JP3250442B2 - Method and apparatus for measuring softening and melting properties of coal - Google Patents

Method and apparatus for measuring softening and melting properties of coal

Info

Publication number
JP3250442B2
JP3250442B2 JP35364595A JP35364595A JP3250442B2 JP 3250442 B2 JP3250442 B2 JP 3250442B2 JP 35364595 A JP35364595 A JP 35364595A JP 35364595 A JP35364595 A JP 35364595A JP 3250442 B2 JP3250442 B2 JP 3250442B2
Authority
JP
Japan
Prior art keywords
temperature
coal
heating
softening
torque
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP35364595A
Other languages
Japanese (ja)
Other versions
JPH09184815A (en
Inventor
喜代志 深田
省三 板垣
泉 下山
秀紀 角谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
JFE Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Engineering Corp filed Critical JFE Engineering Corp
Priority to JP35364595A priority Critical patent/JP3250442B2/en
Publication of JPH09184815A publication Critical patent/JPH09184815A/en
Application granted granted Critical
Publication of JP3250442B2 publication Critical patent/JP3250442B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は冶金用コークスの
原料となる石炭の品質、特に石炭の軟化溶融性を測定す
る技術に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a technique for measuring the quality of coal used as a raw material for coke for metallurgy, particularly the softening and melting properties of coal.

【0002】[0002]

【従来技術】石炭には、加熱・乾留により軟化溶融性を
示す粘結炭と軟化溶融性を示さない非粘結炭とがある。
更に、非粘結炭にも粘結性の違いで微粘結炭と非粘結炭
に区分される。但し、微粘結炭と非粘結炭とは総称して
非微粘炭と呼ぶ場合がある。
2. Description of the Related Art Coal is classified into caking coal which shows softening and melting properties by heating and dry distillation, and non-coking coal which does not show softening and melting properties.
Further, non-coking coal is also classified into fine coking coal and non-coking coal depending on the difference in cohesion. However, the fine coking coal and the non-coking coal may be collectively referred to as non-coking coal.

【0003】一方、上記の粘結性とは別に堅牢なコーク
スになるか否かの性質をコークス化性と呼ぶ。一般に、
コークス化性は、粘結性に大きく依存しており冶金用コ
ークスのように強度が要求されるものには、粘結性の高
い石炭が使用されている。この粘結性は流動性等の軟化
溶融性を測定することによって定量化されている。実際
の冶金用コークスの製造に際しては数種類の原料炭が配
合され、各原料炭の配合比の決定に際しては、炭化度等
とともに各原料炭の軟化溶融性も考慮すべき重要な要因
となる。
On the other hand, apart from the above-mentioned caking properties, the property of whether or not it becomes a robust coke is called coking property. In general,
The coking property largely depends on the caking property, and coal requiring high cohesion is used for those requiring strength such as coke for metallurgy. This caking property is quantified by measuring softening and melting properties such as fluidity. In the actual production of metallurgical coke, several types of coking coals are blended, and when determining the mixing ratio of each coking coal, the softening and melting properties of each coking coal are important factors to be considered in addition to the degree of carbonization.

【0004】軟化溶融性を評価する方法として、従来か
らJIS M 8801に規定されるギーセラープラス
トメータ法による流動性試験方法が知られている。ギー
セラープラストメータ法では、所定の粒度に粉砕した石
炭試料を坩堝に充填し金属浴を用いて電気炉内で加熱昇
温し、鉤十字型の回転子が付いた攪拌棒を回転させて攪
拌する。攪拌棒の回転を一定のトルクで行い、回転速度
を測定し軟化溶融特性を求める。
[0004] As a method for evaluating softening and melting properties, a flowability test method using the Giesler plastometer method specified in JIS M 8801 has been conventionally known. In the Giesler plastometer method, a coal sample pulverized to a predetermined particle size is filled in a crucible, heated and heated in an electric furnace using a metal bath, and stirred by rotating a stir bar with a hook-shaped rotor. I do. The stirring rod is rotated at a constant torque, and the rotation speed is measured to determine the softening and melting characteristics.

【0005】この測定に用いられる装置の概要を図7に
示す。攪拌棒2の回転は、モータ57の回転をクラッチ
58の一端に伝え他端でトルクを調整し攪拌棒の回転軸
に伝える。回転速度は回転読み取り部59で測定され
る。
FIG. 7 shows an outline of an apparatus used for this measurement. The rotation of the stirring rod 2 transmits the rotation of the motor 57 to one end of the clutch 58, adjusts the torque at the other end, and transmits the torque to the rotating shaft of the stirring rod. The rotation speed is measured by the rotation reading unit 59.

【0006】坩堝1とその加熱機構を図8に示す。坩堝
1の中央に攪拌棒2が配置され、坩堝1は上部に配置さ
れたバレル51に接続されている。試験中には石炭から
揮発性成分が発生するので、バレル51にはガス排出口
52が設けられている。坩堝1は金属浴53に浸漬さ
れ、金属浴53が電気炉54の電熱線55によって加熱
される。坩堝1には熱電対56が取り付けられており、
温度を測定しながら加熱電力をコントロールできるよう
になっている。
FIG. 8 shows the crucible 1 and its heating mechanism. A stirring rod 2 is arranged at the center of the crucible 1, and the crucible 1 is connected to a barrel 51 arranged at the upper part. Since volatile components are generated from coal during the test, the barrel 51 is provided with a gas outlet 52. The crucible 1 is immersed in a metal bath 53, and the metal bath 53 is heated by a heating wire 55 of an electric furnace 54. A thermocouple 56 is attached to the crucible 1,
The heating power can be controlled while measuring the temperature.

【0007】試験では、3℃/分の加熱速度で昇温し、
軟化開始温度、最高流動度温度と回転速度、固化温度を
測定する。これらの測定値がその試料の軟化溶融特性値
であり、最高回転速度を最大流動度を最大流動度(M
F)として軟化溶融性の指標としている。
In the test, the temperature was raised at a heating rate of 3 ° C./min,
Measure the softening start temperature, maximum fluidity temperature, rotation speed, and solidification temperature. These measured values are the softening and melting characteristic values of the sample, and the maximum rotation speed is defined as the maximum flow rate and the maximum flow rate (M
F) is used as an index for softening and melting properties.

【0008】しかし、上記の方式では、加熱速度が小さ
く低速昇温状態での軟化溶融特性しか測定できない。上
記の方法が、定トルク方式で回転速度を測定するのに対
して、定回転方式でトルクを測定する方法も提案されて
いる。例えば特開平6−347392号公報には、回転
子を円筒型、半球型、円錐型、或いは円板型とし、回転
子を一定の回転速度で回転しながら、3℃/分の加熱速
度で昇温して、回転子にかかるトルクを測定することが
記載されている。
However, in the above-described method, the heating rate is small, and only the softening / melting characteristics in a low temperature rising state can be measured. While the above method measures the rotation speed by a constant torque method, a method of measuring the torque by a constant rotation method has also been proposed. For example, Japanese Patent Application Laid-Open No. 6-347392 discloses that a rotor is cylindrical, hemispherical, conical, or disk-shaped, and the rotor is heated at a heating rate of 3 ° C./min while rotating at a constant rotational speed. Heating and measuring the torque on the rotor is described.

【0009】ところで、近年、石炭を急速昇温すると石
炭が軟化したときの流動性が上がるという知見に基づい
て、従来は冶金用コークスの原料炭として適さないとさ
れてきた非粘結性又は微粘結性の石炭も利用しようとす
る研究が行われるようになった。即ち、石炭を400℃
付近まで数1000℃/分で急速に加熱することによっ
て、石炭の粘性を向上させて安価で資源的にも豊富な非
微粘結炭の配合比を高めるプロセスが開発されつつあ
る。
[0009] In recent years, based on the finding that when the temperature of coal is rapidly increased, the fluidity of the coal when it is softened increases, non-coking or fine coal which has conventionally been considered unsuitable as a raw coal for metallurgical coke. Research has begun to use cohesive coal. That is, coal is heated to 400 ° C.
A process is being developed in which the viscosity of coal is increased by rapidly heating it to near 1000 ° C./min to increase the blending ratio of inexpensive and resource-rich non-fine caking coal.

【0010】そしてこのようなプロセスでは、高速加熱
下での石炭の軟化溶融性を把握することが必要であり、
特に、流動性の低い石炭については、その性状の微細な
差を際立たせて区別し把握することが不可欠となる。
In such a process, it is necessary to understand the softening and melting properties of coal under high-speed heating.
In particular, for coal with low fluidity, it is indispensable to distinguish and understand minute differences in the properties of the coal.

【0011】[0011]

【発明が解決しようとする課題】しかしながら、上記し
たJIS M 8801の技術および特開平6−347
392の技術では、石炭の加熱を電熱線を用いた電気抵
抗加熱で行うので、3℃/分程度の昇温速度にとどま
り、又、特開平6−347392号公報の技術も3℃/
分程度の昇温速度で石炭試料の粘土を測定する技術であ
り、急速昇温により流動性の低い石炭について、その性
状の微細な差を際立たせて区別し把握することができな
かった。
However, the technique of JIS M 8801 described above and Japanese Patent Application Laid-Open No. 6-347.
In the technology of No. 392, the heating of the coal is performed by electric resistance heating using a heating wire, so that the heating speed is limited to about 3 ° C./min, and the technology of JP-A-6-347392 is also 3 ° C./min.
This technology measures the clay of a coal sample at a heating rate of about one minute, and it was not possible to distinguish and understand minute differences in the properties of coal with low fluidity due to rapid heating.

【0012】そこで、この発明は、この問題を解決する
ためになされたもので、急速加熱下での石炭の軟化溶融
性を正確に測定することを目的とする。
Accordingly, the present invention has been made to solve this problem, and has as its object to accurately measure the softening and melting properties of coal under rapid heating.

【0013】[0013]

【課題を解決するための手段】この目的を達成するため
の手段は、下記の(1)及び(2)に記載する石炭の軟
化溶融性の測定方法、並びに(3)、(4)及び(5)
に記載する石炭の軟化溶融性測定装置である。
Means for attaining the object include the following methods (1) and (2) for measuring the softening and melting properties of coal, and (3), (4) and (4). 5)
The apparatus for measuring the softening and melting property of coal described in (1).

【0014】(1)下記の工程を備えたことを特徴とす
る石炭の軟化溶融性の測定方法である。 (a)石炭試料を攪拌棒が備えられた坩堝に充填し、
(b)前記石炭試料を不活性ガス気流中で、昇温速度1
0℃/分以上10000℃/分以下で加熱を行いなが
ら、前記攪拌棒を一定のトルクで回転させて前記石炭試
料を攪拌し、(c)前記攪拌棒の回転速度を測定し、測
定データを前記石炭試料の温度データを用いて処理し、
(d)処理結果から石炭試料の軟化溶融性を求める。
(1) A method for measuring the softening and melting properties of coal, comprising the following steps: (A) filling a coal sample into a crucible equipped with a stirring rod,
(B) heating the coal sample in an inert gas stream at a heating rate of 1;
While heating at 0 ° C./min or more and 10,000 ° C./min or less, the stir bar is rotated at a constant torque to stir the coal sample, and (c) the rotation speed of the stir bar is measured. Processing using the temperature data of the coal sample,
(D) The softening and melting properties of the coal sample are determined from the processing results.

【0015】石炭試料を加熱しながら攪拌棒のトルクを
一定にして攪拌棒の回転速度を測定するので、石炭試料
が流動しはじめると攪拌棒が回転しだし、最高流動度に
達したとき回転速度が最大となる。又、不活性ガス気流
中で加熱するので坩堝や石炭試料の酸化を防ぎ、安定し
た石炭の特性の測定を実現させる。
Since the rotation speed of the stir bar is measured while keeping the torque of the stir bar constant while heating the coal sample, the stir bar starts to rotate when the coal sample starts flowing, and when the coal sample reaches the maximum fluidity, the rotation speed is measured. Is the largest. In addition, since heating is performed in an inert gas stream, oxidation of the crucible and the coal sample is prevented, and stable measurement of the properties of coal is realized.

【0016】昇温時の昇温速度を、10℃/分以上昇温
速度10000℃/分以下として急速加熱時の軟化溶融
性を調べるが、この昇温速度は後述する高周波加熱方式
によって可能である。昇温時の昇温速度は10℃以上で
あるが、昇温途中で所定の時間その温度を保持し再び昇
温するようなプログラム加熱を行うこともある。
The softening and melting properties during rapid heating are examined by setting the heating rate during heating to 10 ° C./min or more and 10,000 ° C./min or less. This heating rate can be achieved by a high-frequency heating method described later. is there. The heating rate at the time of heating is 10 ° C. or higher, but program heating may be performed such that the temperature is maintained for a predetermined time during the heating and the temperature is raised again.

【0017】(2)下記の工程を備えたことを特徴とす
る石炭の軟化溶融性の測定方法である。 (a)石炭試料を攪拌棒の備えられた坩堝に充填し、
(b)前記石炭試料を不活性ガス気流中で、昇温速度1
0℃/分以上10000℃/分以下で加熱を行いなが
ら、前記攪拌棒を一定の回転速度で回転させて前記石炭
試料を攪拌し、(c)前記攪拌棒のトルクを測定し、測
定データを前記石炭試料の温度データを用いて処理し、
(d)処理結果から石炭試料の軟化溶融姓を求める。
(2) A method for measuring the softening and melting properties of coal, comprising the following steps: (A) Filling a coal sample into a crucible equipped with a stirring rod,
(B) heating the coal sample in an inert gas stream at a heating rate of 1;
While heating at 0 ° C./min to 10,000 ° C./min, the stir bar is rotated at a constant rotation speed to stir the coal sample, and (c) torque of the stir bar is measured. Processing using the temperature data of the coal sample,
(D) The softening and melting name of the coal sample is obtained from the processing result.

【0018】攪拌棒の回転速度を一定にし、攪拌棒に掛
かるトルクを測定することが(1)に記載した方法と異
なる。不活性ガス気流と急速加熱については、(1)に
記載した方法と同じである。
The method of measuring the torque applied to the stirring bar while keeping the rotation speed of the stirring bar constant is different from the method described in (1). The flow of the inert gas and the rapid heating are the same as those described in (1).

【0019】(3)下記に記載する部材を備えたことを
特徴とする石炭の軟化溶融性の測定装置である。 (a)両端部に不活性ガスの導出入口が設けられ、垂直
に配置された円筒型のスリーブと、(b)前記スリーブ
に挿入される誘電体の円筒型坩堝と、(c)前記坩堝内
に攪拌部が納まる回転型の攪拌棒と、(d)前記攪拌棒
の回転軸を前記坩堝の軸心に合わせ垂直に取り付ける取
付け機構、回転モーター、トルク調節器及び回転速度検
出器を備えた攪拌装置と、(e)前記スリーブを取り囲
む誘導加熱装置、温度検出器及び温度調節器からなる加
熱機構と、(f)前記回転速度検出器及び前記温度検出
器からのデータを処理するデータ処理装置。
(3) An apparatus for measuring the softening and melting properties of coal, comprising the members described below. (A) a cylindrical sleeve vertically provided with inlets for an inert gas at both ends, (b) a dielectric cylindrical crucible inserted into the sleeve, and (c) inside the crucible. (D) a stirrer equipped with a mounting mechanism, a rotation motor, a torque regulator, and a rotation speed detector for vertically attaching the rotation axis of the stirring rod to the axis of the crucible. A device, (e) an induction heating device surrounding the sleeve, a heating mechanism including a temperature detector and a temperature controller, and (f) a data processing device for processing data from the rotation speed detector and the temperature detector.

【0020】スリーブを垂直配置し、その両端部に設け
た導出入口から不活性ガスを導出入させ不活性ガス気流
をつくる。このスリーブに攪拌棒の攪拌部と石炭試料を
入れた坩堝を挿入する。不活性ガス気流は、スリーブの
内壁と坩堝の外壁との間を流れる。坩堝は例えば高周波
誘導加熱ができるように誘電体でなければならない。
The sleeve is vertically arranged, and an inert gas is drawn in and out from outlets provided at both ends of the sleeve to create an inert gas flow. The stirring part of the stirring rod and the crucible containing the coal sample are inserted into this sleeve. An inert gas stream flows between the inner wall of the sleeve and the outer wall of the crucible. The crucible must be dielectric, for example, to allow high frequency induction heating.

【0021】攪拌棒は攪拌装置に取り付けられるが、そ
の取付け機構によって攪拌棒の回転軸は坩堝の軸心に一
致させ、攪拌部が所定の位置に配置されるように調節さ
れる。そして、攪拌装置に備えた回転モーターの回転を
トルク調節器を介して一定トルクで攪拌棒に伝達する。
また、攪拌棒の回転速度は回転速度検出器により測定さ
れる。
The stirring rod is attached to the stirring device. The rotation axis of the stirring rod is adjusted to the axis of the crucible by an attachment mechanism, and the stirring part is adjusted so as to be arranged at a predetermined position. Then, the rotation of the rotation motor provided in the stirrer is transmitted to the stirrer rod at a constant torque via a torque adjuster.
The rotation speed of the stirring rod is measured by a rotation speed detector.

【0022】加熱手段は、石炭試料の温度を測定しなが
ら規定の昇温速度で加熱するものである。温度検出器で
石炭試料の温度を測定し、温度調節器が高周波発生装置
の出力を制御して、誘導加熱コイルに流れる電流を調節
し、規定の昇温を行う。データ処理装置では、送られて
くる回転速度データ及び温度データを処理して、軟化開
始温度、最高流動度温度、再固化温度及び最高流動度を
求める。加熱方式は望ましくは高周波誘導方式であり、
誘電体である坩堝に瞬時に電流が誘導され坩堝が加熱さ
れ、その熱により石炭が加熱されるため、10000℃
/分の急速昇温が可能であり、又昇温途中で昇温速度を
変えるプログラム加熱も容易に行える。
The heating means heats the coal sample at a specified rate while measuring the temperature of the coal sample. The temperature of the coal sample is measured by a temperature detector, and the temperature controller controls the output of the high-frequency generator to regulate the current flowing through the induction heating coil and perform a specified temperature rise. The data processing device processes the sent rotation speed data and temperature data to obtain a softening start temperature, a maximum flow rate temperature, a re-solidification temperature, and a maximum flow rate. The heating method is preferably a high-frequency induction method,
An electric current is instantaneously induced in the crucible, which is a dielectric, and the crucible is heated.
/ Minute rapid heating is possible, and programmed heating that changes the heating rate during heating can be easily performed.

【0023】(4)下記に記載する部材を備えたことを
特徴とする石炭の軟化溶融性の測定装置である。 (a)両端部に不活性ガスの導出入口が設けられ、垂直
に配置された円筒型のスリーブと、(b)前記スリーブ
に挿入される誘電体の円筒型坩堝と、(c)前記坩堝内
に攪拌部が納まる回転型の攪拌棒と、(d)前記攪拌棒
の回転軸を前記坩堝の軸心に合わせ垂直に取り付ける取
付け機構、回転モーター、回転速度調節器及びトルク検
出器を備えた攪拌装置と、(e)前記スリーブを取り囲
む誘導加熱装置、温度検出器及び温度調節器からなる加
熱機構と、(f)前記トルク検出器及び前記温度検出器
からのデータを処理するデータ処理装置。
(4) An apparatus for measuring the softening and melting properties of coal, comprising the members described below. (A) a cylindrical sleeve vertically provided with inlets for an inert gas at both ends, (b) a dielectric cylindrical crucible inserted into the sleeve, and (c) inside the crucible. (D) a stirrer provided with a mounting mechanism, a rotation motor, a rotation speed controller, and a torque detector, wherein the rotation shaft of the stirrer rod is fitted to the axis of the crucible and vertically mounted. A device, (e) an induction heating device surrounding the sleeve, a heating mechanism comprising a temperature detector and a temperature controller, and (f) a data processing device for processing data from the torque detector and the temperature detector.

【0024】この測定装置は、(3)に記載した装置が
攪拌棒の回転を一定トルクで行うのに対して、一定回転
速度で行う装置である。攪拌装置に、トルク調節器に替
えて回転速度調節器を、回転速度検出器に替えて回転ト
ルク検出器を各々備えていることが、(3)に記載した
装置との相違である。
This measuring device performs the rotation of the stirring rod at a constant torque while the device described in (3) performs the rotation of the stirring rod at a constant torque. The difference from the device described in (3) is that the stirring device is provided with a rotation speed controller instead of the torque controller and a rotation torque detector instead of the rotation speed detector.

【0025】(5)前記スリーブが石英管からなり、前
記石炭試料が充填される坩堝が黒鉛からなる(3)又は
(4)に記載した石炭の軟化溶融性の測定装置である。
(5) The apparatus according to (3) or (4), wherein the sleeve comprises a quartz tube, and the crucible filled with the coal sample comprises graphite.

【0026】急速加熱では、加熱温度が1000℃を超
える場合がある。石英管は耐熱性のある実用的な材料で
あり、しかも非誘電体なので高周波電流の損失が防げ
る。黒鉛は最も耐熱性の高い実用材料であり、不活性ガ
ス雰囲気では化学的にも安定である。即ち、高周波誘導
加熱、不活性ガス雰囲気の条件下では、石英管スリーブ
及び黒鉛坩堝が優れている。
In the rapid heating, the heating temperature may exceed 1000 ° C. in some cases. The quartz tube is a heat-resistant and practical material, and since it is non-dielectric, loss of high-frequency current can be prevented. Graphite is the most heat-resistant practical material and is chemically stable in an inert gas atmosphere. That is, under conditions of high-frequency induction heating and an inert gas atmosphere, the quartz tube sleeve and the graphite crucible are excellent.

【0027】[0027]

【発明の実施の形態】実施の形態を図を用いて説明す
る。図1は、石炭試料を一定のトルクで攪拌し、攪拌棒
の回転速度を測定する装置の概要を示すものである。試
験の手順は以下の通りである。坩堝1に攪拌棒2の攪拌
部21を挿入し、石炭試料を充填し所定の圧力で試料を
押しつけて坩堝蓋24を閉め、坩堝1をその軸心とスリ
ーブ20の軸心を一致させて設置し、攪拌棒2を攪拌装
置10に取り付ける。次にスリーブ20の導出入口22
から不活性ガスを吹き込む。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments will be described with reference to the drawings. FIG. 1 schematically shows an apparatus for stirring a coal sample with a constant torque and measuring the rotation speed of a stirring rod. The test procedure is as follows. The stirrer 21 of the stirrer rod 2 is inserted into the crucible 1, the coal sample is filled, the sample is pressed with a predetermined pressure, the crucible lid 24 is closed, and the crucible 1 is set with its axis aligned with the axis of the sleeve 20. Then, the stirring rod 2 is attached to the stirring device 10. Next, the outlet 22 of the sleeve 20
Inert gas is blown from

【0028】なお、攪拌部21の形状としては鉤十字型
でもよいが、石炭試料との接触面積が大きい円盤型、円
筒型、円錐型、こま型のものが精度向上の観点から望ま
しい。攪拌棒は、耐熱性があり高い捻じれ強度をもつ金
属、黒鉛、セラミックスんどを用い、偏心のないように
仕上げるとよい。
The shape of the stirring section 21 may be a hook-and-cross shape, but a disk-shaped, cylindrical-shaped, conical-shaped or top-shaped one having a large contact area with the coal sample is desirable from the viewpoint of improving accuracy. The stirring rod is preferably made of metal, graphite, ceramics and the like having heat resistance and high torsional strength, and finished without eccentricity.

【0029】不活性ガスには、アルゴン、窒素等が用い
られる。坩堝1の蓋24には、攪拌棒2が通る孔と温度
計36が通る孔とが開けられており、加熱により発生す
る揮発性成分はこれらの孔を通じて不活性ガス気流によ
り運び去られる。蓋24は、又、石炭試料が膨張し過ぎ
たとき、坩堝1から溢れだすのを防ぐことはできる。
As the inert gas, argon, nitrogen or the like is used. The lid 24 of the crucible 1 has a hole through which the stirring rod 2 passes and a hole through which the thermometer 36 passes, and volatile components generated by heating are carried away by the inert gas stream through these holes. The lid 24 can also prevent the coal sample from spilling out of the crucible 1 when it expands too much.

【0030】攪拌装置10のトルク調整器12はトルク
が所定の値になるように予め調整しておく。これによっ
て、回転モーター57の回転は直接攪拌棒2には伝わら
ず、攪拌棒2にかかるトルクが調整値より大きいときは
回転は停止し、小さいほど回転速度は大きくなる。攪拌
棒2の回転速度は回転速度検出器13で測定される。
The torque adjuster 12 of the stirring device 10 is adjusted in advance so that the torque becomes a predetermined value. As a result, the rotation of the rotary motor 57 is not transmitted directly to the stirring rod 2, and the rotation is stopped when the torque applied to the stirring rod 2 is larger than the adjustment value, and the rotation speed increases as the torque decreases. The rotation speed of the stirring rod 2 is measured by a rotation speed detector 13.

【0031】加熱手段30は、スリーブ20の外側を例
えば誘導加熱コイル31が取り囲んでおり、望ましくは
高周波発生装置32からの高周波電流により誘導加熱コ
イル31が励磁され、坩堝1に誘導電流を発生させ直接
加熱する。このため、加熱は瞬時に行われ急速昇温が可
能となる。
The heating means 30 surrounds the outside of the sleeve 20 with, for example, an induction heating coil 31. Preferably, the induction heating coil 31 is excited by a high-frequency current from a high-frequency generator 32 to generate an induction current in the crucible 1. Heat directly. For this reason, heating is performed instantaneously and rapid temperature rise becomes possible.

【0032】昇温速度の制御は、温度調節器33によっ
て行われるが、これにはプログラム温度調節計を用いる
とよい。予め昇温速度のプログラムを入力しておき、温
度検出器34からの温度信号を受け、プログラムに則し
た昇温が行われるように温度調節器33は高周波発生装
置32を制御する。
The rate of temperature rise is controlled by the temperature controller 33, and a programmed temperature controller may be used for this. The temperature controller 33 controls the high-frequency generator 32 so that a temperature rise rate program is input in advance, a temperature signal is received from the temperature detector 34, and the temperature is raised in accordance with the program.

【0033】温度検出器には、坩堝1の温度を検出する
温度計35と石炭試料の温度を検出する温度計36とが
接続されるが、高周波発生装置32の制御には温度計3
5で検出される坩堝1の温度を用いたほうがよい。温度
計36で検出される石炭試料の温度は揮発成分の発生状
況により短周期で変動することがあるので、制御のため
の信号には適しない。
A thermometer 35 for detecting the temperature of the crucible 1 and a thermometer 36 for detecting the temperature of the coal sample are connected to the temperature detector.
It is better to use the temperature of the crucible 1 detected at 5. The temperature of the coal sample detected by the thermometer 36 may fluctuate in a short cycle depending on the generation state of volatile components, and is not suitable for a signal for control.

【0034】温度計36で検出される石炭試料の温度
は、データ処理装置40に送られる。データ処理装置4
0には、石炭試料の温度と回転速度検出器13からの回
転速度が送られ、ここで、データ処理が行われる。
The temperature of the coal sample detected by the thermometer 36 is sent to the data processing device 40. Data processing device 4
To 0, the temperature of the coal sample and the rotation speed from the rotation speed detector 13 are sent, where data processing is performed.

【0035】データ処理について、図2を用いて説明す
る。データ処理装置40では刻々と送られてくる温度デ
ータ及び回転速度データを、時間軸に対してプロットす
る。図で横軸は時間経過を表した時間軸で、縦軸は各々
左側が温度軸、右側が回転速度軸である。回転速度の単
位ddpmは前記JISに用いられている単位で,1d
dpmは毎分0.01回転である。
The data processing will be described with reference to FIG. The data processing device 40 plots the temperature data and the rotation speed data that are sent every moment on the time axis. In the figure, the horizontal axis is the time axis representing the passage of time, and the vertical axis is the temperature axis on the left side and the rotation speed axis on the right side. The unit of the rotation speed ddpm is a unit used in the JIS, and 1 d
dpm is 0.01 revolutions per minute.

【0036】回転速度データから山型のグラフMが得ら
れ、温度データから直線的なグラフLが得られる。温度
上昇速度は1000℃ /分で一定であり、回転速度は温
度上昇に伴い以下のように変化する。A点から攪拌棒が
回転しはじめ、B点で回転速度が最大となりC点で回転
が停止する。A点に至った時間の温度がグラフLから読
み取れ約400℃で、これが軟化開始温度である。同様
にB点から最高流動度温度が読み取れ、C点から再固化
温度が読み取れる。又、B点の縦軸座標から読み取れる
回転速度は最高流動度である。
A mountain-shaped graph M is obtained from the rotation speed data, and a linear graph L is obtained from the temperature data. The temperature rise rate is constant at 1000 ° C./min, and the rotation speed changes as follows with the temperature rise. The stirring bar starts to rotate from the point A, the rotation speed becomes maximum at the point B, and the rotation stops at the point C. The temperature at the time when point A was reached can be read from graph L and is about 400 ° C., which is the softening start temperature. Similarly, the maximum fluidity temperature can be read from point B, and the re-solidification temperature can be read from point C. The rotation speed read from the coordinate of the vertical axis of the point B is the highest fluidity.

【0037】以上、定トクル測定の場合で説明したが、
定回転数測定では、前記したようにトルク調節器と回転
速度検出器に替えて各々回転速度調節器と回転トルク検
出器を用いる。したがって、トルクデータと温度データ
とがデータ処理装置に送られて処理される。但し、石炭
試料が固化したときに攪拌棒に過剰のトルクがかかるお
それがあるので、回転モーターに安全クラッチを備える
ことが望ましい。
As described above, the case of the constant torque measurement has been described.
In the constant rotation speed measurement, the rotation speed adjuster and the rotation torque detector are used instead of the torque adjuster and the rotation speed detector as described above. Therefore, the torque data and the temperature data are sent to the data processing device for processing. However, when the coal sample is solidified, excessive torque may be applied to the stirring rod. Therefore, it is desirable to provide a safety clutch in the rotating motor.

【0038】[0038]

【実施例】JIS法での最大流動度(MF)が1〜40
00程度の10種類の銘柄の非微粘結炭及び粘結炭につ
いて、昇温速度を10℃/分から10000℃/分の範
囲で変えて、一定回転法により軟化溶融性を調べた。用
いた装置は、図1に示した装置で、トルク調節器に替え
て回転速度調節器を、又回転速度検出器に替えて回転ト
ルク検出器を使用した。一定回転速度で攪拌棒を回転さ
せて昇温に伴うトルクの変化を検出し、軟化開始温度、
最高流動度温度、再固化温度及び最小トルクを調べた。
用いた石炭試料の性状を表1に示す。
[Example] Maximum flow rate (MF) by JIS method is 1 to 40
About 10 kinds of brands of non-slightly caking coal and caking coal of about 00, the softening and melting properties were examined by a constant rotation method while changing the heating rate from 10 ° C / min to 10000 ° C / min. The apparatus used was the apparatus shown in FIG. 1 and a rotational speed adjuster was used in place of the torque adjuster, and a rotational torque detector was used in place of the rotational speed detector. By rotating the stirring rod at a constant rotation speed, the change in torque due to temperature rise is detected, and the softening start temperature,
The maximum fluidity temperature, resolidification temperature and minimum torque were determined.
Table 1 shows the properties of the coal samples used.

【0039】[0039]

【表1】 [Table 1]

【0040】その他の条件は次のようである。 スリーブ :石英製、内径28mm、外径32mm、長さ220mm 坩堝 :黒鉛製、内径14mm、深さ12mm 攪拌棒 :SUS316製、攪拌部は径13mm厚さ3mmの円盤型 試料量 :1.0g 試料粒度 :35メッシュ以下100% 充填密度 :嵩密度850kg/m3 回転速度 :0.1rpm 不活性ガス :窒素、流量5.0NL /分The other conditions are as follows. Sleeve: quartz, inner diameter 28 mm, outer diameter 32 mm, length 220 mm Crucible: graphite, inner diameter 14 mm, depth 12 mm Stirring rod: made of SUS316, the stirrer is 13 mm in diameter and 3 mm in thickness, disk type Sample amount: 1.0 g sample Particle size: 35 mesh or less 100% Packing density: Bulk density 850 kg / m 3 Rotation speed: 0.1 rpm Inert gas: Nitrogen, flow rate 5.0 NL / min

【0041】測定して得られたプロフィールのうち、代
表例として、昇温速度が、100℃/分、1000℃/
分、1800℃/分の三種類を図3〜図5に示す。図
で、グラフMはトルクの変化を示し、グラフLは試料温
度を示す。A点が軟化開始温度、B点が最高流動度温
度、C点が再固化温度であり、B点の示すトルク値が最
小トルク値である。
Of the profiles obtained by the measurement, as typical examples, the heating rate is 100 ° C./min, 1000 ° C./min.
3 to 5 are shown in FIGS. In the figure, a graph M shows a change in torque, and a graph L shows a sample temperature. Point A is the softening start temperature, point B is the maximum fluidity temperature, point C is the resolidification temperature, and the torque value indicated by point B is the minimum torque value.

【0042】図3は、100℃ /分で昇温した場合で、
軟化開始温度が400℃、最高流動度温度が555℃、
再固化温度が605℃、最小トルク値が7.5mNmで
あった。図4は、1000℃ /分で昇温した場合で、軟
化開始温度が410℃、最高流動度温度が580℃、再
固化温度が625℃,最小トルク値が3.7mNmであ
った。図5は、1800℃ /分で昇温した場合で、軟化
開始温度が415℃、最高流動度温度が610℃、再固
化温度が630℃、最小トルク値が2.0mNmであっ
た。
FIG. 3 shows the case where the temperature is increased at 100 ° C./min.
Softening start temperature is 400 ° C, maximum fluidity temperature is 555 ° C,
The re-solidification temperature was 605 ° C, and the minimum torque value was 7.5 mNm. FIG. 4 shows the case where the temperature was increased at 1000 ° C./min. The softening start temperature was 410 ° C., the maximum fluidity temperature was 580 ° C., the re-solidification temperature was 625 ° C., and the minimum torque value was 3.7 mNm. FIG. 5 shows the case where the temperature was raised at 1800 ° C./min. The softening start temperature was 415 ° C., the maximum fluidity temperature was 610 ° C., the re-solidification temperature was 630 ° C., and the minimum torque value was 2.0 mNm.

【0043】このように、流動度の指標となる最小トル
ク値は、昇温速度によって異なるが、この発明によれば
10℃ /分乃至10000℃ /分の範囲の任意の昇温速
度で軟化溶融性が測定きる。又、10℃ /分未満の低昇
温速度での測定ができることも明らかである。
As described above, the minimum torque value as an index of the fluidity varies depending on the heating rate, but according to the present invention, the softening and melting at an optional heating rate in the range of 10 ° C./min to 10,000 ° C./min. Sex can be measured. It is also clear that the measurement can be performed at a low heating rate of less than 10 ° C./min.

【0044】表1に示した10種の石炭試料について昇
温速度を変えて測定した最小トルク値を図6に示す。図
に見られるように、昇温速度が小さい場合に最小トルク
値が大きい銘柄でも、急速昇温によって最小トルクは低
下し、流動性が向上する。又、昇温速度が大きくなる
と、銘柄によっては最小トルク値の順序が逆転するもの
もある。このような急速加熱時の石炭の溶融特性を、こ
の発明により如実に調べることができる。
FIG. 6 shows the minimum torque values measured for the ten types of coal samples shown in Table 1 while changing the heating rate. As can be seen from the figure, even for brands with a large minimum torque value when the temperature rise rate is low, the minimum torque is reduced by the rapid temperature rise, and the fluidity is improved. In addition, when the heating rate increases, the order of the minimum torque value is reversed depending on the brand. According to the present invention, the melting characteristics of the coal during such rapid heating can be determined.

【0045】[0045]

【発明の効果】以上述べてきたように、この発明によれ
ば、不活性ガス気流中で、石炭試料を10℃/分以上1
0000℃/分以下の昇温速度で加熱しながら、軟化溶
融性を測定する。このため、急速加熱によるコークス製
造の際の石炭の軟化溶融性を確実に把握することがで
き、非微粘結炭の配合比を決定する上で貴重な情報をも
たらすことができるようになった。このように、コーク
ス製造技術の開発に貢献するこの発明の効果は大きい。
As described above, according to the present invention, a coal sample is heated at a temperature of 10 ° C./min or more in an inert gas stream.
The softening and melting properties are measured while heating at a heating rate of 0000 ° C./min or less. For this reason, the softening and melting properties of coal during the production of coke by rapid heating can be reliably grasped, and valuable information can be provided in determining the mixing ratio of non-coking coal. . As described above, the effect of the present invention that contributes to the development of coke manufacturing technology is great.

【図面の簡単な説明】[Brief description of the drawings]

【図1】発明の実施形態を説明するための、装置の一例
を示す概念図である。
FIG. 1 is a conceptual diagram showing an example of an apparatus for describing an embodiment of the present invention.

【図2】データー処理を説明する回転速度と温度との関
係を示すグラフである。
FIG. 2 is a graph illustrating a relationship between rotation speed and temperature for explaining data processing.

【図3】昇温速度100℃/分の場合のトルクと温度と
の関係を示すグラフである。
FIG. 3 is a graph showing a relationship between a torque and a temperature when a heating rate is 100 ° C./min.

【図4】昇温速度1000℃/分の場合のトルクと温度
との関係を示すグラフである。
FIG. 4 is a graph showing the relationship between torque and temperature when the temperature is raised at a rate of 1000 ° C./min.

【図5】昇温速度1800℃/分の場合のトルクと温度
との関係を示すグラフである。
FIG. 5 is a graph showing the relationship between torque and temperature when the temperature is raised at a rate of 1800 ° C./min.

【図6】昇温速度と最小トルク値との関係を示すグラフ
である。
FIG. 6 is a graph showing a relationship between a heating rate and a minimum torque value.

【図7】従来用いられていた装置の概念をしめす概要図
である。
FIG. 7 is a schematic diagram showing the concept of a conventionally used device.

【図8】従来用いられていた装置の加熱部の縦断面図で
ある。
FIG. 8 is a vertical sectional view of a heating unit of a conventionally used device.

【符号の説明】[Explanation of symbols]

1 坩堝 2 攪拌棒 10 攪拌装置 11 取付け部 12 トルク調整器 13 回転速度検出器 20 スリーブ 21 攪拌部 22、23 導出入口 24 坩堝蓋 30 加熱手段 31 誘導加熱コイル 32 高周波発生装置 33 温度調節器 34 温度検出器 35、36 温度計 40 データ処理装置 57 回転モーター DESCRIPTION OF SYMBOLS 1 Crucible 2 Stirrer rod 10 Stirrer 11 Attachment part 12 Torque adjuster 13 Rotational speed detector 20 Sleeve 21 Stirrer 22, 23 Outlet 24 Crucible lid 30 Heating means 31 Induction heating coil 32 High frequency generator 33 Temperature controller 34 Temperature Detector 35, 36 Thermometer 40 Data processing device 57 Rotary motor

───────────────────────────────────────────────────── フロントページの続き (72)発明者 角谷 秀紀 東京都千代田区丸の内一丁目1番2号 日本鋼管株式会社内 (56)参考文献 福原元一「日本工業規格JIS 石炭 類−試験方法」日本工業規格協会、平成 5年9月30日発行 第15−1 (58)調査した分野(Int.Cl.7,DB名) G01N 25/04 G01N 33/22 JICSTファイル(JOIS)────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Hideki Tsunoya 1-1-2 Marunouchi, Chiyoda-ku, Tokyo Nippon Kokan Co., Ltd. (56) References Motoichi Fukuhara "Japanese Industrial Standards JIS Coal-Testing Method" Japan Industrial Standards Association, published on September 30, 1993 No. 15-1 (58) Fields investigated (Int. Cl. 7 , DB name) G01N 25/04 G01N 33/22 JICST file (JOIS)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 下記の工程を備えたことを特徴とする石
炭の軟化溶融性の測定方法。 (a)石炭試料を攪拌棒が備えられた坩堝に充填し、 (b)前記石炭試料を不活性ガス気流中で、昇温速度1
0℃/分以上10000℃/分以下で加熱を行いなが
ら、前期攪拌棒を一定のトルクで回転させて前記石炭試
料を攪拌し、 (c)前記攪拌棒の回転速度を測定し、得られた回転速
度のデータを前記石炭試料の温度データを用いて処理
し、 (d)前記処理の結果から軟化溶融性を求める。
1. A method for measuring the softening and melting properties of coal, comprising the following steps: (A) charging a coal sample into a crucible provided with a stirring rod; (b) heating the coal sample in an inert gas stream at a heating rate of 1
While heating at a temperature of 0 ° C./min or more and 10,000 ° C./min or less, the agitating rod was rotated at a constant torque to stir the coal sample, and (c) the rotational speed of the agitating rod was measured. Rotation speed data is processed using the temperature data of the coal sample, and (d) softening and melting properties are obtained from the result of the processing.
JP35364595A 1995-12-28 1995-12-28 Method and apparatus for measuring softening and melting properties of coal Expired - Fee Related JP3250442B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35364595A JP3250442B2 (en) 1995-12-28 1995-12-28 Method and apparatus for measuring softening and melting properties of coal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35364595A JP3250442B2 (en) 1995-12-28 1995-12-28 Method and apparatus for measuring softening and melting properties of coal

Publications (2)

Publication Number Publication Date
JPH09184815A JPH09184815A (en) 1997-07-15
JP3250442B2 true JP3250442B2 (en) 2002-01-28

Family

ID=18432252

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35364595A Expired - Fee Related JP3250442B2 (en) 1995-12-28 1995-12-28 Method and apparatus for measuring softening and melting properties of coal

Country Status (1)

Country Link
JP (1) JP3250442B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102213548A (en) * 2011-05-20 2011-10-12 重庆科技学院 Molten drop furnace for measuring molten drop point of iron ore

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5391707B2 (en) * 2008-01-30 2014-01-15 Jfeスチール株式会社 Coal expansibility test method
KR101364000B1 (en) * 2012-11-14 2014-02-17 한국에너지기술연구원 Coal spontaneous combustion measuring apparatus
KR101646988B1 (en) * 2015-11-20 2016-08-11 한국지질자원연구원 Headspace methane extraction residue system
CN111141895B (en) * 2020-01-17 2024-09-20 中国科学院金属研究所 Silicon-based ceramic sample dissolution and desorption detection device for investment casting and application method thereof
CN113848231B (en) * 2020-06-28 2024-03-08 宝山钢铁股份有限公司 Coking property judging method based on thermal diffusivity in coking coal pyrolysis process
CN112630214A (en) * 2020-12-16 2021-04-09 马钢奥瑟亚化工有限公司 Method for determining content of potassium and sodium in coal tar by ICP-OES
CN113074553B (en) * 2021-03-30 2023-04-07 马鞍山钢铁股份有限公司 Metal bath electric heating furnace for measuring fluidity of coking coal
CN113804588B (en) * 2021-09-15 2024-04-09 四川济通工程试验检测有限公司 Full-automatic Liu Aier fluidity measuring device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
福原元一「日本工業規格JIS 石炭類−試験方法」日本工業規格協会、平成5年9月30日発行 第15−1

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102213548A (en) * 2011-05-20 2011-10-12 重庆科技学院 Molten drop furnace for measuring molten drop point of iron ore
CN102213548B (en) * 2011-05-20 2013-02-13 重庆科技学院 Molten drop furnace for measuring molten drop point of iron ore

Also Published As

Publication number Publication date
JPH09184815A (en) 1997-07-15

Similar Documents

Publication Publication Date Title
JP3250442B2 (en) Method and apparatus for measuring softening and melting properties of coal
JP5579610B2 (en) Semi-liquid metal processing / detection device, and processing / detection method using the device
JP6294566B2 (en) System and method for determining the temperature of a metal melt in an electric arc furnace
Chebykin et al. Viscosity measurement of slags using rotating bob and vibrating finger viscometer
JPH09159596A (en) Viscosity measuring method and device
Ducret et al. Liquidus temperatures and viscosities of FeO‐Fe2O3‐SiO2‐CaO‐MgO slags at compositions relevant to nickel matte smelting
US4048056A (en) Method for the control of pitch operation
CN110108597B (en) Multifunctional high-temperature silicon-molybdenum rod furnace tube viscosity measuring system and method
Vidacak et al. An experimental study of the viscosities of Al 2 O 3-CaO-“FeO” slags
JPH10148632A (en) Method and device for evaluating softening and melting characteristics of coal
CN113468684B (en) Method and system for measuring temperature of melt in melting device
EP2067032B1 (en) An apparatus and method for determining the percentage of carbon equivalent, carbon and silicon in liquid ferrous metal
DE69533758T2 (en) METHOD FOR THE CONTACTLESS CONTINUOUS TEMPERATURE MEASUREMENT OF THE Curing of METAL ALLOYS
JP2508058B2 (en) High-temperature melt viscosity automatic measurement device
JPH0792116A (en) Method and equipment for measuring softening point of structural viscous material
JP2002275477A (en) Method for producing coke for blast furnace
US4048020A (en) Method and apparatus for the control of pitch operation
JP3106948B2 (en) Refractory corrosion test equipment
JP3106950B2 (en) Refractory corrosion test method
KR100212026B1 (en) Method for comtrol coke according to input volume of pulverized coal
JPH06183877A (en) Single crystal growing apparatus
JPH0742520B2 (en) Sintered ore manufacturing method
JPH03202748A (en) Vibrating-reed type viscosity measuring method
KR910006222B1 (en) Apparatus for measuring silicon amount in molten iron
CN116106357A (en) High-speed sampling method for slag melting measuring instrument

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071116

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081116

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091116

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101116

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111116

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees