JP5391450B2 - Casting core - Google Patents
Casting core Download PDFInfo
- Publication number
- JP5391450B2 JP5391450B2 JP2009180230A JP2009180230A JP5391450B2 JP 5391450 B2 JP5391450 B2 JP 5391450B2 JP 2009180230 A JP2009180230 A JP 2009180230A JP 2009180230 A JP2009180230 A JP 2009180230A JP 5391450 B2 JP5391450 B2 JP 5391450B2
- Authority
- JP
- Japan
- Prior art keywords
- mass
- core
- casting
- salt
- chloride
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Mold Materials And Core Materials (AREA)
- Molds, Cores, And Manufacturing Methods Thereof (AREA)
Description
本発明は、崩壊性鋳造用コア(中子)に関するもので、特に耐圧性が要求されるダイカスト用、スクイズキャスト用に好適である。 The present invention relates to a collapsible casting core (core), and is particularly suitable for die casting and squeeze casting that require pressure resistance.
従来から鋳造用コアとして崩壊性コアを使用することは公知であり、例えば特許文献1にはNa,Kの塩化物、臭化物、炭酸塩、硫酸塩のいずれか1つにセラミックス材料を配合した鋳造用コアを開示する。
しかし、同公報に開示する技術は単塩をベースにするので融点の調整が困難であり、単塩は複数の塩の混合に比較して、熱膨張率が高い問題もあった。
特許文献2には、Na+,K+,Cl−,CO3 2−からなる溶融塩で、K+がNa+より多く、CO3 2−がCl−より少ない組成の鋳造用コアを開示する。
塩のみの配合であるために溶融時には均一である特徴を有するものの、炭酸塩が含まれるためアルカリ性であり、鋳造合金がアルミニウム合金等である場合には腐食性が問題になり、塩酸と温水などからなる溶解液を用いなければならない。
特許文献3には、水溶性塩に化学的に非反応性の微細硬質粉末を配合した鋳造用コアを開示する。
しかし、同公報に開示する鋳造用コアにあっては、微細硬質粉末が溶融塩に反応せず、熱分解もしないので再利用できるが、約600℃で熱分解する水酸化カルシウムによる崩壊性付与や、発泡に起因する多孔性の付与ができない。
また、微細硬質粉末は塩よりも比重が大きく、溶解や鋳造中に沈降分離する問題があった。
特許文献4には、NaClとアルミナに融点600℃以上の塩化物、弗化物の1種また2種以上からなる添加剤を添加した鋳造用コアを開示する。
しかし、同公報に開示する技術はNaClのみの場合に比較して混合塩による融点低下が期待できるがNaClが50%以上含有すると熱膨張率が大きく、寸法精度が確保できない問題があった。
Conventionally, it is known to use a collapsible core as a casting core. For example, Patent Document 1 discloses a casting in which a ceramic material is blended with any one of Na, K chloride, bromide, carbonate, and sulfate. A core for use is disclosed.
However, since the technique disclosed in the publication is based on a single salt, it is difficult to adjust the melting point, and the single salt has a problem that the coefficient of thermal expansion is higher than that of mixing a plurality of salts.
Patent Document 2, Na +, K +, Cl -, in CO 3 molten salt consisting of 2-, K + is more than Na +, CO 3 2-is Cl - discloses a casting core fewer composition .
Although it has a characteristic that it is uniform at the time of melting because it contains only salt, it is alkaline because it contains carbonate, and corrosiveness becomes a problem when the cast alloy is an aluminum alloy, such as hydrochloric acid and hot water The solution consisting of must be used.
Patent Document 3 discloses a casting core in which a water-soluble salt is blended with a chemically non-reactive fine hard powder.
However, in the casting core disclosed in the same publication, the fine hard powder does not react with the molten salt and is not thermally decomposed, so it can be reused. In addition, porosity cannot be imparted due to foaming.
Further, the fine hard powder has a specific gravity larger than that of the salt, and has a problem of being separated by settling during melting and casting.
Patent Document 4 discloses a casting core in which an additive composed of one or more of chloride and fluoride having a melting point of 600 ° C. or higher is added to NaCl and alumina.
However, although the technique disclosed in the publication can be expected to lower the melting point due to the mixed salt as compared with the case of only NaCl, there is a problem that when the NaCl content is 50% or more, the coefficient of thermal expansion is large and the dimensional accuracy cannot be secured.
本発明は熱膨張を低く抑え、寸法精度が高く、崩壊時に鋳造合金が腐食するのを防止した鋳造用コアの提供を目的とする。 An object of the present invention is to provide a casting core that suppresses thermal expansion to a low level, has high dimensional accuracy, and prevents the cast alloy from corroding at the time of collapse.
本発明に係る鋳造用コアは、塩化ナトリウム:20〜50質量%、残部が塩化バリウムと1質量%以下の不純物からなる混合塩に、0.5〜50体積%となるよう前記混合塩の熔融塩に溶解しない硬質粒子(アルミナを除く)を添加した原材料を用いて、熔融鋳造によって成型して得られることを特徴とする。
または、塩化カリウム:23〜70質量%、残部が塩化バリウムと1質量%以下の不純物からなる混合塩に、0.5〜50体積%となるよう前記混合塩の熔融塩に溶解しない硬質粒子(アルミナを除く)を添加した原材料を用いて、熔融鋳造によって成型して得られることを特徴とする。
あるいは、塩化ナトリウム:50質量%以下、塩化カリウム:70質量%以下、塩化バリウム:15〜80質量%、残部が1質量%以下の不純物からなる混合塩に、0.5〜50体積%となるよう前記混合塩の熔融塩に溶解しない硬質粒子(アルミナを除く)を添加した原材料を用いて、熔融鋳造によって成型して得られることを特徴とする。
ここで、塩化ナトリウムの配合割合が20質量%以下のときは、塩化バリウムの上限をナトリウムの質量×0.15+77の計算式で得られる値に設定すると良い。
本発明にて、添加する硬質粒子からアルミナを除外したのは、本発明のコアをアルミニウム合金の高圧鋳造に用いた場合を考慮したからである。
硬質粒子は熔融塩に溶解しない限り、セラミックスや無機酸化物等のいわゆる各種耐火物を使用できる。
The casting core according to the present invention is a molten salt of sodium chloride: 20 to 50% by mass, and the balance is 0.5 to 50% by volume in a mixed salt composed of barium chloride and 1% by mass or less of impurities. It is obtained by molding by melt casting using raw materials to which hard particles (excluding alumina) not dissolved in salt are added.
Alternatively, potassium chloride: 23 to 70% by mass of hard particles that do not dissolve in the molten salt of the mixed salt such that the remaining amount is 0.5 to 50% by volume in the mixed salt composed of barium chloride and impurities of 1% by mass or less. It is characterized by being obtained by molding by melt casting using raw materials to which (alumina is excluded) is added.
Alternatively, sodium chloride: 50% by mass or less, potassium chloride: 70% by mass or less, barium chloride: 15-80% by mass, and the remaining salt is 1% by mass or less, and the mixed salt is 0.5-50% by volume. It is obtained by molding by melt casting using raw materials to which hard particles (excluding alumina) not dissolved in the molten salt of the mixed salt are added.
Here, when the blending ratio of sodium chloride is 20% by mass or less, the upper limit of barium chloride is preferably set to a value obtained by a formula of sodium mass × 0.15 + 77.
The reason why alumina is excluded from the hard particles to be added in the present invention is because the case where the core of the present invention is used for high pressure casting of an aluminum alloy is taken into consideration.
As long as the hard particles are not dissolved in the molten salt, various refractories such as ceramics and inorganic oxides can be used.
本発明は、塩化ナトリウム又は/及び塩化カリウムに塩化バリウムを添加した点に特徴があり塩化バリウムを添加すると次のような作用がある。
(1)1価の塩に比較して2価の塩は熱膨張係数が小さく、塩化バリウムを添加することで熱膨張を小さくすることができる。
(2)鋳造コアの表面粗さが小さくなるので鋳造製品の表面が滑らかになる。
(3)塩の比重が大きくなるので添加した硬質粒子の沈降を抑えるように作用する。
(4)混合塩の効果により融点が低下する。
(5)塩化ナトリウム又は/及び塩化カリウムに塩化バリウムを添加すると、溶融塩の蒸発速度が小さくなり塩の蒸発による消耗を抑えることができる。
例えば、塩化ナトリウムの標準蒸発速度(1000℃)51.0(mg/cm・h)、
塩化カリウムの標準蒸発速度(1000℃)85.0(mg/cm・h)であるのに対して塩化ナトリウム+塩化カリウム+塩化バリウム(1:1:1)の標準蒸発速度(900℃)は23.4(mg/cm・h)となる。
本発明において、配合割合を設定したのはアルミニウム合金のダイカストやスクイズキャスト用の鋳造用コアを対象にした場合には、アルミニウム合金の熔湯温度が720℃を越えることはほとんどないことから、図1に示した状態図を参考にして混合塩の液相温度が720℃を越えないように設定した(図1で色付けした範囲)。
質量%で説明すると、塩化ナトリウム−塩化バリウム2元系では塩化ナトリウムが約50%超または約20%未満のとき、塩化カリウム−塩化バリウム2元系では塩化カリウムが約70%超または23%未満のとき、混合塩の液相線温度が720℃を越える。
また、塩化バリウムについては、概ね80%以上のとき、混合塩の液相線温度が720℃を越える(但し、塩化ナトリウムの配合割合が20質量%以下のときは、塩化バリウムがナトリウムの質量×0.15+77の計算式で得られる値)。
また、塩化バリウムを加える効果が顕在化するためには、塩化バリウムが15%以上必要である。
The present invention is characterized in that barium chloride is added to sodium chloride and / or potassium chloride, and the addition of barium chloride has the following effects.
(1) The divalent salt has a smaller thermal expansion coefficient than the monovalent salt, and the thermal expansion can be reduced by adding barium chloride.
(2) Since the surface roughness of the casting core becomes small, the surface of the cast product becomes smooth.
(3) Since the specific gravity of the salt is increased, it acts to suppress sedimentation of the added hard particles.
(4) The melting point decreases due to the effect of the mixed salt.
(5) When barium chloride is added to sodium chloride and / or potassium chloride, the evaporation rate of the molten salt is reduced, and consumption due to evaporation of the salt can be suppressed.
For example, the standard evaporation rate of sodium chloride (1000 ° C.) 51.0 (mg / cm · h),
The standard evaporation rate (900 ° C.) of sodium chloride + potassium chloride + barium chloride (1: 1: 1) is 85.0 (mg / cm · h) for the standard evaporation rate of potassium chloride (1000 ° C.). 23.4 (mg / cm · h).
In the present invention, the compounding ratio was set when the aluminum alloy die casting or squeeze casting core was used as the target because the aluminum alloy melt temperature hardly exceeded 720 ° C. With reference to the phase diagram shown in FIG. 1, the liquid phase temperature of the mixed salt was set so as not to exceed 720 ° C. (range colored in FIG. 1).
In terms of mass%, when sodium chloride-barium chloride binary system is more than about 50% or less than about 20%, potassium chloride-barium chloride binary system is more than about 70% or less than 23%. In this case, the liquidus temperature of the mixed salt exceeds 720 ° C.
For barium chloride, the liquidus temperature of the mixed salt exceeds 720 ° C. when it is approximately 80% or more (however, when the mixing ratio of sodium chloride is 20 mass% or less, barium chloride is the mass of sodium × The value obtained by the calculation formula of 0.15 + 77).
Further, in order to realize the effect of adding barium chloride, 15% or more of barium chloride is necessary.
本発明に係る鋳造用コアは、従来の塩化ナトリウム、塩化カリウムの塩組成に比べ熱膨張が小さいため、シリンダブロックのウォータージャケット等の環状のコアにも適用できる。
鋳造用コアの表面粗度が小さく、これをコアとして用いた鋳造製品の仕上げ加工が不要あるいは低減できる。
また、塩化ナトリウム又は/及び塩化カリウムに塩化バリウムを加えることで溶融塩の比重が大きくなり、添加した硬質粒子の沈降が遅くなり、さらには中性塩なのでアルミニウム合金の腐食の恐れも少ない。
Since the core for casting according to the present invention has a smaller thermal expansion than the conventional salt composition of sodium chloride and potassium chloride, it can be applied to an annular core such as a water jacket of a cylinder block.
The surface roughness of the casting core is small, and the finishing process of the cast product using this as the core is unnecessary or can be reduced.
Further, the addition of barium chloride to sodium chloride and / or potassium chloride increases the specific gravity of the molten salt, slows the settling of the added hard particles, and further reduces the risk of corrosion of the aluminum alloy because it is a neutral salt.
本発明に係る鋳造用コアは、上記(1)〜(5)の特徴を有しているので多くの鋳造分野にて使用可能となる。
特に環状のコアが必要な鋳造製品には大きな効果を発揮する。
例えば、シリンダブロックのウォータージャケットを鋳造するための環状コアの場合に、φ25の丸棒において抗折強度20MPa以上、表面粗さRa=3μm以下、Ry=20μm以下、コアの鋳造収縮率(鋳造温度から常温まで冷却したときの外形寸法変化)15/1000以下が好ましいとされている。
Since the casting core according to the present invention has the characteristics (1) to (5), it can be used in many casting fields.
This is particularly effective for cast products that require an annular core.
For example, in the case of an annular core for casting a water jacket of a cylinder block, the bending strength of a round bar of φ25 is 20 MPa or more, the surface roughness Ra is 3 μm or less, Ry = 20 μm or less, the casting shrinkage rate of the core (casting temperature) 15/1000 or less is preferable.
塩化ナトリウム29.7質量%、塩化バリウム70.3質量%の混合塩に、体積が30%となるよう合成ムライトを添加し、熔融後金型に流し込み、エンジン部品(ウオータジャケット)用のコアを製作した。
コアの収縮率10/1000レベルであり、割れやカケ等がない良好なコアであった。
この混合組成は融点が約660℃であった。
またφ25 の丸棒を作成し、抗折強度を測定したところ21.6MPaであった。
このコアを用いて型締め力350tfダイカストマシンにより金型温度150℃、アルミニウム合金の熔湯温度680℃、鋳造圧力60MPaにて製品(エンジン部品)のダイカスト鋳造を行った。
コアは破損や熔融することなく形状を保っていた。このコアを取り除きコアが接していた部分の表面粗さを測定したところ、目標とするRa=3μm以下のRa=1.9μm と良好なものであった。
Synthetic mullite is added to a mixed salt of 29.7% by mass of sodium chloride and 70.3% by mass of barium chloride so that the volume is 30%. After melting, it is poured into a mold, and a core for engine parts (water jacket) is provided. Produced.
The core contraction rate was 10/1000 level, and it was a good core without cracks or chipping.
This mixed composition had a melting point of about 660 ° C.
A φ25 round bar was prepared and the bending strength was measured and found to be 21.6 MPa.
Using this core, a product (engine part) was die-cast by a die-casting machine having a mold clamping force of 350 tf at a mold temperature of 150 ° C., an aluminum alloy melt temperature of 680 ° C., and a casting pressure of 60 MPa.
The core kept its shape without breakage or melting. When the surface roughness of the portion where the core was in contact with the core was measured, Ra = 1.9 μm, which is the target Ra = 3 μm or less, was satisfactory.
塩化カリウム30.5 質量%、塩化バリウム69.53 質量%の混合塩に、体積が30%となるよう合成ムライトを添加し、熔融後金型に流し込み、自動車部品(ウオータージャケット)用のコアを製作した。
この混合組成は融点が約660℃であった。
またφ25の丸棒を作成し、抗折強度を測定したところ20.9MPaであった。
このコアを型締め力350tfダイカストマシンにより金型温度150℃、アルミニウム合金の熔湯温度680℃、鋳造圧力60MPaで製品のダイカスト鋳造を行った。
コアは破損や熔融することなく形状を保っていた。このコアを取り除きコアが接していた部分の表面粗さを測定したところ、Ra=2.0μmと良好なものであった。
Synthetic mullite is added to a mixed salt of 30.5% by mass potassium chloride and 69.53% by mass barium chloride to a volume of 30%. After melting, it is poured into a mold, and a core for automobile parts (water jacket) is added. Produced.
This mixed composition had a melting point of about 660 ° C.
A round bar of φ25 was prepared and the bending strength was measured and found to be 20.9 MPa.
The core was die-cast with a mold clamping force of 350 tf at a mold temperature of 150 ° C., an aluminum alloy melt temperature of 680 ° C., and a casting pressure of 60 MPa.
The core kept its shape without breakage or melting. When the surface roughness of the part where the core was removed and the core was in contact was measured, it was as good as Ra = 2.0 μm.
塩化ナトリウム27.1 質量%、塩化カリウム21.1 質量%、塩化バリウム51.8質量%の混合塩に、体積が30%となるよう合成ムライトを添加し、熔融後金型に流し込み、自動車部品(ウオータージャケット)用のコアを製作した。
この組成は融点が約600℃であった。
またφ25の丸棒を作成し、抗折強度を測定したところ27.1MPaであった。
このコアを型締め力350tfダイカストマシンにより金型温度150℃、アルミニウム合金の熔湯温度680℃、鋳造圧力60MPaで製品のダイカスト鋳造を行った。
コアは破損や熔融することなく形状を保っていた。
このコアを取り除きコアが接していた部分の表面粗さを測定したところ、Ra=1.8μmと良好なものであった。
Synthetic mullite is added to a mixed salt of 27.1% by mass of sodium chloride, 21.1% by mass of potassium chloride, and 51.8% by mass of barium chloride so that the volume becomes 30%. Made a core for (water jacket).
This composition had a melting point of about 600 ° C.
In addition, a round bar of φ25 was prepared and the bending strength was measured and found to be 27.1 MPa.
The core was die-cast with a mold clamping force of 350 tf at a mold temperature of 150 ° C., an aluminum alloy melt temperature of 680 ° C., and a casting pressure of 60 MPa.
The core kept its shape without breakage or melting.
When the surface roughness of the portion where the core was removed and the core was in contact was measured, it was as good as Ra = 1.8 μm.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009180230A JP5391450B2 (en) | 2009-08-01 | 2009-08-01 | Casting core |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009180230A JP5391450B2 (en) | 2009-08-01 | 2009-08-01 | Casting core |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2011031276A JP2011031276A (en) | 2011-02-17 |
JP5391450B2 true JP5391450B2 (en) | 2014-01-15 |
Family
ID=43760871
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009180230A Expired - Fee Related JP5391450B2 (en) | 2009-08-01 | 2009-08-01 | Casting core |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5391450B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021098212A (en) * | 2019-12-23 | 2021-07-01 | トヨタ自動車株式会社 | Method for producing salt core |
KR102576599B1 (en) * | 2022-03-03 | 2023-09-08 | 김준수 | Manufacturing of soluble core for high pressure casting and method using the same |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4915140B1 (en) * | 1969-10-02 | 1974-04-12 | ||
JP2005095913A (en) * | 2003-09-24 | 2005-04-14 | Sintokogio Ltd | Method for removing salt core for casting |
JP4359882B2 (en) * | 2004-03-30 | 2009-11-11 | 新東工業株式会社 | Water-soluble core for light alloy casting, method for removing water-soluble core, and method for molding water-soluble core |
-
2009
- 2009-08-01 JP JP2009180230A patent/JP5391450B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2011031276A (en) | 2011-02-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2007290004A (en) | Mold powder for continuous casting of high aluminum steel | |
JP5420815B2 (en) | Heat resistant material for low melting point metal casting equipment | |
CN104045361A (en) | Aluminum silica sol composite combined aluminum silicon carbide castable and preparation method thereof | |
JP5391450B2 (en) | Casting core | |
JP2016064436A (en) | Manufacturing method of casting salt core and casting salt core | |
CN104944990B (en) | Casting material | |
CN103396131B (en) | Aluminum melting furnace castable | |
JP6674093B2 (en) | Mold powder for continuous casting of steel and continuous casting method | |
JP2008030061A (en) | Mold powder for continuous casting of high aluminum steel | |
CN100447107C (en) | Immersion type water gap noumenon material containing calcium oxide | |
JP2000119070A (en) | Castable refractory and refractory brick using the same | |
CN113953473B (en) | Covering slag for continuous casting crystallizer and preparation method thereof | |
JP5737016B2 (en) | Disintegrating core and method for producing the same | |
JP2005059081A (en) | High strength water-soluble core and its manufacturing method | |
JP2013078797A (en) | Method for continuously casting medium carbon steel | |
JP6898564B2 (en) | Mold powder for continuous casting of steel | |
JP2003181607A (en) | MOLD FLUX FOR CONTINUOUSLY CASTING STEEL HAVING HIGH Al CONTENT | |
JPH09308951A (en) | Mold powder for continuously casting steel | |
JP4403233B2 (en) | Casting core manufacturing method | |
JP7464865B2 (en) | Mold powder and method for continuous casting of steel using same | |
JP2000051998A (en) | Method for continuously casting lead-containing steel | |
JPS60180655A (en) | Molten metal surface protective agent for continuous casting of steel | |
JP4626522B2 (en) | Mold powder for continuous casting and continuous casting method for plain steel | |
WO2016176758A1 (en) | Article made from refractory material for contact with a liquid metal or alloy, a method for manufacture, use and method of use of same | |
JP2020022984A (en) | Continuous casting method for metal |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20120713 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20120713 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20120713 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130902 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130925 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5391450 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |