JPS61161454A - Method for quick measurement of caking property of coal - Google Patents

Method for quick measurement of caking property of coal

Info

Publication number
JPS61161454A
JPS61161454A JP192685A JP192685A JPS61161454A JP S61161454 A JPS61161454 A JP S61161454A JP 192685 A JP192685 A JP 192685A JP 192685 A JP192685 A JP 192685A JP S61161454 A JPS61161454 A JP S61161454A
Authority
JP
Japan
Prior art keywords
coal
expansion
height
heating
caking property
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP192685A
Other languages
Japanese (ja)
Other versions
JPH0469749B2 (en
Inventor
Kunihiko Nishioka
西岡 邦彦
Kiyoshi Miura
三浦 潔
Toshiyuki Yamamoto
俊行 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP192685A priority Critical patent/JPS61161454A/en
Publication of JPS61161454A publication Critical patent/JPS61161454A/en
Publication of JPH0469749B2 publication Critical patent/JPH0469749B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/22Fuels; Explosives
    • G01N33/222Solid fuels, e.g. coal

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

PURPOSE:To measure quickly the caking property of coal with high accuracy by packing coal particles having a specific grain size into a capillary, heating the particles at a specifically high heating up rate and measuring the expansion height of the coal. CONSTITUTION:The coal 2 is pulverized to 250-840mum grain size and is packed into the metallic or glass capillary having about 5-12mm inside diameter. The height thereof is designated as lo. The coal is then heated at 10-250 deg.C/min heating up rate to 470-550 deg.C and to allow the coal particles to expand freely. The height of expanded coal is designated as height ld. The caking property of the coal are determined from the measured values of the height lo before the expansion and the height lo+ld after the expansion. Since, the coal is quickly heated by the capillary, the uniform heating is made possible and the expansion is measured with good accuracy without scattering of the coal particles by the generated steam and cracking gas. The quick determination of the caking property with high accuracy is thus made possible.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、コークス製造用原料石炭の品質評価として
重要な粘結性を測定する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application This invention relates to a method for measuring caking property, which is important for evaluating the quality of raw material coal for coke production.

従来技術とその問題点 近年のコークス製造業における重要課題の一つ1、+−
4−El f /; /7”l ! e j& # /
7−14 111% M  −1/y  ?  fl 
# θ)安定化とコークス炉の効率的操業を同時に達成
することである。この課題に対処するため、たとえばわ
が国ではコークスの均一乾留と乾留熱量の低減を目的と
した燃焼管理の自動化が推進される一方、石炭およびコ
ークスの性状分析の自動化も逐次進められ、コークス品
質の安定化に反映されている。
Conventional technology and its problems One of the important issues in the coke manufacturing industry in recent years 1, +-
4-El f /; /7”l! e j &# /
7-14 111% M -1/y? fl
# θ) It is to simultaneously achieve stabilization and efficient operation of the coke oven. In order to deal with this issue, for example, in Japan, automation of combustion management is being promoted with the aim of uniformly carbonizing coke and reducing the amount of heat of carbonization, while automation of property analysis of coal and coke is also being progressively promoted to ensure stable coke quality. This is reflected in the

ところで、コークス品質を支配する要因については、周
知のとおり石炭性状や乾留条件が挙げられるが、なかで
も石炭の粘結性が大きな要因として挙げられる。したが
って、コークス品質の安定化のためKは、石炭の粘結性
を迅速かつ精度よく把握し、コークス炉装入炭の品位調
整に反映することが有効である。
By the way, as is well known, the factors that control coke quality include coal properties and carbonization conditions, and among them, the caking property of coal is cited as a major factor. Therefore, in order to stabilize coke quality, it is effective to quickly and accurately grasp the caking property of coal and reflect it in the quality adjustment of coal charged in a coke oven.

石炭の粘結性の測定法には種々の方法があるが、世界的
に普及し、実用に供されている方法は、a。
There are various methods for measuring the caking properties of coal, but the one that is widely used and put into practical use worldwide is a.

るつぼ膨張試験法(ボタン法、C3N)、b、流動あり
−わが国で常用上れでL/−hス一般的寿馴9烙汁−J
IS M2SO4に規定されているジ−イータ−法およ
びギーセラープラストメーター法である。
Crucible expansion test method (button method, C3N), b, with flow - L/-h commonly used in Japan - J
These are the Zeeter method and the Gieseler plastometer method specified in IS M2SO4.

しかし、ジ−イータ−法、ギーセラープラストメーター
法はいずれも、定められた加熱速度3℃/分と緩やかで
あり・かつ測定手順が複雑なため、測定に要する時間が
長く、コークス品質の制御を行なうような迅速性が要求
される測定には適当ではない。一方、ボタン法は、所定
のるつぼに試料を入れて、820℃±5℃の高温で急速
加熱し、生成したコークスの形状、大きさを標準輪かく
と比較して、ボタン指数で表示する方法でアシ、測定が
簡便かつ迅速にできることから多用されている。
However, both the G-Eater method and the Gieseler Plastometer method have a slow heating rate of 3°C/min, and the measurement procedure is complicated, so the time required for measurement is long and the quality of coke cannot be controlled. It is not suitable for measurements that require rapidity. On the other hand, in the Button method, a sample is placed in a predetermined crucible, rapidly heated at a high temperature of 820°C ± 5°C, and the shape and size of the coke produced is compared with that of a standard crucible and expressed as the Button index. It is widely used because measurements can be made easily and quickly.

しかし、このボタン法の場合は、ボタン指数が1/2刻
みの大まかな値であるため、実際の操業管理に用いられ
ることは少なく、参考値程度として用いられるのが普通
である。
However, in the case of this Button method, since the Button index is a rough value in 1/2 increments, it is rarely used for actual operational management, and is usually used as a reference value.

上記ボタン法以外に1石炭の粘結性を迅速に測定する方
法としては、レッシング法やレッシング法に若干の改良
を加えた燃研法が知られている。
In addition to the above-mentioned button method, the Lessing method and the Nenko method, which is a slightly improved version of the Lessing method, are known as methods for rapidly measuring the caking properties of a single coal.

たとえば燃研法は、粒度250μm以下に粉砕され九石
炭1fを長さ100mm、内径1:9m、外径15+m
の石英製の細管に充填し、軽く細管をたたいて試料面を
水平にした後、重量的6.5Fの石英製重錘を試料面に
載荷して、600℃の温度に保持された竪型環状電気炉
に装入し、7分間保持後に取出して加熱前石炭の充填高
さに対する加熱膨張後石炭の高さの割合を求めて粘結性
の指標とするものである。
For example, in the Nenken method, 1f of nine coals pulverized to a particle size of 250μm or less is 100mm in length, 1:9m in inner diameter, and 15+m in outer diameter.
After filling the sample into a quartz tube and making the sample surface horizontal by tapping the tube, a 6.5F quartz weight was loaded onto the sample surface and the tube was placed in a vertical tube maintained at a temperature of 600℃. The coal is charged into an annular electric furnace, held for 7 minutes, then taken out, and the ratio of the height of the coal after heating and expansion to the filling height of the coal before heating is determined and used as an index of caking property.

しかし、この方法では、細管の径が大きいために石炭の
加熱が細管壁面に近い部分と中心部とで不均一となり、
石炭の膨張にバフツキを生じ、さらに試料の充填密度が
規定されていないため同じくバフツキを生じる。また、
電気炉の保持温度が高いために1石炭の種類によっては
加熱時の急激な水蒸気および熱分解ガス発生により石炭
試料が一種の突沸現象を起こし、石炭を飛散させ測定精
度を悪くする等1.測定値の再現性に欠けていた。
However, in this method, because the diameter of the thin tube is large, the heating of the coal is uneven between the part near the tube wall and the center.
Buffiness occurs due to the expansion of the coal, and buffiness also occurs because the packing density of the sample is not specified. Also,
Due to the high holding temperature of the electric furnace, 1.Depending on the type of coal, the sudden generation of steam and pyrolysis gas during heating may cause a type of bumping phenomenon in the coal sample, causing the coal to scatter and impairing measurement accuracy.1. Measured values lacked reproducibility.

さらに、載荷した石英型−が溶融膨張した石炭と固結す
る場合があり、測定後の後処理作業を困難にするなど、
測定法として不備な点が多かった。
Furthermore, the loaded quartz mold may solidify with the molten and expanded coal, making post-processing work after measurement difficult.
There were many flaws in the measurement method.

このため、レッシング法や燃研法はほとんど実用に供さ
れていない。
For this reason, the Lessing method and the Nenken method are hardly put to practical use.

発  明  の  目  的   ゛ この発明は、従来の前記現状にかんがみ、なされ−たも
のであり、石炭の粘結性を迅速かつ精度よく把握する方
法゛を撮案することを目的とするものである。
Purpose of the Invention The present invention has been made in view of the above-mentioned conventional situation, and its purpose is to devise a method for quickly and accurately grasping the caking properties of coal. .

発  明  の  構  成 この発明に係る石炭の粘結性測定方法は、最大粒度が8
40μm以下250μm以上に粉砕した石炭をミ内径5
〜12Ialtの金属製またはガラス製の有底細管に装
入密度1.Of/al以下に充填し1.前記石炭を少な
くとも10℃/分以Eで250℃/分以下の加熱速度で
470〜550℃の温度に加熱して自由膨張せしめた後
、膨張後の石炭の高さもしくは加熱前石炭の充填高さに
対する加熱後石炭の膨張高さの割合を測定し、該測定値
を粘結性の指標とすることを特徴とするものである。
Structure of the Invention The method for measuring the caking property of coal according to the present invention is characterized in that the maximum particle size is 8.
Coal pulverized to 40 μm or less and 250 μm or more with an inner diameter of 5
~12Ialt metal or glass bottomed tube with a charging density of 1. Fill below Of/al 1. After heating the coal to a temperature of 470 to 550°C at a heating rate of at least 10°C/min to 250°C/min to cause free expansion, the height of the coal after expansion or the filling height of the coal before heating The method is characterized by measuring the ratio of the expansion height of the coal after heating to the expansion height of the coal after heating, and using the measured value as an index of caking property.

すなわち、この発明は、石炭の膨張が加熱速度に大きく
依存するという知見を、石炭の粘結性をので、従来のジ
ットメーター法のように石炭試料を成型することなく、
直接細管に充填し、10’C/1分以上で250℃分以
下の加熱速度で急速加熱して石炭を膨張させる方法であ
る。
In other words, this invention utilizes the knowledge that the expansion of coal is highly dependent on the heating rate to determine the caking properties of coal, without molding the coal sample as in the conventional jitmeter method.
This is a method in which the coal is directly filled into a thin tube and rapidly heated at a heating rate of 10'C/min or more and 250°C/min or less to expand the coal.

このような急速加熱条件下で石炭の膨張度を測定する場
合、石炭を均一に加熱することと、加熱中に発生する水
蒸気および熱分解ガスの通説に伴    □なう石炭粒
子の飛散を抑制することがきわめて重要である。
When measuring the degree of expansion of coal under such rapid heating conditions, it is necessary to heat the coal uniformly and to suppress the scattering of coal particles due to the common belief that water vapor and pyrolysis gases are generated during heating. This is extremely important.

これらの課題に対し、この発明者らは多くの実験を行な
い、・再現性のある測定値を得ることかできる条件を見
い出したのである。
In order to solve these problems, the inventors conducted many experiments and discovered conditions under which reproducible measurement values could be obtained.

まず、石炭を均一加熱するには石炭試料を充填する細管
の内径を5〜12繻とすることである。その理由は、細
管の内径が12mを超える大きなものになると、石炭の
加熱が壁面に近い部分と中心部とて不均一となり、石突
の膨張にバフツキが生じる。また、5m未満の極細径で
は円滑な石炭の膨張が得られず測定値にバフツキが生じ
る。
First, in order to uniformly heat the coal, the inner diameter of the thin tube filled with the coal sample should be 5 to 12 mm. The reason for this is that when the inner diameter of the tube becomes larger than 12 m, the heating of the coal becomes uneven between the part close to the wall surface and the center part, and the expansion of the stone tip becomes uneven. In addition, if the diameter is extremely small, less than 5 m, smooth expansion of the coal will not be achieved and the measured values will be uneven.

一方、石#1粒子の1朴fJ−泊伽+L Ifμ Δル
I7の逸脱を容易にするとともに石炭の粉砕粒度を調整
する必要がある。このために、この発明では石炭の粉砕
粒度を最大粒径840μm以下250μm以上に限定し
た。すなわち、250μm以下では石炭粒子の飛散が多
くなり、測定値にバラツキを生じる原因となる。逆に1
石炭粒度が大きすぎても、試料の品質偏差の影響が大き
く、840μmを越えると測定値にバラツキを生じるこ
とが判明したことによる。
On the other hand, it is necessary to facilitate the deviation of the stone #1 particle from 1pkfJ-barka+LIfμΔl7 and to adjust the pulverized particle size of the coal. For this reason, in this invention, the pulverized particle size of coal is limited to a maximum particle size of 840 μm or less and 250 μm or more. That is, when the diameter is 250 μm or less, the scattering of coal particles increases, which causes variations in measured values. On the contrary, 1
This is because it has been found that even if the coal particle size is too large, the quality deviation of the sample has a large effect, and that if it exceeds 840 μm, the measured values will vary.

また、この発明において上記粒度の石炭を細管に充填す
るに際し、装入密度を1.Of/aII″以下に調整す
ることとしたのは、装入密度を高くすると発生ガスの円
滑な逸脱が阻害され、突沸現象を起こし、石炭粒子を飛
散させるため再現性のある測定値を得ることができない
。このため、この発明÷は石炭の装入密度を1.Of/
cri’以下に限定した。また、このときの加熱速度を
106C/分以上で250’C/分以下としたのは、こ
の範囲の加熱速度において膨張率の検出感度が高いこと
を確認したことによる。
In addition, in this invention, when filling a thin tube with coal having the above-mentioned particle size, the charging density is set to 1. The reason why we decided to adjust the temperature to below Of/aII was to obtain reproducible measurement values because increasing the charging density inhibits the smooth departure of the generated gas, causing a bumping phenomenon and scattering coal particles. For this reason, this invention ÷ is the coal charging density of 1.Of/
It was limited to cr' or less. Further, the reason why the heating rate at this time was set to 106 C/min or more and 250' C/min or less was because it was confirmed that the detection sensitivity of the expansion coefficient was high in this heating rate range.

なお、加熱温度については石炭の膨張が完了する470
〜550℃の温度まで加熱する。
The heating temperature is set at 470°C, when the expansion of the coal is completed.
Heat to a temperature of ~550°C.

この発明は、前記の諸条件を満足する範囲で設定された
測定条件下で、石炭惚張せしめて得られる膨張後の石炭
高さもしくは加熱前石炭の充填高さに対する加熱後石炭
の膨張高さの割合を測定し、この測定値を粘結性の指標
とするものである。
This invention relates to the height of the expanded coal obtained by collapsing the coal or the expansion height of the heated coal relative to the filling height of the unheated coal under measurement conditions set within a range that satisfies the above conditions. The ratio is measured and this measured value is used as an index of caking property.

すなわち、膨張後の石炭高さもしくは加熱前の石炭充填
高さに対する加熱後石炭の膨張高さの割合は、繰返し精
度が高い上、従来のジフトメーター法で測定される膨張
率との相関も高いことから、石炭の粘結性の指標として
十分活用できることが判明したことによる。
In other words, the ratio of the expansion height of the heated coal to the coal height after expansion or the coal filling height before heating has high repeatability and also has a high correlation with the expansion rate measured by the conventional diphthometer method. This is because it was found that it can be fully used as an indicator of the caking property of coal.

この発明方法を第1図および第2図に基づいて説明する
と、内径5〜12Iの金属製もしくはガラス製の有底細
管(1)に、最大粒径840μm以下250μm以上に
粉砕調整した石炭(2)を装入密度1.097i以下の
所定密度に充填する。そのときの石炭の充填高さを10
とする。次に、上記細管を石炭の膨張が完了する470
〜550℃の温度まで少なくとも10℃/分以上で25
0℃/分以下の加熱速度で急速加熱する。石炭を急速加
熱する方法としては、所定温度に加熱された環状電気炉
やメタルバスを用いることもできるし、赤外線イメージ
炉やマイクロ波加熱炉等を用いることができる。
The method of this invention will be explained based on FIGS. 1 and 2. Coal (2) pulverized to a maximum particle size of 840 μm or less and 250 μm or more is placed in a metal or glass bottomed tube (1) with an inner diameter of 5 to 12I. ) is packed to a predetermined density of 1.097i or less. The filling height of coal at that time is 10
shall be. Next, the expansion of the coal through the thin tube is completed 470
25 at least 10°C/min up to a temperature of ~550°C
Rapid heating at a heating rate of 0°C/min or less. As a method for rapidly heating the coal, an annular electric furnace or a metal bath heated to a predetermined temperature can be used, an infrared image furnace, a microwave heating furnace, etc. can be used.

第2図は石炭を所定温度まで急速加熱して自由膨張せし
めた後の状態を示すもので、加熱前充填高さloであっ
た石炭は膨張高さ/dが加わった高さの膨張石炭(3)
となる。この発明では、上記膨張後の石炭高さくjo+
/d)もしくは加熱前石炭の充填高さtoに対する加熱
後石炭の膨張高さ/dの割合を測定し、石炭の粘結性の
指標とする。
Figure 2 shows the state after the coal is rapidly heated to a predetermined temperature and allowed to freely expand. 3)
becomes. In this invention, the height of the coal after expansion is jo+
/d) Alternatively, the ratio of the expansion height /d of the coal after heating to the filling height to of the coal before heating is measured and used as an index of the caking property of the coal.

なお、細管(1)内の石炭の加熱温度は、予め細管内に
熱′電対を挿入して測定することができる。
The heating temperature of the coal in the thin tube (1) can be measured in advance by inserting a thermocouple into the thin tube.

実施例1 第1表に示す3種類の石炭の中で、高炉用コークヌ製造
に供される配合炭を用い、内径10m、長さ120mの
耐熱ガラス製の細管内に粉砕石炭を20禦の高さに、装
入密度0.7 f/alで充填し、温度500ヤに蛤つ
貞れ斧實ケ容量1躍のメタルバス中に跋細管の下部から
100隅の高さまで浸漬し、加熱速度的100℃/分で
加熱し、4分後に取出して石炭の膨張高さを測定すると
ともに、加熱前石炭の充填高さく20m)、に対する加
熱後石炭の膨張高さの割合を求めた。
Example 1 Among the three types of coal shown in Table 1, the blended coal used in the production of blast furnace cocoon was used. Pulverized coal was placed in a thin tube made of heat-resistant glass with an inner diameter of 10 m and a length of 120 m at a height of 20 mm. Then, the tube was filled with a charging density of 0.7 f/al, and immersed in a metal bath with a capacity of 500℃ to a height of 100 corners from the bottom of the narrow tube, and the heating rate was adjusted. The coal was heated at a target rate of 100° C./min, taken out after 4 minutes, and the expansion height of the coal was measured, and the ratio of the expansion height of the coal after heating to the filling height of the coal before heating (20 m) was determined.

上記方法で、第1表に示す配合炭を粉砕粒度1680μ
m以下、840μm以下、250μm以下、149μm
以下に粉砕調整し、各石炭について膨張度測定を5回実
施し、これらの測定結果の平均値(′5c)と変動範囲
(R)を第2表に示す。
Using the above method, the blended coal shown in Table 1 was crushed to a particle size of 1680μ.
m or less, 840 μm or less, 250 μm or less, 149 μm
Each coal was pulverized and adjusted as follows, and the swelling degree was measured five times. The average value ('5c) and variation range (R) of these measurement results are shown in Table 2.

第2表の結果よシ明らかなごとく、粉砕粒度168゜μ
m以下の場合は、膨張高さおよび膨張割合の平均[(X
)は840μm以下および250μss以下の粉砕粒度
と比較して大きな差はないものの、変動範囲(R)が大
きい。これは粉砕粒度が粗い場合、石炭粒径毎の性状差
の影響が顕著に現われるためと推察される。一方、粉砕
粒度149μm以下の場合は、加熱時において発生ガス
に随伴して石炭粉の飛散が激しいため、膨張高さおよび
膨張割合の平均値(X)は低く、かつ変動範囲(R)が
粉砕粒度840ttna以下および250μm以下の場
合と比較して大きい。
As is clear from the results in Table 2, the pulverized particle size was 168゜μ.
m or less, the average expansion height and expansion ratio [(X
) is not significantly different from the pulverized particle size of 840 μm or less and 250 μss or less, but the variation range (R) is large. This is presumed to be because when the pulverized particle size is coarse, the influence of the difference in properties of each coal particle size becomes noticeable. On the other hand, if the pulverized particle size is 149 μm or less, the average value (X) of the expansion height and expansion ratio is low and the fluctuation range (R) is The particle size is larger than that of 840 ttna or less and 250 μm or less.

従って、急速加熱時における石炭の粉砕粒度としては、
最大粒径で840〜250μmの範囲が適当であること
がわかる。
Therefore, the pulverized particle size of coal during rapid heating is as follows:
It can be seen that a maximum particle size in the range of 840 to 250 μm is appropriate.

瀉1表 (以下余白) 第2表 実施例2 第1表に示す配合炭を粉砕粒度250μm以下に粉砕し
、実施例1と同じ方法で膨張度をfAll定するに際し
、細管の石炭装入密度を0.50.、0.70.1.0
0.1.10 f/as”とそれぞれ変更して充填し、
各装入密度について膨張度測定を5回ずつ実施した結果
を第3表に示す。なか、石炭の充填高さは20wr一定
とした。
Table 1 (blank below) Table 2 Example 2 When pulverizing the blended coal shown in Table 1 to a pulverized particle size of 250 μm or less and determining the degree of expansion fAll in the same manner as in Example 1, the coal charging density of the thin tube 0.50. ,0.70.1.0
0.1.10 f/as” respectively and fill.
Table 3 shows the results of five expansion measurements for each charging density. The height of coal filling was constant at 20 wr.

第3表の結果より明らかなごとく、充填高さが20wa
と一定であるため、装入密度が大き七なる程、装入石炭
量が増加し、膨張高さおよび膨張割合の平均値(X)は
逐次増大するが、装入密度1.1(1/iの場合は変動
範囲(R)が装入密度1.00 f/al以下の場合と
比較して著しく増大している。これは、装入密度が1.
00 f/a1aより高くなると、発生ガスの逸脱が阻
害され、充填試料内のガス圧が高くなり、突沸虜象が生
じて試料が不規則に持ち上げられ、変動範囲(R)が大
きくなるものと推察される。従って、石炭の装入密度は
1.0fld以下が適切であることがわかる。
As is clear from the results in Table 3, the filling height is 20wa.
Therefore, as the charging density increases, the amount of charged coal increases, and the average value (X) of the expansion height and expansion ratio increases sequentially, but when the charging density is 1.1 (1/ In the case of i, the variation range (R) is significantly increased compared to the case where the charging density is 1.00 f/al or less.This is because the charging density is 1.00 f/al or less.
If it becomes higher than 00 f/a1a, the escape of the generated gas will be inhibited, the gas pressure in the filled sample will increase, a bumping phenomenon will occur, the sample will be lifted irregularly, and the fluctuation range (R) will become large. It is inferred. Therefore, it can be seen that the appropriate charging density of coal is 1.0 fld or less.

第3表 実 施  例  3 第1表に示す配合炭を粉砕粒度250μm以下に粉砕し
たものを、細管への石炭装入密度0.70 f/aIl
j、充填高さ20■の条件で、実施例1と同じ方法で膨
張度を測定するに際し、使用する耐熱ガラス製の細管の
内径を4,6,10,12,13■に変更し、各細管で
の膨張度測定を5回ずつ実施した結果を第4表に示す。
Table 3 Implementation Example 3 The coal blend shown in Table 1 was pulverized to a particle size of 250 μm or less, and the coal charging density in the tube was 0.70 f/aIl.
When measuring the degree of expansion using the same method as in Example 1 under the conditions of filling height 20cm and filling height, the inner diameter of the heat-resistant glass thin tube used was changed to 4, 6, 10, 12, and 13cm. Table 4 shows the results of measuring the expansion degree of the thin tube five times.

第4表の結果より明らかなごとく、細管径が4瓢と13
mの場合は、他の細管径の膨張度と比較して異常に大き
いか、小さい値となっている。これは、細管径が4mの
ように細すぎると、発生ガスの円滑な逸脱が阻害され、
充填試料内のガス圧が高くなって異常に持ち上げられ、
大きな膨張度を示したものと推察される。一方、細管径
d(13smのように大きすぎると、急速加熱時に細管
内の試料が管壁側と中心部で大きな温度差が生じ、均一
な石炭の膨張が起こらず変動範囲(R)の大きな膨張度
を示したものと推察される。これらの結果より、細管径
としては5〜12mが石炭の膨張度を再現性よく測定す
るための適当な大きさと言える。
As is clear from the results in Table 4, the tube diameters are 4 and 13.
In the case of m, the expansion degree is abnormally large or small compared to the expansion degree of other thin tube diameters. This is because if the diameter of the tube is too small, such as 4 m, the smooth escape of the generated gas will be inhibited.
The gas pressure inside the filled sample increases and is lifted abnormally.
It is presumed that it exhibited a large degree of expansion. On the other hand, if the tube diameter d (13 sm) is too large, a large temperature difference will occur between the tube wall side and the center of the sample inside the tube during rapid heating, and uniform coal expansion will not occur and the fluctuation range (R) will decrease. It is inferred that the coal had a large degree of expansion.From these results, it can be said that a diameter of the thin tube of 5 to 12 m is an appropriate size for measuring the degree of expansion of coal with good reproducibility.

第   4    表 実  施  例  4 第1表に示す配合炭を粉砕粒度250μm以下(4)砕
したものを、内径10iai、長さ120mの耐熱ガラ
ス製細管に装入密度0.70 f/♂で20鵬の高さま
で充填し、鑞気容量11Mの赤外線イメージ炉を用い加
熱速度を種々変更し、500℃に到達後3分間保持して
常温まで冷却し、炉外に取出して石炭の膨張度を測定し
た結果を第5表に示す。
Table 4 Example 4 The coal blend shown in Table 1 was crushed with a particle size of 250 μm or less (4) and charged into a heat-resistant glass tube with an inner diameter of 10 ia and a length of 120 m at a density of 0.70 f/♂. The coal was filled to the height of the coal, and the heating rate was varied using an infrared image furnace with an air capacity of 11M, and after reaching 500°C, it was held for 3 minutes to cool down to room temperature, and then taken out of the furnace and the degree of expansion of the coal was measured. The results are shown in Table 5.

第5表の結果より明らかなごとく、傾向的には加熱速度
が大きいほど響張度が大きいものの、3℃/分の場合の
膨張度は僅かしか検出されなかつ九。
As is clear from the results in Table 5, although the higher the heating rate, the higher the acoustic tension tends to be, the degree of expansion at 3° C./min was only slightly detected.

これに対し、10℃/分以上〜250°C/分以下の加
熱速度では大きな*張度を示し、検出感度および精度共
に良好であることがわかる。しかし、250℃/分以上
の加熱速度では彬張度は大きくなるものの、変動範囲(
R)が大きく測定精度が悪化する。
On the other hand, a heating rate of 10° C./min to 250° C./min shows a large *tonicity, indicating that both detection sensitivity and accuracy are good. However, at a heating rate of 250°C/min or higher, the stiffness increases, but the variation range (
R) is large and measurement accuracy deteriorates.

これは加熱速度があまりに大きくなりすぎると単位時間
当りのガス発生量が多くなりすぎ、試料内のガス圧が高
くなり、突沸現象が生じて試料が不規則に持ち上げられ
る之めと考えられる。したがって、加熱速度は10℃/
分以上で2506C/分以下が望ましいと判断される。
This is thought to be because if the heating rate becomes too high, the amount of gas generated per unit time becomes too large, the gas pressure within the sample becomes high, a bumping phenomenon occurs, and the sample is lifted irregularly. Therefore, the heating rate is 10℃/
It is determined that a value of 2506 C/min or more and 2506 C/min or less is desirable.

(以下余白) 第5表 実施例5 第1表に示す配合炭を含む3種の試料を用い、実施例4
と同様の方法で膨張度を測定した結果を第6表に示す。
(Margin below) Table 5 Example 5 Using three types of samples containing the coal blends shown in Table 1, Example 4
Table 6 shows the results of measuring the degree of expansion using the same method as above.

なお、赤外線イメージ炉の加熱速度は100℃/分の一
定条件とした。
Note that the heating rate of the infrared image furnace was kept constant at 100° C./min.

第6表の結果より、いずれの炭種とも膨張度の変動範囲
は小さく再現性がよく、かつ第1表に示れた全膨張率と
この発明方法で測定される値とは傾向的によく一致して
いることがわかる。
From the results in Table 6, the variation range of expansion degree is small for all coal types and the reproducibility is good, and the total expansion rate shown in Table 1 and the values measured by the method of this invention tend to be good. It can be seen that they match.

第6表 発  明  の  効  果 以上の実施例からも明らかなごとく、この発明方法によ
れば、急速加熱条件下で石炭粒子の飛散を抑制し再現性
のある測定値を得ることができ、しかも簡易迅速に測定
することができるので、現はるかに有用性に富み、コー
クス品質の安定化に大きく寄与するものである。
Table 6 Effects of the Invention As is clear from the above examples, according to the method of this invention, scattering of coal particles can be suppressed under rapid heating conditions, and reproducible measured values can be obtained. Since it can be measured simply and quickly, it is far more useful than ever and greatly contributes to stabilizing coke quality.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図はこの発明に係る石炭の粘結性測定
方法を示す説明図で、第1図は石灰加熱前の状態を示す
細管の縦断面図、第2図は石炭加熱後の状態を示す穐管
の縦断面図である。 1・・・・細管、2・・・・加熱前の石炭、3・・・・
膨張した石炭。 自発手続補正書 昭和60年8月23日 特許庁長官 宇賀道部殿       過1、事件の表
示 昭和60年 特許願 第1926号 2、発明の名称 石炭の粘結性迅速測定方法 3、補正をする者 事件との関係   出願人   #―###大阪市東区
北浜5丁目15番地 (211)  住友金属工業株式会肚 4、代理人 5、       の日付 昭和  年  月  日1
、本願明細書第12頁第2表中、粒度149μm以下の
膨張高さの平均値(x)r17.4Jをr7.4Jと補
正する。 2、同明細書第15頁第4表中、m管内径Cl11)「
5」を「6」と補正する。 3、同明細書第17頁第5表に、加熱速度(’C/分)
250と300の結果を下記の通り追加する。 「 第   5   表
Figures 1 and 2 are explanatory diagrams showing the method for measuring coal caking properties according to the present invention, where Figure 1 is a vertical cross-sectional view of a thin tube showing the state before lime heating, and Figure 2 is a longitudinal cross-sectional view of a thin tube after heating coal. FIG. 3 is a longitudinal cross-sectional view of the cylindrical tube showing the state. 1... Thin tube, 2... Coal before heating, 3...
Expanded coal. Spontaneous procedural amendment August 23, 1985 Mr. Michibu Uga, Commissioner of the Patent Office, 1985, Patent Application No. 1926, 2, Title of invention: Method for rapidly measuring coal caking property 3, Amendments made. Relationship to the case of the applicant: Sumitomo Metal Industries Co., Ltd. 4, Agent 5, 5-15 Kitahama, Higashi-ku, Osaka (211) Date: Showa, Month, Day 1
, in Table 2 on page 12 of the present specification, the average value (x) of the expansion height for grain sizes of 149 μm or less, r17.4J, is corrected to r7.4J. 2. In Table 4 on page 15 of the same specification, m pipe inner diameter Cl11)
5" is corrected to "6". 3. Table 5 on page 17 of the same specification shows the heating rate ('C/min)
Add the results of 250 and 300 as shown below. "Table 5

Claims (1)

【特許請求の範囲】[Claims] 最大粒度が840μm以下250μm以上に粉砕した石
炭を、内径5〜12mmの金属製もしくはガラス製の有
底細管に装入密度1.0g/cm^3以下に充填し、前
記石炭を少なくとも10℃/分以上で250℃/分以下
の加熱速度で470〜550℃の温度に加熱して自由膨
張せしめた後、膨張後の石炭の高さもしくは加熱前石炭
の充填高さに対する加熱後石炭の膨張高さの割合を測定
し、該測定値を粘結性の指標とすることを特徴とする石
炭の粘結性迅速測定方法。
Coal pulverized to a maximum particle size of 840 μm or less and 250 μm or more is packed into a metal or glass bottomed tube with an inner diameter of 5 to 12 mm at a charging density of 1.0 g/cm^3 or less, and the coal is heated at least 10° C./cm3 or less. After heating to a temperature of 470 to 550°C at a heating rate of 250°C/min or more for free expansion, the expansion height of the coal after heating relative to the height of the coal after expansion or the filling height of coal before heating. 1. A method for rapidly measuring the caking property of coal, characterized by measuring the ratio of coal viscosity and using the measured value as an index of the caking property.
JP192685A 1985-01-09 1985-01-09 Method for quick measurement of caking property of coal Granted JPS61161454A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP192685A JPS61161454A (en) 1985-01-09 1985-01-09 Method for quick measurement of caking property of coal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP192685A JPS61161454A (en) 1985-01-09 1985-01-09 Method for quick measurement of caking property of coal

Publications (2)

Publication Number Publication Date
JPS61161454A true JPS61161454A (en) 1986-07-22
JPH0469749B2 JPH0469749B2 (en) 1992-11-09

Family

ID=11515201

Family Applications (1)

Application Number Title Priority Date Filing Date
JP192685A Granted JPS61161454A (en) 1985-01-09 1985-01-09 Method for quick measurement of caking property of coal

Country Status (1)

Country Link
JP (1) JPS61161454A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009204609A (en) * 2008-01-30 2009-09-10 Jfe Steel Corp Method for testing expansivity of coal
CN102221508A (en) * 2010-04-19 2011-10-19 常州市方嘉电子仪器有限公司 Automatic measuring instrument for bituminous coal caking index
CN103616307A (en) * 2013-12-11 2014-03-05 中国庆华能源集团有限公司 Method for determining bituminous coal caking index
CN107560570A (en) * 2017-08-17 2018-01-09 重庆大学 A kind of high methane cherry coal drilling production quantity of slag and the method for testing of drilling deformation

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5310950U (en) * 1976-07-06 1978-01-30
JPS5728240A (en) * 1980-07-25 1982-02-15 Sumitomo Metal Ind Ltd Indication of expansion coefficient for coal

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5310950U (en) * 1976-07-06 1978-01-30
JPS5728240A (en) * 1980-07-25 1982-02-15 Sumitomo Metal Ind Ltd Indication of expansion coefficient for coal

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009204609A (en) * 2008-01-30 2009-09-10 Jfe Steel Corp Method for testing expansivity of coal
CN102221508A (en) * 2010-04-19 2011-10-19 常州市方嘉电子仪器有限公司 Automatic measuring instrument for bituminous coal caking index
CN103616307A (en) * 2013-12-11 2014-03-05 中国庆华能源集团有限公司 Method for determining bituminous coal caking index
CN107560570A (en) * 2017-08-17 2018-01-09 重庆大学 A kind of high methane cherry coal drilling production quantity of slag and the method for testing of drilling deformation
CN107560570B (en) * 2017-08-17 2019-05-21 重庆大学 A kind of high methane cherry coal drilling produces the test method of the quantity of slag and drilling deformation

Also Published As

Publication number Publication date
JPH0469749B2 (en) 1992-11-09

Similar Documents

Publication Publication Date Title
RU2570875C1 (en) Coke production process
KR101668205B1 (en) Method for evaluating thermal plasticity of coals and caking additives
EP2832822B1 (en) Coal blending method for coke production, production method for coke
CA2864451C (en) Coal-to-coal adhesiveness evaluation method
JP6056157B2 (en) Coke blending coal composition determination method and coke manufacturing method
KR20130081702A (en) Metallurgical coke production method
JPS61161454A (en) Method for quick measurement of caking property of coal
JP2018048262A (en) Estimation method of coke grain size
JP5391707B2 (en) Coal expansibility test method
JP6879020B2 (en) How to estimate coke shrinkage
JP6565642B2 (en) Coke shrinkage estimation method
US4421604A (en) Procedure to control quality of coal
JPS61194361A (en) Apparatus for rapidly measuring caking property of coal
CN112834386A (en) Coal/biomass slag flowing viscosity detection device and detection method
JP6657867B2 (en) Estimation method of coke shrinkage
JP4464835B2 (en) Coke production method
SU929691A1 (en) Method for measuring gas permeability of plastic coal mass
JP6372264B2 (en) Evaluation method of sinter production process
JPS63210185A (en) Method of measuring coking property of coal
JPH0116028Y2 (en)
JP3142637B2 (en) Estimation method of coal expansion pressure
Brown et al. Variables in the Load Test for Fire–Clay Refractories
JPH0560707A (en) Method for testing inflation property of coal
Holmes et al. Kindling Properties of Coke
CN117491416A (en) Measurement method for acquiring ignition temperature of coal in boiler through thermal analysis

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees