JP2010190761A - Method for evaluating softening and melting characteristics of coal - Google Patents

Method for evaluating softening and melting characteristics of coal Download PDF

Info

Publication number
JP2010190761A
JP2010190761A JP2009036093A JP2009036093A JP2010190761A JP 2010190761 A JP2010190761 A JP 2010190761A JP 2009036093 A JP2009036093 A JP 2009036093A JP 2009036093 A JP2009036093 A JP 2009036093A JP 2010190761 A JP2010190761 A JP 2010190761A
Authority
JP
Japan
Prior art keywords
coal
softening
lower surfaces
holes
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009036093A
Other languages
Japanese (ja)
Inventor
Hiroyuki Sumi
広行 角
Izumi Shimoyama
泉 下山
Takashi Anyashiki
孝思 庵屋敷
Kiyoshi Fukada
喜代志 深田
Hidekazu Fujimoto
英和 藤本
Yusuke Doi
勇介 土肥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2009036093A priority Critical patent/JP2010190761A/en
Publication of JP2010190761A publication Critical patent/JP2010190761A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for evaluating softening and melting characteristics of coal capable of more precisely evaluating the softening and melting characteristics of coal by measuring the softening and melting characteristics of coal in a condition that simulates surrounding environment of coal softened and melted in a coke oven. <P>SOLUTION: The method for evaluating the softening and melting characteristics of coal includes the steps of arranging a material 2 with a through-hole penetrating the upper and the lower surface of a coal sample 1, which is filled with a predetermined amount of coal in a container, on the sample 1 to maintain the coal sample 1 and the material 2 with the through-hole penetrating the upper and the lower surface at a constant volume, therewith, measuring a penetration distance of molten coal penetrated in the through-hole when heating the coal sample 1 at a predetermined heating rate, and evaluating the softening and melting of coal using the penetration distance measured. Alternatively, the method includes the steps of maintaining the coal sample 1 and the material 2 with the through-hole penetrating the upper and the lower surface at a constant volume, therewith, heating the coal sample 1 at a predetermined heating rate, measuring the pressure of coal transmitted through the material 2 with the through-hole penetrating the upper and the lower surface, and evaluating the softening and melting characteristics of coal using the penetration distance measured. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

この発明はコークス製造用石炭の品質評価法の一つである、石炭乾留時の軟化溶融特性を評価する試験方法に関するものである。   The present invention relates to a test method for evaluating softening and melting characteristics during coal dry distillation, which is one of quality evaluation methods for coal for coke production.

コークス製造用石炭にとって、軟化溶融特性は非常に重要な性質である。高炉用コークスにおいては、高炉内通気性を維持するため、堅牢なコークスの製造が求められている。石炭は乾留により、軟化溶融して互いに接着し、コークスとなる。従って、石炭の軟化溶融特性の違いがコークス強度に大きな影響を及ぼしているといえる。   For coal for coke production, softening and melting properties are a very important property. In the blast furnace coke, in order to maintain the air permeability in the blast furnace, it is required to produce a robust coke. Coal is softened and melted by dry distillation and adheres to each other to form coke. Therefore, it can be said that the difference in the softening and melting characteristics of coal has a great influence on the coke strength.

石炭の軟化溶融特性を測定する方法として、JIS M 8801に規定されるギーセラプラストメーター法による石炭流動性試験方法が挙げられる。ギーセラプラストメーター法は、425μm以下に粉砕した石炭を所定のるつぼに入れ、規定の昇温速度で加熱し、規定のトルクをかけた撹拌棒の回転速度を測定し、1分ごとの目盛分割をもって試料の軟化溶融特性を表す方法である。   As a method for measuring the softening and melting characteristics of coal, there is a coal fluidity test method by the Giesera plastometer method defined in JIS M8801. In the Giesera plastometer method, coal pulverized to 425 μm or less is put in a predetermined crucible, heated at a specified temperature rise rate, measured for the rotation speed of a stirring rod with a specified torque applied, and divided into scales every minute. Is a method for expressing the softening and melting characteristics of the sample.

ギーセラプラストメーター法がトルク一定での撹拌棒の回転速度を測定しているのに対し、定回転方式でトルクを測定する方法も考案されている。例えば、特許文献1では、回転子を一定の回転速度で回転させながらトルクを測定する方法が記載されている。   In contrast to the Giesera plastometer method, which measures the rotational speed of the stirring rod with a constant torque, a method for measuring the torque with a constant rotation method has also been devised. For example, Patent Document 1 describes a method of measuring torque while rotating a rotor at a constant rotational speed.

また、軟化溶融特性として物理的に意味のある粘性を測定することを目的にした、動的粘弾性測定装置による粘度の測定方法がある(例えば、特許文献2参照。)。動的粘弾性測定とは、粘弾性体に周期的に力を加えたときの応答を測定することである。特許文献2に記載の方法では、測定で得られるパラメータ中の複素粘性率により軟化溶融石炭の粘性を評価しており、任意のせん断速度における軟化溶融石炭の粘度を測定可能な点が特徴である。   In addition, there is a viscosity measurement method using a dynamic viscoelasticity measuring device for the purpose of measuring a physically meaningful viscosity as a softening and melting characteristic (see, for example, Patent Document 2). The dynamic viscoelasticity measurement is to measure a response when a force is periodically applied to the viscoelastic body. The method described in Patent Document 2 is characterized in that the viscosity of the softened molten coal is evaluated by the complex viscosity in the parameters obtained by the measurement, and the viscosity of the softened molten coal at an arbitrary shear rate can be measured. .

さらに、石炭の軟化溶融特性として、活性炭、またはガラスビーズを用い、それらへの石炭軟化溶融物接着性を測定した例が報告されている。少量の石炭試料を活性炭、ガラスビーズで上下方向から挟んだ状態で加熱し、軟化溶融後に冷却を行い、石炭と活性炭、ガラスビーズとの接着性を外観から観察する方法である。   Furthermore, as an example of the softening and melting characteristics of coal, an example in which activated carbon or glass beads was used and the coal softening melt adhesion to them was measured was reported. In this method, a small amount of coal sample is heated while being sandwiched between activated carbon and glass beads from above and below, cooled after softening and melting, and the adhesion between coal, activated carbon and glass beads is observed from the appearance.

石炭の軟化溶融特性として、流動性以外に膨張性も重要視されている。代表的な方法に、JIS M 8801に規定されているジラトメーター法が挙げられる。さらに、コークス炉内での石炭軟化溶融挙動を模擬するため、石炭軟化溶融時に発生するガスの透過挙動を改善した石炭膨張性試験方法も知られている(例えば、特許文献3参照)。これは、石炭層とピストンの間、もしくは石炭層とピストンの間と石炭層の下部に透過性材料を配置し、ガスと液状物質の透過経路を増やすことで、測定環境を、よりコークス炉内の膨張挙動に近づけた方法である。   In addition to fluidity, expansibility is also regarded as important as a softening and melting characteristic of coal. A typical method is a dilatometer method defined in JIS M8801. Furthermore, in order to simulate the behavior of coal softening and melting in a coke oven, a coal expansibility test method that improves the permeation behavior of gas generated during softening and melting of coal is also known (see, for example, Patent Document 3). This is because the permeable material is placed between the coal bed and the piston, or between the coal bed and the piston and at the bottom of the coal bed, and the permeation path of gas and liquid substance is increased. This is a method close to the expansion behavior.

特開平6−347392号公報JP-A-6-347392 特開2000−304674号公報JP 2000-304673 A 特許第2855728号公報Japanese Patent No. 2855728

諸富ら著:「燃料協会誌」、Vol.53、1974年、p.779Morotomi et al .: “Journal of Fuel Association”, Vol. 53, 1974, p. 779 宮津ら著:「日本鋼管技報」、vol.67、1979年、p.125Miyazu et al .: “Nippon Steel Pipe Technical Report”, vol. 67, 1979, p. 125

コークス炉内での石炭の軟化溶融挙動を評価するためには、コークス炉内において軟化溶融した石炭の周辺の環境を模擬した状態で、石炭の軟化溶融特性を測定することが必要である。しかし、従来方法には以下のような問題がある。   In order to evaluate the softening and melting behavior of coal in a coke oven, it is necessary to measure the softening and melting characteristics of coal in a state simulating the environment around the coal softened and melted in the coke oven. However, the conventional method has the following problems.

ギーセラプラストメーター法は、石炭を容器に充填した状態での測定のため、拘束、浸透条件を全く考慮していない点で問題である。また、ギーセラプラストメーターは高い流動性を示す石炭の測定には適さない。石炭は軟化溶融時、軟化、発泡し、膨張を示すが、高い流動性を示す石炭を測定する場合、容器内側壁部が空洞となる現象(Weissenberg効果)が認められる(例えば、非特許文献1参照。)。この結果、撹拌棒は空回りするため、流動性を正しく測定することは困難である。   The Giesera plastometer method is problematic in that it does not take into account any restraint or infiltration conditions for measurement in a state where coal is filled in a container. In addition, the Giesera Plastometer is not suitable for measuring coal with high fluidity. Coal softens, foams and expands when softened and melted, but when measuring coal exhibiting high fluidity, a phenomenon (Weissenberg effect) in which the inner wall of the container becomes hollow is observed (for example, Non-Patent Document 1). reference.). As a result, since the stirring rod is idle, it is difficult to correctly measure the fluidity.

定回転方式でトルクを測定する方法についても同様に、拘束条件、浸透条件を考慮していない点で不備がある。また、せん断速度一定下での測定のため、上記で述べたように石炭の軟化溶融特性を正しく比較評価することができない。   Similarly, the method of measuring the torque by the constant rotation method is deficient in that the constraint condition and the penetration condition are not taken into consideration. In addition, because of the measurement under a constant shear rate, it is impossible to correctly compare and evaluate the softening and melting characteristics of coal as described above.

動的粘弾性測定装置は、軟化溶融特性として粘性を対象とし、任意のせん断速度下で粘度が測定可能な装置である。よって、せん断速度をコークス炉内での挙動の値とすれば、コークス炉内での軟化溶融石炭の粘度を測定可能である。しかし、各銘柄のせん断速度を測定、または推定して設定する必要があり、煩雑である。   The dynamic viscoelasticity measuring apparatus is an apparatus that targets viscosity as a softening and melting characteristic and can measure the viscosity under an arbitrary shear rate. Therefore, if the shear rate is the value of the behavior in the coke oven, the viscosity of the softened molten coal in the coke oven can be measured. However, it is necessary to set by measuring or estimating the shear rate of each brand, which is complicated.

石炭の軟化溶融特性として、活性炭、またはガラスビーズを用い、それらへの接着性を測定する方法は、石炭層の存在について浸透条件を再現しようとしているものの、コークス層と粗大欠陥を模擬していない点で問題がある。また、拘束下での測定でない点でも不十分である。   The method of measuring the adhesion to coal using activated carbon or glass beads as the softening and melting characteristics of coal is trying to reproduce the infiltration conditions for the presence of the coal layer, but does not simulate the coke layer and coarse defects There is a problem in terms. Moreover, the point which is not a measurement under restraint is also insufficient.

特許文献3に記載されている透過性材料を用いた石炭膨張性試験方法においては、石炭から発生するガス、液状物質の移動を考慮しているが、軟化溶融した石炭自体の移動を考慮していない点で不十分である。これは特許文献3で用いる透過性材料の透過度が、軟化溶融石炭が移動するほど十分に大きくないためであると考えられる。軟化溶融石炭の浸透を起こさせるためには、新たな条件を考慮する必要がある。   In the coal expansibility test method using the permeable material described in Patent Document 3, the movement of gas and liquid substance generated from coal is considered, but the movement of softened and melted coal itself is considered. There is not enough in that. This is considered to be because the permeability of the permeable material used in Patent Document 3 is not sufficiently high to move the softened molten coal. New conditions must be taken into account in order for softened molten coal to penetrate.

このように、従来技術ではコークス炉内において軟化溶融した石炭の周辺の環境を模擬した状態で、石炭の軟化溶融特性を測定することができない。   As described above, in the conventional technology, the softening and melting characteristics of coal cannot be measured in a state simulating the environment around the coal softened and melted in the coke oven.

したがって本発明の目的は、このような従来技術の課題を解決し、コークス炉内において軟化溶融した石炭の周辺の環境を模擬した状態で、石炭の軟化溶融特性を測定して、石炭の軟化溶融特性をより正確に評価できる、石炭の軟化溶融特性評価方法を提供することにある。   Accordingly, the object of the present invention is to solve such problems of the prior art, measure the softening and melting characteristics of the coal in a state of simulating the environment around the softened and melted coal in the coke oven, and soften and melt the coal. An object of the present invention is to provide a method for evaluating the softening and melting characteristics of coal, which can more accurately evaluate the characteristics.

コークス炉内での石炭の軟化溶融挙動を評価するためには、コークス炉内において軟化溶融した石炭の周辺の環境を模擬した状態で、石炭の軟化溶融特性を測定することが必要である。本発明者らは従来の測定方法の検証を行い、新たに拘束条件、浸透条件の2条件を適切に制御することが重要であることを見出した。以下に上記の2条件を制御する根拠について述べる。   In order to evaluate the softening and melting behavior of coal in a coke oven, it is necessary to measure the softening and melting characteristics of coal in a state simulating the environment around the coal softened and melted in the coke oven. The present inventors have verified a conventional measurement method and found that it is important to newly appropriately control two conditions of constraint conditions and penetration conditions. The basis for controlling the above two conditions will be described below.

コークス炉内において、軟化溶融時の石炭は隣接する層に拘束された状態で軟化溶融性を示している。石炭の熱伝導率は小さいため、コークス炉内において石炭は一様に加熱されず、加熱面である炉壁側からコークス層、軟化溶融層、石炭層と状態が異なっている。コークス炉自体は乾留時多少膨張するがほとんど変形しないため、軟化溶融した石炭は隣接するコークス層、石炭層に拘束されている。よって、隣接するコークス層、石炭層の拘束を模擬した条件で測定することが、軟化溶融特性の評価に重要である。   In the coke oven, the coal at the time of softening and melting exhibits softening and melting properties while being constrained by adjacent layers. Since the thermal conductivity of coal is small, the coal is not uniformly heated in the coke oven, and the state differs from the coke layer, the softened molten layer, and the coal layer from the furnace wall side that is the heating surface. Since the coke oven itself expands somewhat during dry distillation but hardly deforms, the softened and melted coal is constrained by the adjacent coke layer and coal layer. Therefore, it is important for the evaluation of the softening and melting characteristics to perform measurement under conditions simulating the constraints of the adjacent coke layer and coal layer.

また、軟化溶融した石炭は、周囲に存在する欠陥構造へ移動することが考えられる。軟化溶融層周辺の欠陥構造は、石炭層の石炭粒子間空隙、軟化溶融石炭の粒子間空隙、熱分解ガスの揮発により発生した粗大気孔、隣接するコークス層に生じる亀裂など、様々ある。特に、コークス層に生じる亀裂は、その幅が数百ミクロンから数ミリ程度と考えられ、数十〜数百ミクロン程度の大きさである石炭粒子間空隙や気孔に比較して大きい。そのため、このようなコークス層に生じる粗大欠陥へは、石炭から発生する副生物である熱分解ガスや液状物質だけではなく、軟化溶融した石炭自体の移動も起こると考えられる。従って、石炭の軟化溶融特性の評価には、周囲の欠陥構造、特に粗大欠陥の浸透条件を模擬して測定する必要がある。   Moreover, it is considered that the softened and melted coal moves to a defect structure existing around. There are various defect structures around the softened and melted layer, such as voids between coal particles in the coal layer, voids between particles of the softened molten coal, rough air holes generated by volatilization of the pyrolysis gas, and cracks generated in the adjacent coke layer. In particular, the crack generated in the coke layer is considered to have a width of several hundred microns to several millimeters, and is larger than the voids and pores between coal particles having a size of about several tens to several hundreds of microns. For this reason, it is considered that not only pyrolytic gas and liquid substances, which are by-products generated from coal, but also softened and melted coal itself moves to such coarse defects generated in the coke layer. Therefore, in order to evaluate the softening and melting characteristics of coal, it is necessary to measure by simulating the penetration conditions of surrounding defect structures, particularly coarse defects.

さらに、種々の石炭銘柄に対し、コークス炉内での石炭軟化溶融特性を比較評価するためには、コークス炉内で石炭が軟化溶融し、周辺の欠陥構造へ移動、または変形した範囲内でのせん断速度下において測定する必要がある。この場合、せん断速度は銘柄毎に異なることが予想されるため、各銘柄の軟化溶融時の変形、移動挙動を、コークス炉内での挙動と等しくなるような測定条件にすることが求められる。従って、コークス炉での石炭軟化溶融挙動に基づく石炭軟化溶融特性を評価する場合、せん断速度一定下ではなく、コークス炉内でのせん断速度を再現する必要があり、そのためには拘束条件、透過条件を石炭の銘柄ごとに適正に制御する必要がある。   Furthermore, in order to compare and evaluate the coal softening and melting characteristics in the coke oven for various coal brands, the coal is softened and melted in the coke oven and moved to the surrounding defect structure or deformed. It is necessary to measure under shear rate. In this case, since the shear rate is expected to be different for each brand, it is required to set the measurement conditions such that the deformation and movement behavior of each brand during softening and melting is equal to the behavior in the coke oven. Therefore, when evaluating the coal softening and melting characteristics based on the coal softening and melting behavior in the coke oven, it is necessary to reproduce the shear rate in the coke oven, not under a constant shear rate. Must be controlled appropriately for each brand of coal.

本発明はこのような知見に基づきなされたもので、その特徴は以下の通りである。
(1)所定量の石炭を容器に充填して石炭試料とし、該石炭試料の上に上下面に貫通孔を有する材料を配置し、前記石炭試料と前記上下面に貫通孔を有する材料を一定容積に保ちつつ、所定の加熱速度で前記石炭試料を加熱する際に、前記貫通孔へ浸透した溶融石炭の浸透距離を測定し、該測定値を用いて石炭の軟化溶融特性を評価することを特徴とする石炭の軟化溶融特性の評価方法。
(2)所定量の石炭を容器に充填して石炭試料とし、該石炭試料の上に上下面に貫通孔を有する材料を配置し、前記石炭試料と前記上下面に貫通孔を有する材料を一定容積に保ちつつ、所定の加熱速度で前記石炭試料を加熱する際に、前記上下面に貫通孔を有する材料を介して伝達される前記石炭の圧力を測定し、該測定値を用いて石炭の軟化溶融特性を評価することを特徴とする石炭の軟化溶融特性の評価方法。
(3)所定量の石炭を容器に充填して石炭試料とし、該石炭試料の上に上下面に貫通孔を有する材料を配置し、前記上下面に貫通孔を有する材料に一定荷重を負荷しつつ、所定の加熱速度で前記石炭試料を加熱する際に、前記貫通孔へ浸透した溶融石炭の浸透距離を測定し、該測定値を用いて石炭の軟化溶融特性を評価することを特徴とする石炭の軟化溶融特性の評価方法。
(4)所定量の石炭を容器に充填して石炭試料とし、該石炭試料の上に上下面に貫通孔を有する材料を配置し、前記上下面に貫通孔を有する材料に一定荷重を負荷しつつ、所定の加熱速度で前記石炭試料を加熱する際に、前記石炭の膨張率を測定し、該測定値を用いて石炭の軟化溶融特性を評価することを特徴とする石炭の軟化溶融特性の評価方法。
The present invention has been made based on such findings, and the features thereof are as follows.
(1) A predetermined amount of coal is filled into a container to obtain a coal sample, a material having through holes on the upper and lower surfaces is placed on the coal sample, and the material having the through holes on the upper and lower surfaces is fixed. When heating the coal sample at a predetermined heating rate while maintaining the volume, the penetration distance of the molten coal that has penetrated into the through-holes is measured, and the softening and melting characteristics of the coal are evaluated using the measured values. A characteristic evaluation method for softening and melting characteristics of coal.
(2) Filling a container with a predetermined amount of coal to make a coal sample, placing a material having through holes on the upper and lower surfaces on the coal sample, and fixing the coal sample and the material having through holes on the upper and lower surfaces While heating the coal sample at a predetermined heating rate while maintaining the volume, the pressure of the coal transmitted through the material having through holes on the upper and lower surfaces is measured, and the measured value is used to measure the coal An evaluation method for softening and melting characteristics of coal, characterized by evaluating softening and melting characteristics.
(3) Filling a container with a predetermined amount of coal to form a coal sample, placing a material having through holes on the upper and lower surfaces on the coal sample, and applying a constant load to the material having the through holes on the upper and lower surfaces. Meanwhile, when the coal sample is heated at a predetermined heating rate, the penetration distance of the molten coal that has penetrated into the through hole is measured, and the softening and melting characteristics of the coal are evaluated using the measured value. Evaluation method for softening and melting characteristics of coal.
(4) Filling a container with a predetermined amount of coal to form a coal sample, placing a material having through holes on the upper and lower surfaces on the coal sample, and applying a constant load to the material having the through holes on the upper and lower surfaces. Meanwhile, when the coal sample is heated at a predetermined heating rate, the expansion coefficient of the coal is measured, and the softening and melting property of the coal is evaluated using the measured value. Evaluation methods.

本発明によれば、コークス炉内での石炭軟化溶融特性に大きな影響を及ぼすと考えられる、コークス炉内での石炭軟化溶融層周辺に存在する欠陥構造、特に軟化溶融層に隣接するコークス層に存在する粗大欠陥の影響を模擬し、また、コークス炉内での軟化溶融物周辺の拘束条件を適切に再現した状態での、石炭軟化溶融特性の評価が可能となる。また、コークス炉内で石炭が軟化溶融し、移動、変形した時のせん断速度での、欠陥構造への石炭軟化溶融物浸透距離、浸透時膨張率、浸透時圧力が測定可能となる。   According to the present invention, the defect structure existing around the coal softening and melting layer in the coke oven, particularly the coke layer adjacent to the softening and melting layer, which is considered to have a great influence on the coal softening and melting characteristics in the coke oven. Coal softening and melting characteristics can be evaluated while simulating the effect of existing coarse defects and appropriately reproducing the restraint conditions around the softening melt in the coke oven. Further, the penetration distance of coal softened melt into the defect structure, the expansion coefficient during penetration, and the pressure during penetration can be measured at the shear rate when the coal is softened, melted, moved and deformed in the coke oven.

これによりコークス炉内での石炭の軟化溶融挙動を正確に評価することができるようになり、高強度コークスの開発にも利用できる。   This makes it possible to accurately evaluate the softening and melting behavior of coal in a coke oven, and can be used to develop high-strength coke.

本発明で使用する石炭試料と上下面に貫通孔を有する材料を一定容積に保ちつつ軟化溶融特性を測定する装置の一例を示す概略図である。It is the schematic which shows an example of the apparatus which measures a softening-melting characteristic, keeping the coal sample used by this invention, and the material which has a through-hole in an upper and lower surface at a fixed volume. 本発明で使用する石炭試料と上下面に貫通孔を有する材料に一定荷重を負荷させつつ軟化溶融特性を測定する装置の一例を示す概略図である。It is the schematic which shows an example of the apparatus which measures a softening-melting characteristic, applying a fixed load to the coal sample used by this invention, and the material which has a through-hole in an upper and lower surface. 本発明で使用する上下面に貫通孔を有する材料のうち、円形貫通孔をもつものの一例を示す概略図である。It is the schematic which shows an example of what has a circular through-hole among the materials which have a through-hole in the upper and lower surfaces used by this invention. 本発明で使用する上下面に貫通孔を有する材料のうち、球形粒子充填層の一例を示す概略図である。It is the schematic which shows an example of a spherical particle packing layer among the materials which have a through-hole in the upper and lower surfaces used by this invention. 本発明で使用する上下面に貫通孔を有する材料のうち、円柱充填層の一例を示す概略図である。It is the schematic which shows an example of a cylindrical packing layer among the materials which have a through-hole in the upper and lower surfaces used by this invention. 実施例1で測定した、石炭軟化溶融物の浸透距離の測定結果を示すグラフである。4 is a graph showing the measurement results of the penetration distance of the coal softened melt measured in Example 1. FIG. 実施例1で測定した、2種類の配合炭のコークス強度測定結果を示すグラフである。It is a graph which shows the coke strength measurement result of two types of combination charcoal measured in Example 1. 実施例2で測定した、石炭軟化溶融物の浸透距離の測定結果を示すグラフである。It is a graph which shows the measurement result of the penetration distance of the coal softening melt measured in Example 2.

図1、図2に本発明で使用する装置の一例を示す。図1は石炭試料と上下面に貫通孔を有する材料を一定容積に保ちつつ石炭試料を加熱する場合の装置、図2は石炭試料と上下面に貫通孔を有する材料に一定荷重を負荷させて石炭試料を加熱する場合の装置である。容器3下部に石炭を充填して石炭試料1とし、石炭試料1の上に、上下面に貫通孔を有する材料2を配置する。石炭試料1を軟化溶融温度域以上に加熱し、石炭を上下面に貫通孔を有する材料2に浸透させ、浸透距離を測定するものである。加熱は不活性ガス雰囲気下で行うものとする。   1 and 2 show an example of an apparatus used in the present invention. FIG. 1 shows an apparatus for heating a coal sample while maintaining a constant volume of the coal sample and the material having through holes on the upper and lower surfaces, and FIG. 2 shows a case where a constant load is applied to the coal sample and the material having the through holes on the upper and lower surfaces. This is an apparatus for heating a coal sample. The lower part of the container 3 is filled with coal to form a coal sample 1, and the material 2 having through holes on the upper and lower surfaces is disposed on the coal sample 1. The coal sample 1 is heated to the softening and melting temperature range or more, the coal is infiltrated into the material 2 having through holes on the upper and lower surfaces, and the infiltration distance is measured. Heating is performed in an inert gas atmosphere.

石炭試料1と上下面に貫通孔を有する材料2を一定容積に保ちつつ石炭試料1を加熱する場合、上下面に貫通孔を有する材料2を介して石炭浸透時の圧力を測定することが可能である。図1に示すように、上下面に貫通孔を有する材料2の上面に圧力検出棒4を配置し、圧力検出棒4の上端にロードセル6を接触させ、圧力を測定するものとする。一定容積を保つため、ロードセル6が上下方向に動かないよう固定する。加熱前、容器3に充填された石炭に対し、上下面に貫通孔を有する材料2、圧力検出棒4、ロードセル6間に隙間が出来ないよう、それぞれを密着させておく。上下面に貫通孔を有する材料2が粒子充填層の場合は、圧力検出棒4が粒子充填層に埋没する可能性があるため、上下面に貫通孔を有する材料2と圧力検出棒4の間に板を挟む措置を講ずる必要がある。   When heating the coal sample 1 while maintaining a constant volume of the coal sample 1 and the material 2 having through holes on the upper and lower surfaces, it is possible to measure the pressure during coal penetration through the material 2 having the through holes on the upper and lower surfaces. It is. As shown in FIG. 1, a pressure detection rod 4 is arranged on the upper surface of a material 2 having through holes on the upper and lower surfaces, a load cell 6 is brought into contact with the upper end of the pressure detection rod 4, and the pressure is measured. In order to maintain a constant volume, the load cell 6 is fixed so as not to move up and down. Before heating, the coal filled in the container 3 is brought into close contact with each other so that no gap is formed between the material 2 having a through hole on the upper and lower surfaces, the pressure detection rod 4 and the load cell 6. When the material 2 having through holes on the upper and lower surfaces is a particle packed layer, the pressure detection rod 4 may be buried in the particle packed layer. It is necessary to take measures to sandwich the board.

石炭試料1と上下面に貫通孔を有する材料2に一定荷重を負荷させて石炭試料を加熱する場合、石炭試料1が膨張を示し、上下面に貫通孔を有する材料2が上下方向に移動する。よって、上下面に貫通孔を有する材料2を介して石炭浸透時の膨張率を測定することが可能である。図2に示すように上下面に貫通孔を有する材料2の上面に膨張率検出棒13を配置し、膨張率検出棒13の上端に荷重付加用の重り14を乗せ、その上に変位計15を配置し、膨張率を測定するものとする。変位計15は、石炭膨張率の膨張範囲(−100%〜300%)を測定可能なものを用いれば良い。加熱系内を不活性ガス雰囲気に保持する必要があるため、非接触式の変位計が適しており、光学式変位計を用いることが望ましい。上下面に貫通孔を有する材料2が粒子充填層の場合は、膨張率検出棒13が粒子充填層に埋没する可能性があるため、上下面に貫通孔を有する材料2と膨張率検出棒13の間に板を挟む措置を講ずる必要がある。   When a constant load is applied to the coal sample 1 and the material 2 having through holes on the upper and lower surfaces and the coal sample is heated, the coal sample 1 shows expansion, and the material 2 having the through holes on the upper and lower surfaces moves in the vertical direction. . Therefore, it is possible to measure the expansion rate at the time of coal penetration through the material 2 having through holes on the upper and lower surfaces. As shown in FIG. 2, an expansion coefficient detection rod 13 is arranged on the upper surface of the material 2 having through holes on the upper and lower surfaces, a weight 14 for applying a load is placed on the upper end of the expansion coefficient detection rod 13, and a displacement meter 15 is placed thereon. And the expansion coefficient shall be measured. The displacement meter 15 may be one that can measure the expansion range (-100% to 300%) of the coal expansion rate. Since it is necessary to maintain the inside of the heating system in an inert gas atmosphere, a non-contact type displacement meter is suitable, and it is desirable to use an optical displacement meter. In the case where the material 2 having through holes on the upper and lower surfaces is a particle packed layer, the expansion coefficient detecting rod 13 may be buried in the particle packed layer, and therefore the material 2 having the through holes on the upper and lower surfaces and the expansion coefficient detecting rod 13. It is necessary to take measures to put a board between them.

加熱手段は、石炭試料の温度を測定しつつ、所定の昇温速度で加熱できる方式のものを用いることが望ましい。具体的には、電気炉、高周波誘導炉などの外熱式、またはマイクロ波のような内部加熱式である。内部加熱式を採用する場合は、石炭試料内温度を均一にする工夫を施す必要があり、例えば、容器の断熱性を高める措置を講ずることが挙げられる。   It is desirable to use a heating means that can heat at a predetermined rate of temperature while measuring the temperature of the coal sample. Specifically, it is an external heating type such as an electric furnace or a high frequency induction furnace, or an internal heating type such as a microwave. In the case of adopting the internal heating method, it is necessary to devise a method for making the temperature inside the coal sample uniform, for example, taking measures to improve the heat insulating property of the container.

加熱速度については、コークス炉内での石炭軟化溶融挙動を模擬するという目的から、コークス炉内での石炭の加熱速度に一致させる必要がある。コークス炉内での石炭の加熱速度を考慮すると、3℃/min程度とすることが望ましい。しかし、非微粘結炭のように流動性の低い石炭の場合、3℃/minでは浸透距離が小さく検出感度が低下する可能性がある。石炭は急速加熱することによりギーセラプラストメーターによる流動性が向上することが知られているため、低流動性石炭、例えば浸透距離が1mm以下の石炭の場合には加熱速度を10〜1000℃/minで測定し検出感度を向上させてもよい。   The heating rate needs to match the heating rate of coal in the coke oven for the purpose of simulating coal softening and melting behavior in the coke oven. Considering the heating rate of coal in the coke oven, it is desirable to set it at about 3 ° C./min. However, in the case of coal with low fluidity such as non-slightly caking coal, the permeation distance is small and the detection sensitivity may be reduced at 3 ° C./min. Since it is known that coal is improved in fluidity by Giesera plastometer by rapid heating, in the case of low-flowing coal, for example, coal with an infiltration distance of 1 mm or less, the heating rate is 10 to 1000 ° C / The detection sensitivity may be improved by measuring in min.

加熱を行なう温度範囲については、石炭軟化溶融特性の評価が目的であるため、石炭軟化溶融温度域まで加熱できればよい。軟化溶融を示す石炭の軟化溶融温度域を考慮すると、0℃(室温)〜550℃の範囲において、所定の加熱速度で加熱すればよい。   About the temperature range which heats, since evaluation of a coal softening melting characteristic is an object, it should just be able to heat to a coal softening melting temperature range. In consideration of the softening and melting temperature range of coal exhibiting softening and melting, heating may be performed at a predetermined heating rate in the range of 0 ° C. (room temperature) to 550 ° C.

上下面に貫通孔を有する材料は、透過係数をあらかじめ測定または算出できるものが望ましい。材料の例として、貫通孔を持つ一体型の材料、粒子充填層が挙げられる。貫通孔を持つ一体型の材料としては、例えば、図3に示すような円形の貫通孔16を持つもの、矩形の貫通孔を持つもの、不定形の貫通孔を持つものなどが挙げられる。粒子充填層は、大きく球形粒子充填層、非球形粒子充填層に分けられ、球形粒子充填層としては図4に示すようなビーズの充填粒子17からなるもの、非球形粒子充填層としては不定形粒子や、図5に示すような円柱充填層からなるものなどが挙げられる。測定の再現性を保つため、材料内の透過係数はなるべく均一で、かつ、透過係数の算出が容易なものがよく、測定を簡便にするためにも望ましい。よって、本発明で用いる上下面に貫通孔を有する材料には球形粒子充填層の利用が特に望ましい。上下面に貫通孔を有する材料の材質は、石炭軟化溶融温度域以上、具体的には600℃まで形状がほとんど変化しないものならば特に指定はない。   The material having through holes on the upper and lower surfaces is preferably one that can measure or calculate the transmission coefficient in advance. Examples of the material include an integrated material having a through hole and a particle packed layer. Examples of the integrated material having a through hole include a material having a circular through hole 16 as shown in FIG. 3, a material having a rectangular through hole, and a material having an indeterminate shape. The particle packed layer is roughly divided into a spherical particle packed layer and a non-spherical particle packed layer. The spherical particle packed layer is composed of beads packed particles 17 as shown in FIG. 4, and the non-spherical particle packed layer is indefinite. Examples thereof include particles and a cylindrical packing layer as shown in FIG. In order to maintain the reproducibility of the measurement, the transmission coefficient in the material should be as uniform as possible and the transmission coefficient can be easily calculated, which is also desirable in order to simplify the measurement. Therefore, it is particularly desirable to use a spherical particle packed layer for the material having through holes on the upper and lower surfaces used in the present invention. The material having the through-holes on the upper and lower surfaces is not particularly specified as long as the shape hardly changes up to the coal softening and melting temperature range, specifically up to 600 ° C.

上下面に貫通孔を有する材料の透過係数は、コークス層に存在する粗大欠陥の透過係数を推定して設定する必要がある。本発明に特に望ましい透過係数について、粗大欠陥構成因子の考察や大きさの推定など、本発明者らが検討を重ねた結果、透過係数が1×108〜2×109-2の場合が最適であることを見出した。この透過係数は、下記(1)式で表されるDarcy則に基づき導出されるものである。
ΔP/L=K・μ・u ・・・ (1)
ここで、ΔPは上下面に貫通孔を有する材料内での圧力損失[Pa]、Lは貫通孔を有する材料の高さ[m]、Kは透過係数[m-2]、μは流体の粘度[Pa・s]、uは流体の速度[m/s]である。
The transmission coefficient of the material having through holes on the upper and lower surfaces needs to be set by estimating the transmission coefficient of coarse defects present in the coke layer. In the case where the transmission coefficient is 1 × 10 8 to 2 × 10 9 m −2 as a result of repeated investigations by the present inventors, such as consideration of coarse defect constituent factors and estimation of the size, which are particularly desirable for the present invention. Was found to be optimal. This transmission coefficient is derived based on the Darcy rule expressed by the following equation (1).
ΔP / L = K · μ · u (1)
Here, ΔP is the pressure loss [Pa] in the material having through holes on the upper and lower surfaces, L is the height [m] of the material having the through holes, K is the transmission coefficient [m −2 ], μ is the fluid. Viscosity [Pa · s], u is fluid velocity [m / s].

石炭軟化溶融物の浸透距離は、石炭加熱中に常時測定できることが本来望ましい。しかし、通常は常時測定は困難であるため、石炭軟化溶融物が浸透終了した後、容器全体を冷却し、実際に冷却後の浸透距離を測定することで代用してもよい。例えば、冷却後の容器から上下面に貫通孔を有する材料を取り出し、ノギスや定規で直接測定することが可能である。また、上下面に貫通孔を有する材料として粒子を使用した場合には、粒子間空隙に浸透した軟化溶融物は浸透した部分まで粒子層全体を固着させている。よって、前もって粒子充填層の質量と高さの関係を求めておけば、浸透終了後、固着していない粒子の質量を測定することで、固着している粒子の質量を導出でき、そこから浸透距離を算出することができる。   It is inherently desirable that the penetration distance of the coal softening melt can be measured constantly during coal heating. However, since measurement is usually difficult at all times, after the coal softening melt has been infiltrated, the entire container may be cooled, and the actual infiltration distance after cooling may be measured instead. For example, it is possible to take out a material having through holes on the upper and lower surfaces from the cooled container and directly measure with a caliper or a ruler. Further, when particles are used as a material having through holes on the upper and lower surfaces, the softened melt that has permeated the interparticle voids fixes the entire particle layer to the permeated portion. Therefore, if the relationship between the mass and height of the particle packed bed is obtained in advance, the mass of the fixed particles can be derived by measuring the mass of the non-adhered particles after the infiltration, and the infiltration from there The distance can be calculated.

上記の(1)式中には粘度項(μ)が含まれている。よって、本発明で測定したパラメータより、上下面に貫通孔を有する材料内に浸透した軟化溶融物の粘度を推定することが可能である。例えば、石炭試料と上下面に貫通孔を有する材料を一定容積に保ちつつ石炭試料を加熱した場合では、ΔPは浸透時圧力、Lは浸透距離、uは浸透速度となり、(1)式に代入することにより粘度が導出可能である。また、石炭試料と上下面に貫通孔を有する材料に一定荷重を負荷させて石炭試料を加熱する場合では、ΔPは付加した荷重の圧力、Lは浸透距離、uは浸透速度となり、これも(1)式に代入することにより粘度が導出可能である。   Viscosity term (μ) is included in the above formula (1). Therefore, it is possible to estimate the viscosity of the softened melt that has penetrated into the material having through holes on the upper and lower surfaces from the parameters measured in the present invention. For example, when a coal sample is heated while maintaining a constant volume of a material having through holes on the upper and lower surfaces, ΔP is the pressure during penetration, L is the penetration distance, and u is the penetration speed. By doing so, the viscosity can be derived. In addition, when a constant load is applied to a coal sample and a material having through holes on the upper and lower surfaces and the coal sample is heated, ΔP is the pressure of the applied load, L is the penetration distance, u is the penetration speed, Viscosity can be derived by substituting into equation (1).

石炭試料と上下面に貫通孔を有する材料を一定容積で加熱した場合の測定例を示す。11種類の石炭(A炭〜K炭)について、浸透距離と浸透時圧力の測定を行った。使用した石炭の性状(平均最大反射率:Ro、最高流動度:logMF、揮発分:VM、灰分:Ash)を表1に示す。   The measurement example at the time of heating a coal sample and the material which has a through-hole in an up-and-down surface by fixed volume is shown. For 11 types of coal (A charcoal to K charcoal), the permeation distance and the pressure during permeation were measured. Table 1 shows the properties of coal used (average maximum reflectance: Ro, maximum fluidity: log MF, volatile content: VM, ash content: Ash).

Figure 2010190761
Figure 2010190761

図1に示したものと同様の装置を用い、浸透距離と浸透時圧力の測定を行った。加熱方式を高周波誘導加熱式としたため、図1の発熱体8は誘導加熱コイルとし、容器3の素材は誘電体である黒鉛とした。容器3の直径は18mm、高さ37mmとし、上下面に貫通孔を有する材料2として直径2mmのガラスビーズを用いた。粒度2mm以下に粉砕した石炭を2.04g量りとり、容器に装入し、石炭の上から重さ200gの重りを落下距離20mmで5回落下させることにより石炭を充填して石炭試料1とした。次に2mmガラスビーズを9.36g量りとり、石炭試料1の上に配置したガラスビーズ充填層を上下面に貫通孔を有する材料2とした。ガラスビーズ充填層の上に直径17mm、厚さ5mmのシリマナイト製円盤を、その上に圧力検出棒4として石英製の棒を配置した。不活性ガスとして窒素ガスを使用し、加熱速度3℃/minで550℃まで加熱した。加熱中はロードセル6により圧力検出棒4から付加される圧力を測定した。加熱終了後、窒素雰囲気で冷却を行い、冷却後の容器3から、軟化溶融した石炭と固着していないビーズの質量を計測した。   Using a device similar to that shown in FIG. 1, the permeation distance and the pressure during permeation were measured. Since the heating method is a high frequency induction heating type, the heating element 8 of FIG. 1 is an induction heating coil, and the material of the container 3 is a dielectric graphite. The diameter of the container 3 was 18 mm, the height was 37 mm, and glass beads having a diameter of 2 mm were used as the material 2 having through holes on the upper and lower surfaces. A coal sample 1 was prepared by weighing 2.04 g of coal pulverized to a particle size of 2 mm or less, charging it in a container, and dropping a weight of 200 g from above the coal 5 times at a fall distance of 20 mm to fill the coal. . Next, 9.36 g of 2 mm glass beads were weighed, and the glass bead packed layer disposed on the coal sample 1 was used as the material 2 having through holes on the upper and lower surfaces. A sillimanite disk having a diameter of 17 mm and a thickness of 5 mm was disposed on the glass bead packed layer, and a quartz rod was disposed thereon as the pressure detection rod 4. Nitrogen gas was used as an inert gas and heated to 550 ° C. at a heating rate of 3 ° C./min. During heating, the pressure applied from the pressure detection rod 4 by the load cell 6 was measured. After completion of the heating, cooling was performed in a nitrogen atmosphere, and the mass of the softened and melted coal and beads not fixed was measured from the cooled container 3.

浸透距離は固着したビーズ層の充填高さとした。ガラスビーズ充填層の充填高さと質量の関係をあらかじめ求め、軟化溶融した石炭が固着したビーズの質量よりガラスビーズ充填高さを導出できるようにした。その結果が下記(2)式であり、(2)式より浸透距離を導出した。
L=(9.36−M)×2.63 ・・・ (2)
ここで、Lは浸透距離[mm]、Mは軟化溶融した石炭と固着していないビーズ質量[g]を表す。
The penetration distance was the filling height of the fixed bead layer. The relationship between the filling height and the mass of the glass bead packed bed was obtained in advance, and the glass bead filling height could be derived from the mass of the beads to which the softened and melted coal was fixed. The result is the following formula (2), and the penetration distance was derived from the formula (2).
L = (9.36−M) × 2.63 (2)
Here, L represents the permeation distance [mm], and M represents the mass of beads [g] not fixed to the softened and melted coal.

浸透距離測定結果を表2に、従来の軟化溶融特性指標であるギーセラプラストメーター法の最高流動度(logMF)に対する浸透距離の測定結果を図6に示す。   The results of the penetration distance measurement are shown in Table 2, and the measurement results of the penetration distance with respect to the maximum fluidity (log MF) of the Giesera Plastometer method, which is a conventional softening and melting characteristic index, are shown in FIG.

Figure 2010190761
Figure 2010190761

図6によれば、浸透距離は最高流動度に対しある程度の相関は認められるが、相関から外れている銘柄も多いため、浸透距離は最高流動度とは傾向の異なる指標であると認められる。特に、表1、表2において石炭Gと石炭Hとを比較すると、最高流動度(logMF)はほぼ等しい値を示しているのに対し、浸透距離には大差が認められた。浸透距離の測定誤差が、同一条件で3回試験を行った結果標準偏差0.5であったため、石炭Gと石炭Hの浸透距離の差は4.7であり、有意な差である。浸透距離の方が、コークス炉内での石炭軟化溶融挙動を模擬できることを考慮すると、従来法のギーセラプラストメーター法は、石炭Gの軟化溶融特性を過大評価しているといえる。   According to FIG. 6, the permeation distance has a certain degree of correlation with the maximum fluidity, but since there are many brands that are out of the correlation, the permeation distance is recognized as an index having a different tendency from the maximum fluidity. In particular, when Coal G and Coal H are compared in Tables 1 and 2, the maximum fluidity (log MF) shows almost the same value, but a large difference was found in the permeation distance. Since the measurement error of the penetration distance was a standard deviation of 0.5 as a result of performing the test three times under the same conditions, the difference between the penetration distances of Coal G and Coal H is 4.7, which is a significant difference. Considering that the penetration distance can simulate the coal softening and melting behavior in the coke oven, it can be said that the conventional Giesera plastometer method overestimates the softening and melting characteristics of coal G.

浸透距離がコークス炉での軟化溶融挙動を模擬した条件下での流動性を示すパラメータであるとすると、ギーセラプラストメーターによる最高流動度より優れたパラメータであると考えられる。このことを確かめるために、最高流動度がほぼ等しく浸透距離の異なる石炭Gと石炭Hに対し、コークス強度比較試験を実施した。従来理論では、コークス強度は主に、石炭のビトリニット平均反射率(Roの平均値)と、ギーセラプラストメーター法による最高流動度(Max Fluidity:MF)により決定される(例えば、非特許文献2参照。)。そこで、石炭G、または石炭Hを20mass%配合し、配合炭全体のビトリニット平均反射率(Roの平均値)、最高流動度(logMF)が等しくなるように種々の石炭を配合した配合炭(配合炭G、配合炭H)から製造した2種類のコークスの強度を比較した。石炭配合条件を表3、配合炭性状平均値を表4に示す。   If the permeation distance is a parameter indicating fluidity under conditions simulating softening and melting behavior in a coke oven, it is considered that this parameter is superior to the maximum fluidity measured by a Giesera plastometer. In order to confirm this, a coke strength comparison test was carried out on Coal G and Coal H having almost the same maximum fluidity and different penetration distances. In the conventional theory, the coke strength is mainly determined by the vitrinite average reflectance (average value of Ro) of coal and the maximum fluidity (Max Fluidity: MF) by the Giesera plastometer method (for example, Non-Patent Document 2). reference.). Therefore, 20% by mass of Coal G or Coal H is blended, and various coals are blended so that the vitrinite average reflectance (average value of Ro) and the maximum fluidity (log MF) of the entire blended coal are equal. The strengths of two types of coke produced from charcoal G and blended charcoal H) were compared. The coal blending conditions are shown in Table 3, and the blended coal properties average value is shown in Table 4.

Figure 2010190761
Figure 2010190761

Figure 2010190761
Figure 2010190761

コークス強度は、JIS K 2151の回転強度試験法に基づくドラム強度で評価した。粒度3mm以下100mass%、水分8mass%に調整した配合炭16kgを、嵩密度750kg/m3に充填し、電気炉で乾留した。炉壁温度1050℃で6時間乾留後、窒素冷却し、ドラム強度試験を実施した。JIS K 2151の回転強度試験法に基づき、15rpm、150回転で粒径15mm以上のコークスの質量割合を測定し、回転前との質量比をドラム強度DI150/15として算出した。 The coke strength was evaluated by drum strength based on the rotational strength test method of JIS K 2151. 16 kg of blended coal adjusted to a particle size of 3 mm or less and 100 mass% and a water content of 8 mass% was charged to a bulk density of 750 kg / m 3 and dry-distilled in an electric furnace. After dry distillation at a furnace wall temperature of 1050 ° C. for 6 hours, nitrogen cooling was performed, and a drum strength test was performed. Based on the rotational strength test method of JIS K 2151, the mass ratio of coke having a particle size of 15 mm or more was measured at 15 rpm and 150 revolutions, and the mass ratio before rotation was calculated as the drum strength DI 150/15.

ドラム強度測定結果を図7に示す。石炭Gを配合した配合炭Gに比べ、石炭Hを配合した配合炭Hの方が高いドラム強度を示した。ギーセラプラストメーター法による最高流動度では、石炭Gの軟化溶融特性を過大評価していたため、配合炭Gが流動性不足となり、ドラム強度が低下したものと考えられる。よって、本発明により測定した浸透距離により、石炭の流動性をより適切に評価することが可能になったといえる。   The drum strength measurement results are shown in FIG. Compared with the blended coal G blended with the coal G, the blended coal H blended with the coal H showed higher drum strength. In the maximum fluidity by the Giesera plastometer method, since the softening and melting characteristics of coal G were overestimated, it is considered that the blended coal G became insufficient in fluidity and the drum strength was lowered. Therefore, it can be said that the fluidity of coal can be more appropriately evaluated by the penetration distance measured by the present invention.

また、各石炭の浸透時の最大圧力測定結果を表2に併せて示す。表2に示す最大圧力は、コークス炉内での膨張挙動を模擬した測定環境での圧力測定結果であるため、コークス強度推定や、コークス炉壁にかかる圧力の推定に用いるパラメータとして有効であるといえる。   Moreover, the maximum pressure measurement result at the time of infiltration of each coal is shown together in Table 2. The maximum pressure shown in Table 2 is the result of pressure measurement in a measurement environment that simulates the expansion behavior in the coke oven, and is therefore effective as a parameter used for coke strength estimation and pressure estimation on the coke oven wall. I can say that.

石炭試料と上下面に貫通孔を有する材料に一定荷重を負荷させて石炭試料を加熱した場合の測定例を示す。実施例1と同じ11種類の石炭(A炭〜K炭)について、浸透距離と浸透時膨張率の測定を行った。図2に示したものと同様の装置を用い、浸透距離と浸透時膨張率の測定を行った。加熱方式は高周波誘導加熱式としたため、図2の発熱体8を誘導加熱コイルとし、容器3の素材は誘電体である黒鉛とした。容器3の直径は18mm、高さ37mmとし、上下面に貫通孔を有する材料として直径2mmのガラスビーズを用いた。粒度2mm以下に粉砕した石炭を2.04g量りとり、容器3に装入し、石炭の上から重さ200gの重りを落下距離20mmで5回落下させることにより石炭を充填し石炭試料1とした。次に2mmガラスビーズを9.36g量りとり、石炭試料1の上に配置したガラスビーズ充填層を上下面に貫通孔を有する材料2とした。ガラスビーズ充填層の上に直径17mm、厚さ5mmのシリマナイト製円盤を配置し、その上に膨張率検出棒13として石英製の棒を置いた。不活性ガスとして窒素ガスを使用し、加熱速度3℃/minで550℃まで加熱した。加熱中はレーザー変位計により変位を測定し、石炭充填時の高さから膨張率を算出した。加熱終了後、窒素雰囲気で冷却を行い、冷却後の容器から、軟化溶融した石炭と固着していないビーズ質量を計測した。浸透距離は、上記(2)式により導出した。   An example of measurement when a coal sample is heated by applying a constant load to the coal sample and a material having through holes in the upper and lower surfaces will be described. For the same 11 types of coal (A charcoal to K charcoal) as in Example 1, the permeation distance and the expansion coefficient during permeation were measured. Using a device similar to that shown in FIG. 2, the permeation distance and the expansion coefficient during permeation were measured. Since the heating method was a high frequency induction heating type, the heating element 8 in FIG. 2 was an induction heating coil, and the material of the container 3 was a dielectric graphite. The diameter of the container 3 was 18 mm, the height was 37 mm, and glass beads having a diameter of 2 mm were used as materials having through holes on the upper and lower surfaces. A coal sample 1 was prepared by weighing 2.04 g of coal pulverized to a particle size of 2 mm or less, charging it into the container 3, and dropping a weight of 200 g from the top of the coal 5 times at a fall distance of 20 mm to fill the coal. . Next, 9.36 g of 2 mm glass beads were weighed, and the glass bead packed layer disposed on the coal sample 1 was used as the material 2 having through holes on the upper and lower surfaces. A sillimanite disk having a diameter of 17 mm and a thickness of 5 mm was placed on the glass bead packed layer, and a quartz rod was placed thereon as the expansion coefficient detection rod 13. Nitrogen gas was used as an inert gas and heated to 550 ° C. at a heating rate of 3 ° C./min. During heating, the displacement was measured with a laser displacement meter, and the expansion coefficient was calculated from the height when filling the coal. After the heating, cooling was performed in a nitrogen atmosphere, and the mass of beads not fixed to the softened and melted coal was measured from the cooled container. The permeation distance was derived from the above equation (2).

浸透距離測定結果を表5に、浸透距離測定結果とギーセラプラストメーター法の最高流動度(Max Fluidity:MF)の関係を図8に示す。   The osmotic distance measurement results are shown in Table 5, and the relationship between the osmotic distance measurement results and the maximum fluidity (Max Fluidity: MF) of the Giesera plastometer method is shown in FIG.

Figure 2010190761
Figure 2010190761

図8によれば、本実施例で測定した浸透距離は最高流動度とある程度の相関は認められるが、相関から外れている銘柄も複数あり、傾向の異なることが確認できた。本装置での浸透距離の測定誤差が、同一条件で3回試験を行った結果標準偏差0.6であったことを考慮すると、実施例1と同じく、最高流動度がほぼ等しい石炭Gと石炭Hに対して、浸透距離に有意な差が認められた。ドラム強度についても、実施例1で測定した結果より石炭Hを配合した配合炭Hの方が、石炭Gを配合した配合炭Gよりも高い値を示したことから、本発明方法で測定した浸透距離が、ギーセラプラストメーター法の最高流動度と比較して、石炭の流動性をより適切に評価している指標であるといえる。   According to FIG. 8, the permeation distance measured in this example has a certain degree of correlation with the maximum fluidity, but there are a plurality of brands that are out of the correlation, and it has been confirmed that the tendency is different. Considering that the measurement error of the penetration distance with this device was a standard deviation of 0.6 as a result of three tests under the same conditions, as in Example 1, coal G and coal with the same maximum fluidity A significant difference was observed in the penetration distance with respect to H. As for the drum strength, the blended coal H blended with the coal H was higher than the blended coal G blended with the coal G from the results measured in Example 1, so that the penetration measured by the method of the present invention was used. It can be said that the distance is an index that more appropriately evaluates the fluidity of coal than the maximum fluidity of the Giesera Plastometer method.

また、各石炭の最終膨張率測定結果を表5に併せて示す。最終膨張率とは、550℃での膨張率の値である。表5の結果は、コークス炉内での膨張挙動を模擬した測定環境での膨張率測定結果であるため、コークス強度推定や、コークス炉壁とコークス塊の隙間の推定に用いるパラメータとして有効であるといえる。   Moreover, the final expansion coefficient measurement result of each coal is shown together in Table 5. The final expansion coefficient is a value of expansion coefficient at 550 ° C. The results in Table 5 are expansion coefficient measurement results in a measurement environment that simulates expansion behavior in a coke oven, and are effective as parameters used for coke strength estimation and estimation of the gap between the coke oven wall and the coke lump. It can be said.

1 石炭試料
2 上下面に貫通孔を有する材料
3 容器
4 圧力検出棒
5 スリーブ
6 ロードセル
7 温度計
8 発熱体
9 温度検出器
10 温度調節器
11 ガス導入口
12 ガス排出口
13 膨張検出棒
14 重り
15 変位計
16 円形貫通孔
17 充填粒子
18 充填円柱
DESCRIPTION OF SYMBOLS 1 Coal sample 2 Material which has a through-hole in the upper and lower surfaces 3 Container 4 Pressure detection rod 5 Sleeve 6 Load cell 7 Thermometer 8 Heating element 9 Temperature detector 10 Temperature controller 11 Gas inlet 12 Gas discharge port 13 Expansion detection rod 14 Weight 15 Displacement meter 16 Circular through-hole 17 Packing particle 18 Packing cylinder

Claims (4)

所定量の石炭を容器に充填して石炭試料とし、該石炭試料の上に上下面に貫通孔を有する材料を配置し、前記石炭試料と前記上下面に貫通孔を有する材料を一定容積に保ちつつ、所定の加熱速度で前記石炭試料を加熱する際に、前記貫通孔へ浸透した溶融石炭の浸透距離を測定し、該測定値を用いて石炭の軟化溶融特性を評価することを特徴とする石炭の軟化溶融特性の評価方法。   A container is filled with a predetermined amount of coal to make a coal sample, and a material having through holes on the upper and lower surfaces is arranged on the coal sample, and the coal sample and the material having through holes on the upper and lower surfaces are kept at a constant volume. Meanwhile, when the coal sample is heated at a predetermined heating rate, the penetration distance of the molten coal that has penetrated into the through hole is measured, and the softening and melting characteristics of the coal are evaluated using the measured value. Evaluation method for softening and melting characteristics of coal. 所定量の石炭を容器に充填して石炭試料とし、該石炭試料の上に上下面に貫通孔を有する材料を配置し、前記石炭試料と前記上下面に貫通孔を有する材料を一定容積に保ちつつ、所定の加熱速度で前記石炭試料を加熱する際に、前記上下面に貫通孔を有する材料を介して伝達される前記石炭の圧力を測定し、該測定値を用いて石炭の軟化溶融特性を評価することを特徴とする石炭の軟化溶融特性の評価方法。   A container is filled with a predetermined amount of coal to form a coal sample, and a material having through holes on the upper and lower surfaces is arranged on the coal sample, and the coal sample and the material having through holes on the upper and lower surfaces are kept at a constant volume. Meanwhile, when the coal sample is heated at a predetermined heating rate, the pressure of the coal transmitted through the material having through holes in the upper and lower surfaces is measured, and the softening and melting characteristics of the coal using the measured value Evaluation method for softening and melting characteristics of coal, characterized by 所定量の石炭を容器に充填して石炭試料とし、該石炭試料の上に上下面に貫通孔を有する材料を配置し、前記上下面に貫通孔を有する材料に一定荷重を負荷しつつ、所定の加熱速度で前記石炭試料を加熱する際に、前記貫通孔へ浸透した溶融石炭の浸透距離を測定し、該測定値を用いて石炭の軟化溶融特性を評価することを特徴とする石炭の軟化溶融特性の評価方法。   A container is filled with a predetermined amount of coal to form a coal sample, a material having through holes on the upper and lower surfaces is placed on the coal sample, and a predetermined load is applied to the material having the through holes on the upper and lower surfaces. When the coal sample is heated at a heating rate of, the penetration distance of the molten coal that has penetrated into the through hole is measured, and the softening and melting characteristics of the coal are evaluated using the measured value. Evaluation method of melting characteristics. 所定量の石炭を容器に充填して石炭試料とし、該石炭試料の上に上下面に貫通孔を有する材料を配置し、前記上下面に貫通孔を有する材料に一定荷重を負荷しつつ、所定の加熱速度で前記石炭試料を加熱する際に、前記石炭の膨張率を測定し、該測定値を用いて石炭の軟化溶融特性を評価することを特徴とする石炭の軟化溶融特性の評価方法。   A container is filled with a predetermined amount of coal to form a coal sample, a material having through holes on the upper and lower surfaces is placed on the coal sample, and a predetermined load is applied to the material having the through holes on the upper and lower surfaces. A method for evaluating a softening and melting property of coal, comprising: measuring the coefficient of expansion of the coal when the coal sample is heated at a heating rate, and evaluating the softening and melting property of the coal using the measured value.
JP2009036093A 2009-02-19 2009-02-19 Method for evaluating softening and melting characteristics of coal Pending JP2010190761A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009036093A JP2010190761A (en) 2009-02-19 2009-02-19 Method for evaluating softening and melting characteristics of coal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009036093A JP2010190761A (en) 2009-02-19 2009-02-19 Method for evaluating softening and melting characteristics of coal

Publications (1)

Publication Number Publication Date
JP2010190761A true JP2010190761A (en) 2010-09-02

Family

ID=42816953

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009036093A Pending JP2010190761A (en) 2009-02-19 2009-02-19 Method for evaluating softening and melting characteristics of coal

Country Status (1)

Country Link
JP (1) JP2010190761A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012029979A1 (en) * 2010-09-01 2012-03-08 Jfeスチール株式会社 Method for producing metallurgical coke
WO2012029985A1 (en) * 2010-09-01 2012-03-08 Jfeスチール株式会社 Method for evaluating thermal plasticities of coal and caking additive and method for producing coke
WO2012029978A1 (en) * 2010-09-01 2012-03-08 Jfeスチール株式会社 Method for producing metallurgical coke, and caking additive for use in production of metallurgical coke
WO2012029984A1 (en) * 2010-09-01 2012-03-08 Jfeスチール株式会社 Method for producing metallurgical coke
WO2012029987A1 (en) * 2010-09-01 2012-03-08 Jfeスチール株式会社 Metallurgical coke production method
JP2012073239A (en) * 2010-09-01 2012-04-12 Jfe Steel Corp Method for evaluating softening and melting characteristic of coal and caking additive, and method for producing coke
WO2013128866A1 (en) 2012-02-29 2013-09-06 Jfeスチール株式会社 Method for preparing coal for use in coke manufacturing
JP2013181048A (en) * 2012-02-29 2013-09-12 Jfe Steel Corp Method for deciding composition of blended coal for coke and method for manufacturing coke
JP2014052276A (en) * 2012-09-07 2014-03-20 Jfe Steel Corp Method for measuring softening and melting characteristics of coal and caking additive and device thereof
WO2022039045A1 (en) * 2020-08-17 2022-02-24 Jfeスチール株式会社 Method for evaluating thermoplastic properties of coal or binding material
RU2803905C1 (en) * 2020-08-17 2023-09-21 ДжФЕ СТИЛ КОРПОРЕЙШН Method for assessing thermoplasticity of coal or sintering additive

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150048923A (en) * 2010-09-01 2015-05-07 제이에프이 스틸 가부시키가이샤 Method for evaluating thermal plasticity of coals and caking additives
KR101561748B1 (en) * 2010-09-01 2015-10-19 제이에프이 스틸 가부시키가이샤 Method for producing coke
KR101668205B1 (en) * 2010-09-01 2016-10-20 제이에프이 스틸 가부시키가이샤 Method for evaluating thermal plasticity of coals and caking additives
WO2012029984A1 (en) * 2010-09-01 2012-03-08 Jfeスチール株式会社 Method for producing metallurgical coke
WO2012029987A1 (en) * 2010-09-01 2012-03-08 Jfeスチール株式会社 Metallurgical coke production method
JP2012072390A (en) * 2010-09-01 2012-04-12 Jfe Steel Corp Method for producing metallurgical coke, and caking additive for use in production of metallurgical coke
JP2012073239A (en) * 2010-09-01 2012-04-12 Jfe Steel Corp Method for evaluating softening and melting characteristic of coal and caking additive, and method for producing coke
JP2012072387A (en) * 2010-09-01 2012-04-12 Jfe Steel Corp Method for manufacturing coke for metallurgy
JP2012072389A (en) * 2010-09-01 2012-04-12 Jfe Steel Corp Method for producing metallurgical coke
JP2012072388A (en) * 2010-09-01 2012-04-12 Jfe Steel Corp Metallurgical coke production method
JP2012211331A (en) * 2010-09-01 2012-11-01 Jfe Steel Corp Method for producing coke
JP2012211332A (en) * 2010-09-01 2012-11-01 Jfe Steel Corp Method for producing coke
CN103154700A (en) * 2010-09-01 2013-06-12 杰富意钢铁株式会社 Method for evaluating thermal plasticities of coal and caking additive and method for producing coke
US9340740B2 (en) 2010-09-01 2016-05-17 Jfe Steel Corporation Method for evaluating thermal plasticity of coals and caking additives, and method for producing coke
WO2012029978A1 (en) * 2010-09-01 2012-03-08 Jfeスチール株式会社 Method for producing metallurgical coke, and caking additive for use in production of metallurgical coke
WO2012029979A1 (en) * 2010-09-01 2012-03-08 Jfeスチール株式会社 Method for producing metallurgical coke
WO2012029985A1 (en) * 2010-09-01 2012-03-08 Jfeスチール株式会社 Method for evaluating thermal plasticities of coal and caking additive and method for producing coke
KR101451050B1 (en) 2010-09-01 2014-10-15 제이에프이 스틸 가부시키가이샤 Method for producing metallurgical coke
CN103154700B (en) * 2010-09-01 2015-03-25 杰富意钢铁株式会社 Method for evaluating thermal plasticities of coal and caking additive and method for producing coke
KR101461838B1 (en) 2010-09-01 2014-11-13 제이에프이 스틸 가부시키가이샤 Method for producing metallurgical coke
CN104145181A (en) * 2012-02-29 2014-11-12 杰富意钢铁株式会社 Method for preparing coal for use in coke manufacturing
JP5578293B2 (en) * 2012-02-29 2014-08-27 Jfeスチール株式会社 Preparation method of coal for coke production
EP2977429A1 (en) 2012-02-29 2016-01-27 JFE Steel Corporation Method for preparing coal for coke making
WO2013128866A1 (en) 2012-02-29 2013-09-06 Jfeスチール株式会社 Method for preparing coal for use in coke manufacturing
JP2013181048A (en) * 2012-02-29 2013-09-12 Jfe Steel Corp Method for deciding composition of blended coal for coke and method for manufacturing coke
US9708558B2 (en) 2012-02-29 2017-07-18 Jfe Steel Corporation Method for preparing coal for coke making
JP2014052276A (en) * 2012-09-07 2014-03-20 Jfe Steel Corp Method for measuring softening and melting characteristics of coal and caking additive and device thereof
RU2812777C1 (en) * 2020-08-17 2024-02-02 ДжФЕ СТИЛ КОРПОРЕЙШН Method for preparing coal or sintering additive and method for producing coke
WO2022039045A1 (en) * 2020-08-17 2022-02-24 Jfeスチール株式会社 Method for evaluating thermoplastic properties of coal or binding material
JP7056809B1 (en) * 2020-08-17 2022-04-19 Jfeスチール株式会社 Evaluation method of softening and melting properties of coal or binder
RU2803905C1 (en) * 2020-08-17 2023-09-21 ДжФЕ СТИЛ КОРПОРЕЙШН Method for assessing thermoplasticity of coal or sintering additive

Similar Documents

Publication Publication Date Title
JP2010190761A (en) Method for evaluating softening and melting characteristics of coal
KR101561748B1 (en) Method for producing coke
JP5229362B2 (en) Method for producing metallurgical coke
JP5071578B2 (en) Preparation method of coal for coke production
JP5152378B2 (en) Method for producing metallurgical coke
JP6056157B2 (en) Coke blending coal composition determination method and coke manufacturing method
JP5062378B1 (en) Coke production method
JP5578293B2 (en) Preparation method of coal for coke production
JP5201250B2 (en) Method for producing metallurgical coke and caking material for producing metallurgical coke
JP5067495B2 (en) Method for producing metallurgical coke
TWI457555B (en) Evaluation method of softening and melting of coal and binder and method for manufacturing coke
BR122020009018B1 (en) METHOD FOR PRODUCING COKE