するための本発明の特徴は以下の通りである。
(1)測定石炭装入容器に石炭を装入し、該測定石炭装入容器を装入した外容器を加熱炉に収容し、前記石炭を加熱したときの該石炭の膨張性を測定する石炭の膨張性試験であって、マイクロ波を用いて前記石炭を加熱することを特徴とする、石炭の膨張性試験方法。
(2)測定石炭装入容器の内径が12mm超えであることを特徴とする、(1)に記載の石炭の膨張性試験方法。
(3)測定石炭装入容器を、膨張性を測定する石炭と同じ石炭が充填された断熱用容器内に装入し、該断熱用容器を外容器に装入することを特徴とする、(1)または(2)に記載の石炭の膨張性試験方法。
(4)無煙炭を充填した外容器内に測定石炭装入容器を装入することを特徴とする、(1)ないし(3)のいずれかに記載の石炭の膨張性試験方法。
(5)測定石炭上部に上下面に貫通経路を有する材料を配置し、該材料を介して荷重を付加して膨張性を測定することを特徴とする、(1)ないし(4)のいずれかに記載の石炭の膨張性測定方法。
The features of the present invention for solving such problems are as follows.
(1) Coal charged into a measurement coal charging container, an outer container charged with the measurement coal charging container is housed in a heating furnace, and the coal is measured for expansion when the coal is heated A method for testing the expansibility of coal, wherein the coal is heated using a microwave.
(2) The coal expansibility test method according to (1), characterized in that the inner diameter of the measurement coal charging container is more than 12 mm.
(3) The measurement coal charging container is charged into a heat insulating container filled with the same coal as the coal whose expandability is measured, and the heat insulating container is charged into an outer container. Coal expansibility test method according to 1) or (2).
(4) The method according to any one of (1) to (3), wherein the measurement coal charging container is charged into an outer container filled with anthracite coal.
(5) Any one of (1) to (4), characterized in that a material having a through-passage is arranged on the upper and lower surfaces of the measurement coal, and the expansibility is measured by applying a load through the material. The method for measuring the expansibility of coal as described in 1.

本発明によれば、石炭乾留時の膨張性測定試験について、加熱をマイクロ波により行うことで、測定のための石炭装入容器の容量を増加しても均一に加熱することができ、また、透過性を持つ材料または充填層を介して荷重を付加した条件で測定できるので、実際の室炉式コークス炉内での石炭の膨張挙動を再現して精度よく測定することができる。さらに、石炭装入容器を大型化することができるため、装入石炭量の増加や粗粒の石炭(粒径840μm以上)の使用など、測定石炭調整条件の自由度を高めることができる。   According to the present invention, for the expansibility measurement test at the time of coal dry distillation, by heating with microwaves, even if the capacity of the coal charging container for the measurement is increased, it can be heated uniformly, Since measurement can be performed under a condition in which a load is applied through a permeable material or a packed bed, the expansion behavior of coal in an actual chamber-type coke oven can be reproduced and accurately measured. Furthermore, since a coal charging container can be enlarged, the freedom degree of measurement coal adjustment conditions, such as the increase in the amount of charging coal, and the use of coarse-grained coal (particle diameter 840 micrometers or more), can be raised.

本発明方法を用いた石炭の膨張性試験の測定結果は、高炉内での過酷な使用に耐えうる堅牢なコークスを製造する際の指標として、また乾留後コークスを押出機により排出する際の押出性判定の指標として、従来法以上に役立と考えられ、コークスの製造を効率的に行うことができる。   The measurement results of the expansibility test of coal using the method of the present invention are used as an index for producing a robust coke that can withstand severe use in a blast furnace, and when the coke is discharged by an extruder after dry distillation. As an index for sex determination, it is considered more useful than conventional methods, and coke can be produced efficiently.

本発明で使用するマイクロ波加熱装置の一例である。It is an example of the microwave heating apparatus used by this invention. 本発明で使用する膨張性測定装置の一実施形態の側面図である。It is a side view of one Embodiment of the expansibility measuring apparatus used by this invention. 本発明で使用する膨張性測定装置の一実施形態の熱電対が装入されている高さの平面図である。It is a top view of the height in which the thermocouple of one Embodiment of the expansibility measuring apparatus used by this invention is inserted. 実施例1で使用した膨張性測定装置の側面図である。It is a side view of the expansibility measuring apparatus used in Example 1. 実施例1、2で使用した膨張性測定装置の熱電対が装入されている高さの平面図である。It is a top view of the height in which the thermocouple of the expansibility measuring device used in Examples 1 and 2 is inserted. 実施例1で測定した石炭の膨張率の測定結果である。3 is a measurement result of a coefficient of expansion of coal measured in Example 1. 実施例2で使用した膨張性測定装置の側面図である。It is a side view of the expansibility measuring apparatus used in Example 2. 実施例2で測定した0.4mmガラスビーズを用いたときのF炭膨張率測定結果である。It is a F charcoal expansion coefficient measurement result when the 0.4 mm glass bead measured in Example 2 is used. 実施例2で測定した2.0mmガラスビーズを用いたときのF炭膨張率測定結果である。It is a F charcoal expansion coefficient measurement result when the 2.0 mm glass bead measured in Example 2 is used. 実施例2で測定した0.4mmガラスビーズを用いたときのG炭膨張率測定結果である。It is a G charcoal expansion coefficient measurement result when the 0.4 mm glass bead measured in Example 2 is used. 実施例2で測定した2.0mmガラスビーズを用いたときのG炭膨張率測定結果である。It is a G charcoal expansion coefficient measurement result when the 2.0 mm glass bead measured in Example 2 is used.

通常の石炭の膨張性試験は、電気炉等を用いて装入容器内の石炭を加熱して行うものであるが、本発明では石炭の加熱にマイクロ波を使用する。マイクロ波を用いることで、測定のための装入容器を大きくしても石炭を均一に加熱することができる。装入容器を大きくできれば、実際にコークス炉に装入する石炭と同じ粒度の石炭を用いて膨張性を測定することが可能となる。マイクロ波の加熱方式は内部加熱であり、対象物質自体を発熱させることができるのだが、雰囲気温度は室温に近いため、対象物質最外部の断熱を行わないと加熱にムラが生じ、膨張性を精度良く測定できない恐れがある。よって測定対象の石炭の断熱対策を施した測定装置を考案する必要がある。   A normal coal expansibility test is performed by heating coal in a charging container using an electric furnace or the like, but in the present invention, microwaves are used for heating coal. By using microwaves, coal can be heated uniformly even if the charging container for measurement is enlarged. If the charging container can be enlarged, it is possible to measure the expansibility using coal having the same particle size as the coal actually charged in the coke oven. The microwave heating method is internal heating, and the target substance itself can generate heat.However, since the ambient temperature is close to room temperature, if heat insulation is not performed on the outermost part of the target substance, heating will be uneven and expandability will be reduced. There is a possibility that it cannot be measured accurately. Therefore, it is necessary to devise a measuring device that takes measures against heat insulation of the coal to be measured.

本発明では、測定石炭装入容器に石炭を装入し、測定石炭装入容器をさらに外容器に装入して加熱炉に収容し、915MHzまたは2450MHzに調整したマイクロ波を用いて石炭を加熱したときの石炭の膨張性を測定する。測定石炭装入容器を、膨張性を測定する石炭と同じ石炭が充填された断熱用容器内に装入し、該断熱容器を外容器に装入することが好ましい。また、外容器内に無煙炭等の石炭を充填して、測定石炭装入容器、または測定石炭装入容器の入った断熱用容器を装入することが好ましい。本発明の一実施形態を、図面を用いて以下に説明する。   In the present invention, coal is charged into a measurement coal charging container, the measurement coal charging container is further charged into an outer container and accommodated in a heating furnace, and the coal is heated using microwaves adjusted to 915 MHz or 2450 MHz. Measure the expansibility of the coal. It is preferable that the measurement coal charging container is charged into a heat insulating container filled with the same coal as the coal whose expandability is to be measured, and the heat insulating container is charged into the outer container. Moreover, it is preferable that coal such as anthracite is filled in the outer container, and the measurement coal charging container or the heat insulating container containing the measurement coal charging container is charged. An embodiment of the present invention will be described below with reference to the drawings.

本発明で使用するのに好適なマイクロ波加熱装置の一例を図1に示す。図1の装置では、マイクロ波はマイクロ波発生器1から発信され、導波管3を通り、アプリケータ5内に照射される構造である。マイクロ波加熱装置21に求められる構造は、下記に説明する膨張率測定装置を設置するのに十分な広さのアプリケータ5を備え、マイクロ波がアプリケータ5内をムラ無く照射できることである。また、加熱速度を制御するため、マイクロ波発生器1は出力を自由に変更できる必要がある。   An example of a microwave heating apparatus suitable for use in the present invention is shown in FIG. In the apparatus of FIG. 1, the microwave is transmitted from the microwave generator 1, passes through the waveguide 3, and is irradiated into the applicator 5. The structure required for the microwave heating device 21 is provided with an applicator 5 that is sufficiently wide to install an expansion coefficient measuring device described below, and the microwave can irradiate the applicator 5 without unevenness. Moreover, in order to control a heating rate, the microwave generator 1 needs to be able to change an output freely.

石炭の膨張率の測定は、膨張率測定装置をアプリケータ5内に設置して行う。膨張率測定装置の一実施形態を図2(側面図)、図3(制御用熱電対の高さの平面図)に示す。膨張率測定装置22は、複数の容器が入れ子構造になっており、外側から順に、外容器11、断熱用石炭8、断熱用容器10、断熱用測定石炭7、測定石炭装入容器9となっている。測定石炭6以外にも石炭を装入しているが、これは断熱、保温のためであり、測定石炭6と同じ程度マイクロ波を吸収させ同じ温度を保たせるためである。さらに、断熱効果を均一にするために、それぞれの容器は外側の容器内の中心に位置するように配置する。   The expansion coefficient of coal is measured by installing an expansion coefficient measuring device in the applicator 5. One embodiment of the expansion coefficient measuring device is shown in FIG. 2 (side view) and FIG. 3 (plan view of the height of the control thermocouple). The expansion coefficient measuring device 22 has a plurality of containers in a nested structure, and in order from the outside, is an outer container 11, a heat insulating coal 8, a heat insulating container 10, a heat insulating measuring coal 7, and a measurement coal charging container 9. ing. Coal is charged in addition to the measurement coal 6, which is for heat insulation and heat insulation, and to absorb the microwave as much as the measurement coal 6 and maintain the same temperature. Furthermore, in order to make the heat insulation effect uniform, each container is disposed so as to be located in the center in the outer container.

測定石炭6は、所定の粒度、水分に調整した後、所定の嵩密度で測定石炭装入容器9に装入する。測定石炭装入容器9の材質は、マイクロ波吸収性が石炭よりも低い材質、すなわち誘電率が石炭よりも低い材質を用いればよい。また、石炭の膨張は400〜500℃で起こることから、該温度域での耐熱性を持つ必要もある。これらの条件を満たすため、測定石炭装入容器9には石英を使用することが望ましい。   The measurement coal 6 is adjusted to a predetermined particle size and moisture, and then charged into the measurement coal charging container 9 with a predetermined bulk density. The material of the measurement coal charging container 9 may be a material having a microwave absorption lower than that of coal, that is, a material having a dielectric constant lower than that of coal. Moreover, since the expansion of coal occurs at 400 to 500 ° C., it is necessary to have heat resistance in the temperature range. In order to satisfy these conditions, it is desirable to use quartz for the measurement coal charging container 9.

この測定石炭装入容器9は、断熱用容器10の中心に、周囲を断熱用測定石炭7で充填しつつ入れられる。これはさらに温度分布を均一化するための工夫である。断熱用石炭8に測定石炭6と異なる石炭を用いる場合、マイクロ波吸収特性が異なるため、昇温速度に差が生じる可能性が考えられる。これを防ぐため、断熱用石炭8の中にさらに断熱用容器10と断熱用測定石炭7とを入れている。また、断熱用測定石炭7中には制御用の熱電対17が設置される。膨張率を測定する際、加熱速度は非常に重要な条件であるため、測定石炭6の加熱をコントロールする必要がある。熱電対17を測定石炭装入容器9中に入れると膨張率測定結果に影響を与える恐れがあり、また、熱電対のような金属で先端がとがっているものには電界が集中しやすく、先端周辺部の温度が急激に上昇する可能性があるため、制御用熱電対17を断熱用測定石炭7中に設置している。断熱用測定石炭7は測定石炭6とマイクロ波吸収を等しくするため、測定石炭6と同じ粒度、嵩密度、水分に調整し装入する。   The measurement coal charging container 9 is placed in the center of the heat insulation container 10 while the surroundings are filled with the heat insulation measurement coal 7. This is a device for making the temperature distribution uniform. When coal different from the measurement coal 6 is used as the heat insulation coal 8, the microwave absorption characteristics are different, and therefore, there is a possibility that a difference in the heating rate occurs. In order to prevent this, the heat insulation container 10 and the heat insulation measurement coal 7 are further placed in the heat insulation coal 8. Further, a control thermocouple 17 is installed in the measurement coal 7 for heat insulation. When measuring the expansion rate, the heating rate is a very important condition, so it is necessary to control the heating of the measurement coal 6. If the thermocouple 17 is placed in the measurement coal charging container 9, there is a risk of affecting the expansion coefficient measurement result. Also, a metal such as a thermocouple that has a sharp tip tends to concentrate the electric field. Since there is a possibility that the temperature of the peripheral portion will rise rapidly, the control thermocouple 17 is installed in the measurement coal 7 for heat insulation. The measurement coal 7 for heat insulation is charged with the same particle size, bulk density and moisture as the measurement coal 6 in order to equalize the microwave absorption with the measurement coal 6.

断熱用容器10の素材は測定石炭装入容器9と同じく低誘電率、耐熱性を持つことが望ましいため、石英でもよい。しかし、マイクロ波を石炭と同じ程度吸収し、それ自体が発熱することで断熱効果を高めることができるような素材の方がさらに好ましい。例えば、黒鉛、炭化珪素、窒化珪素などが考えられる。加熱物が石炭であることから、石炭と化学組成の近い材料として黒鉛が特に望ましい。   Since the material of the heat insulation container 10 desirably has a low dielectric constant and heat resistance like the measurement coal charging container 9, quartz may be used. However, a material that absorbs microwaves to the same extent as coal and generates heat by itself can be more preferable. For example, graphite, silicon carbide, silicon nitride, etc. can be considered. Since the heated material is coal, graphite is particularly desirable as a material having a chemical composition close to that of coal.

断熱用容器10の周囲には断熱用石炭8を装入する。マイクロ波吸収性の石炭銘柄依存性を考慮すると、断熱用石炭8は測定石炭6と同じ銘柄が望ましいが、測定石炭6の膨張率が大きい場合、該測定石炭6の膨張により内部の断熱用容器10を動かし測定に影響を及ぼす可能性が考えられる。また、断熱用石炭8量は断熱用測定石炭7、測定石炭6に比較して量が多くなるため、測定石炭6の炭化度が低い場合、脱ガス量、脱液状物質量が多くなり実験処理上手間がかかる。よって、断熱用石炭8としては、軟化溶融せず、脱ガス量、脱液状物質量の少ない石炭、例えば無煙炭が好ましい。ただし、断熱用石炭8が無くても測定石炭の断熱性、温度分布の均一性が保てる場合には、断熱用石炭8は装入しなくて良い。   The heat insulating coal 8 is charged around the heat insulating container 10. Considering the dependence of microwave absorption on the coal brand, the thermal insulation coal 8 is preferably the same brand as the measurement coal 6, but when the measurement coal 6 has a large expansion rate, the measurement coal 6 expands to cause an internal insulation container. It is possible that moving 10 will affect the measurement. Moreover, since the amount of heat insulating coal 8 is larger than that of heat insulating measurement coal 7 and measurement coal 6, when the carbonization degree of the measurement coal 6 is low, the amount of degassed and deliquefied substances increases and the experimental treatment is performed. It takes time and effort. Therefore, as the coal 8 for heat insulation, coal which does not soften and melt and has a small amount of degassing and deliquescent substances, for example, anthracite, is preferable. However, if the heat insulation of the measurement coal and the uniformity of the temperature distribution can be maintained even without the heat insulation coal 8, the heat insulation coal 8 does not need to be charged.

外容器11の材質は、内部の石炭、容器類の保温と断熱効果、耐熱性、マイクロ波吸収性の低さが重要である。よって外容器11には石英の使用が望ましい。外容器11には、石炭乾留のため窒素を入れる必要があり、窒素導入口14を備える必要がある。また、発生ガスの排気のため、ガス排出口15を備える必要がある。外容器11の大きさは、測定石炭装入容器9と断熱用容器10を収納でき、かつ、測定石炭を十分断熱可能な大きさであればよい。   As for the material of the outer container 11, the heat retention and heat insulation effect of the inner coal and containers, heat resistance, and low microwave absorption are important. Therefore, it is desirable to use quartz for the outer container 11. It is necessary to put nitrogen into the outer container 11 for coal dry distillation, and it is necessary to have a nitrogen inlet 14. Moreover, it is necessary to provide the gas exhaust port 15 for exhausting generated gas. The size of the outer container 11 may be a size that can accommodate the measurement coal charging container 9 and the heat insulation container 10 and can sufficiently insulate the measurement coal.

膨張率の測定は、予め石炭の膨張前の充填高さを求めておき、加熱時における石炭の高さ方向の変位を測定することで行う。測定方法は、例えば、測定石炭6の上に検出円盤12を設置し、その上に検出棒13を設置し、検出棒13の高さ方向への移動量を検出することで行う。検出棒13を使用する場合、外容器11に検出棒を通す穴(検出棒用口16)が必要となる。ただし、検出棒用口16から排ガスが排出される恐れがあるため、穴の径を検出棒13とほぼ等しくしてガスが出ないような工夫をするか、もしくは穴を設けずレーザー変位計のような非接触の変位計で検出棒13の変位を測定するとよい。さらに、検出棒13と検出円盤12の素材であるが、これらに求められるのは耐熱性とマイクロ波吸収性の低さの他に、熱膨張率の低さも必要である。検出円盤12と検出棒13の熱膨張率が高いと膨張率測定の誤差を大きくするからである。よって石英を素材とすることが望ましい。   The expansion rate is measured by determining the filling height before expansion of coal in advance and measuring the displacement in the height direction of coal during heating. The measurement method is performed, for example, by installing the detection disk 12 on the measurement coal 6, installing the detection rod 13 thereon, and detecting the amount of movement of the detection rod 13 in the height direction. When the detection rod 13 is used, a hole (detection rod port 16) for passing the detection rod through the outer container 11 is required. However, since exhaust gas may be discharged from the detection rod port 16, the diameter of the hole is made substantially equal to that of the detection rod 13 so that no gas is emitted, or the laser displacement meter is not provided with no hole. The displacement of the detection rod 13 may be measured with such a non-contact displacement meter. Furthermore, the materials of the detection rod 13 and the detection disk 12 are required to have a low coefficient of thermal expansion in addition to low heat resistance and microwave absorption. This is because if the thermal expansion coefficients of the detection disk 12 and the detection rod 13 are high, an error in expansion coefficient measurement is increased. Therefore, it is desirable to use quartz as a material.

測定石炭6の処理条件について、粉砕粒度は装置の構成上とくに制限はない。任意の粒度の石炭について測定することができる。嵩密度についても同様に制限はなく、加圧成型した試料でも測定は可能である。   Regarding the processing conditions of the measurement coal 6, the pulverization particle size is not particularly limited due to the configuration of the apparatus. It can be measured for coal of any particle size. Similarly, the bulk density is not limited, and the measurement can be performed with a pressure-molded sample.

加熱速度の制御については、断熱用測定石炭7内に設置された熱電対を制御用熱電対17とし、制御用熱電対17の温度が設定温度となるように、マイクロ波出力を調整する。マイクロ波出力の調整は手動でもできるが、実験効率と正確性を考えると、精度の良い出力制御装置を備えることが望ましい。   Regarding the control of the heating rate, the thermocouple installed in the measurement coal 7 for heat insulation is used as the control thermocouple 17 and the microwave output is adjusted so that the temperature of the control thermocouple 17 becomes the set temperature. Although the microwave output can be adjusted manually, it is desirable to provide an accurate output control device in view of experimental efficiency and accuracy.

本発明と特許文献2とを比較した場合、簡便さの点では特許文献2の方が優れていると言える。しかし、特許文献2によると、測定石炭装入容器の内径が12mmを超える大きなものになると測定石炭の温度分布が不均一になるとあり、このような条件では膨張性を精度よく測定することは不可能である。したがって、内径が12mmを超える測定石炭装入容器9を用いる場合には、本発明を用いることが好ましい。また、内径が12mmを超える測定において、膨張挙動、温度分布等が実操業に近似でき、室炉式コークス炉内の石炭の膨張挙動を再現した測定を精度良く実現できる。   When comparing the present invention with Patent Document 2, it can be said that Patent Document 2 is superior in terms of simplicity. However, according to Patent Document 2, when the inner diameter of the measurement coal charging container becomes larger than 12 mm, the temperature distribution of the measurement coal becomes non-uniform. Under such conditions, it is impossible to accurately measure the expansibility. Is possible. Therefore, when the measurement coal charging container 9 having an inner diameter exceeding 12 mm is used, it is preferable to use the present invention. Further, in the measurement where the inner diameter exceeds 12 mm, the expansion behavior, temperature distribution, and the like can be approximated to actual operations, and the measurement reproducing the expansion behavior of coal in the chamber furnace type coke oven can be realized with high accuracy.

マイクロ波による均一加熱を行う場合には、マイクロ波が物体内部へ浸透する深さが問題となる。マイクロ波は物体内部に浸透するに伴い減衰するため、均一加熱を実現しつつ測定石炭装入容器の径を大きくすることに限界が生じる。本発明装置において、測定石炭装入容器の径を50mmまで変化させた結果、中心と周囲の温度差が5℃以内であり、均一加熱が可能なことを確認した。よって、本発明で用いる測定石炭装入容器の内径は、12mmから50mmが特に望ましい。   In the case of performing uniform heating with microwaves, the depth of penetration of the microwaves into the object becomes a problem. Since the microwave attenuates as it penetrates into the inside of the object, there is a limit to increasing the diameter of the measurement coal charging container while achieving uniform heating. In the apparatus of the present invention, as a result of changing the diameter of the measurement coal charging container to 50 mm, it was confirmed that the temperature difference between the center and the surrounding area was within 5 ° C. and uniform heating was possible. Therefore, the inner diameter of the measurement coal charging container used in the present invention is particularly preferably 12 mm to 50 mm.

コークス炉内では、膨張を示す軟化溶融層はコークス層と石炭層に拘束され、ガスや軟化溶融物を浸透させつつ膨張する。検出円盤12に透過性を持たない素材を用いた場合、加熱時に石炭から発生したガスと軟化溶融物の排出経路は測定石炭装入容器9と検出円盤12との隙間のみとなり、発生したガスと軟化溶融物の大部分が測定石炭中に留まり検出円盤12を押し上げる力として働く。このため、検出円盤12の透過性がない場合、石炭の膨張挙動はコークス炉内とは大きく異なることが予想される。したがって、測定石炭上部に上下面に貫通経路を有する材料を配置し、貫通経路を有する材料を介して荷重を付加して膨張性を測定することが好ましい。   In the coke oven, the softened molten layer exhibiting expansion is constrained by the coke layer and the coal layer, and expands while infiltrating gas and the softened melt. When a material that does not have permeability is used for the detection disk 12, the gas generated from the coal during heating and the discharge path of the softened melt are only the gap between the measurement coal charging container 9 and the detection disk 12, and the generated gas and Most of the softened melt stays in the measurement coal and acts as a force that pushes up the detection disk 12. For this reason, when the detection disk 12 does not have permeability, it is expected that the expansion behavior of coal is greatly different from that in the coke oven. Therefore, it is preferable to measure the expansibility by arranging a material having a through path on the upper and lower surfaces of the measurement coal and applying a load through the material having the through path.

コークス炉での膨張条件を適切に反映させるため、測定石炭6のガスの抜けを考慮した測定を実施するには、検出円盤12の下に、測定したいコークス層、または石炭層の所定の透過係数に応じた貫通経路を有する材料を配置すればよい。貫通経路を有する材料としては、透過性材料、または充填層を用いることが好ましい。透過性材料は一般的に細孔径の小さいものが多いため、透過性の低い層の模擬に適している。また、充填層は用いる粒子の径や形状により空隙径を変化させることができるため、透過性の低い層から高い層の模擬に適している。従来の方法では、測定石炭装入容器の内径が小さく、内径に応じた粒子による充填層しか構成できなかったが、本発明では測定石炭装入容器の径が従来と比較して大きくできるため、充填層に用いる粒子の径の自由度を高め、大きな粒子による粗大な空隙径をもつ充填層を構成することができる。透過性材料に求められる条件として、耐熱性、マイクロ波吸収性の低さ、熱膨張率の低さが重要である。よって、石英フィルター、ガラスフィルター、セラミックフィルター、セラミックファイバー、濾紙、また、石英ビーズ、ガラスビーズ、セラミックビーズなどの球形粒子による充填層、さらには、粉コークス、石英、ガラス、セラミックを不規則に破砕した粒子など非球形粒子による充填層を用いることが望ましい。粒子を用いる場合は、粒子径が全て均一なものを用いる方法と、径の異なる粒子を混合して用いる方法があると考えられるが、模擬したい層の透過係数、空隙径などに応じ、適切な方法を決定すればよい。   In order to appropriately reflect the expansion conditions in the coke oven, in order to carry out the measurement in consideration of the gas escape of the measured coal 6, a predetermined permeability coefficient of the coke layer or the coal layer to be measured is provided below the detection disk 12. What is necessary is just to arrange | position the material which has a penetration path | route according to. It is preferable to use a permeable material or a filling layer as a material having a through path. Since many permeable materials generally have small pore diameters, they are suitable for simulating layers with low permeability. In addition, since the void diameter can be changed depending on the diameter and shape of the particles used, the packed bed is suitable for simulating a layer having a low permeability to a layer having a high permeability. In the conventional method, the inner diameter of the measurement coal charging container was small, and only a packed bed of particles according to the inner diameter could be configured, but in the present invention, the diameter of the measurement coal charging container can be increased compared to the conventional, The degree of freedom of the diameter of the particles used for the packed bed can be increased, and a packed bed having a coarse pore size with large particles can be configured. As conditions required for the permeable material, heat resistance, low microwave absorption, and low thermal expansion are important. Therefore, quartz filter, glass filter, ceramic filter, ceramic fiber, filter paper, packed bed with spherical particles such as quartz beads, glass beads, ceramic beads, and also irregularly pulverized powder coke, quartz, glass, ceramic It is desirable to use a packed bed of non-spherical particles such as particles. In the case of using particles, it is considered that there are a method using a uniform particle size and a method using a mixture of particles having different diameters. You just have to decide how.

検出円盤12の下に透過性材料、または充填層を配置する場合は、検出円盤12により透過性が妨げられる恐れがある。従って、検出円盤12にも同様に透過性材料、例えば細孔を多く含む石英フィルター、ガラスフィルター、セラミックフィルターなどを用いることがさらに望ましい。   When a permeable material or a packed layer is disposed under the detection disk 12, the detection disk 12 may impede permeability. Therefore, it is further desirable to use a permeable material, for example, a quartz filter, a glass filter, a ceramic filter, etc. having many pores, for the detection disk 12 as well.

コークス炉内で石炭が軟化溶融し膨張する際、石炭は、隣接する石炭層、コークス層に拘束されている。本発明では、拘束を模擬するため上部から荷重を付加することとした。測定石炭6に荷重をかけたときの膨張率を測定する場合には、検出棒13の素材が石英だと重りとしては不十分である。比重の高い材料は主に金属であるが、金属はマイクロ波吸収性が高く、アプリケータ5内に入れると石炭の加熱効率が下がってしまう。よって、アプリケータ5の外に検出棒13を延長し、アプリケータ5外からは比重の高い別の素材、例えば鉄などと接続するか、鉄に重りをつければよい。   When coal softens, melts and expands in the coke oven, the coal is constrained by the adjacent coal layer and coke layer. In the present invention, a load is applied from above in order to simulate restraint. When measuring the expansion coefficient when a load is applied to the measurement coal 6, if the material of the detection rod 13 is quartz, the weight is insufficient. The material having a high specific gravity is mainly a metal, but the metal has a high microwave absorption property, and if it is put in the applicator 5, the heating efficiency of coal is lowered. Therefore, the detection rod 13 may be extended outside the applicator 5 and connected to another material having a high specific gravity, such as iron, from the outside of the applicator 5 or may be attached with a weight.

測定石炭として、通常コークス製造用に用いられる石炭から5種類の銘柄(A炭〜E炭)を選択して膨張率の測定試験を行った。試験に用いた石炭の工業分析値を、参考のためにジラトメーター法により測定した全膨張率と併せて表1に示す。   As the measurement coal, five types of brands (A coal to E coal) were selected from the coals usually used for coke production, and the expansion coefficient measurement test was performed. Table 1 shows the industrial analysis values of the coal used in the test together with the total expansion coefficient measured by the dilatometer method for reference.

Figure 0005391707
Figure 0005391707

石炭の処理条件としては、粉砕粒度を2mm以下、100mass%、水分3mass%とした。本実施例の膨張率測定装置概略図を図4(側面図)、図5(制御用熱電対の高さの平面図)に示す。測定石炭装入容器9は内径20mm、容器外高さ50mm、厚さ1.5mmの石英製のものを用いた。測定石炭6を測定石炭装入容器9に、嵩密度800kg/m、充填高さ15mmで装入した。断熱用測定石炭7は、測定石炭6と同じく粉砕粒度2mm以下、100mass%、水分3mass%とした。また、嵩密度800kg/m、充填高さは30mmとした。断熱用容器18は、内径50mm、容器内高さ50mm、厚さ10mmの円筒状黒鉛製のものを用いた。また、断熱用容器の下に黒鉛製土台23を配置した。黒鉛製土台23は、高さ30mm、厚さ10mmのものを用いた。土台を設置した理由は、断熱用石炭8の量を少なくすることにより系外へ排出される断熱用石炭由来のタール量、ガス量を削減するためであり、測定結果には特に影響を及ぼさない。断熱用石炭8は表2に示す性状の無煙炭を用いた。断熱用石炭8の処理条件は、測定石炭6と同じく粉砕粒度2mm以下、100mass%、水分6mass%、嵩密度800kg/mとし、断熱用容器18と同じ高さまで充填した。 As processing conditions of coal, the pulverization particle size was 2 mm or less, 100 mass%, and the water | moisture content of 3 mass%. 4 (side view) and FIG. 5 (plan view of the height of the thermocouple for control) are shown schematically in the expansion coefficient measuring apparatus of the present embodiment. The measurement coal charging container 9 was made of quartz having an inner diameter of 20 mm, an outer height of 50 mm, and a thickness of 1.5 mm. The measurement coal 6 was charged into a measurement coal charging container 9 with a bulk density of 800 kg / m 3 and a filling height of 15 mm. The measurement coal 7 for heat insulation was set to have a pulverized particle size of 2 mm or less, 100 mass%, and moisture 3 mass%, similarly to the measurement coal 6. The bulk density was 800 kg / m 3 and the filling height was 30 mm. As the heat insulating container 18, a cylindrical graphite container having an inner diameter of 50 mm, a container inner height of 50 mm, and a thickness of 10 mm was used. Moreover, the graphite base 23 was arrange | positioned under the container for heat insulation. The graphite base 23 was 30 mm high and 10 mm thick. The reason for installing the foundation is to reduce the amount of tar and gas derived from the thermal insulation coal discharged outside the system by reducing the amount of the thermal insulation coal 8 and does not particularly affect the measurement results. . As the heat insulating coal 8, anthracite having the properties shown in Table 2 was used. The treatment conditions for the heat insulating coal 8 were the same as those of the measurement coal 6, and the pulverized particle size was 2 mm or less, 100 mass%, water 6 mass%, and bulk density 800 kg / m 3 .

Figure 0005391707
Figure 0005391707

外容器19には石英製のセパラブルフラスコを用いた。下部フラスコは、内径145mm、容器内高さ85mm、厚さ5mmの円筒型、上部フラスコは、内径145mm、容器外高さ80mm、厚さ5mmの半球型のものを用いた。検出円盤12は直径18mm、高さ3mmの円柱型で石英製のものを用いた。検出棒13は、直径6mm、長さ350mmの石英製のもので、測定石炭6の膨張検出のため、測定石炭6と反対側の端をアプリケータ5上部から出し、鉄製の棒と接続した。鉄製の棒は重りである。測定石炭の膨張量として、測定石炭の膨張による検出棒の高さ方向への移動量を、アプリケータ上部側からレーザー変位計20により測定した。測定石炭6は加熱速度3℃/minで、0℃から600℃まで加熱し、そのときの膨張量を測定した。ここでの膨張率は、充填高さ15mmに対する膨張による高さ方向への変位の割合であり、350〜550℃の範囲での最大膨張率を測定銘柄の膨張率と定義した。   A quartz separable flask was used for the outer container 19. The lower flask used was a cylindrical type having an inner diameter of 145 mm, an inner height of 85 mm, and a thickness of 5 mm, and the upper flask was an hemispherical type having an inner diameter of 145 mm, an outer height of 80 mm, and a thickness of 5 mm. The detection disk 12 was a cylindrical cylinder with a diameter of 18 mm and a height of 3 mm. The detection rod 13 was made of quartz having a diameter of 6 mm and a length of 350 mm, and an end opposite to the measurement coal 6 was taken out from the upper part of the applicator 5 and connected to an iron rod for detecting the expansion of the measurement coal 6. The iron rod is a weight. As the amount of expansion of the measurement coal, the amount of movement of the detection rod in the height direction due to the expansion of the measurement coal was measured by the laser displacement meter 20 from the upper side of the applicator. The measurement coal 6 was heated from 0 ° C. to 600 ° C. at a heating rate of 3 ° C./min, and the expansion amount at that time was measured. The expansion coefficient here is a ratio of displacement in the height direction due to expansion with respect to the filling height of 15 mm, and the maximum expansion coefficient in the range of 350 to 550 ° C. was defined as the expansion coefficient of the measurement brand.

まず、再現性を検討するため、銘柄Aについて2回膨張率を測定した。図6に銘柄Aの加熱温度と膨張率の測定結果を、また、表3に膨張率の平均値と測定誤差を示す。   First, in order to examine reproducibility, the expansion rate was measured twice for the brand A. FIG. 6 shows the measurement results of the heating temperature and the expansion rate of the brand A, and Table 3 shows the average value of the expansion rate and the measurement error.

Figure 0005391707
Figure 0005391707

1回目と2回目の膨張挙動を比較すると、膨張開始温度、膨張速度に少し差が確認されたが、最大膨張率はほぼ等しい値となった。JISM8801のジラトメーター法の許容誤差は、膨張率が170%の場合18.9%であり、本発明の膨張性試験方法で測定した最大膨張率は、従来技術と比較しても精度に問題はないといえる。   When the first and second expansion behaviors were compared, a slight difference was observed between the expansion start temperature and the expansion speed, but the maximum expansion rates were almost equal. The allowable error of the dilatometer method of JISM8801 is 18.9% when the expansion rate is 170%, and the maximum expansion rate measured by the expansibility test method of the present invention has no problem in accuracy compared with the prior art. It can be said.

上記の結果から本発明の膨張性試験方法は石炭の膨張挙動を精度よく測定することができるものである。表4に5種類の銘柄の膨張率を本発明の膨張性試験方法で測定したときの結果を示す。   From the above results, the expansibility test method of the present invention can accurately measure the expansion behavior of coal. Table 4 shows the results when the expansion rates of the five brands were measured by the expansibility test method of the present invention.

Figure 0005391707
Figure 0005391707

表4に示す結果は、各銘柄の特徴的な膨張率を示すものである。   The result shown in Table 4 shows the characteristic expansion rate of each brand.

本発明方法を用い、透過性材料を介し荷重を付加して拘束した状態での膨張率の測定試験を行った。コークス炉内での石炭層、コークス層の通気条件、拘束条件は、コークス炉の操業状態、石炭配合の組合せなどによって変化するため、様々な条件で測定可能であることが重要と考えられる。本検討では、通気条件、拘束条件をそれぞれ2水準変化させたときの膨張率測定試験を実施した。   Using the method of the present invention, an expansion coefficient measurement test was performed in a state where a load was applied and restrained through a permeable material. Since the coal layer in the coke oven, the aeration condition of the coke layer, and the restraint conditions vary depending on the operating state of the coke oven, the combination of coal blending, etc., it is considered important to be able to measure under various conditions. In this study, an expansion rate measurement test was conducted when the ventilation condition and the constraint condition were changed by two levels.

測定石炭として、通常コークス製造用に用いられる石炭から2種類の銘柄(F炭、G炭)を選択した。試験に用いた石炭の工業分析値を、参考のためにジラトメーター法により測定した全膨張率と併せて表5に示す。   Two kinds of brands (F charcoal and G charcoal) were selected from coals usually used for coke production as measurement coal. The industrial analysis values of the coal used in the test are shown in Table 5 together with the total expansion measured by the dilatometer method for reference.

Figure 0005391707
Figure 0005391707

測定石炭の処理条件は、粉砕粒度を2mm以下、100mass%、水分3mass%とした。本実施例の膨張率測定装置概略図を図7(側面図)、図5(制御用熱電対の高さの平面図)に示す。測定石炭装入容器9は内径20mm、容器外高さ100mm、厚さ1.5mmの石英製のものを用いた。測定石炭6を測定石炭装入容器9に、嵩密度800kg/m3、充填高さ10mmで装入した。断熱用測定石炭7は、測定石炭6と同じく粉砕粒度2mm以下、100mass%、水分3mass%とした。また、嵩密度800kg/m3、充填高さは30mmとした。断熱用容器18は、内径50mm、容器内高さ50mm、厚さ10mmの円筒状黒鉛製のものを用いた。断熱用容器18の下には黒鉛製土台23を配置した。黒鉛製土台23は、高さ30mm、厚さ10mmのものを用いた。断熱用石炭8は表2に示す性状の無煙炭を用いた。断熱用石炭8の処理条件は、測定石炭6と同じく粉砕粒度2mm以下、100mass%、水分6mass%、嵩密度800kg/m3とし、断熱用容器18と同じ高さまで充填した。外容器19には石英製のセパラブルフラスコを用いた。下部フラスコは、内径145mm、容器内高さ85mm、厚さ5mmの円筒型、上部フラスコは、内径145mm、容器外高さ80mm、厚さ5mmの半球型のものを用いた。 The processing conditions for the measurement coal were a pulverized particle size of 2 mm or less, 100 mass%, and moisture 3 mass%. FIG. 7 (side view) and FIG. 5 (plan view of the height of the thermocouple for control) are shown schematically in the expansion coefficient measuring apparatus of the present embodiment. The measurement coal charging container 9 was made of quartz having an inner diameter of 20 mm, an outer height of 100 mm, and a thickness of 1.5 mm. The measurement coal 6 was charged into a measurement coal charging container 9 with a bulk density of 800 kg / m 3 and a filling height of 10 mm. The measurement coal 7 for heat insulation was set to have a pulverized particle size of 2 mm or less, 100 mass%, and moisture 3 mass%, similarly to the measurement coal 6. The bulk density was 800 kg / m 3 and the filling height was 30 mm. As the heat insulating container 18, a cylindrical graphite container having an inner diameter of 50 mm, a container inner height of 50 mm, and a thickness of 10 mm was used. A graphite base 23 is disposed under the heat insulating container 18. The graphite base 23 was 30 mm high and 10 mm thick. As the heat insulating coal 8, anthracite having the properties shown in Table 2 was used. The treatment conditions of the heat insulating coal 8 were the same as those of the measurement coal 6, and the pulverized particle size was 2 mm or less, 100 mass%, water 6 mass%, and bulk density 800 kg / m 3 . A quartz separable flask was used for the outer container 19. The lower flask used was a cylindrical type having an inner diameter of 145 mm, an inner height of 85 mm, and a thickness of 5 mm, and the upper flask was an hemispherical type having an inner diameter of 145 mm, an outer height of 80 mm, and a thickness of 5 mm.

透過性材料としてガラスビーズ充填層を用いることとした。測定石炭装入容器内に充填した石炭の上に、ガラスビーズ24を22.5g装入し、そのガラスビーズの上に、直径19mm、細孔径が100〜160μmの石英製フィルター25を配置した。この石英製フィルターは膨張検出用円盤の代替である。検出棒13は、直径6mm、長さ350mmの石英製のもので、測定石炭6の膨張検出のため、測定石炭6と反対側の端をアプリケータ5上部から出し、鉄製の棒と接続した。   A glass bead packed layer was used as the permeable material. 22.5 g of glass beads 24 were charged on the coal filled in the measurement coal charging container, and a quartz filter 25 having a diameter of 19 mm and a pore diameter of 100 to 160 μm was placed on the glass beads. This quartz filter is an alternative to the expansion detection disk. The detection rod 13 was made of quartz having a diameter of 6 mm and a length of 350 mm, and an end opposite to the measurement coal 6 was taken out from the upper part of the applicator 5 and connected to an iron rod for detecting the expansion of the measurement coal 6.

石炭拘束条件として、石炭層上部から荷重を付加することとした。鉄製の棒の上部に重り26を取り付け、石英フィルター25とガラスビーズ24を介して測定石炭に所定の荷重を付加できるようにした。   As a coal restraint condition, a load was applied from the top of the coal bed. A weight 26 is attached to the upper part of the iron rod so that a predetermined load can be applied to the measurement coal through the quartz filter 25 and the glass beads 24.

膨張率の測定はレーザー変位計を用いて行った。検出棒の高さ方向への移動量を、アプリケータ上部側からレーザー変位計20により測定し、その変位量を充填高さ10mmで割った結果を膨張率とした。   The expansion coefficient was measured using a laser displacement meter. The amount of movement of the detection rod in the height direction was measured by the laser displacement meter 20 from the upper side of the applicator, and the result of dividing the displacement by the filling height of 10 mm was taken as the expansion coefficient.

以上の条件の下、測定石炭6を窒素流量2.5L/min、加熱速度3℃/minで0℃から550℃まで加熱し、そのときの膨張率を測定した。ガラスビーズは直径0.4mm、直径2mmのものを用い、それぞれの場合について膨張率を測定した。また、荷重については2kPa、50kPaを付加した場合について、それぞれ膨張率を測定した。   Under the above conditions, the measurement coal 6 was heated from 0 ° C. to 550 ° C. at a nitrogen flow rate of 2.5 L / min and a heating rate of 3 ° C./min, and the expansion coefficient at that time was measured. Glass beads having a diameter of 0.4 mm and a diameter of 2 mm were used, and the expansion coefficient was measured in each case. Moreover, the expansion coefficient was measured about the case where 2 kPa and 50 kPa were added about the load, respectively.

測定結果を図8から図11に示す。図8は0.4mmガラスビーズを用いたときのF炭の、図9は2.0mmガラスビーズを用いたときのF炭の、図10は0.4mmガラスビーズを用いたときのG炭の、図11は2.0mmガラスビーズを用いたときのG炭の測定結果である。図8から図11に示すように、ガラスビーズ径、荷重を変化させると膨張挙動が異なることが確認できた。特に、図9に示される、F炭に対し2.0mmガラスビーズ、荷重50kPaで測定した結果については、一度膨張を示し、その後収縮するという興味深い挙動を測定できた。コークス層は亀裂も多く含んでおり、2.0mmガラスビーズ充填層に存在する粗大な空隙がコークス層にも存在する可能性も考えられる。本発明方法を用いて膨張率を測定することで、実炉の膨張挙動を適切に再現することができ、本発明方法を用いて測定した膨張率は、強度の高いコークスを製造するためのパラメータとして、また、コークス押出し性の指標として適用できると考えられる。   The measurement results are shown in FIGS. FIG. 8 shows F charcoal when 0.4 mm glass beads are used, FIG. 9 shows F charcoal when 2.0 mm glass beads are used, and FIG. 10 shows G charcoal when 0.4 mm glass beads are used. FIG. 11 shows the measurement results of G charcoal when 2.0 mm glass beads are used. As shown in FIGS. 8 to 11, it was confirmed that the expansion behavior was different when the glass bead diameter and the load were changed. In particular, as shown in FIG. 9, for the result of measurement with 2.0 mm glass beads and a load of 50 kPa for F charcoal, an interesting behavior was shown in which the expansion once occurred and then contracted. The coke layer also contains many cracks, and there is a possibility that coarse voids existing in the 2.0 mm glass bead packed layer also exist in the coke layer. By measuring the expansion coefficient using the method of the present invention, the expansion behavior of an actual furnace can be appropriately reproduced. The expansion coefficient measured using the method of the present invention is a parameter for producing high strength coke. In addition, it can be applied as an index of coke extrudability.

1 マイクロ波発生器
2 アイソレータ
3 導波管
4 パワーモニタ
5 アプリケータ
6 測定石炭
7 断熱用測定石炭
8 断熱用石炭
9 測定石炭装入容器
10 断熱用容器
11 外容器
12 検出円盤
13 検出棒
14 窒素導入口
15 ガス排出口
16 検出棒用口
17 制御用熱電対
18 断熱用黒鉛容器
19 石英製セパラブルフラスコ
20 レーザー変位計
21 マイクロ波加熱装置
22 膨張率測定装置
23 黒鉛製土台
24 ガラスビーズ
25 石英製フィルター
26 重り
DESCRIPTION OF SYMBOLS 1 Microwave generator 2 Isolator 3 Waveguide 4 Power monitor 5 Applicator 6 Measurement coal 7 Measurement coal for heat insulation 8 Coal for heat insulation 9 Measurement coal charging container 10 Heat insulation container 11 Outer container 12 Detection disk 13 Detection rod 14 Nitrogen Inlet 15 Gas outlet 16 Detection rod port 17 Control thermocouple 18 Insulating graphite container 19 Quartz separable flask 20 Laser displacement meter 21 Microwave heating device 22 Expansion coefficient measuring device 23 Graphite base 24 Glass beads 25 Quartz Made filter 26 weight

Claims (5)

測定石炭装入容器に、膨張性の測定対象となる石炭を装入し、
前記測定石炭装入容器を、前記測定対象の石炭と同じ石炭が充填された断熱用容器内に装入し、
該断熱用容器を外容器に装入し、
前記測定石炭装入容器を装入した外容器を加熱炉に収容し、
マイクロ波を用いて前記測定対象の石炭を加熱したときの該石炭の膨張性を測定することを特徴とする、石炭の膨張性試験方法。
Charging coal to be measured for expansion into a measurement coal charging container,
The measurement coal charging container is charged into a heat insulating container filled with the same coal as the measurement target coal,
The thermal insulation container is charged into an outer container,
The outer container charged with the measurement coal charging container is accommodated in a heating furnace,
Wherein wherein the benzalkonium measuring the swelling of the coal when heated coal to be measured, expandable test method for coal using microwave.
測定石炭装入容器に石炭を装入し、
前記測定石炭装入容器を、無煙炭を充填した外容器内に装入し、
前記測定石炭装入容器を装入した外容器を加熱炉に収容し、
マイクロ波を用いて前記石炭を加熱したときの該石炭の膨張性を測定することを特徴とする、石炭の膨張性試験方法。
Charging coal into the measuring coal charging container,
The measurement coal charging container is charged into an outer container filled with anthracite coal,
The outer container charged with the measurement coal charging container is accommodated in a heating furnace,
The coal and wherein the benzalkonium measuring the swelling of the coal when heated, the expansion testing method coal using microwave.
測定石炭装入容器に、膨張性の測定対象となる石炭を装入し、
前記測定石炭装入容器を、前記測定対象の石炭と同じ石炭が充填された断熱用容器内に装入し、
該断熱用容器を、無煙炭を充填した外容器に装入し、
前記測定石炭装入容器を装入した外容器を加熱炉に収容し、
マイクロ波を用いて前記測定対象の石炭を加熱したときの該石炭の膨張性を測定することを特徴とする、石炭の膨張性試験方法。
Charging coal to be measured for expansion into a measurement coal charging container,
The measurement coal charging container is charged into a heat insulating container filled with the same coal as the measurement target coal,
The thermal insulation container is charged into an outer container filled with anthracite,
The outer container charged with the measurement coal charging container is accommodated in a heating furnace,
Wherein wherein the benzalkonium measuring the swelling of the coal when heated coal to be measured, expandable test method for coal using microwave.
測定石炭装入容器の内径が12mm超えであることを特徴とする、請求項1ないし請求項3のいずれかに記載の石炭の膨張性試験方法。 The method for testing the expansibility of coal according to any one of claims 1 to 3, wherein the inner diameter of the measurement coal charging container is more than 12 mm. 測定石炭上部に上下面に貫通経路を有する材料を配置し、該材料を介して荷重を付加して膨張性を測定することを特徴とする、請求項1ないし請求項4のいずれかに記載の石炭の膨張性測定方法。   The material according to any one of claims 1 to 4, wherein a material having a through-passage is disposed on the upper and lower surfaces of the measurement coal, and the expansibility is measured by applying a load through the material. Coal expansibility measurement method.
JP2009018913A 2008-01-30 2009-01-30 Coal expansibility test method Active JP5391707B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009018913A JP5391707B2 (en) 2008-01-30 2009-01-30 Coal expansibility test method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008018594 2008-01-30
JP2008018594 2008-01-30
JP2009018913A JP5391707B2 (en) 2008-01-30 2009-01-30 Coal expansibility test method

Publications (2)

Publication Number Publication Date
JP2009204609A JP2009204609A (en) 2009-09-10
JP5391707B2 true JP5391707B2 (en) 2014-01-15

Family

ID=41147013

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009018913A Active JP5391707B2 (en) 2008-01-30 2009-01-30 Coal expansibility test method

Country Status (1)

Country Link
JP (1) JP5391707B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5071578B2 (en) 2010-09-01 2012-11-14 Jfeスチール株式会社 Preparation method of coal for coke production
PL2746366T3 (en) 2010-09-01 2022-02-07 Jfe Steel Corporation Method for producing coke
JP5510835B2 (en) * 2011-03-01 2014-06-04 独立行政法人産業技術総合研究所 Ultra-high temperature thermal expansion test equipment
CN106610388B (en) * 2015-10-27 2020-05-22 宝山钢铁股份有限公司 Method and device for measuring expansion and contraction performance of coal for production
KR102128480B1 (en) * 2019-01-29 2020-06-30 한국생산기술연구원 Dilatometer for microwave heating furnaces
CN113848231B (en) * 2020-06-28 2024-03-08 宝山钢铁股份有限公司 Coking property judging method based on thermal diffusivity in coking coal pyrolysis process

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5244322B2 (en) * 1973-03-28 1977-11-07
JPS61161454A (en) * 1985-01-09 1986-07-22 Sumitomo Metal Ind Ltd Method for quick measurement of caking property of coal
JPS61194361A (en) * 1985-02-22 1986-08-28 Sumitomo Metal Ind Ltd Apparatus for rapidly measuring caking property of coal
JPS62182107A (en) * 1986-02-05 1987-08-10 Nippon Light Metal Co Ltd Production of high-density carbon material
GB2227397B (en) * 1989-01-18 1993-10-20 Cem Corp Microwave ashing and analytical apparatuses, components and processes
JPH032307A (en) * 1989-05-30 1991-01-08 Shintou Kogyo Kk Heat retaining agent for molten metal
JP2855728B2 (en) * 1989-12-19 1999-02-10 日本鋼管株式会社 Test method for expansion of coal
JPH09176656A (en) * 1995-12-27 1997-07-08 Kawasaki Steel Corp Coal heater using microwave
JP3250442B2 (en) * 1995-12-28 2002-01-28 日本鋼管株式会社 Method and apparatus for measuring softening and melting properties of coal
JPH10197516A (en) * 1997-01-07 1998-07-31 Nippon Steel Corp Coke strength presuming method
JP2001123179A (en) * 1999-10-28 2001-05-08 Nkk Corp Method for producing coke for metallurgy

Also Published As

Publication number Publication date
JP2009204609A (en) 2009-09-10

Similar Documents

Publication Publication Date Title
JP5391707B2 (en) Coal expansibility test method
KR101561748B1 (en) Method for producing coke
KR101451050B1 (en) Method for producing metallurgical coke
JP6056157B2 (en) Coke blending coal composition determination method and coke manufacturing method
JP5071578B2 (en) Preparation method of coal for coke production
JP2010190761A (en) Method for evaluating softening and melting characteristics of coal
WO2012029987A1 (en) Metallurgical coke production method
TWI450954B (en) Metallurgical coke manufacturing methods and metallurgical coke for the manufacture of bonding materials
JP5062378B1 (en) Coke production method
KR101441263B1 (en) Method for producing metallurgical coke
TWI457555B (en) Evaluation method of softening and melting of coal and binder and method for manufacturing coke
Rastogi et al. Morphological characterization of coal under rapid heating Devolatilization
JP2015086301A (en) Coke production method
BR122020009018B1 (en) METHOD FOR PRODUCING COKE

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120117

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120321

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120327

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130321

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130326

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130521

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130917

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130930

R150 Certificate of patent or registration of utility model

Ref document number: 5391707

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250