JP6056157B2 - Coke blending coal composition determination method and coke manufacturing method - Google Patents

Coke blending coal composition determination method and coke manufacturing method Download PDF

Info

Publication number
JP6056157B2
JP6056157B2 JP2012043731A JP2012043731A JP6056157B2 JP 6056157 B2 JP6056157 B2 JP 6056157B2 JP 2012043731 A JP2012043731 A JP 2012043731A JP 2012043731 A JP2012043731 A JP 2012043731A JP 6056157 B2 JP6056157 B2 JP 6056157B2
Authority
JP
Japan
Prior art keywords
coal
coke
penetration distance
blended
brand
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012043731A
Other languages
Japanese (ja)
Other versions
JP2013181048A (en
Inventor
勇介 土肥
勇介 土肥
深田 喜代志
喜代志 深田
松井 貴
貴 松井
光輝 照井
光輝 照井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2012043731A priority Critical patent/JP6056157B2/en
Publication of JP2013181048A publication Critical patent/JP2013181048A/en
Application granted granted Critical
Publication of JP6056157B2 publication Critical patent/JP6056157B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、配合炭を乾留してコークスを製造する際に、コークス強度を精度よく予測するコークス用配合炭組成決定方法に関する。特に、石炭乾留時の軟化溶融特性(thermal plasticity)を精度良く評価できる指標である浸透距離及び最高流動度を用いて、コークスの強度を高精度に予測可能とするコークス用配合炭組成決定方法及びこのコークス用配合炭組成決定方法を用いた、コークス強度を安定的に管理可能とするコークス製造方法に関する。   The present invention relates to a method for determining a blended coal composition for coke, which accurately predicts coke strength when carbonizing coal blend to produce coke. In particular, a coke blending coal composition determination method that makes it possible to predict coke strength with high accuracy using the penetration distance and maximum fluidity, which are indices that can accurately evaluate softening and melting characteristics (thermal plasticity) during coal carbonization, and The present invention relates to a coke production method that uses the coke blending coal composition determination method to enable stable management of coke strength.

製銑法として最も一般的に行われている高炉法において使用されるコークスは、鉄鉱石の還元材、熱源、スペーサーなどの数々の役割を担っている。高炉を安定的に効率良く操業するためには、高炉内の通気性を維持することが重要であることから、強度の高いコークスの製造が求められている。コークスは、粉砕し、粒度を調整した種々のコークス製造用石炭を配合した配合炭を、コークス炉内にて乾留することで製造される。コークス製造用石炭は、乾留中約350℃〜550℃の温度域で軟化溶融し、また同時に揮発分の発生に伴い発泡、膨張することで、各々の粒子が互いに接着しあい、塊状のセミコークスとなる。セミコークスは、その後1000℃付近まで昇温する過程で収縮することで焼きしまり、堅牢なコークスとなる。従って、石炭の軟化溶融時の接着特性が、乾留後のコークス強度や粒径等の性状に大きな影響を及ぼすといえる。そのため、従来、石炭の軟化溶融特性の評価は非常に重要視されており、種々の方法で測定され、コークス強度の管理指標として利用されてきた。特に、コークスの重要な品質であるコークス強度は、その原料である石炭性状、とりわけ石炭化度と軟化溶融特性に大きく影響される。軟化溶融特性は、通常、軟化溶融物の流動性、粘度、接着性などにより測定、評価される。   Coke used in the blast furnace method, which is most commonly used as a steelmaking method, plays a number of roles, such as iron ore reductant, heat source, and spacer. In order to operate the blast furnace stably and efficiently, it is important to maintain the air permeability in the blast furnace, and therefore production of coke having high strength is required. Coke is produced by dry-distilling blended coal in which various types of coal for coke production, which are pulverized and adjusted in particle size, are blended in a coke oven. Coal-producing coal softens and melts in the temperature range of about 350 ° C to 550 ° C during dry distillation, and at the same time foams and expands with the generation of volatile matter, so that each particle adheres to each other, and lump-like semi-coke and Become. Semi-coke is burned by shrinkage in the process of raising the temperature to around 1000 ° C., and becomes robust coke. Therefore, it can be said that the adhesion characteristics during softening and melting of coal have a great influence on properties such as coke strength and particle size after dry distillation. Therefore, conventionally, evaluation of softening and melting characteristics of coal has been regarded as very important, and has been measured by various methods and used as a management index of coke strength. In particular, coke strength, which is an important quality of coke, is greatly affected by the properties of coal as the raw material, particularly the degree of coalification and softening and melting characteristics. The softening and melting characteristics are usually measured and evaluated by the fluidity, viscosity, adhesiveness, etc. of the softening melt.

石炭の軟化溶融特性のうち、軟化溶融時の流動性を測定する一般的な方法としては、JIS M 8801に規定されるギーセラープラストメータ法による石炭流動性試験方法が挙げられる。ギーセラープラストメータ法は、425μm以下に粉砕した石炭を所定のるつぼに入れ、規定の昇温速度で加熱し、規定のトルクをかけた撹拌棒の回転速度を測定し、1分ごとの目盛分割をもって試料の軟化溶融特性を表す方法である。   Among the softening and melting characteristics of coal, a general method for measuring the fluidity at the time of softening and melting includes a coal fluidity test method by the Gieseler plastometer method defined in JIS M8801. In the Gisela plastometer method, coal pulverized to 425 μm or less is put into a predetermined crucible, heated at a specified temperature rise rate, measured for the rotation speed of a stirring rod with a specified torque applied, and divided into scales every minute. This is a method for expressing the softening and melting characteristics of a sample.

また、その他の軟化溶融特性評価方法として、定回転方式でトルクを測定する方法、動的粘弾性測定装置による粘度の測定方法、JIS M 8801に規定されているジラトメーター法がよく知られている。   As other softening and melting property evaluation methods, a method of measuring torque by a constant rotation method, a method of measuring viscosity by a dynamic viscoelasticity measuring device, and a dilatometer method defined in JIS M8801 are well known.

上記の方法とは別の軟化溶融特性評価方法として、特許文献1には、コークス炉内で石炭の軟化溶融物が置かれている状況を考慮した条件で、軟化溶融特性を評価する方法が提案されている。特許文献1の方法では、軟化溶融した石炭が拘束された条件で、かつ周囲の欠陥構造への溶融物の移動、浸透を模擬した条件で測定が行なわれており、この方法で測定される浸透距離は、従来の方法とは異なる石炭軟化溶融特性の指標であることが知られている。   As a method for evaluating softening and melting characteristics different from the above method, Patent Document 1 proposes a method for evaluating softening and melting characteristics under conditions that consider the situation where a softening melt of coal is placed in a coke oven. Has been. In the method of Patent Document 1, measurement is performed under conditions in which softened and melted coal is constrained, and under conditions simulating the movement and penetration of the melt into the surrounding defect structure, and the penetration measured by this method. It is known that the distance is an indicator of coal softening and melting characteristics different from the conventional method.

特開2010−190761号公報JP 2010-190761 A

宮津ら著:「日本鋼管技報」、vol.67、1975年、第125頁〜第137頁Miyazu et al .: “Nippon Steel Pipe Technical Report”, vol. 67, 1975, pages 125-137. 山本ら著:「鉄と鋼」、vol.62、1976年、第38頁Yamamoto et al .: “Iron and Steel”, vol. 62, 1976, p. 38

石炭の軟化溶融特性は、その石炭を用いてコークスを製造した場合のコークス強度に大きな影響を及ぼすため、軟化溶融特性の評価精度の向上は重要である。また、コークス強度を高めるために、石炭の軟化溶融特性の評価結果に基づいて使用する石炭の銘柄を選択したり、ある石炭銘柄の配合量を調整したりすることも重要である。ところが、特許文献1に示されるような従来の軟化溶融性評価方法では、測定される特性とコークス強度の相関が弱く、コークス強度の制御のために評価方法の改善が望まれていた。   Since the softening and melting characteristics of coal greatly influence the coke strength when coke is produced using the coal, it is important to improve the evaluation accuracy of the softening and melting characteristics. In addition, in order to increase the coke strength, it is also important to select a coal brand to be used based on the evaluation result of the softening and melting characteristics of the coal, or to adjust the blending amount of a certain coal brand. However, in the conventional softening and melting evaluation method as shown in Patent Document 1, the correlation between the measured characteristics and the coke strength is weak, and improvement of the evaluation method has been desired for the control of the coke strength.

コークス炉内での石炭の軟化溶融挙動を従来の評価方法より正確に評価するためには、コークス炉内において軟化溶融した石炭の周辺の環境を模擬した状態で、石炭の軟化溶融特性を測定することが必要である。冶金用コークスの製造においては、複数の銘柄の石炭を所定の割合で配合した配合炭を使用するのが一般的であるが、軟化溶融特性を正しく評価できないと、要求されている強度を満足するコークスを製造することができない。高炉等の竪型炉で所定の強度を満足していない低強度のコークスを使用した場合、竪型炉内での粉の発生量を増加させて圧力損失の増大を招き、竪型炉の操業を不安定化させるとともにガスの流れが局所的に集中する、いわゆる吹き抜けといったトラブルを招く可能性がある。   In order to evaluate the softening and melting behavior of coal in a coke oven more accurately than the conventional evaluation method, the softening and melting characteristics of coal are measured in a state simulating the environment surrounding the softened and melted coal in a coke oven. It is necessary. In the production of metallurgical coke, it is common to use blended coal that is a mixture of several brands of coal at a specified ratio. However, if the softening and melting characteristics cannot be evaluated correctly, the required strength is satisfied. Coke cannot be produced. When low-strength coke that does not satisfy the specified strength is used in a vertical furnace such as a blast furnace, the amount of powder generated in the vertical furnace is increased, resulting in an increase in pressure loss and the operation of the vertical furnace. May cause troubles such as so-called blow-through, in which the gas flow is locally concentrated.

コークス炉内において、軟化溶融時の石炭は隣接する層に拘束された状態で軟化溶融している。石炭の熱伝導率は小さいため、コークス炉内において石炭は一様に加熱されず、加熱面である炉壁側からコークス層、軟化溶融層、石炭層と、状態が異なっている。コークス炉自体は乾留時多少膨張するがほとんど変形しないため、軟化溶融した石炭は隣接するコークス層、石炭層に拘束されている。よって、隣接するコークス層、石炭層の拘束を模擬した条件で測定することが、軟化溶融特性の評価には重要である。   In the coke oven, the coal at the time of softening and melting is softened and melted while being constrained by adjacent layers. Since the thermal conductivity of coal is small, the coal is not heated uniformly in the coke oven, and the state differs from the coke layer, softened molten layer, and coal layer from the furnace wall side that is the heating surface. Since the coke oven itself expands somewhat during dry distillation but hardly deforms, the softened and melted coal is constrained by the adjacent coke layer and coal layer. Therefore, it is important for the evaluation of the softening and melting characteristics to perform measurement under conditions simulating the constraints of the adjacent coke layer and coal layer.

また、軟化溶融した石炭は、周囲に存在する空隙部に移動することが考えられる。軟化溶融層周辺の空隙は、石炭層の石炭粒子間空隙、軟化溶融石炭の粒子間空隙、熱分解ガスの揮発により発生した粗大気孔、隣接するコークス層に生じる亀裂など、様々ある。特に、コークス層に生じる亀裂は、その幅が数百ミクロンから数ミリ程度と考えられ、数十〜数百ミクロン程度の大きさである石炭粒子間空隙や気孔に比較して大きい。そのため、このようなコークス層に生じる粗大欠陥へは、石炭から発生する副生物である熱分解ガスや液状物質だけではなく、軟化溶融した石炭自体も移動すると考えられる。したがって、石炭の軟化溶融特性をより正確に評価するためには、周囲の欠陥構造、特に粗大欠陥の浸透条件を模擬して測定する必要がある。   Moreover, it is considered that the softened and melted coal moves to the voids existing around it. There are various types of voids around the softened molten layer, such as voids between coal particles in the coal layer, voids between particles of the softened molten coal, rough air holes generated by volatilization of the pyrolysis gas, and cracks generated in the adjacent coke layer. In particular, the crack generated in the coke layer is considered to have a width of several hundred microns to several millimeters, and is larger than the voids and pores between coal particles having a size of about several tens to several hundreds of microns. For this reason, it is considered that not only pyrolytic gas and liquid substances, which are by-products generated from coal, but also softened and melted coal itself moves to coarse defects generated in such a coke layer. Therefore, in order to more accurately evaluate the softening and melting characteristics of coal, it is necessary to measure by simulating the penetration conditions of surrounding defect structures, particularly coarse defects.

さらには、種々の石炭銘柄に対し、コークス炉内での石炭軟化溶融特性をより正確に評価するためには、コークス炉内で石炭が軟化溶融し、周辺の欠陥構造へ移動、または変形した範囲内でのせん断速度下において測定する必要がある。この場合には、せん断速度は銘柄毎に異なることが予想されるため、各銘柄の軟化溶融時の変形、移動挙動を、コークス炉内での挙動と等しくなるような測定条件にすることが求められる。したがって、コークス炉での石炭軟化溶融挙動に基づく石炭軟化溶融特性を評価する場合、せん断速度一定下ではなく、コークス炉内でのせん断速度を再現する必要があり、そのためには拘束条件、浸透条件を適正に制御する必要がある。   Furthermore, in order to more accurately evaluate the coal softening and melting characteristics in the coke oven for various coal brands, the range in which the coal is softened and melted in the coke oven and moved to the surrounding defect structure or deformed. It is necessary to measure under the shear rate inside. In this case, the shear rate is expected to vary from brand to brand. Therefore, it is required to set the measurement conditions so that the deformation and movement behavior of each brand during softening and melting is equal to the behavior in the coke oven. It is done. Therefore, when evaluating the coal softening and melting characteristics based on the coal softening and melting behavior in the coke oven, it is necessary to reproduce the shear rate in the coke oven, not under a constant shear rate. It is necessary to control properly.

上述したとおり、コークス炉内において軟化溶融した石炭の周辺の環境を模擬した状態で石炭の軟化溶融特性を測定するためには、拘束条件、浸透条件を適正にする必要がある。そこで発明者らは、特許文献1に記載の軟化溶融特性の評価方法を提案した。しかし、特許文献1の方法で求められる浸透距離のコークス強度への影響は十分には解明されていないという問題がある。   As described above, in order to measure the softening and melting characteristics of coal in a state of simulating the environment around the softened and melted coal in a coke oven, it is necessary to make the restraint conditions and infiltration conditions appropriate. Therefore, the inventors have proposed a method for evaluating the softening and melting characteristics described in Patent Document 1. However, there is a problem that the influence of the permeation distance required by the method of Patent Document 1 on the coke strength has not been fully elucidated.

さらには、従来の軟化溶融特性指標を用いる技術では、軟化溶融特性の評価の不正確さに由来するコークス強度のバラツキを考慮して、目標とするコークス強度を予め高めに設定することでコークス強度を一定値以上に管理することが行われており、この方法では、軟化溶融特性に優れた比較的高価な石炭を使用して配合炭の平均的な品位を高めに設定することが必要となるため、コストの増大を招いているという問題もあった。   Furthermore, in the conventional technique using the softening and melting property index, the coke strength is set by setting the target coke strength higher in advance in consideration of the variation in the coke strength resulting from the inaccuracy of the evaluation of the softening and melting property. In this method, it is necessary to use a relatively expensive coal with excellent softening and melting characteristics and to set a high average quality of the blended coal. For this reason, there is a problem in that the cost is increased.

上述の問題を解決するために、本発明の目的は、石炭のより正確な軟化溶融特性を示す、最高流動度(MF)と浸透距離とに基づいて算出される性状パラメーターを用いて乾留後コークスの強度を高精度に予測する方法を明らかにし、その予測される強度に基づいて、所望の強度を有するコークスを製造するのに好適な配合条件を決定するコークス用配合炭組成決定方法を提供することである。   In order to solve the above-mentioned problems, the object of the present invention is to use coke after dry distillation using a property parameter calculated on the basis of the maximum fluidity (MF) and the penetration distance, which shows more accurate softening and melting characteristics of coal. A method for predicting the strength of coal with high accuracy is provided, and a blending coal composition determination method for coke that determines suitable blending conditions for producing coke having a desired strength based on the predicted strength is provided. That is.

加えて、本発明は、このコークス用配合炭組成決定方法によって、コークス強度を従来の方法よりも高精度に予測することで、配合炭の平均品位を必要以上に高めに設定する必要を無くし、コークス強度を維持しながら高品位の石炭の使用量を削減し、資源の効率的な利用や製造コスト削減を可能とした、安定的に所望の強度を有するコークスを製造する方法を提供することも目的とする。   In addition, the present invention eliminates the need to set the average quality of the blended coal higher than necessary by predicting the coke strength with higher accuracy than the conventional method by this blended coal composition determination method for coke, It is also possible to provide a method for stably producing coke having a desired strength by reducing the amount of high-grade coal used while maintaining the coke strength, enabling efficient use of resources and reducing production costs. Objective.

上記課題を解決するための本発明の要旨は以下のとおりである。
(1)複数銘柄の石炭を含む配合炭を乾留することにより作製されるコークスの配合炭の組成を決定するコークス用配合炭組成決定方法であって、複数銘柄の石炭を含む調査対象配合炭から作製されたコークスのコークス強度を測定し、かつ、前記調査対象配合炭に含まれる前記複数銘柄の石炭の各々の最高流動度(MF)ddpm及び浸透距離mmを測定し、測定されたコークス強度を目的変数とし、最高流動度(MF)と浸透距離とに基づいて算出される性状パラメーターを含む説明変数と前記目的変数とで、複数銘柄の石炭を含む予測対象配合炭から作製されるコークスのコークス強度を予測する回帰式を作成して、該回帰式に基づいて、作製されるコークスのコークス強度を予測し、予測されるコークス強度が所定の管理範囲となるように、前記予測対象配合炭に含まれる石炭の銘柄と複数の銘柄の配合割合とを決定することを特徴とするコークス用配合炭組成決定方法。
(2)下記(1)式により、前記調査対象配合炭中の各銘柄の石炭の浸透距離及び最高流動度の測定値から、前記調査対象配合炭中の各銘柄の石炭の偏差浸透距離を算出し、下記(2)式により、前記調査対象配合炭中の各銘柄の石炭の配合割合に応じて、該各銘柄の石炭の偏差浸透距離を加重平均して得られる、加重平均偏差浸透距離を算出し、前記性状パラメーターとして前記加重平均偏差浸透距離を用いることを特徴とする上記(1)に記載のコークス用配合炭組成決定方法。
The gist of the present invention for solving the above problems is as follows.
(1) A method for determining the composition of a coke for coke produced by dry distillation of a coal blend containing a plurality of brands of coal, from a combination coal to be investigated including a plurality of brands of coal The coke strength of the prepared coke is measured, and the maximum fluidity (MF) ddpm and the permeation distance mm of each of the multiple brands of coal included in the survey coal blend are measured, and the measured coke strength is measured. Coke of coke produced from coal to be predicted containing multiple brands of coal with explanatory variables including property parameters calculated based on maximum fluidity (MF) and permeation distance as objective variables and the objective variables Create a regression equation that predicts the strength, predict the coke strength of the coke to be produced based on the regression equation, and the predicted coke strength is within a predetermined management range Sea urchin, coking coal blend composition determination method characterized by determining the mixing ratio of coal stocks and a plurality of securities included in the prediction target coal blend.
(2) From the following formula (1), the deviation penetration distance of each brand of coal in the survey coal blend is calculated from the measured value of the penetration distance and maximum fluidity of each brand in the survey blend. According to the following formula (2), the weighted average deviation penetration distance obtained by weighted averaging the deviation penetration distance of each brand of coal according to the blending ratio of each brand of coal in the surveyed blended coal The blended coal composition determination method for coke according to (1) above, wherein the weighted average deviation penetration distance is used as the property parameter.

ここで、aは、1.0<logMF<2.5の範囲となる、コークスの原料に用いられ得る少なくとも1つ以上の石炭の、浸透距離と最高流動度(MF)の常用対数値(logMF)との複数の組から原点を通る回帰直線を作成した際の、該回帰直線についての、logMFの変化量に対する浸透距離の変化量の比の値であり、浸透距離は、前記調査対象配合炭中の各銘柄の石炭の浸透距離であり、logMFは、最高流動度の常用対数値であり、但し、(1)式の右辺の値がゼロ以下となる場合には偏差浸透距離の値は0とする。 Here, a is a common logarithmic value (log MF) of penetration distance and maximum fluidity (MF) of at least one or more coals that can be used as a raw material for coke, which is in a range of 1.0 <log MF <2.5. ) And a regression line passing through the origin from a plurality of sets, the value of the ratio of the change amount of the penetration distance to the change amount of the log MF with respect to the regression line, Log MF is the common logarithm of the maximum fluidity. However, when the value on the right side of equation (1) is less than or equal to zero, the deviation penetration distance is 0. And

ここで、αiは、前記調査対象配合炭中の各銘柄の石炭iの配合割合であり、(偏差浸透距離)iは、前記調査対象配合炭中の各銘柄の石炭iの偏差浸透距離であり、Nは、前記調査対象配合炭を構成する石炭銘柄の総数である。
(3)前記調査対象配合炭中の各銘柄の石炭の浸透距離及び最高流動度の測定値から、前記調査対象配合炭中の各銘柄の石炭の配合割合に応じて下記(3)式、(4)式の加重平均浸透距離及び加重平均logMFを算出し、下記(5)式により、算出した加重平均浸透距離及び加重平均logMFを用いて偏差加重平均浸透距離を算出し、前記性状パラメーターとして、偏差加重平均浸透距離を用いることを特徴とする上記(1)に記載のコークス用配合炭組成決定方法。
Here, α i is the blending ratio of coal i of each brand in the surveyed blended coal, and (deviation penetration distance) i is the deviation penetration distance of coal i of each brand in the surveyed blended coal. Yes, N is the total number of coal brands constituting the survey coal blend.
(3) From the measured values of the penetration distance and the maximum fluidity of each brand of coal in the surveyed blended coal, the following formula (3) according to the blending ratio of each brand of coal in the surveyed blended coal, ( 4) Calculate the weighted average penetration distance and the weighted average log MF of the formula, calculate the deviation weighted average penetration distance using the calculated weighted average penetration distance and the weighted average log MF according to the following formula (5), Deviation weighted average permeation distance is used. The method for determining a blended coal composition for coke according to (1) above.

ここで、αiは、前記調査対象配合炭中の各銘柄の石炭iの配合割合、(浸透距離)iは、前記調査対象配合炭中の各銘柄の石炭iの浸透距離、(logMF)iは、前記調査対象配合炭中の各銘柄の石炭iのlogMF、Nは、前記調査対象配合炭を構成する石炭銘柄の総数である。 Here, α i is the blending ratio of coal i of each brand in the survey blended coal, (penetration distance) i is the penetration distance of coal i of each brand in the survey blend, (logMF) i Is the log MF of coal i of each brand in the survey coal blend, N is the total number of coal brands constituting the survey coal blend.

ここで、aは、1.0<logMF<2.5の範囲となる、コークスの原料に用いられ得る少なくとも1つ以上の石炭の、浸透距離と最高流動度(MF)の常用対数値(logMF)との複数の組から原点を通る回帰直線を作成した際の、該回帰直線についての、logMFの変化量に対する浸透距離の変化量の比の値であり、加重平均浸透距離は、(3)式で算出された値であり、加重平均logMFは、(4)式で算出された値である、但し、(5)式の右辺の値がゼロ以下となる場合には偏差加重平均浸透距離の値は0とする。
(4)前記浸透距離の測定については、粒径2mm以下に調製した石炭を0.8g/cmの充填密度で容器内に厚さ10mmに充填して試料とし、該試料の上に直径2mmのガラスビーズを配置し、該ガラスビーズに50kPaの荷重を負荷しつつ、3℃/分の加熱速度で550℃まで前記試料を加熱する際に、前記ガラスビーズへ浸透した溶融試料の浸透距離を測定することを特徴とする、上記(1)ないし上記(3)のいずれか1つに記載のコークス用配合炭組成決定方法。
(5)前記説明変数に、石炭の炭化度に関わるパラメーターを加えて、コークス強度を予測することを特徴とする上記(1)ないし上記(4)のいずれか1つに記載のコークス用配合炭組成決定方法。
(6)前記説明変数に、石炭の炭化度に関わるパラメーター及び石炭の軟化溶融性に関わるパラメーターを加えてコークス強度を予測することを特徴とする上記(1)ないし上記(4)のいずれか1つに記載のコークス用配合炭組成決定方法。
(7)上記(1)ないし上記(6)のいずれか1つに記載のコークス用配合炭組成決定方法によって決定された石炭の銘柄と含有割合とに基づいて配合炭を作製し、前記配合炭を乾留してコークスを製造するコークス製造方法。
Here, a is a common logarithmic value (log MF) of penetration distance and maximum fluidity (MF) of at least one or more coals that can be used as a raw material for coke, which is in a range of 1.0 <log MF <2.5. ) And a regression line passing through the origin from a plurality of sets, the value of the ratio of the change in penetration distance to the change in log MF for the regression line, and the weighted average penetration distance is (3) The weighted average log MF is a value calculated by the formula (4). However, when the value of the right side of the formula (5) is equal to or less than zero, the deviation weighted average penetration distance is calculated. The value is 0.
(4) For the measurement of the penetration distance, coal prepared to a particle size of 2 mm or less was filled into a container with a packing density of 0.8 g / cm 3 to a thickness of 10 mm, and a diameter of 2 mm was formed on the sample. When the sample is heated up to 550 ° C. at a heating rate of 3 ° C./min while applying a load of 50 kPa to the glass beads, the penetration distance of the molten sample that has penetrated into the glass beads is determined. The method for determining a blended coal composition for coke according to any one of (1) to (3) above, characterized in that measurement is performed.
(5) The coke coal according to any one of (1) to (4) above, wherein a parameter related to the carbonization degree of coal is added to the explanatory variable to predict coke strength. Composition determination method.
(6) The coke strength is predicted by adding a parameter related to the carbonization degree of coal and a parameter related to softening and melting property of coal to the explanatory variable, and any one of (1) to (4) above The method for determining a blended coal composition for coke as described in 1.
(7) A blended coal is produced based on the coal brand and content ratio determined by the blended coal composition determination method for coke according to any one of (1) to (6) above, and the blended coal Coke production method to produce coke by dry distillation.

本発明によれば、コークス炉内での石炭の軟化溶融層周辺に存在する欠陥構造、特に軟化溶融層に隣接するコークス層に存在する亀裂の影響を模擬し、また、コークス炉内での軟化溶融物周辺の拘束条件を適切に再現した状態での、石炭の軟化溶融特性、すなわち、欠陥構造への軟化溶融物浸透の評価が可能な測定値である浸透距離と、最高流動度とに基づいて算出される性状パラメーターを用いることで、配合炭を乾留して得られるコークスの強度を精度良く予測できる。したがって、この予測されるコークスの強度に基づいて配合条件を決定することで、所望の強度を有するコークスを安定的に製造可能となる。また、必要以上に配合炭の品位を高めに設定する必要が無いため、コークス強度を維持しながら高品位の石炭の使用量を削減し、コストの削減が可能となる。   According to the present invention, the defect structure existing around the softening and melting layer of coal in the coke oven, particularly the effect of cracks existing in the coke layer adjacent to the softening and melting layer, is simulated, and the softening in the coke oven is performed. Based on the softening and melting characteristics of coal with the appropriate reproduction of the restraint conditions around the melt, that is, the penetration distance, which is a measurement that allows evaluation of softening melt penetration into the defect structure, and maximum fluidity By using the property parameters calculated in this way, the strength of coke obtained by dry distillation of the blended coal can be accurately predicted. Therefore, by determining the blending conditions based on the predicted coke strength, coke having a desired strength can be stably produced. Moreover, since it is not necessary to set the quality of the blended coal higher than necessary, the amount of high-grade coal used can be reduced while maintaining the coke strength, and the cost can be reduced.

本発明で使用する試料と上下面に貫通孔を有する材料に一定荷重を負荷しつつ軟化溶融特性を測定する装置の一例を示す概略説明図である。It is a schematic explanatory drawing which shows an example of the apparatus which measures a softening-melting characteristic, applying a fixed load to the material used by this invention, and the material which has a through-hole in an upper and lower surface. 本発明で使用する試料と上下面に貫通孔を有する材料を一定容積に保ちつつ軟化溶融特性を測定する装置の一例を示す概略説明図である。It is a schematic explanatory drawing which shows an example of the apparatus which measures the softening-melting characteristic, keeping the sample and the material which has a through-hole in an upper and lower surface at a fixed volume in this invention. 本発明で使用する上下面に貫通孔を有する材料のうち、円形貫通孔を有する一例を示す概略説明図である。It is a schematic explanatory drawing which shows an example which has a circular through-hole among the materials which have a through-hole in the upper and lower surfaces used by this invention. 本発明で使用する上下面に貫通孔を有する材料のうち、球形粒子充填層の一例を示す概略説明図である。It is a schematic explanatory drawing which shows an example of a spherical particle filling layer among the materials which have a through-hole in the upper and lower surfaces used by this invention. 本発明で使用する上下面に貫通孔を有する材料のうち、円柱充填層の一例を示す概略説明図である。It is a schematic explanatory drawing which shows an example of a cylindrical packing layer among the materials which have a through-hole in the upper and lower surfaces used by this invention. 実施例で測定した、石炭軟化溶融物の浸透距離の測定結果を示すグラフである。It is a graph which shows the measurement result of the penetration distance of the coal softening melt measured in the Example. 従来法の予測値及び加重平均偏差浸透距離に基づいた本発明の予測値と実施例で測定したタンブラー強度の実測値との散布図である。It is a scatter diagram of the predicted value of the present invention based on the predicted value of the conventional method and the weighted average deviation penetration distance and the actual measured value of the tumbler intensity measured in the examples. 従来法の予測値及び偏差加重平均浸透距離に基づいた本発明の予測値と実施例で測定したタンブラー強度の実測値との散布図である。It is a scatter diagram of the predicted value of the present invention based on the predicted value of the conventional method and the deviation weighted average penetration distance and the actual measured value of the tumbler intensity measured in the examples. 本発明例1により得られたコークス強度予測式によるコークス強度の予測値と実測値との散布図である。It is a scatter diagram of the predicted value and measured value of the coke strength by the coke strength prediction formula obtained by Example 1 of the present invention. 本発明例2により得られたコークス強度予測式によるコークス強度の予測値と実測値との散布図である。It is a scatter diagram of the predicted value and measured value of the coke strength by the coke strength prediction formula obtained by Example 2 of the present invention.

本発明者らは、上述した本発明の目的を達成するために、コークス炉内において軟化溶融した石炭の周辺の環境を模擬した状態で軟化溶融特性を測定可能とし、測定した軟化溶融特性を示す「浸透距離」とコークス強度の関係について鋭意研究を重ねた。その結果、軟化溶融特性指標として従来から用いられているギーセラー最高流動度にはほとんど差がない配合炭であっても、本発明で用いる浸透距離には差があり、この浸透距離の異なる配合炭から製造されるコークスの強度も異なっている現象を発見した。本発明者らは、この現象に着目し、コークス強度を予測するためには、最高流動度と浸透距離とを用いれば、コークス強度をより正確に予測することが可能ではないかと着想した。   In order to achieve the above-described object of the present invention, the present inventors can measure the softening and melting characteristics in a state simulating the environment surrounding the softened and melted coal in the coke oven, and show the measured softening and melting characteristics. We conducted extensive research on the relationship between “penetration distance” and coke strength. As a result, there is a difference in the penetration distance used in the present invention even if the blended coal used in the present invention as a softening and melting characteristic index has little difference in the maximum Gieseller flow rate. We found a phenomenon in which the strength of coke produced from coconut was different. The present inventors have focused on this phenomenon and have come up with the idea that in order to predict coke strength, it is possible to predict coke strength more accurately by using the maximum fluidity and penetration distance.

コークス強度を予測する場合における浸透距離を指標とすることの優位性は、コークス炉内状況に近い測定方法をとることに基づいて原理的に想定されるだけではなく、コークス強度への浸透距離の影響を調査した結果からも明らかとなった。実際、コークス強度への浸透距離の影響を調査する過程で、同程度のlogMF(ギーセラープラストメータ法による最高流動度の常用対数値)を持つ石炭であっても、銘柄により浸透距離に差があることが明らかとなり、浸透距離の異なる石炭を配合してコークスを製造する乾留実験でも、コークス強度に対する影響も異なることが確認された。   The advantage of using the penetration distance as an index in predicting coke strength is not only assumed in principle based on the measurement method close to the coke oven conditions, but also the penetration distance to coke strength. It became clear from the result of investigating the influence. In fact, in the process of investigating the effect of penetration distance on coke strength, even if the coal has the same log MF (the common logarithm of the maximum fluidity by the Gisela plastometer method), there is a difference in the penetration distance depending on the brand. It became clear that there was a difference in the effect on coke strength even in the dry distillation experiment in which coke was produced by blending coal with different penetration distances.

ところで、従来のギーセラープラストメータによる軟化溶融特性の評価では、高い流動性を示す石炭の方が石炭粒子同士を接着する効果が高いと考えられてきた。一方で、浸透距離とコークス強度との関係を調査したところ、極端に浸透距離の大きい石炭を配合するとコークス化時に粗大な欠陥を残し、かつ薄い気孔壁の組織構造を形成するため、コークス強度が配合炭の平均品位から予想される値に比べて低下することが分かった。コークス強度が予想値より低い理由は、浸透距離が大きすぎる石炭が周囲の石炭粒子間に顕著に浸透することで、その石炭粒子が存在していた部分自体が大きな空洞となり、欠陥となってしまうためと推測される。特にギーセラープラストメータによる軟化溶融特性の評価において高い流動性を示す石炭においては、浸透距離の大小によりコークス中に残存する粗大な欠陥の生成量が異なることが分かった。この関係は粘結材に関しても同様に見られた。   By the way, in the evaluation of the softening and melting characteristics using a conventional Gisela plastometer, it has been considered that coal exhibiting high fluidity has a higher effect of adhering coal particles. On the other hand, when investigating the relationship between infiltration distance and coke strength, when coal with an extremely long infiltration distance is blended, coarse defects are left during coking and a thin pore wall structure is formed. It turned out that it falls compared with the value estimated from the average grade of blended coal. The reason why the coke strength is lower than the expected value is that coal with a too long permeation distance penetrates significantly between surrounding coal particles, and the part where the coal particles existed itself becomes a large cavity and becomes a defect. It is presumed that. In particular, in the evaluation of softening and melting characteristics with a Gieseler plastometer, it was found that the amount of coarse defects remaining in the coke differs depending on the penetration distance in coal that exhibits high fluidity. This relationship was similarly observed for the binder.

上述のような知見は、浸透距離を測定することによって初めて得られたものであり、従来の軟化溶融特性評価法を補完あるいは代替する技術として、最高流動度(MF)と浸透距離とに基づいて算出される性状パラメーターを用いて、コークスの強度を予測する本発明の有効性を示している。本発明のコークス強度を予測する方法としては具体的に次のように行なう。
1.銘柄及び配合割合が既知である複数の配合炭(調査対象配合炭)を乾留して複数のコークスを作製する。複数のコークスを作製する前に、調査対象配合炭に含まれる複数銘柄の石炭の各々の最高流動度(MF)ddpm及び浸透距離mmなどの指標を予め測定しておく。
2.作製されたコークスのコークス強度を測定する。なお、コークス強度は、JIS K 2151の回転強度試験法などに基づいて測定することが可能である。
3.測定した最高流動度(MF)及び浸透距離に基づいて、後述する、加重平均偏差浸透距離や、加重平均浸透距離及び加重平均logMFなどの性状パラメーターを算出する。
4.これらの複数の配合炭から得られる複数のコークスについて、2.で測定されたコークス強度を目的変数とし、複数の配合炭について3.で算出された性状パラメーターを含む説明変数と、この目的変数とから、コークス強度を予測する回帰式を作成する。
5.作成した回帰式に基づいて、複数銘柄の石炭を含む予測対象配合炭から作製される予定のコークスのコークス強度を予測する。なお、コークス強度の予測に際しては、予測対象配合炭中の各銘柄の石炭の最高流動度(MF)及び浸透距離などを測定する。この測定した最高流動度(MF)及び浸透距離や、予測対象配合炭中の各銘柄の石炭の配合割合などに基づいて、上述の性状パラメーターを算出し、算出された性状パラメーターを含む変数に基づき、作成した回帰式から予測されるコークス強度を得る。この予測されるコークス強度が所定の管理範囲となるように予測対象配合炭に配合される銘柄及び配合割合を決定する。
また、このようにして決定された、配合される石炭の銘柄及び配合割合に基づいて、配合炭を作製し、作製した配合炭を乾留してコークスを製造することが可能である。
The above-mentioned knowledge was obtained for the first time by measuring the penetration distance. Based on the maximum fluidity (MF) and the penetration distance as a technique to complement or substitute the conventional softening and melting property evaluation method. It shows the effectiveness of the present invention for predicting coke strength using calculated property parameters. The method for predicting the coke strength of the present invention is specifically performed as follows.
1. A plurality of coke is produced by dry distillation of a plurality of blended coals (inspection blended coals) with known brands and blending ratios. Before producing a plurality of cokes, indicators such as maximum fluidity (MF) ddpm and permeation distance mm of each of a plurality of brands of coal included in the investigation target blend are measured in advance.
2. The coke strength of the prepared coke is measured. The coke strength can be measured based on the rotational strength test method of JIS K 2151.
3. Based on the measured maximum fluidity (MF) and permeation distance, properties parameters such as a weighted average deviation permeation distance, a weighted average permeation distance, and a weighted average log MF, which will be described later, are calculated.
4). 1. About a plurality of coke obtained from these plurality of blended coals Using the coke strength measured in step 3 as the target variable, From the explanatory variable including the property parameter calculated in step 1 and the objective variable, a regression equation for predicting the coke strength is created.
5. Based on the created regression equation, the coke strength of the coke that is to be produced from the prediction target blend including multiple brands of coal is predicted. Note that when predicting the coke strength, the maximum fluidity (MF) and the permeation distance of each brand of coal in the prediction target blended coal are measured. Based on the measured maximum fluidity (MF) and permeation distance, and the blending ratio of each brand of coal in the predicted blended coal, the above-mentioned property parameters are calculated, and based on the variables including the calculated property parameters. The coke strength predicted from the created regression equation is obtained. The brand and the blending ratio to be blended with the predicted coal blend are determined so that the predicted coke strength falls within a predetermined management range.
Moreover, based on the brand of coal to be blended and the blending ratio determined in this way, blended coal can be produced, and the produced blended coal can be dry-distilled to produce coke.

まずは、加重平均偏差浸透距離や、加重平均浸透距離及び加重平均logMFを含む性状パラメーターを算出するための「浸透距離」を測定する方法を説明する。浸透距離とは、所定の粒径に調製した石炭を所定の充填密度で容器内に所定の厚さに充填して試料とし、試料の上に、上下面に貫通孔を有する材料を配置し、一定加重を負荷させて、または、一定容積に保ちつつ、不活性ガス雰囲気下で試料及び材料を試料の軟化溶融開始温度以上の所定温度まで所定の昇温速度で加熱し、材料に溶融試料を浸透させた際の、溶融試料が浸透した距離である。図1は、本発明で使用する浸透距離の測定装置の一例であり、石炭試料と上下面に貫通孔を有する材料に一定荷重を負荷させて石炭試料を加熱する場合の装置である。容器3下部に石炭を充填して試料1とし、試料1の上に、上下面に貫通孔を有する材料である2を配置する。試料1を軟化溶融開始温度以上に加熱し、上下面に貫通孔を有する材料2に試料を浸透させ、浸透距離を測定する。加熱は不活性ガス雰囲気下で行なう。ここで、不活性ガスとは、測定温度域で石炭と反応しないガスを指し、代表的なガスとしてはアルゴンガス、ヘリウムガス、窒素ガス等である。なお、浸透距離の測定は、石炭と貫通孔を有する材料を一定容積に保ちつつ加熱するようにしてもよい。その場合に使用する軟化溶融特性(浸透距離)の測定装置の一例を図2に示す。 First, a method for measuring the “penetration distance” for calculating the property parameter including the weighted average deviation penetration distance and the weighted average penetration distance and the weighted average logMF will be described. The permeation distance is a sample obtained by filling a container prepared with a predetermined particle size with a predetermined packing density into a predetermined thickness in a container, and a material having through holes on the upper and lower surfaces is placed on the sample, The sample and the material are heated at a predetermined heating rate to a predetermined temperature equal to or higher than the softening and melting start temperature of the sample in an inert gas atmosphere while applying a constant load or maintaining a constant volume. This is the distance that the molten sample penetrated when it was infiltrated. FIG. 1 is an example of an infiltration distance measuring apparatus used in the present invention, and is an apparatus for heating a coal sample by applying a constant load to a coal sample and a material having through holes on upper and lower surfaces. The lower part of the container 3 is filled with coal to form a sample 1, and 2, which is a material having through holes on the upper and lower surfaces, is arranged on the sample 1. The sample 1 is heated to the softening and melting start temperature or more, the sample is infiltrated into the material 2 having through holes on the upper and lower surfaces, and the permeation distance is measured. Heating is performed in an inert gas atmosphere. Here, the inert gas refers to a gas that does not react with coal in the measurement temperature range, and representative gases include argon gas, helium gas, nitrogen gas, and the like. Note that the penetration distance may be measured by heating the material having coal and the through-holes while maintaining a constant volume. An example of a measuring device for softening and melting characteristics (penetration distance) used in that case is shown in FIG.

図1に示す試料1と上下面に貫通孔を有する材料2に一定荷重を負荷して試料1を加熱する場合、試料1が膨張又は収縮し、上下面に貫通孔を有する材料2が上下方向に移動する。よって、上下面に貫通孔を有する材料2を介して試料浸透時の膨張率を測定することが可能である。図1に示すように上下面に貫通孔を有する材料2の上面に膨張率検出棒13を配置し、膨張率検出棒13の上端に荷重付加用の錘14を乗せ、その上に変位計15を配置し、膨張率を測定する。変位計15は、試料の膨張率の膨張範囲(−100%〜300%)を測定可能なものを用いれば良い。加熱系内を不活性ガス雰囲気に保持する必要があるため、非接触式の変位計が適しており、光学式変位計を用いることが望ましい。不活性ガス雰囲気としては、窒素雰囲気とすることが好ましい。上下面に貫通孔を有する材料2が粒子充填層の場合は、膨張率検出棒13が粒子充填層に埋没する可能性があるため、上下面に貫通孔を有する材料2と膨張率検出棒13の間に板を挟む措置を講ずるのが望ましい。負荷させる荷重は、試料上面に配置した上下面に貫通孔を有する材料の上面に対して、均等にかけることが好ましく、上下面に貫通孔を有する材料の上面の面積に対し、5〜80kPa、好ましくは15〜55kPa、最も好ましくは25〜50kPaの圧力を負荷することが望ましい。この圧力は、コークス炉内における軟化溶融層の膨張圧に基づいて設定することが好ましいが、測定結果の再現性、種々の石炭での銘柄差の検出力を検討した結果、炉内の膨張圧よりはやや高めの25〜50kPa程度が測定条件として最も好ましい。   When a constant load is applied to the sample 1 shown in FIG. 1 and the material 2 having through holes on the upper and lower surfaces and the sample 1 is heated, the sample 1 expands or contracts, and the material 2 having the through holes on the upper and lower surfaces is in the vertical direction. Move to. Therefore, it is possible to measure the expansion coefficient at the time of sample penetration through the material 2 having through holes on the upper and lower surfaces. As shown in FIG. 1, an expansion coefficient detecting rod 13 is arranged on the upper surface of a material 2 having through holes on the upper and lower surfaces, a weight 14 for applying a load is placed on the upper end of the expansion coefficient detecting rod 13, and a displacement meter 15 is placed thereon. And measure the expansion rate. The displacement meter 15 may be one that can measure the expansion range (-100% to 300%) of the expansion coefficient of the sample. Since it is necessary to maintain the inside of the heating system in an inert gas atmosphere, a non-contact type displacement meter is suitable, and it is desirable to use an optical displacement meter. The inert gas atmosphere is preferably a nitrogen atmosphere. In the case where the material 2 having through holes on the upper and lower surfaces is a particle packed layer, the expansion coefficient detecting rod 13 may be buried in the particle packed layer, and therefore the material 2 having the through holes on the upper and lower surfaces and the expansion coefficient detecting rod 13. It is desirable to take measures to sandwich the board between the two. The load to be applied is preferably evenly applied to the upper surface of the material having through holes on the upper and lower surfaces arranged on the upper surface of the sample, and 5 to 80 kPa with respect to the area of the upper surface of the material having the through holes on the upper and lower surfaces, It is desirable to apply a pressure of preferably 15 to 55 kPa, most preferably 25 to 50 kPa. This pressure is preferably set based on the expansion pressure of the softened and molten layer in the coke oven, but as a result of examining the reproducibility of the measurement results and the ability to detect the difference in brands in various coals, A somewhat higher value of about 25 to 50 kPa is most preferable as a measurement condition.

加熱手段は、試料の温度を測定しつつ、所定の昇温速度で加熱できる方式のものを用いることが望ましい。具体的には、電気炉や、導電性の容器と高周波誘導を組み合わせた外熱式、またはマイクロ波のような内部加熱式である。内部加熱式を採用する場合は、試料内温度を均一にする工夫を施す必要があり、例えば、容器の断熱性を高める措置を講ずることが好ましい。   It is desirable to use a heating means that can heat at a predetermined rate of temperature rise while measuring the temperature of the sample. Specifically, an electric furnace, an external heating type that combines a conductive container and high frequency induction, or an internal heating type such as a microwave. When the internal heating method is adopted, it is necessary to devise a method for making the temperature in the sample uniform, and for example, it is preferable to take measures to increase the heat insulation of the container.

加熱速度については、コークス炉内での石炭及び粘結材の軟化溶融挙動を模擬するという目的から、コークス炉内での石炭の加熱速度に一致させることが好ましい。コークス炉内での軟化溶融温度域における石炭の加熱速度は炉内の位置や操業条件によって異なるが概ね2〜10℃/分であり、平均的な加熱速度として2〜4℃/分とすることが望ましく、もっとも望ましいのは3℃/分程度である。しかし、非微粘結炭のように流動性の低い石炭の場合、3℃/分では浸透距離や膨張が小さく、検出が困難となる可能性がある。石炭は急速加熱することによりギーセラープラストメータによる流動性が向上することが一般に知られている。従って、例えば浸透距離が1mm以下の石炭の場合には、検出感度を向上させるために、加熱速度を10〜1000℃/分に高めて測定しても良い。   The heating rate is preferably matched with the heating rate of the coal in the coke oven for the purpose of simulating the softening and melting behavior of the coal and the binder in the coke oven. Although the heating rate of coal in the softening and melting temperature range in the coke oven varies depending on the position in the furnace and operating conditions, it is generally 2 to 10 ° C / min, and the average heating rate should be 2 to 4 ° C / min. The most desirable is about 3 ° C./min. However, in the case of coal with low fluidity such as non-slightly caking coal, the permeation distance and expansion are small at 3 ° C./min, which may make detection difficult. It is generally known that the fluidity of coal is improved by rapid heating with a Gisela plastometer. Therefore, for example, in the case of coal with an infiltration distance of 1 mm or less, measurement may be performed with the heating rate increased to 10 to 1000 ° C./min in order to improve detection sensitivity.

加熱を行なう温度範囲については、石炭及び粘結材の軟化溶融特性の評価が目的であるため、石炭及び粘結材の軟化溶融温度域まで加熱できればよい。コークス製造用の石炭及び粘結材の軟化溶融温度域を考慮すると、0℃(室温)〜550℃の範囲において、好ましくは石炭の軟化溶融温度である300〜550℃の範囲で所定の加熱速度で加熱すればよい。   About the temperature range which heats, since the objective is evaluation of the softening and melting characteristic of coal and a binder, what is necessary is just to be able to heat to the softening and melting temperature range of coal and a binder. Considering the softening and melting temperature range of coal and caking material for coke production, a predetermined heating rate in the range of 0 ° C (room temperature) to 550 ° C, preferably in the range of 300 to 550 ° C, which is the softening and melting temperature of coal. You can heat with.

上下面に貫通孔を有する材料は、透過係数をあらかじめ測定または算出できるものが望ましい。材料の形態の例として、貫通孔を持つ一体型の材料、粒子充填層が挙げられる。貫通孔を持つ一体型の材料としては、例えば、図3に示すような円形の貫通孔16を持つもの、矩形の貫通孔を持つもの、不定形の貫通孔を持つものなどが挙げられる。粒子充填層としては、大きく球形粒子充填層、非球形粒子充填層に分けられ、球形粒子充填層としては図4に示すようなビーズの充填粒子17からなるもの、非球形粒子充填層としては不定形粒子や、図5に示すような充填円柱18からなるものなどが挙げられる。測定の再現性を保つため、材料内の透過係数はなるべく均一で、かつ測定を簡便にするため、透過係数の算出が容易なものが望ましい。したがって、本発明で用いる上下面に貫通孔を有する材料には球形粒子充填層の利用が特に望ましい。上下面に貫通孔を有する材料の材質は、石炭軟化溶融温度域以上、具体的には600℃まで形状がほとんど変化せず、石炭とも反応しないものならば特に指定はない。また、その高さは、石炭の溶融物が浸透するのに十分な高さがあればよく、厚み5〜20mmの石炭層を加熱する場合には、20〜100mm程度あればよい。   The material having through holes on the upper and lower surfaces is preferably one that can measure or calculate the transmission coefficient in advance. Examples of the form of the material include an integrated material having a through hole and a particle packed layer. Examples of the integrated material having a through hole include a material having a circular through hole 16 as shown in FIG. 3, a material having a rectangular through hole, and a material having an indeterminate shape. The particle packed layer is roughly divided into a spherical particle packed layer and a non-spherical particle packed layer. The spherical particle packed layer is composed of beads packed particles 17 as shown in FIG. 4, and the non-spherical particle packed layer is not suitable. Examples of the particles include regular particles and filled cylinders 18 as shown in FIG. In order to maintain the reproducibility of the measurement, it is desirable that the transmission coefficient in the material is as uniform as possible and that the calculation of the transmission coefficient is easy in order to simplify the measurement. Therefore, the use of a spherical particle packed bed is particularly desirable for the material having through holes on the upper and lower surfaces used in the present invention. The material having the through holes on the upper and lower surfaces is not particularly specified as long as the shape hardly changes to the coal softening and melting temperature range, specifically up to 600 ° C., and does not react with coal. Moreover, the height should just be sufficient height for the melt of coal to osmose | permeate, and what is necessary is just about 20-100 mm when heating a coal layer of thickness 5-20 mm.

上下面に貫通孔を有する材料の透過係数は、コークス層に存在する粗大欠陥の透過係数を推定して設定する必要がある。本発明に特に望ましい透過係数について、粗大欠陥構成因子の考察や大きさの推定など、本発明者らが検討を重ねた結果、透過係数が1×108〜2×109-2の場合が最適であることを見出した。この透過係数は、下記(6)式で表されるDarcy則に基づき導出されるものである。 The transmission coefficient of the material having through holes on the upper and lower surfaces needs to be set by estimating the transmission coefficient of coarse defects present in the coke layer. In the case where the transmission coefficient is 1 × 10 8 to 2 × 10 9 m −2 as a result of repeated investigations by the present inventors, such as consideration of coarse defect constituent factors and estimation of the size, which are particularly desirable for the present invention. Was found to be optimal. This transmission coefficient is derived based on the Darcy rule expressed by the following equation (6).

ΔP/L=K・μ・u ・・・(6)
ここで、ΔPは上下面に貫通孔を有する材料内での圧力損失[Pa]、Lは貫通孔を有する材料の高さ[m]、Kは透過係数[m-2]、μは流体の粘度[Pa・s]、uは流体の速度[m/s]である。例えば上下面に貫通孔を有する材料として均一な粒径のガラスビーズ層を用いる場合、上述の好適な透過係数を持つようにするためには、直径0.2mmから3.5mm程度のガラスビーズを選択することが望ましく、もっとも望ましいのは2mmである。
ΔP / L = K · μ · u (6)
Here, ΔP is the pressure loss [Pa] in the material having through holes on the upper and lower surfaces, L is the height [m] of the material having the through holes, K is the transmission coefficient [m −2 ], μ is the fluid. Viscosity [Pa · s], u is fluid velocity [m / s]. For example, when a glass bead layer having a uniform particle diameter is used as a material having through holes on the upper and lower surfaces, in order to have the above-mentioned preferable transmission coefficient, glass beads having a diameter of about 0.2 mm to 3.5 mm are used. It is desirable to choose, most preferably 2 mm.

測定試料とする石炭および粘結材はあらかじめ粉砕し、所定の充填密度で所定の層厚に充填する。粉砕粒度としては、コークス炉における装入石炭の粒度(粒径3mm以下の粒子の比率が全体の70〜80質量%程度)としてもよく、粒径3mm以下が70質量%以上となるように粉砕することが好ましいが、小さい装置での測定であることを考慮して、全量を粒径2mm以下に粉砕した粉砕物を用いることが特に好ましい。粉砕物を充填する密度はコークス炉内の充填密度に合わせ0.7〜0.9g/cm3とすることができるが、再現性、検出力を検討した結果、0.8g/cm3が好ましいことを知見した。また、充填する層厚は、コークス炉内における軟化溶融層の厚みに基づいて層厚5〜20mmとすることができるが、再現性、検出力を検討した結果、層厚は10mmとすることが好ましい。 The coal and binder used as the measurement sample are pulverized in advance and filled to a predetermined layer thickness with a predetermined packing density. The pulverized particle size may be the particle size of the coal charged in the coke oven (the ratio of particles having a particle size of 3 mm or less is about 70 to 80% by mass), and pulverization is performed so that the particle size of 3 mm or less is 70% by mass or more. However, it is particularly preferable to use a pulverized product in which the total amount is pulverized to a particle size of 2 mm or less in consideration of measurement with a small apparatus. The density for filling the pulverized product can be 0.7 to 0.9 g / cm 3 in accordance with the packing density in the coke oven. As a result of studying reproducibility and detection power, 0.8 g / cm 3 is preferable. I found out. Further, the layer thickness to be filled can be 5 to 20 mm based on the thickness of the softened and melted layer in the coke oven, but as a result of studying reproducibility and detection power, the layer thickness should be 10 mm. preferable.

上述の装置を用いかつ測定条件を調整して、以下に示す代表的な測定条件で浸透距離を測定することができる。
(A)石炭又は粘結材を粒径2mm以下が100質量%となるように粉砕し、該粉砕された石炭又は粘結材を充填密度0.8g/cmで、層厚が10mmとなるように容器に充填して試料を作成する。
(B)該試料の上に直径2mmのガラスビーズを浸透距離以上の厚さ(通常は層厚80mm)となるように配置する。
(C)前記ガラスビーズの上部から50kPaとなるように荷重を負荷しつつ、加熱速度3℃/分で室温から550℃まで不活性ガス雰囲気下で加熱する。
(D)前記ガラスビーズ層へ浸透した溶融試料の浸透距離を測定する。
The penetration distance can be measured under the following typical measurement conditions by using the above-described apparatus and adjusting the measurement conditions.
(A) Coal or caking material is pulverized so that the particle size of 2 mm or less is 100% by mass, and the pulverized coal or caking material has a packing density of 0.8 g / cm 3 and a layer thickness of 10 mm. A sample is prepared by filling the container as described above.
(B) A glass bead having a diameter of 2 mm is placed on the sample so as to have a thickness equal to or greater than the permeation distance (usually a layer thickness of 80 mm).
(C) Heating from room temperature to 550 ° C. in an inert gas atmosphere at a heating rate of 3 ° C./min while applying a load from the top of the glass beads to 50 kPa.
(D) The penetration distance of the molten sample that has penetrated into the glass bead layer is measured.

上記(D)の浸透距離の測定について、石炭及び粘結材の軟化溶融物の浸透距離は、加熱中に常時連続的に測定できることが本来望ましい。しかし、常時測定は、試料から発生するタールの影響などにより、困難である。加熱による石炭の膨張、浸透現象は不可逆的であり、一旦膨張、浸透した後は冷却してもほぼその形状が保たれているので、石炭溶融物が浸透終了した後、容器全体を冷却し、冷却後の浸透距離を測定することで加熱中にどこまで浸透したかを測定するようにしてもよい。例えば、冷却後の容器から上下面に貫通孔を有する材料を取り出し、ノギスや定規で直接測定することが可能である。   Regarding the measurement of the penetration distance (D) above, it is originally desirable that the penetration distance of the softened melt of coal and binder can be continuously measured during heating. However, continuous measurement is difficult due to the influence of tar generated from the sample. The expansion and infiltration phenomenon of coal by heating is irreversible, and once expanded and infiltrated, the shape is maintained even after cooling, so after the coal melt has been infiltrated, the entire container is cooled, You may make it measure how much it penetrate | infiltrated during the heating by measuring the penetration distance after cooling. For example, it is possible to take out a material having through holes on the upper and lower surfaces from the cooled container and directly measure with a caliper or a ruler.

上下面に貫通孔を有する材料として粒子を使用した場合には、粒子間空隙に浸透した軟化溶融物は、浸透した部分までの粒子層全体を固着させている。したがって、前もって粒子充填層の質量と高さの関係を求めておけば、浸透終了後、固着していない粒子の質量を測定し、初期質量から差し引くことで、固着している粒子の質量を導出でき、そこから浸透距離を算出することができる。   When particles are used as a material having through holes on the upper and lower surfaces, the softened melt that has permeated the interparticle voids fixes the entire particle layer up to the permeated portion. Therefore, if the relationship between the mass and height of the particle packed bed is obtained in advance, the mass of the non-adhered particles is measured after the infiltration, and the mass of the adhering particles is derived by subtracting from the initial mass. And the penetration distance can be calculated therefrom.

次に、本発明で用いる性状パラメーターを説明する。本発明者らは、配合炭を構成する石炭の上述の浸透距離及び軟化溶融特性を示す最高流動度とコークス強度との関係性を、ラボにおける乾留試験を繰り返して調査し、鋭意研究を重ねた結果、浸透距離及び最高流動度とコークス強度とには以下の2つの関係性があることを見出した。
(1)浸透距離を目的変数(Y)とし、最高流動度の常用対数値を説明変数(X)とし、浸透距離と最高流動度の常用対数値との回帰直線を作成し、その回帰直線に対して、浸透距離の値が正の方向に偏倚した幅(以下、偏差浸透距離)が大きい銘柄の石炭ほど、配合炭に配合した場合には、その配合炭から製造されるコークスのコークス強度が低下する。
(2)浸透距離を目的変数(Y)とし、最高流動度の常用対数値を説明変数(X)とし、浸透距離と最高流動度の常用対数値との回帰直線を作成し、その回帰直線に対して、浸透距離の値が正の方向に偏倚した銘柄を多く配合炭に配合するほど、その配合炭から製造されるコークスのコークス強度が低下する。
Next, the property parameters used in the present invention will be described. The present inventors repeatedly investigated the relationship between the above-mentioned permeation distance and the maximum fluidity showing the softening and melting characteristics of the coal constituting the coal blend and the coke strength by repeating the carbonization test in the laboratory, and repeated earnest research. As a result, it was found that the following two relationships exist between the permeation distance, maximum fluidity and coke strength.
(1) Create a regression line between the permeation distance and the common logarithm of the maximum fluidity with the penetration variable as the objective variable (Y) and the common logarithm of the maximum fluidity as the explanatory variable (X). On the other hand, when the blended coal is blended with a brand of coal with a larger width (hereinafter referred to as deviation permeation distance) in which the value of the permeation distance is biased in the positive direction, the coke strength of the coke produced from the blended coal descend.
(2) Create a regression line between the penetration distance and the common logarithm of the maximum fluidity, with the penetration distance as the objective variable (Y) and the common logarithm of the maximum fluidity as the explanatory variable (X). On the other hand, the more the brands whose permeation distance values deviate in the positive direction are blended with the blended coal, the lower the coke strength of the coke produced from the blended coal.

上記のように、最高流動度が同じであっても浸透距離の大きさによってコークスの強度が影響を受ける理由としては、(1)浸透距離が過大であるほど乾留後のコークス内に粗大な欠陥が発生すること、(2)浸透距離が過大な石炭を多く配合するほど乾留後のコークス内に粗大な欠陥が増えることが挙げられる。   As described above, even if the maximum fluidity is the same, the reason why the strength of the coke is affected by the size of the permeation distance is as follows. (1) The larger the permeation distance, the coarser the defects in the coke after dry distillation. (2) Coarse defects increase in the coke after dry distillation, as more coal with an excessive penetration distance is blended.

従来のコークス強度を予測するための石炭配合理論において、コークス強度は主に、石炭のビトリニット平均最大反射率(Ro)と、ギーセラー最高流動度の対数値(logMF)により決定されると考えられてきた(例えば、非特許文献1参照)。一方、本発明によると、上記(1)及び(2)のように、最高流動度と浸透距離とがコークス強度に影響を及ぼすことから、浸透距離と最高流動度とに基づいて算出される性状パラメーターをコークス強度の予測をする際の説明変数として用いることで、従来よりも高精度な予測が可能となる。   In the conventional coal blending theory for predicting coke strength, coke strength is mainly considered to be determined by the coal's vitrinite average maximum reflectance (Ro) and the logarithmic value (log MF) of the Gieseler maximum fluidity. (For example, refer nonpatent literature 1). On the other hand, according to the present invention, as described in (1) and (2) above, since the maximum fluidity and the penetration distance affect the coke strength, the properties calculated based on the penetration distance and the maximum fluidity. By using parameters as explanatory variables when predicting coke strength, it is possible to make predictions with higher accuracy than before.

また、コークス強度の予測を行なう際のパラメーターは、上記(1)及び(2)の関係性を反映した形である事が望ましい。本発明者らが浸透距離をパラメーターとしてコークス強度の予測を行なううえで、最適な形態を鋭意研究した結果、以下の計算で求める、加重平均偏差浸透距離や、加重平均浸透距離及び加重平均logMFを含む性状パラメーターを用いることが望ましい事を見出した。   Further, it is desirable that the parameters for predicting the coke strength be in a form reflecting the relationship of (1) and (2) above. As a result of earnestly researching the optimal form for the prediction of coke strength by the infiltration distance as a parameter, the present inventors have determined the weighted average deviation infiltration distance, the weighted average infiltration distance and the weighted average log MF obtained by the following calculation. We have found that it is desirable to use property parameters that include.

本発明者らが種々の性状を有する銘柄に対して、その浸透距離と最高流動度(MF)を測定して関係性を調査したところ、測定された最高流動度(MF)の常用対数値について、1.0<logMF<2.5の範囲において、両者には良好な正の相関があることが分かった。したがって、実際の運用において、複数の銘柄の石炭の浸透距離と最高流動度(MF)の組を測定し、測定した浸透距離と最高流動度(MF)の組の中から、1.0<logMF<2.5の範囲となる少なくとも1つ以上の石炭に対して浸透距離と最高流動度(MF)を抽出し、その抽出した浸透距離と最高流動度(MF)の組を基に、浸透距離を目的変数(Y)とし、最高流動度の常用対数値(log(MF))を説明変数(X)とした原点を通る回帰直線を作成した。次いで、その回帰直線と該石炭の浸透距離の偏差を算出することとした。この石炭の偏差浸透距離は、該石炭を配合炭に配合した時のコークス強度影響を表し、この値が大きいほど配合時のコークス強度の低下幅が大きい。配合炭中の各銘柄の石炭の浸透距離及び最高流動度の測定値から、複数銘柄の石炭の各々の偏差浸透距離を求める計算式を(1)式に示す。   When the present inventors investigated the relationship by measuring the penetration distance and maximum fluidity (MF) for brands having various properties, the common logarithm value of the measured maximum fluidity (MF) was investigated. In the range of 1.0 <log MF <2.5, it was found that both had a good positive correlation. Accordingly, in actual operation, a set of penetration distance and maximum fluidity (MF) of a plurality of brands of coal is measured, and 1.0 <log MF is selected from the measured penetration distance and maximum fluidity (MF) pair. <Penetration distance and maximum fluidity (MF) are extracted from at least one coal in the range of 2.5, and based on the combination of the extracted penetration distance and maximum fluidity (MF), the penetration distance Was the objective variable (Y), and a regression line passing through the origin with the common logarithm of the highest fluidity (log (MF)) as the explanatory variable (X) was created. Next, the deviation between the regression line and the penetration distance of the coal was calculated. The deviation penetration distance of this coal represents the influence of coke strength when the coal is blended with blended coal, and the larger this value, the greater the reduction in coke strength during blending. Equation (1) shows a calculation formula for obtaining the deviation penetration distance of each of the multiple brands of coal from the measured values of the penetration distance and the maximum fluidity of each brand of coal in the blended coal.

ここでaは、コークス製造用(コークスの原料)に用いる任意の石炭の最高流動度(MF)を測定し、測定された最高流動度に基づいて、1.0<logMF<2.5の範囲となる少なくとも1つ以上の石炭を抽出し、抽出した石炭の浸透距離を測定し、その測定値を基に浸透距離を目的変数(Y)とし、最高流動度の常用対数値(logMF)を説明変数(X)とした原点を通る回帰直線を作成した際のlogMFの係数(傾き)である。なお、logMFは、該石炭の最高流動度の対数値である。但し、偏差浸透距離の値の下限は0とする。このように下限を設定した理由は、浸透距離が負に偏倚している銘柄は、乾留後のコークス内で粗大な欠陥を形成しないためコークス強度を低下させることは無いが、向上させることも無いことを実験的に確かめたことによる。   Where a is the maximum fluidity (MF) of any coal used for coke production (coke raw material), and based on the measured maximum fluidity, a range of 1.0 <logMF <2.5 At least one or more coal is extracted, and the penetration distance of the extracted coal is measured. Based on the measured value, the penetration distance is set as the objective variable (Y), and the common logarithm value (logMF) of the maximum fluidity is explained. This is the coefficient (slope) of log MF when a regression line passing through the origin as variable (X) is created. Log MF is a logarithmic value of the maximum fluidity of the coal. However, the lower limit of the value of the deviation penetration distance is 0. The reason why the lower limit is set in this way is that the brand whose permeation distance is negatively biased does not form coarse defects in the coke after dry distillation, so it does not reduce coke strength, but does not improve it. This is due to experimental confirmation.

なお、上記傾きaは、この回帰直線についての、logMFの変化量に対する浸透距離の変化量の比の値でもある。また、浸透距離及び最高流動度の測定値のうち、最高流動度の常用対数値(logMF)を目的変数(Y)とし、浸透距離を説明変数(X)とすることも可能であり、その場合には、原点を通る回帰直線を作成したとしても、aとして、該回帰直線についての、logMFの変化量に対する浸透距離の変化量の比の値を算出することになる。   The slope a is also the value of the ratio of the amount of change in the penetration distance to the amount of change in logMF for this regression line. Of the measured values of osmotic distance and maximum fluidity, the common logarithm value (logMF) of the maximum fluidity can be the objective variable (Y), and the osmotic distance can be the explanatory variable (X). Even if a regression line passing through the origin is created, the value of the ratio of the change amount of the penetration distance to the change amount of the log MF for the regression line is calculated as a.

配合炭の乾留により得られるコークス強度は、配合炭を構成する銘柄の偏差浸透距離とその配合割合に影響を受ける。したがって、配合炭を構成する銘柄の偏差浸透距離を配合炭中の配合割合に応じて加重平均して算出した、加重平均偏差浸透距離をコークス強度の予測を行なう際の回帰式の説明変数に含まれる性状パラメーターとすることもできる。この加重平均偏差浸透距離を求める計算式を(2)式に示す。   The coke strength obtained by dry distillation of blended coal is affected by the deviation penetration distance and the blending ratio of brands constituting the blended coal. Therefore, the weighted average deviation penetration distance, calculated by weighted average of the deviation penetration distance of the brands constituting the blended coal according to the blending ratio in the blended coal, is included in the explanatory variable of the regression equation when predicting the coke strength. Property parameters. A formula for obtaining the weighted average deviation penetration distance is shown in Formula (2).

ここでαは、配合炭中の各銘柄の石炭の配合割合、(偏差浸透距離)は配合炭中の各銘柄の石炭の偏差浸透距離、Nは、配合炭を構成する石炭銘柄の総数である。なお、記載されている配合炭とは、銘柄及び配合割合が既知である複数の調査対象配合炭を意味する。 Here, α i is a blending ratio of coal i of each brand in the blended coal, (deviation penetration distance) i is a deviation penetration distance of coal i of each brand in the blended coal, and N is a coal brand constituting the blended coal. The total number of In addition, the described blended coal means a plurality of investigational blended coals whose brands and blending ratios are known.

また、本発明者らは、配合炭の浸透距離の実測値が配合炭を構成する銘柄の浸透距離を配合炭中の配合割合に応じて加重平均して算出した加重平均浸透距離とほぼ一致する事を、実験的に確認している。同様に、配合炭のlogMFも加重平均値と略一致することが一般的に知られている。したがって、コークスの強度予測を行なう際の回帰式の説明変数に含まれる性状パラメーターとして、以下の計算で求める、偏差加重平均浸透距離値を用いることも有効である。   Further, the inventors of the present invention substantially match the weighted average penetration distance calculated by weighted average of the penetration distance of the brand constituting the blended coal according to the blending ratio in the blended coal. This is confirmed experimentally. Similarly, it is generally known that the log MF of the blended coal substantially matches the weighted average value. Therefore, it is also effective to use a deviation weighted average infiltration distance value obtained by the following calculation as a property parameter included in the explanatory variable of the regression equation when predicting the strength of coke.

すなわち、予め配合炭を構成する各銘柄の石炭の浸透距離及び最高流動度の測定値から配合炭中の各銘柄の石炭の配合割合に応じて下記(3)、(4)式の加重平均浸透距離及び加重平均logMFを算出する。   That is, the weighted average permeation of the following formulas (3) and (4) according to the blending ratio of each brand of coal in the blended coal from the measured values of the penetration distance and maximum fluidity of each brand constituting the blended coal. Calculate the distance and weighted average log MF.

ここでαiは、配合炭中の各銘柄の石炭iの配合割合、(浸透距離)iは、配合炭中の各銘柄の石炭iの浸透距離、(logMF)iは、配合炭中の各銘柄の石炭iのlogMF、Nは配合炭を構成する石炭銘柄の総数である。また、配合炭が偏差浸透距離の大きな石炭を多く含むほど、(3)式で求めた加重平均浸透距離は、(4)式で求めた加重平均logMFから回帰直線により求めた浸透距離との偏差が大きくなる。従って、この値を配合炭の偏差加重平均浸透距離として、コークス強度予測の性状パラメーターとした。偏差加重平均浸透距離の計算式を(5)式に示す。 Here, α i is the blending ratio of coal i of each brand in the blended coal, (penetration distance) i is the penetration distance of coal i of each brand in the blended coal, and (logMF) i is each blended coal in the blended coal. The log MF, N of the brand coal i is the total number of coal brands constituting the blended coal. In addition, as the blended coal contains more coal having a large deviation penetration distance, the weighted average penetration distance obtained by the equation (3) is the deviation from the penetration distance obtained by the regression line from the weighted average log MF obtained by the equation (4). Becomes larger. Therefore, this value was used as a property parameter for predicting coke strength, using the deviation weighted average penetration distance of the blended coal. The formula for calculating the deviation weighted average penetration distance is shown in Formula (5).

(5)式でのaは、前述で述べたaと同様にして求められ、コークス製造用(コークスの原料)に用いる任意の石炭の最高流動度(MF)を測定し、測定された最高流動度に基づいて、1.0<logMF<2.5の範囲となる少なくとも1つ以上の石炭を抽出し、抽出した石炭の浸透距離を測定し、その測定値を基に浸透距離を目的変数(Y)とし、最高流動度の常用対数値(logMF)を説明変数(X)とした原点を通る回帰直線を作成した際のlogMFの係数(傾き)である。加重平均浸透距離、加重平均logMFは、それぞれ(3)、(4)式で算出した値である。但し、(5)式の右辺の値がゼロ以下となる場合には偏差加重平均浸透距離の値は0とする。   A in formula (5) is obtained in the same manner as a described above, and the maximum fluidity (MF) of any coal used for coke production (coke raw material) is measured, and the maximum flow measured. Based on the degree, extract at least one or more coals in the range of 1.0 <log MF <2.5, measure the penetration distance of the extracted coal, and determine the penetration distance based on the measured value as an objective variable ( Y), and the log MF coefficient (slope) when a regression line passing through the origin with the common logarithm of the maximum fluidity (log MF) as the explanatory variable (X) is created. The weighted average penetration distance and the weighted average log MF are values calculated by the equations (3) and (4), respectively. However, when the value on the right side of equation (5) is less than or equal to zero, the value of the deviation weighted average penetration distance is set to zero.

(5)式は、(2)式と数学的には等価であり、(1)式で偏差浸透距離が負の値をとる場合でもその値を0にすることなく加重平均値を計算した結果と一致する。上述したとおり、本来偏差浸透距離が負の値をとる銘柄は、配合炭の強度を向上させる効果は無いが、発明者らが種々の配合炭に対して加重平均偏差浸透距離と偏差加重平均浸透距離の関係を調査した結果、両者の間には実用的に十分な相関関係が成り立つ事を確認している。これは、前記回帰直線に対して浸透距離が大きく負に偏倚する石炭((1)式の右辺が大きな負の値になる石炭)はほとんど存在せず、仮に負に偏倚していても、その値は高々3mm程度と少ないことに起因している。そのため、偏差加重平均浸透距離を用いても、十分に従来のコークス強度予測よりも精度の高い予測を行なうことができる。   The formula (5) is mathematically equivalent to the formula (2), and the weighted average value is calculated without setting the value to 0 even when the deviation penetration distance is a negative value in the formula (1). Matches. As mentioned above, brands that have a negative deviation penetration distance do not have the effect of improving the strength of the blended coal, but the inventors have applied weighted average deviation penetration distance and deviation weighted average penetration for various blended coals. As a result of investigating the relationship between distances, it has been confirmed that there is a practically sufficient correlation between the two. This is because there is almost no coal that has a large penetration distance with respect to the regression line (coal in which the right side of equation (1) has a large negative value), and even if it is negatively biased, This is because the value is as small as about 3 mm at most. Therefore, even if the deviation weighted average penetration distance is used, it is possible to perform prediction with sufficiently higher accuracy than conventional coke strength prediction.

また、(2)式を用いて計算する際に、logMF<2.5の範囲にある石炭の偏差浸透距離を0として計算しても良い。これは、この性状範囲にある石炭の場合、その浸透距離が回帰式から大きくずれる事が無いことや、低MFの石炭は浸透距離の絶対値が小さいために測定誤差の影響を相対的に受け易く、予測精度を低下させる傾向にある、などの理由による。なお、この性状範囲にある石炭を用いて、配合炭の強度影響を調査したところ、浸透距離の差が、強度に大きく影響することが無い事を実験的に確認している。   Moreover, when calculating using Formula (2), you may calculate by making the deviation penetration distance of the coal in the range of logMF <2.5 into 0. This is because, in the case of coal in this property range, the penetration distance does not deviate greatly from the regression equation, and low MF coal is relatively affected by measurement errors because the absolute value of the penetration distance is small. It is easy and tends to reduce the prediction accuracy. In addition, when the strength influence of blended coal was investigated using the coal in this property range, it was experimentally confirmed that the difference in the permeation distance did not greatly affect the strength.

本発明の特徴は、コークス強度の予測を行なうための説明変数に、最高流動度(MF)と浸透距離とから導かれる性状パラメーターを使用する点にある。配合炭に使用する石炭は、通常、銘柄ごとに様々な品位を予め測定して使用している。最高流動度(MF)や浸透距離についても同様に予め銘柄のロット毎に測定しておけばよい。ここで、浸透距離の値は、測定条件によって変わる可能性があるため、すべての石炭について同じ条件で測定し、その値をコークス強度の予測に用いる。   The feature of the present invention is that a characteristic parameter derived from the maximum fluidity (MF) and the penetration distance is used as an explanatory variable for predicting the coke strength. Coal used for blended coal is usually used by measuring various grades for each brand in advance. Similarly, the maximum fluidity (MF) and permeation distance may be measured in advance for each brand lot. Here, since the value of the penetration distance may vary depending on the measurement conditions, measurement is performed under the same conditions for all coals, and the value is used for prediction of coke strength.

また、その他の石炭性状に関するパラメーターを、目的変数がコークス強度である回帰直線の説明変数に加えてもよい。特に、石炭の炭化度に関わるパラメーターおよび石炭の軟化溶融性に関わるパラメーターはコークスの強度の予測に重要である。石炭の炭化度に関わるパラメーターの例としては、石炭の反射率、揮発分、炭素含有率、発熱量などが挙げられ、軟化溶融性に関わるパラメーターの例としては、ギーセラー最高流動度、ジラトメーターから得られる膨張率、動的粘弾性、膨張性、比容積などの値が知られている。特に好ましいのは、石炭のビトリニットの平均最大反射率およびギーセラー最高流動度を浸透距離と合わせて、目的変数がコークス強度である回帰式の説明変数に加えることである。また、イナート含有量などのその他の石炭性状の指標や、石炭粒度や水分量などの石炭事前条件、コークス炉の乾留条件などのパラメーターを組み合わせて、目的変数がコークス強度である回帰式の説明変数に加えてもよい。   Moreover, you may add the parameter regarding another coal property to the explanatory variable of the regression line whose objective variable is coke strength. In particular, parameters related to the carbonization degree of coal and parameters related to the softening and melting property of coal are important in predicting the strength of coke. Examples of parameters related to the carbonization degree of coal include the reflectivity, volatile content, carbon content, and calorific value of coal, and examples of parameters related to softening and melting characteristics are obtained from the Gieseler maximum fluidity and dilatometer. Values such as expansion coefficient, dynamic viscoelasticity, expansibility, and specific volume are known. Particularly preferred is the addition of the average maximum reflectance of coal vitrinite and the highest Gieseller fluidity to the penetration distance, to the explanatory variable of the regression equation where the objective variable is coke strength. In addition, a combination of other coal property indicators such as inert content, coal preconditions such as coal particle size and moisture content, and coke oven dry distillation conditions, etc. You may add to.

以上のように、加重平均偏差浸透距離または偏差加重平均浸透距離である性状パラメーターを含む説明変数とし、コークス強度を目的変数とするコークス強度の予測式を予め作成しておき、予測した強度が操業の管理範囲になるように配合炭の配合割合を決定することで、所望の管理範囲の強度を有するコークスの基である配合炭に含まれる石炭の銘柄と含有割合を決定することが可能となる。引いては、所望の管理範囲の強度を有するコークスを安定的に製造することができる。   As described above, a weighted average deviation penetration distance or an explanatory variable including a property parameter that is a deviation weighted average penetration distance is used, and a prediction formula for coke strength with coke strength as a target variable is created in advance, and the predicted strength is By determining the blending ratio of the blended coal so as to be in the control range, it becomes possible to determine the brand and content ratio of the coal contained in the blended coal that is the base of the coke having the strength of the desired control range. . As a result, coke having a strength within a desired management range can be stably produced.

26種類の石炭(A〜Z炭)について、例えば、浸透距離等の石炭の性状を示す指標の測定を行った。使用した石炭の性状を表1に示す。ここで、RoはJIS M 8816の石炭のビトリニット平均最大反射率、logMFはギーセラプラストメータ法で測定した最高流動度(Maximum Fluidity:MF)の常用対数値、揮発分(VM)、灰分(Ash)はJIS M 8812の工業分析法による測定値(ドライベース)である。TIはJIS M 8816の石炭の微細組織成分の測定方法に基づき算出した、乾留時に軟化溶融性を示さないイナート成分の割合である。   For 26 types of coal (A to Z charcoal), for example, indicators indicating the properties of the coal such as permeation distance were measured. Table 1 shows the properties of the coal used. Here, Ro is the average vitrinite average reflectance of coal according to JIS M 8816, log MF is the common logarithm of the maximum fluidity (Maximum Fluidity: MF) measured by the Giesera plastometer method, volatile matter (VM), ash content (Ash) ) Is a measured value (dry base) according to the industrial analysis method of JIS M 8812. TI is a ratio of an inert component that does not exhibit softening and melting properties during dry distillation, calculated based on a method for measuring a microstructure component of coal according to JIS M 8816.

図1に示した装置を用い、浸透距離の測定を行った。加熱方式は高周波誘導加熱式としたため、図1の発熱体8は誘導加熱コイルであり、容器3の素材は誘電体である黒鉛を使用した。容器の直径は18mm、高さ37mmとし、上下面に貫通孔を有する材料として直径2mmのガラスビーズを用いた。粒度2mm以下に粉砕し室温で真空乾燥した石炭試料2.04gを容器3に装入し、石炭試料の上から重さ200gの錘を落下距離20mmで5回落下させることにより試料1を充填した(この状態で試料層厚は10mmとなった)。次に直径2mmのガラスビーズを試料1の充填層の上に25mmの厚さとなるように配置した。ガラスビーズ充填層の上に直径17mm、厚さ5mmのシリマナイト製円盤を配置し、その上に膨張率検出棒13として石英製の棒を置き、さらに石英棒の上部に1.3kgの錘14を置いた。これにより、シリマナイト円盤上にかかる圧力は50kPaとなる。不活性ガスとして窒素ガスを使用し、加熱速度3℃/分で550℃まで加熱した。加熱終了後、窒素雰囲気で冷却を行い、冷却後の容器から、軟化溶融した石炭と固着していないビーズ質量を計測した。なお、上記の測定条件は、種々の条件での測定結果の比較により、発明者らが好ましい浸透距離の測定条件として決定したものであるが、浸透距離測定はこの方法に限られるものではない。   The penetration distance was measured using the apparatus shown in FIG. Since the heating method was a high frequency induction heating type, the heating element 8 in FIG. 1 was an induction heating coil, and the material of the container 3 was graphite, which is a dielectric. The diameter of the container was 18 mm, the height was 37 mm, and glass beads with a diameter of 2 mm were used as materials having through holes on the upper and lower surfaces. The sample 1 was filled by loading 2.04 g of a coal sample pulverized to a particle size of 2 mm or less and vacuum-dried at room temperature into the container 3 and dropping a weight of 200 g from the top of the coal sample 5 times at a fall distance of 20 mm. (In this state, the sample layer thickness was 10 mm). Next, glass beads having a diameter of 2 mm were placed on the packed layer of Sample 1 so as to have a thickness of 25 mm. A sillimanite disk having a diameter of 17 mm and a thickness of 5 mm is placed on the glass bead packed layer, a quartz rod is placed thereon as the expansion coefficient detecting rod 13, and a weight of 1.3 kg is placed on the quartz rod. placed. As a result, the pressure applied on the sillimanite disk is 50 kPa. Nitrogen gas was used as the inert gas, and the mixture was heated to 550 ° C. at a heating rate of 3 ° C./min. After the heating, cooling was performed in a nitrogen atmosphere, and the mass of beads not fixed to the softened and melted coal was measured from the cooled container. In addition, although said measurement conditions are what the inventors determined as measurement conditions of a preferable penetration distance by the comparison of the measurement result on various conditions, a penetration distance measurement is not restricted to this method.

なお、ガラスビーズ層の厚みは浸透距離以上の層厚となるように配置すればよい。測定時にガラスビーズ層最上部まで溶融物が浸透してしまった場合には、ガラスビーズを増量して再測定を行なう。発明者らは、ガラスビーズの層厚を変更した試験を行ない、浸透距離以上のガラスビーズ層厚があれば、同一試料の浸透距離測定値は同じになることを確認している。   In addition, what is necessary is just to arrange | position so that the thickness of a glass bead layer may become layer thickness more than an osmosis | permeation distance. If the melt has penetrated to the top of the glass bead layer during measurement, the glass beads are increased and remeasured. The inventors conducted a test in which the layer thickness of the glass beads was changed, and confirmed that the permeation distance measurement values of the same sample would be the same if there was a glass bead layer thickness greater than or equal to the penetration distance.

浸透距離は固着したビーズ層の充填高さで求めた。ガラスビーズ充填層の充填高さと質量の関係をあらかじめ求め、軟化溶融した石炭が固着したビーズの質量よりガラスビーズ充填高さを導出できるようにした。その結果が(7)式であり、(7)式より浸透距離を導出した。   The permeation distance was determined by the filling height of the fixed bead layer. The relationship between the filling height and the mass of the glass bead packed bed was obtained in advance, and the glass bead filling height could be derived from the mass of the beads to which the softened and melted coal was fixed. The result is Equation (7), and the penetration distance was derived from Equation (7).

L=(G−M)×H ・・・(7)
ここで、Lは浸透距離[mm]、Gは充填したガラスビーズ質量[g]、Mは軟化溶融物と固着していないビーズ質量[g]、Hは本実験装置に充填されたガラスビーズの1gあたりの充填層高さ[mm/g]を表す。
L = (GM) × H (7)
Here, L is the penetration distance [mm], G is the mass of the filled glass beads [g], M is the mass of the beads not fixed to the softened melt [g], and H is the glass beads filled in this experimental apparatus. It represents the height of the packed bed per gram [mm / g].

浸透距離の測定結果を表1に併せて示す。また、浸透距離測定結果とギーセラー最高流動度の対数値(logMF)の関係を図6に示す。図6により、本実施例で測定した浸透距離はlogMFと相関は認められるが、同程度のlogMFであっても、浸透距離の異なる銘柄が存在することを確認した。特にその傾向は、logMFが高い領域で見られた。本装置での浸透距離の測定誤差が、同一条件で3回試験を行った結果標準偏差0.6であったことを考慮すると、logMFがほぼ等しい石炭Aと石炭Kに対して、浸透距離に有意な差が認められた。   The measurement results of the penetration distance are also shown in Table 1. Further, FIG. 6 shows the relationship between the measurement results of the osmosis distance and the logarithmic value (logMF) of the Gieseler maximum fluidity. From FIG. 6, the penetration distance measured in this example was correlated with log MF, but it was confirmed that there were brands with different penetration distances even with the same log MF. In particular, this tendency was observed in a region where log MF was high. Considering that the measurement error of the penetration distance in this device was a standard deviation of 0.6 as a result of three tests under the same conditions, the penetration distance was different for coal A and coal K with the same log MF. Significant differences were observed.

次に、本発明の浸透距離をコークス強度の予測方法に適用した際の有効性を調べる為に、表1の石炭を使って配合炭(2銘柄を1:1の質量割合で配合)を作製し、その乾留後のコークス強度を測定した。表2に配合炭の性状値を示す。また、上記(2)式で算出した加重平均偏差浸透距離および(5)式で算出した偏差加重平均浸透距離も併せて表2に示した。ここで、(1)式および(5)式の定数aは、表1の石炭のうち、1.0<logMF<2.5の範囲にある石炭の浸透距離及び最高流動度の値をもとに回帰直線の傾きを計算し、2.977に決定した。   Next, in order to examine the effectiveness when the penetration distance of the present invention is applied to the method for predicting the coke strength, blended coal (2 brands blended at a mass ratio of 1: 1) using the coal of Table 1 is prepared. Then, the coke strength after the carbonization was measured. Table 2 shows property values of the blended coal. Table 2 also shows the weighted average deviation penetration distance calculated by the equation (2) and the deviation weighted average penetration distance calculated by the formula (5). Here, the constant a in the formula (1) and the formula (5) is based on the coal penetration distance and the maximum fluidity in the range of 1.0 <log MF <2.5 among the coals in Table 1. The slope of the regression line was calculated and determined to be 2.977.

配合炭の乾留は以下の通り行った。表2記載の配合炭の水分を6mass%になるように調整し、この配合炭6kgを、嵩密度775kg/mとなるように乾留缶に充填し、その上に4.8kgの錘を乗せた状態で、炉壁温度1050℃の電気炉内で4時間20分乾留後、炉から取り出し窒素冷却し、コークスを得た。得られたコークスのコークス強度は、JIS K 2151の回転強度試験法に基づき、24rpm、400回転後の粒径6mm以上のコークスの質量割合を測定し、回転前との質量比をタンブラー強度TI400/6として算出した。タンブラー強度の測定結果も表2に併せて示した。 The carbonization of the blended coal was performed as follows. Moisture coal blend described in Table 2 was adjusted to 6 mass%, the coal blend 6 kg, was charged into the carbonization can so that the bulk density of 775 kg / m 3, carrying a weight of 4.8kg thereon In this state, the carbonization was carried out in an electric furnace with a furnace wall temperature of 1050 ° C. for 4 hours and 20 minutes, then taken out of the furnace and cooled with nitrogen to obtain coke. The coke strength of the obtained coke was measured based on the rotational strength test method of JIS K 2151 by measuring the mass ratio of coke having a particle size of 6 mm or more after 400 rpm and 400 rpm, and the mass ratio with the tumbler strength TI400 / Calculated as 6. The measurement results of the tumbler strength are also shown in Table 2.

次に、配合炭の性状値からコークス強度を重回帰分析により予測した。従来のコークス強度を予測するための石炭配合理論において、コークス強度は主に、石炭のビトリニット平均最大反射率(Ro)と、logMFにより決定されると考えられている。また、イナート組織の割合がコークス強度に影響を及ぼす事も一般的に知られている(例えば非特許文献2)。そこで、従来法のコークス強度の予測方法として、本試験で得られたタンブラー強度を目的変数とし、Ro、logMFとTIを説明変数として重回帰し、相関係数を求めた(比較例)。その結果、以下の回帰式(8)を得た。   Next, the coke strength was predicted from the property value of the blended coal by multiple regression analysis. In the conventional coal blending theory for predicting coke strength, it is considered that the coke strength is mainly determined by the vitrinite average maximum reflectance (Ro) of coal and log MF. Further, it is generally known that the ratio of the inert structure affects the coke strength (for example, Non-Patent Document 2). Therefore, as a conventional method for predicting coke strength, the tumbler strength obtained in this test was used as an objective variable, and Ro, log MF, and TI were used as explanatory variables, and a correlation coefficient was obtained (comparative example). As a result, the following regression equation (8) was obtained.

TI(400/6)=78.35+7.267×Ro+0.054×logMF−0.076×TI ・・・(8)
また、得られた相関係数ならびに自由度調整済み相関係数を表3に示す。
TI (400/6) = 78.35 + 7.267 × Ro + 0.054 × log MF−0.076 × TI (8)
Further, Table 3 shows the obtained correlation coefficient and the degree of freedom adjusted correlation coefficient.

同様に、本発明に基づいて、コークス強度の予測するために、本試験で得られたタンブラー強度を目的変数とし、Ro、logMF、TI、加重平均偏差浸透距離を説明変数として重回帰し、相関係数を求めた(本発明例1)。その結果、以下の回帰式(9)を得た。
TI(400/6)=75.01+10.11×Ro+0.870×logMF−0.124×TI−0.293×加重平均偏差浸透距離 ・・・(9)
偏差加重平均浸透距離を説明変数に用いて、本発明例1と同様に重回帰を行ない、以下の回帰式(10)を得た(本発明例2)。
TI(400/6)=75.05+10.20×Ro+0.850×logMF−0.129×TI−0.284×偏差加重平均浸透距離 ・・・(10)
なお、(8)〜(10)式のRo、logMF、TIはそれぞれ配合炭の加重平均ビトリニット平均最大反射率、加重平均logMF、加重平均TIである。
Similarly, in order to predict the coke strength based on the present invention, the tumbler strength obtained in this test was used as an objective variable, and Ro, log MF, TI, and the weighted average deviation penetration distance were used as explanatory variables, and multiple regression was performed. The number of relationships was determined (Invention Example 1). As a result, the following regression equation (9) was obtained.
TI (400/6) = 75.01 / 10.11 × Ro + 0.870 × log MF−0.124 × TI−0.293 × weighted average deviation penetration distance (9)
Using the deviation weighted average permeation distance as an explanatory variable, multiple regression was performed in the same manner as in Invention Example 1 to obtain the following regression equation (10) (Invention Example 2).
TI (400/6) = 75.05 + 10.20 × Ro + 0.850 × log MF−0.129 × TI−0.284 × deviation weighted average penetration distance (10)
In the equations (8) to (10), Ro, logMF, and TI are a weighted average vitrinite average maximum reflectance, a weighted average logMF, and a weighted average TI, respectively, of the blended coal.

それぞれの重回帰で得られた相関係数ならびに自由度調整済み相関係数を表3に併せて示してある。また、従来法の予測値及び加重平均偏差浸透距離に基づいた本発明の予測値と実測値との散布図を図7に示す。加えて、従来法の予測値及び偏差加重平均浸透距離に基づいた本発明の予測値と実測値との散布図を図8に示す。   Table 3 also shows the correlation coefficient obtained by each multiple regression and the correlation coefficient adjusted for the degree of freedom. Further, FIG. 7 shows a scatter diagram of the predicted value of the present invention and the actually measured value based on the predicted value of the conventional method and the weighted average deviation penetration distance. In addition, FIG. 8 shows a scatter diagram of the predicted value and the actual measurement value of the present invention based on the predicted value of the conventional method and the deviation weighted average penetration distance.

表3、図7および図8より、本発明によるコークス強度の予測式は、従来のコークス強度の予測式に比べて、相関係数が高く、表2の配合炭で測定されるコークス強度について従来の予測式より誤差の少ない予測式となっていることがわかる。   From Table 3, FIG. 7 and FIG. 8, the coke strength prediction formula according to the present invention has a higher correlation coefficient than the conventional coke strength prediction formula, and the conventional coke strength measured with the blended coal of Table 2 is conventional. It can be seen that this is a prediction formula with fewer errors than the above prediction formula.

次に、表4記載の配合炭の乾留後のコークス強度を(8)〜(10)式を用いて予測し、それぞれの予測式の精度を検証した。コークスの乾留方法および強度の測定方法は、前記コークス強度の予測式作成の際に実施した方法と同じである。   Next, the coke strength after dry distillation of the coal blends listed in Table 4 was predicted using equations (8) to (10), and the accuracy of each prediction equation was verified. The coke dry distillation method and the strength measurement method are the same as the methods implemented in the preparation of the prediction formula for the coke strength.

比較例を実施して得られた(8)式による予測値および本発明例1を実施して得られた(9)式による予測値と実測値との散布図を図9に示す。加えて、(8)式による予測値および本発明例2を実施して得られた(10)式による予測値と実測値との散布図を図10に示す。また、それぞれの散布図から得られた相関係数を表5に示す。   FIG. 9 shows a scatter diagram of the predicted value obtained by carrying out the comparative example according to the formula (8) and the predicted value obtained according to the formula (9) obtained by carrying out the present invention example 1 and the actual measured value. In addition, FIG. 10 shows a scatter diagram of the predicted value based on the formula (8) and the predicted value based on the formula (10) obtained by carrying out the present invention example 2 and the actually measured value. Table 5 shows the correlation coefficient obtained from each scatter diagram.

表5、図9および図10より、本発明によるコークス強度の予測式は、従来のコークス強度の予測式に比べて、相関係数が高く、予測精度が向上していることを確かめられた。従って、本発明による予測方法が、従来技術に比較して非常に有効である。   From Table 5, FIG. 9, and FIG. 10, it was confirmed that the prediction formula of coke strength according to the present invention has a higher correlation coefficient and improved prediction accuracy than the conventional prediction formula of coke strength. Therefore, the prediction method according to the present invention is very effective as compared with the prior art.

なお、本発明例では、コークスの回転強度を予測する方法の例としてタンブラー強度の予測例を示したが、JISドラム強度や、マイカム強度、ASTM強度の予測も同じ原理により行なうことができる。さらに、コークスの反応性を考慮に入れれば、CSR(CO反応後コークス強度)の予測も行なうことができる。 In the example of the present invention, a prediction example of tumbler strength is shown as an example of a method for predicting the rotational strength of coke, but prediction of JIS drum strength, Mycam strength, and ASTM strength can also be performed based on the same principle. Furthermore, if the reactivity of coke is taken into consideration, it is possible to predict CSR (coke strength after CO 2 reaction).

1 試料
2 上下面に貫通孔を有する材料
3 容器
4 圧力検出棒
5 スリーブ
6 ロードセル
7 温度計
8 発熱体
9 温度検出器
10 温度調節器
11 ガス導入口
12 ガス排出口
13 膨張率検出棒
14 錘
15 変位計
16 円形貫通孔
17 充填粒子
18 充填円柱
20 気孔壁
21 気孔
DESCRIPTION OF SYMBOLS 1 Sample 2 Material which has a through-hole in the upper and lower surfaces 3 Container 4 Pressure detection rod 5 Sleeve 6 Load cell 7 Thermometer 8 Heating element 9 Temperature detector 10 Temperature controller 11 Gas inlet 12 Gas outlet 13 Expansion coefficient detection rod 14 Weight DESCRIPTION OF SYMBOLS 15 Displacement meter 16 Circular through-hole 17 Packing particle 18 Packing cylinder 20 Porous wall 21 Porous

Claims (6)

複数銘柄の石炭を含む配合炭を乾留することにより作製されるコークスの配合炭の組成を決定するコークス用配合炭組成決定方法であって、
複数銘柄の石炭を含む調査対象配合炭から作製されたコークスのコークス強度を測定し、かつ、前記調査対象配合炭に含まれる前記複数銘柄の石炭の各々の最高流動度(MF)ddpm及び浸透距離mmを測定し、
測定されたコークス強度を目的変数とし、最高流動度(MF)と浸透距離とに基づいて算出される性状パラメーターを含む説明変数と前記目的変数とで、複数銘柄の石炭を含む予測対象配合炭から作製されるコークスのコークス強度を予測する回帰式を作成して、該回帰式に基づいて、作製されるコークスのコークス強度を予測し、
予測されるコークス強度が所定の管理範囲となるように、前記予測対象配合炭に含まれる石炭の銘柄と複数の銘柄の配合割合とを決定するコークス用配合炭組成決定方法であって、
下記(1)式により、前記調査対象配合炭中の各銘柄の石炭の浸透距離及び最高流動度の測定値から、前記調査対象配合炭中の各銘柄の石炭の偏差浸透距離を算出し、
下記(2)式により、前記調査対象配合炭中の各銘柄の石炭の配合割合に応じて、該各銘柄の石炭の偏差浸透距離を加重平均して得られる、加重平均偏差浸透距離を算出し、
前記性状パラメーターとして前記加重平均偏差浸透距離を用いることを特徴とするコークス用配合炭組成決定方法。

ここで、aは、1.0<logMF<2.5の範囲となる、コークスの原料に用いられ得る少なくとも1つ以上の石炭の、浸透距離と最高流動度(MF)の常用対数値(logMF)との複数の組から原点を通る回帰直線を作成した際の、該回帰直線についての、logMFの変化量に対する浸透距離の変化量の比の値であり、
浸透距離は、前記調査対象配合炭中の各銘柄の石炭の浸透距離であり、
logMFは、最高流動度の常用対数値であり、但し、(1)式の右辺の値がゼロ以下となる場合には偏差浸透距離の値は0とする。

ここで、α は、前記調査対象配合炭中の各銘柄の石炭 の配合割合であり、
(偏差浸透距離) は、前記調査対象配合炭中の各銘柄の石炭 の偏差浸透距離であり、
Nは、前記調査対象配合炭を構成する石炭銘柄の総数である。
A coke blending coal composition determining method for determining a composition of coke blended coal produced by dry distillation of blended coal containing multiple brands of coal,
Measure coke strength of coke prepared from survey coal blend containing multiple brands of coal, and maximum fluidity (MF) ddpm and permeation distance of each of the multiple brand coals included in the survey coal blend measure mm,
With the measured coke strength as the objective variable, the explanatory variable including the property parameter calculated based on the maximum fluidity (MF) and the permeation distance and the objective variable, from the prediction target blended coal including multiple brands of coal Create a regression equation to predict the coke strength of the coke to be produced, predict the coke strength of the coke to be produced based on the regression equation,
A coke blending coal composition determining method for determining a coal brand and a blending ratio of a plurality of brands included in the prediction target blended coal so that the predicted coke strength is in a predetermined management range ,
From the following formula (1), the deviation penetration distance of each brand coal in the survey coal blend is calculated from the measured value of the penetration distance and maximum fluidity of each brand coal in the survey blend coal,
The following formula (2) is used to calculate the weighted average deviation penetration distance obtained by weighted averaging the deviation penetration distance of each brand of coal according to the blending ratio of each brand of coal in the surveyed blended coal. ,
The blended coal composition determination method for coke, wherein the weighted average deviation penetration distance is used as the property parameter.

Here, a is a common logarithmic value (log MF) of penetration distance and maximum fluidity (MF) of at least one or more coals that can be used as a raw material for coke, which is in a range of 1.0 <log MF <2.5. ) And a regression line passing through the origin from a plurality of sets, the value of the ratio of the change amount of the penetration distance to the change amount of log MF for the regression line,
The permeation distance is the permeation distance of each brand of coal in the investigational blended coal,
logMF is a common logarithm of the maximum fluidity, provided that the value of the deviation permeation distance is 0 when the value on the right side of the equation (1) is less than or equal to zero.

Here, α i is the blending ratio of each brand of coal i in the surveyed blended coal ,
(Deviation penetration distance) i is a deviation penetration distance of coal i of each brand in the investigation target blended coal ,
N is the total number of coal brands constituting the survey coal blend.
複数銘柄の石炭を含む配合炭を乾留することにより作製されるコークスの配合炭の組成を決定するコークス用配合炭組成決定方法であって、
複数銘柄の石炭を含む調査対象配合炭から作製されたコークスのコークス強度を測定し、かつ、前記調査対象配合炭に含まれる前記複数銘柄の石炭の各々の最高流動度(MF)ddpm及び浸透距離mmを測定し、
測定されたコークス強度を目的変数とし、最高流動度(MF)と浸透距離とに基づいて算出される性状パラメーターを含む説明変数と前記目的変数とで、複数銘柄の石炭を含む予測対象配合炭から作製されるコークスのコークス強度を予測する回帰式を作成して、該回帰式に基づいて、作製されるコークスのコークス強度を予測し、
予測されるコークス強度が所定の管理範囲となるように、前記予測対象配合炭に含まれる石炭の銘柄と複数の銘柄の配合割合とを決定するコークス用配合炭組成決定方法であって、
前記調査対象配合炭中の各銘柄の石炭の浸透距離及び最高流動度の測定値から、前記調査対象配合炭中の各銘柄の石炭の配合割合に応じて下記(3)式、(4)式の加重平均浸透距離及び加重平均logMFを算出し、
下記(5)式により、算出した加重平均浸透距離及び加重平均logMFを用いて偏差加重平均浸透距離を算出し、
前記性状パラメーターとして、偏差加重平均浸透距離を用いることを特徴とするコークス用配合炭組成決定方法。

ここで、α は、前記調査対象配合炭中の各銘柄の石炭iの配合割合、
(浸透距離) は、前記調査対象配合炭中の各銘柄の石炭iの浸透距離、
(logMF) は、前記調査対象配合炭中の各銘柄の石炭iのlogMF、
Nは、前記調査対象配合炭を構成する石炭銘柄の総数である。

ここで、aは、1.0<logMF<2.5の範囲となる、コークスの原料に用いられ得る少なくとも1つ以上の石炭の、浸透距離と最高流動度(MF)の常用対数値(logMF)との複数の組から原点を通る回帰直線を作成した際の、該回帰直線についての、logMFの変化量に対する浸透距離の変化量の比の値であり、
加重平均浸透距離は、(3)式で算出された値であり、
加重平均logMFは、(4)式で算出された値である、但し、(5)式の右辺の値がゼロ以下となる場合には偏差加重平均浸透距離の値は0とする。
A coke blending coal composition determining method for determining a composition of coke blended coal produced by dry distillation of blended coal containing multiple brands of coal,
Measure coke strength of coke prepared from survey coal blend containing multiple brands of coal, and maximum fluidity (MF) ddpm and permeation distance of each of the multiple brand coals included in the survey coal blend measure mm,
With the measured coke strength as the objective variable, the explanatory variable including the property parameter calculated based on the maximum fluidity (MF) and the permeation distance and the objective variable, from the prediction target blended coal including multiple brands of coal Create a regression equation to predict the coke strength of the coke to be produced, predict the coke strength of the coke to be produced based on the regression equation,
A coke blending coal composition determining method for determining a coal brand and a blending ratio of a plurality of brands included in the prediction target blended coal so that the predicted coke strength is in a predetermined management range ,
From the measured values of the penetration distance and maximum fluidity of each brand of coal in the surveyed blended coal, the following formulas (3) and (4) are set according to the blending ratio of each brand of coal in the surveyed blended coal. The weighted average penetration distance and the weighted average log MF of
The deviation weighted average penetration distance is calculated using the weighted average penetration distance and the weighted average logMF calculated according to the following formula (5):
A method of determining a blended coal composition for coke, wherein a deviation weighted average permeation distance is used as the property parameter.

Here, α i is a blending ratio of each brand of coal i in the blended coal to be investigated,
(Penetration distance) i is the penetration distance of coal i of each brand in the investigational blended coal,
(Log MF) i is a log MF of each brand of coal i in the investigational blended coal,
N is the total number of coal brands constituting the survey coal blend.

Here, a is a common logarithmic value (log MF) of penetration distance and maximum fluidity (MF) of at least one or more coals that can be used as a raw material for coke, which is in a range of 1.0 <log MF <2.5. ) And a regression line passing through the origin from a plurality of sets, the value of the ratio of the change amount of the penetration distance to the change amount of log MF for the regression line,
The weighted average penetration distance is a value calculated by equation (3),
The weighted average log MF is a value calculated by the equation (4). However, when the value of the right side of the equation (5) is equal to or less than zero, the value of the deviation weighted average penetration distance is zero.
前記浸透距離の測定については、粒径2mm以下に調製した石炭を0.8g/cmの充填密度で容器内に厚さ10mmに充填して試料とし、該試料の上に直径2mmのガラスビーズを配置し、該ガラスビーズに50kPaの荷重を負荷しつつ、3℃/分の加熱速度で550℃まで前記試料を加熱する際に、前記ガラスビーズへ浸透した溶融試料の浸透距離を測定することを特徴とする、請求項1または請求項2に記載のコークス用配合炭組成決定方法。 For the measurement of the penetration distance, coal prepared to a particle size of 2 mm or less is packed into a container with a packing density of 0.8 g / cm 3 to a thickness of 10 mm, and a glass bead with a diameter of 2 mm is placed on the sample. When the sample is heated to 550 ° C. at a heating rate of 3 ° C./min while applying a load of 50 kPa to the glass beads, the penetration distance of the molten sample that has penetrated into the glass beads is measured. The method for determining a blended carbon composition for coke according to claim 1 or 2 , wherein: 前記説明変数に、石炭の炭化度に関わるパラメーターを加えて、コークス強度を予測することを特徴とする請求項1ないし請求項のいずれか1項に記載のコークス用配合炭組成決定方法。 The method for determining a blended coal composition for coke according to any one of claims 1 to 3 , wherein a coke strength is predicted by adding a parameter related to the carbonization degree of coal to the explanatory variable. 前記説明変数に、石炭の炭化度に関わるパラメーター及び石炭の軟化溶融性に関わるパラメーターを加えてコークス強度を予測することを特徴とする請求項1ないし請求項のいずれか1項に記載のコークス用配合炭組成決定方法。 The coke strength according to any one of claims 1 to 3 , wherein coke strength is predicted by adding a parameter related to the carbonization degree of coal and a parameter related to softening and melting property of coal to the explanatory variable. Method for determining the blended coal composition. 請求項1〜請求項のいずれか1項に記載のコークス用配合炭組成決定方法によって決定された石炭の銘柄と含有割合とに基づいて配合炭を作製し、前記配合炭を乾留してコークスを製造するコークス製造方法。 A blended coal is produced based on the brand and content ratio of coal determined by the method for determining the blended coal composition for coke according to any one of claims 1 to 5 , and the blended coal is subjected to dry distillation to coke. Coke manufacturing method to manufacture.
JP2012043731A 2012-02-29 2012-02-29 Coke blending coal composition determination method and coke manufacturing method Active JP6056157B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012043731A JP6056157B2 (en) 2012-02-29 2012-02-29 Coke blending coal composition determination method and coke manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012043731A JP6056157B2 (en) 2012-02-29 2012-02-29 Coke blending coal composition determination method and coke manufacturing method

Publications (2)

Publication Number Publication Date
JP2013181048A JP2013181048A (en) 2013-09-12
JP6056157B2 true JP6056157B2 (en) 2017-01-11

Family

ID=49271955

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012043731A Active JP6056157B2 (en) 2012-02-29 2012-02-29 Coke blending coal composition determination method and coke manufacturing method

Country Status (1)

Country Link
JP (1) JP6056157B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5888539B2 (en) * 2013-02-21 2016-03-22 Jfeスチール株式会社 Method for producing metallurgical coke
WO2014129336A1 (en) * 2013-02-21 2014-08-28 Jfeスチール株式会社 Method for producing metallurgical coke
CN106133116A (en) * 2014-03-28 2016-11-16 杰富意钢铁株式会社 Coal mixtures, the manufacture method of coal mixtures and the manufacture method of coke
JP6036891B2 (en) * 2014-03-28 2016-11-30 Jfeスチール株式会社 Coke production method
CN106574189A (en) * 2014-08-15 2017-04-19 杰富意钢铁株式会社 Metallurgical coke and method of manufacturing same
CN106661458B (en) * 2014-08-15 2019-12-24 杰富意钢铁株式会社 Metallurgical coke and method for producing same
CN104164246B (en) * 2014-08-22 2016-02-03 江苏沙钢集团有限公司 The Coal Blending Expert System of a kind of applicable top dress coke oven
CN113969178B (en) * 2020-07-23 2023-05-09 上海梅山钢铁股份有限公司 High-strength coke and coking method
CN111915232B (en) * 2020-08-25 2023-06-30 武汉钢铁有限公司 Coal blending adjustment method for reducing mass percentage of coke with granularity of more than 60mm

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11349957A (en) * 1998-06-08 1999-12-21 Nippon Steel Corp Estimation of coke strength
JP2002020760A (en) * 2000-07-13 2002-01-23 Mitsubishi Chemicals Corp Method for estimating coke strength
JP5045081B2 (en) * 2006-11-29 2012-10-10 Jfeスチール株式会社 Manufacturing method of high strength coke
JP2010190761A (en) * 2009-02-19 2010-09-02 Jfe Steel Corp Method for evaluating softening and melting characteristics of coal

Also Published As

Publication number Publication date
JP2013181048A (en) 2013-09-12

Similar Documents

Publication Publication Date Title
JP6056157B2 (en) Coke blending coal composition determination method and coke manufacturing method
JP5229362B2 (en) Method for producing metallurgical coke
KR101561748B1 (en) Method for producing coke
JP5071578B2 (en) Preparation method of coal for coke production
JP5152378B2 (en) Method for producing metallurgical coke
JP2010190761A (en) Method for evaluating softening and melting characteristics of coal
JP5578293B2 (en) Preparation method of coal for coke production
JP5062378B1 (en) Coke production method
JP5201250B2 (en) Method for producing metallurgical coke and caking material for producing metallurgical coke
JP5067495B2 (en) Method for producing metallurgical coke
TWI457555B (en) Evaluation method of softening and melting of coal and binder and method for manufacturing coke

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150908

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160412

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160610

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161121

R150 Certificate of patent or registration of utility model

Ref document number: 6056157

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250