JP2013078797A - Method for continuously casting medium carbon steel - Google Patents

Method for continuously casting medium carbon steel Download PDF

Info

Publication number
JP2013078797A
JP2013078797A JP2012207968A JP2012207968A JP2013078797A JP 2013078797 A JP2013078797 A JP 2013078797A JP 2012207968 A JP2012207968 A JP 2012207968A JP 2012207968 A JP2012207968 A JP 2012207968A JP 2013078797 A JP2013078797 A JP 2013078797A
Authority
JP
Japan
Prior art keywords
mold
medium carbon
sio
carbon steel
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012207968A
Other languages
Japanese (ja)
Other versions
JP6135081B2 (en
Inventor
Takuya Suga
卓也 須賀
Hirohide Uehara
博英 上原
Toshiaki Ishige
俊朗 石毛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=48525619&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2013078797(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2012207968A priority Critical patent/JP6135081B2/en
Publication of JP2013078797A publication Critical patent/JP2013078797A/en
Application granted granted Critical
Publication of JP6135081B2 publication Critical patent/JP6135081B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Continuous Casting (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for continuously casting a medium carbon steel, capable of preventing surface cracks of a casting iron piece.SOLUTION: Mold powder 5 is prepared such that: SiOand CaO are contained as main components; CaO/SiOis 1.0 or more and 1.5 or less; 4.0 to 13.0% of NaO and 0.5 to 2.0% of LiO are contained by mass; and it is satisfied that NaO/LiO is 5.0 to 8.0 and (NaO+LiO)/SiOis 0.32 to 0.40, wherein viscosity at 1.300°C is 0.01 to 0.1 Pa s.

Description

本発明は、中炭素鋼の連続鋳造方法に関し、とくに中炭素鋼鋳片の表面割れ防止に関する。   The present invention relates to a method for continuously casting medium carbon steel, and more particularly to prevention of surface cracks in a medium carbon steel slab.

近年の連続鋳造技術の進歩は目覚しく、殆どの鋼種で連続鋳造を利用して鋼素材(鋳片)が製造されている。しかも、最近は1.6m/min以上の高速鋳造も指向されている。
しかし、中炭素鋼を、例えば0.7〜2m/minで連続鋳造すると、鋳片に表面割れが発生するという問題がある。この表面割れは中炭素鋼特有のδ→γ変態の発生に起因したδ相とγ相の凝固収縮量の違いによるものであると言われている。図2に示すように、中炭素鋼鋳片の表面割れ1は、鋳片2の幅中央に、幅、深さとも5〜10mmで長さは100mmからひどい場合には鋳片の全長にも及ぶものもある。
The progress of continuous casting technology in recent years is remarkable, and steel materials (slabs) are manufactured using continuous casting in most steel types. Moreover, recently, high-speed casting at 1.6 m / min or more is also aimed.
However, when medium carbon steel is continuously cast, for example, at 0.7 to 2 m / min, there is a problem that surface cracks occur in the slab. This surface crack is said to be due to the difference in solidification shrinkage between the δ phase and the γ phase due to the occurrence of the δ → γ transformation unique to medium carbon steel. As shown in FIG. 2, the surface crack 1 of the medium carbon steel slab is located at the center of the width of the slab 2 in the width and depth of 5 to 10 mm, and when the length is severe from 100 mm, it also affects the total length of the slab. There are things that range.

一方、中炭素鋼の連続鋳造においても、図1(a)に示すように、モールド(鋳型)3内の溶鋼4表面上に、モールドパウダー5を添加して連続鋳造を行っている。図1(b)に拡大して示すように、溶鋼4表面上に添加されたモールドパウダー5は、溶鋼4から熱を受けて滓化溶融し、溶融スラグ層6を形成する。形成された溶融スラグ層6は鋳型3と凝固シェル7の間に順次流入していく。鋳型3と凝固シェル7の間に流入した溶融スラグ層6では、降温過程で、組成によっては結晶が発達する場合がある。結晶化したスラグ8は、結晶化しないもの(ガラス質のもの)よりも伝熱抵抗が大きく、凝固シェル7から鋳型3への抜熱を低下させる。これにより凝固シェル7の冷却が均一化し、メニスカス部に形成される初期凝固シェルの厚みを鋳片2の幅方向に均一化して、表面割れ1の発生を防止できると考えられている。このため、中炭素鋼鋳片の表面割れ防止の点から、従来、結晶化温度(凝固温度)を高くしたモールドパウダーが使用されてきた。そして、結晶化温度を高めるため、モールドパウダーの塩基度(CaO/SiO2)を高くし、F(CaF2)量を増やすことで、カスピダイン(3CaO・2SiO2・CaF2)の晶出を促進させることが指向されてきた。 On the other hand, also in the continuous casting of medium carbon steel, as shown in FIG. 1A, the mold powder 5 is added onto the surface of the molten steel 4 in the mold (mold) 3 to perform continuous casting. As shown in an enlarged view in FIG. 1 (b), the mold powder 5 added onto the surface of the molten steel 4 receives heat from the molten steel 4 to evaporate and melt to form a molten slag layer 6. The formed molten slag layer 6 sequentially flows between the mold 3 and the solidified shell 7. In the molten slag layer 6 that flows between the mold 3 and the solidified shell 7, crystals may develop depending on the composition during the cooling process. The crystallized slag 8 has a higher heat transfer resistance than that which does not crystallize (glassy one), and reduces heat removal from the solidified shell 7 to the mold 3. Thus, it is considered that the cooling of the solidified shell 7 is made uniform, the thickness of the initial solidified shell formed in the meniscus portion is made uniform in the width direction of the slab 2 and the occurrence of the surface crack 1 can be prevented. For this reason, from the viewpoint of preventing surface cracking of the medium carbon steel slab, conventionally, a mold powder having a high crystallization temperature (solidification temperature) has been used. In order to increase the crystallization temperature, the basicity (CaO / SiO 2 ) of the mold powder is increased and the amount of F (CaF 2 ) is increased to promote crystallization of caspidyne (3CaO · 2SiO 2 · CaF 2 ). It has been oriented to make it happen.

しかし、結晶化温度を高くすると、凝固シェルの厚さを十分に確保することができず、鋳型以降の冷却過程で凝固シェルがバルジングしたり、ブレークアウトしたりする危険性が高まる。特に、現在、指向されている高速鋳造の際はそのような不都合が生じやすい。このような問題に対し、特許文献1には、表面割れを防止し、ブレークアウトを防止できる、モールドパウダーを用いた鋼の連続鋳造方法が記載されている。   However, when the crystallization temperature is raised, the thickness of the solidified shell cannot be sufficiently secured, and the risk of the solidified shell bulging or breaking out during the cooling process after the mold is increased. In particular, such inconvenience is likely to occur at the time of high speed casting which is currently directed. For such a problem, Patent Document 1 describes a continuous casting method of steel using mold powder that can prevent surface cracking and breakout.

特許文献1に記載された方法では、モールドパウダー中のCaO/SiO2を質量比で1.5〜2.5と塩基度を高くし、Na2Oを2質量%未満に低減して、溶融化したモールドパウダーの結晶化速度を速くして結晶層を緻密化するとともに、Li2Oを1質量%以上にし、溶融したモールドパウダーの結晶成長を抑制してメニスカス部下方部分で強冷却している。これにより、溶鋼のメニスカス部での緩冷却化と凝固シェル成長の均一化を図り、鋳片の表面割れを防止するとともにブレークアウトを防止し、高速鋳造化を図ることができるとしている。 In the method described in Patent Document 1, molten mold powder is obtained by increasing the basicity of CaO / SiO 2 in the mold powder to 1.5 to 2.5 by mass ratio and reducing Na 2 O to less than 2 mass%. The crystal layer is densified by increasing the crystallization rate, and Li 2 O is made 1% by mass or more to suppress the crystal growth of the melted mold powder and to strongly cool the lower part of the meniscus portion. As a result, slow cooling at the meniscus portion of the molten steel and uniform solidified shell growth can be achieved, surface cracking of the slab can be prevented, breakout can be prevented, and high speed casting can be achieved.

特開2006−247713号公報JP 2006-247713 A

しかしながら、特許文献1のような方法によっても、中炭素鋼鋳片の表面割れはまだ完全には防止できておらず、連続鋳造方法のさらなる改善が求められている。
本発明は、従来技術のかような問題を解決するべくなされたものであり、鋳片の表面割れを防止できる、中炭素鋼の連続鋳造方法を提供することを目的とする。
However, even with the method as disclosed in Patent Document 1, the surface cracking of the medium carbon steel slab has not been completely prevented, and further improvement of the continuous casting method is required.
The present invention has been made to solve such problems as in the prior art, and an object of the present invention is to provide a continuous casting method of medium carbon steel that can prevent surface cracking of a cast slab.

発明者らは、中炭素鋼鋳片の表面割れを防止すべく種々研究を重ねた。そして、モールドパウダーを、CaO/SiO2が1.0以上1.5未満の範囲として、Na2OとLi2Oの濃度を調整し、Na2O/Li2O及び(Na2O+Li2O)/SiO2を適正な範囲としたものにすることにより、粘度を例えば1300℃にて0.01〜0.1Pa・sという具合に低く抑えることができ、溶融したモールドパウダー(溶融スラグ層)が鋳型と凝固シェルの間に入り込みやすくすることができるとともに、凝固したモールドパウダー(スラグフィルム)のCaxFyOを含む化合物の結晶成長が促進され、スラグフィルムの表面粗度が粗くなって、伝導伝熱抵抗(鋳型〜スラグフィルム間の接触伝熱抵抗)が増加し、凝固シェルや溶鋼を徐冷できることを見出し、本発明に想到した。 The inventors have made various studies to prevent the surface cracking of the medium carbon steel slab. Then, the mold powder is adjusted so that the concentration of Na 2 O and Li 2 O is adjusted so that CaO / SiO 2 is 1.0 or more and less than 1.5, and Na 2 O / Li 2 O and (Na 2 O + Li 2 O) / SiO 2 are adjusted. The viscosity can be kept low, for example, 0.01 to 0.1 Pa · s at 1300 ° C, and the molten mold powder (molten slag layer) is between the mold and the solidified shell. In addition to facilitating the penetration of crystals into the solidified mold powder (slag film) containing Ca x F y O, the surface roughness of the slag film becomes rough and the heat transfer resistance (mold) (Contact heat transfer resistance between slag films) was increased, and solidified shells and molten steel could be gradually cooled, and the present invention was conceived.

Na2O及びLi2Oは、(Na2O+Li2O)/SiO2を適正な範囲にすることにより、SiO2−SiO2の結合を断ち切り、粘度を低下させるとともに、F-を動きやすくして、CaOから電離したCa2+とF-とが出会いやすくなるために、CaxFyOを含む化合物の結晶成長を促進する効果を有する。さらにNa2O/Li2Oを適正な範囲とすることにより、溶融スラグが凝固してから成長する結晶の量を増大して、凝固したスラグフィルムの変形を促進し、表面粗度を粗くする効果を生むものと考えた。このようにしてスラグフィルムの表面粗度が粗くなると、先述の通り、伝導伝熱抵抗(鋳型〜スラグフィルム間の接触伝熱抵抗)が増加し、凝固シェルや溶鋼を徐冷できて、鋳片の表面割れの防止に効果があることを見出した。 Na 2 O and Li 2 O make (Na 2 O + Li 2 O) / SiO 2 an appropriate range, thereby breaking the SiO 2 —SiO 2 bond, lowering the viscosity, and making F easy to move. Thus, since Ca 2+ ionized from CaO easily meets F −, it has an effect of promoting crystal growth of a compound containing Ca x F y O. Furthermore, by setting Na 2 O / Li 2 O in an appropriate range, the amount of crystals that grow after the molten slag solidifies increases, promotes deformation of the solidified slag film, and roughens the surface roughness. It was thought to produce an effect. When the surface roughness of the slag film becomes rough in this way, as described above, the conduction heat transfer resistance (contact heat transfer resistance between the mold and the slag film) increases, and the solidified shell and the molten steel can be gradually cooled. Has been found to be effective in preventing surface cracks.

本発明は、かかる知見に基づき、さらに検討を加えて完成されたものである。すなわち、本発明は、以下の通りである。
1.鋳型内溶鋼表面上にモールドパウダーを供給しながら連続鋳造する鋼の連続鋳造方法であって、前記溶鋼が中炭素鋼であり、前記モールドパウダーを、SiO2、CaOを主成分として、質量%で、CaO/SiO2が1.0以上1.5未満で、Na2O:4.0〜13.0%、Li2O:0.5〜2.0%、を含み、かつ、Na2O/Li2Oが5.0〜8.0及び(Na2O+Li2O)/SiO2が0.32〜0.40を満足するように調整し、1300℃における粘度が0.01〜0.1Pa・sであるパウダーとすることを特徴とする中炭素鋼の連続鋳造方法。
The present invention has been completed based on such findings and further studies. That is, the present invention is as follows.
1. A continuous casting method of steel that is continuously cast while supplying mold powder on the surface of molten steel in a mold, wherein the molten steel is medium carbon steel, and the mold powder is composed mainly of SiO 2 and CaO in mass%. CaO / SiO 2 is 1.0 or more and less than 1.5, Na 2 O: 4.0 to 13.0%, Li 2 O: 0.5 to 2.0%, and Na 2 O / Li 2 O is 5.0 to 8.0 and (Na 2 A continuous casting method for medium carbon steel, characterized in that O + Li 2 O) / SiO 2 is adjusted so as to satisfy 0.32 to 0.40 and a powder having a viscosity at 1300 ° C. of 0.01 to 0.1 Pa · s is obtained.

本発明によれば、中炭素鋼の連続鋳造に際して、鋳片の表面割れを防止することができ、産業上格段の効果を奏する。   According to the present invention, surface cracking of a slab can be prevented during continuous casting of medium carbon steel, and a remarkable industrial effect can be achieved.

溶鋼の連続鋳造方法を模式的に示す説明図である。It is explanatory drawing which shows typically the continuous casting method of molten steel. 中炭素鋼鋳片の表面割れの状況を模式的に示す説明図である。It is explanatory drawing which shows typically the condition of the surface crack of a medium carbon steel slab.

以下、本発明の構成要件の限定理由について具体的に説明する。
本発明では、鋳型内溶鋼表面上にモールドパウダーを供給しながら、中炭素鋼溶鋼を連続鋳造する。
本発明にいう中炭素鋼とは、質量%で、C:0.07〜0.3%を含有する鋼をいうものとする。C以外の合金元素については特に限定しないが、例えばJIS G 4051に規定されるような、概ね、質量%で、Si:1.5%以下、Mn:1.0%以下を含み、残部Feおよび不可避的不純物からなる組成を有する鋼である。
Hereinafter, the reasons for limiting the constituent requirements of the present invention will be specifically described.
In the present invention, the medium carbon steel molten steel is continuously cast while supplying mold powder onto the molten steel surface in the mold.
The medium carbon steel referred to in the present invention refers to a steel containing C: 0.07 to 0.3% by mass%. Alloy elements other than C are not particularly limited. For example, as specified in JIS G 4051, the mass elements generally include Si: 1.5% or less, Mn: 1.0% or less, and the balance Fe and unavoidable impurities. It is steel which has the composition which becomes.

連続鋳造における鋳造速度は、特に規定しないが、上記組成の中炭素鋼の鋳造に適した0.7〜2.0m/minとするのが好ましい。なお、鋳片の厚さは特に規定しないが、100〜300mmとするのが好ましい。より好ましくは220〜250mmである。
本発明で鋳型内溶鋼表面上に供給するモールドパウダーは、SiO2、CaOを主成分として、質量%で、CaO/SiO2が1.0以上1.5未満で、Na2O:4.0〜13.0%、Li2O:0.5〜2.0%、を含み、かつ、Na2O/Li2Oが5.0〜8.0及び(Na2O+Li2O)/SiO2が0.32〜0.40を満足するように調整し、1300℃における粘度が0.01〜0.1Pa・sであるパウダーである。
The casting speed in continuous casting is not particularly limited, but is preferably 0.7 to 2.0 m / min suitable for casting of medium carbon steel having the above composition. The thickness of the slab is not particularly defined, but is preferably 100 to 300 mm. More preferably, it is 220-250 mm.
The mold powder supplied on the molten steel surface in the mold in the present invention is composed mainly of SiO 2 and CaO, in mass%, CaO / SiO 2 is 1.0 or more and less than 1.5, Na 2 O: 4.0 to 13.0%, Li 2 O: 0.5 to 2.0%, and adjusted so that Na 2 O / Li 2 O is 5.0 to 8.0 and (Na 2 O + Li 2 O) / SiO 2 is 0.32 to 0.40, and the viscosity at 1300 ° C. Is a powder of 0.01 to 0.1 Pa · s.

以下、モールドパウダーの組成を限定した理由について説明する。
CaO/SiO2:1.0以上1.5未満(質量比)
CaO/SiO2は、塩基度とも呼ばれるが、1.0未満では、溶融したモールドパウダー(溶融スラグ層)の粘度が上昇し、鋳型への抜熱が増加して、鋳片に縦割れが発生しやすくなる。一方、1.5以上では、モールドパウダーの結晶化温度が上昇して、モールドパウダーの結晶化が促進され過ぎ、鋳片と鋳型との摩擦が増加して、フレークアウトが発生しやすくなる。このため、CaO/SiO2は質量%で1.0以上1.5未満に限定した。好ましくは1.3〜1.4である。
Hereinafter, the reason for limiting the composition of the mold powder will be described.
CaO / SiO 2 : 1.0 or more and less than 1.5 (mass ratio)
CaO / SiO 2 is also called basicity, but if it is less than 1.0, the viscosity of the melted mold powder (molten slag layer) increases, heat release to the mold increases, and vertical cracks are likely to occur in the slab. Become. On the other hand, at 1.5 or more, the crystallization temperature of the mold powder rises, the crystallization of the mold powder is promoted too much, the friction between the slab and the mold increases, and flakeout is likely to occur. For this reason, CaO / SiO 2 is limited to 1.0 or more and less than 1.5 by mass%. Preferably it is 1.3-1.4.

Na2O:4.0〜13.0質量%
Na2Oは、定性的に粘度を低下させるとともに、拡散速度を増大して結晶成長速度を増大させる効果があり、凝固したスラグフィルムの表面粗度を粗くし、伝導伝熱抵抗を増やすことで、凝固シェルの緩冷却化と成長の均一化に寄与する。このような効果を得るためには、4.0質量%以上、より好ましくは7.0質量%以上含有させる。一方、13.0質量%を超えると、上記した効果が飽和するとともに、冷却速度が遅くなり過ぎ、鋳型への抜熱が不足して、ブレークアウトが発生しやすくなる。このため、Na2Oは4.0〜13.0質量%に限定した。
Na 2 O: 4.0 to 13.0 mass%
Na 2 O has the effect of lowering the viscosity qualitatively and increasing the diffusion rate to increase the crystal growth rate. By roughening the surface roughness of the solidified slag film and increasing the conduction heat transfer resistance, Contributes to slow cooling of the solidified shell and uniform growth. In order to acquire such an effect, it is made to contain 4.0 mass% or more, More preferably, 7.0 mass% or more. On the other hand, if it exceeds 13.0% by mass, the above-described effects are saturated, the cooling rate is too slow, heat removal to the mold is insufficient, and breakout is likely to occur. Therefore, Na 2 O content is limited to 4.0 to 13.0 wt%.

Li2O:0.5〜2.0質量%
Li2Oは、SiO2−SiO2の結合を、Li2Oから電離したLi+が断ち切り、F-を動きやすくして、CaOから電離したCa2+とF-とを出会いやすくする作用を有すると考えられる。これによりLi2Oは、スラグフィルム中でCaxFyOを含む化合物の結晶成長を促進させて、スラグフィルムの表面粗度を粗くする。このような効果を得るためには、Li2Oをモールドパウダーの全量に対する質量%で、0.5%以上含有させる必要がある。一方、2.0%を超えると、上記した効果が飽和するとともに、溶融パウダーの軟化点が低下し過ぎて、スラグフィルム内での結晶成長による変形が小さくなってしまい、スラグフィルムの表面粗度を増大させる効果が低下してしまう。このため、Li2Oは0.5〜2.0%に限定した。
Li 2 O: 0.5 to 2.0 mass%
Li 2 O acts to make it easy to meet Ca 2+ and F ionized from CaO by breaking the SiO 2 —SiO 2 bond, Li + ionized from Li 2 O, making F easier to move. It is thought to have. Thus Li 2 O is, by promoting the crystal growth of the compound containing Ca x F y O slag film in, to roughen the surface roughness of the slag film. In order to obtain such an effect, it is necessary to contain Li 2 O in an amount of 0.5% or more by mass% with respect to the total amount of the mold powder. On the other hand, if it exceeds 2.0%, the above effect is saturated, the softening point of the molten powder is too low, deformation due to crystal growth in the slag film is reduced, and the surface roughness of the slag film is increased. The effect of making it fall. Therefore, Li 2 O is limited 0.5 to 2.0%.

Na2O/Li2O:5.0〜8.0(質量比)
Na2OとLi2Oでは、粘度を低下させ、拡散速度を増大する効果の温度依存性が異なるため、Na2OとLi2Oの比率を調整することにより、1300℃における粘度を適正な範囲としつつ、スラグ中の拡散速度を調節してスラグフィルムの表面粗度を適正な範囲に調節することができる。Na2O/Li2Oは、5.0以上とすることにより、スラグフィルムの表面粗度を十分に粗くすることができ、伝導伝熱抵抗が増加する分、凝固シェルを徐冷でき、鋳片の表面割れの防止につながる。5.0未満では、スラグフィルムの表面粗度が十分に粗くならず、伝導伝熱抵抗が不足して鋳片の表面割れが発生しやすくなる。また、8.0より大きくなると、スラグフィルムの表面粗度が大きくなり過ぎて、鋳型〜鋳片間の摩擦力が過大になってしまう場合がある。このため、Na2O/Li2Oは5.0〜8.0に限定した。なお、好ましくは6.0〜8.0である。
Na 2 O / Li 2 O: 5.0 to 8.0 (mass ratio)
Since Na 2 O and Li 2 O have different temperature dependence of the effect of decreasing the viscosity and increasing the diffusion rate, adjusting the ratio of Na 2 O and Li 2 O makes the viscosity at 1300 ° C appropriate. While setting the range, the surface roughness of the slag film can be adjusted to an appropriate range by adjusting the diffusion rate in the slag. By setting the Na 2 O / Li 2 O to 5.0 or more, the surface roughness of the slag film can be sufficiently roughened, and the solidified shell can be gradually cooled as the conduction heat transfer resistance increases. Helps prevent surface cracks. If it is less than 5.0, the surface roughness of the slag film will not be sufficiently rough, the conductive heat transfer resistance will be insufficient, and the surface cracks of the slab will tend to occur. Moreover, when larger than 8.0, the surface roughness of a slag film becomes large too much, and the frictional force between a casting_mold | template and a slab may become excessive. Therefore, Na 2 O / Li 2 O is limited to 5.0 to 8.0. In addition, Preferably it is 6.0-8.0.

(Na2O+Li2O)/SiO2:0.32〜0.40(質量比)
Na2O及びLi2Oは、ともに、SiO2によって形成されるネットワークを切断して、液相の粘度を低下する効果があり、CaO/SiO2を適切な範囲に調整するとともに、(Na2O+Li2O)/SiO2を0.32以上とすることにより、適切な粘度調整が可能である。また、(Na2O+Li2O)/SiO2が0.40より大きくなると、スラグフィルムの表面粗度が大きくなり過ぎて鋳型〜鋳片間の摩擦力が過大になってしまう場合があるため、(Na2O+Li2O)/SiO2は0.32〜0.40に調整する。好ましくは0.34〜0.38である。
(Na 2 O + Li 2 O) / SiO 2 : 0.32 to 0.40 (mass ratio)
Both Na 2 O and Li 2 O have the effect of cutting the network formed by SiO 2 and lowering the viscosity of the liquid phase, adjusting CaO / SiO 2 to an appropriate range, and (Na 2 By adjusting O + Li 2 O) / SiO 2 to 0.32 or more, appropriate viscosity adjustment is possible. Further, when (Na 2 O + Li 2 O) / SiO 2 is larger than 0.40, the surface roughness of the slag film becomes too large, and the frictional force between the mold and the slab may become excessive. 2 O + Li 2 O) / SiO 2 is adjusted to 0.32 to 0.40. Preferably it is 0.34-0.38.

粘度:0.01〜0.1Pa・s(1300℃において)
モールドパウダー組成を上記範囲に調整するとともに、溶融したモールドパウダーの1300℃における粘度を0.01〜0.1Pa・sとすることにより、鋳型と凝固シェル間の間に溶融したパウダー(溶融スラグ)が流入しやすくなり、結晶化しやすいパウダーにおいてもスラグ流入を均一化して、安定した潤滑とスラグフィルム厚を維持できるため、鋳片の表面割れを防止できる一つの要因となっている。粘度が、0.01 Pa・s未満と過度に低粘度の場合には、溶融パウダーの巻き込みによる介在物が増加する傾向があるため、0.01〜0.1Pa・sの範囲で調節する。
Viscosity: 0.01 to 0.1 Pa · s (at 1300 ° C)
While adjusting the mold powder composition to the above range and setting the viscosity of the molten mold powder at 1300 ° C to 0.01 to 0.1 Pa · s, molten powder (molten slag) flows between the mold and the solidified shell. Even in powders that are easy to crystallize, the inflow of slag can be made uniform, and stable lubrication and slag film thickness can be maintained. When the viscosity is excessively low, less than 0.01 Pa · s, inclusions due to the entrainment of the molten powder tend to increase, so the adjustment is made in the range of 0.01 to 0.1 Pa · s.

また、モールドパウダーの結晶化温度を1200℃以下に低下させて、液相スラグ中に晶出した結晶が鋳型と凝固シェル間への溶融スラグの流入を阻害しないようにすることも、凝固シェルの均質化による鋳片縦割れ防止に有効である。結晶化温度が1250℃以上では、溶融スラグ流入が不均一となって鋳片の縦割れが助長される場合がある。また、パウダー組成及び物性を上記の適正範囲に調節したうえ、結晶化温度を1200℃以下に低下させることにより、スラグフィルムが凝固してから成長する結晶の量を増大して、凝固したスラグフィルムの変形を促進し、さらに表面粗度を増大する効果が得られる。   It is also possible to reduce the crystallization temperature of the mold powder to 1200 ° C. or lower so that the crystals crystallized in the liquid phase slag do not hinder the flow of molten slag between the mold and the solidified shell. It is effective in preventing slab vertical cracks by homogenization. When the crystallization temperature is 1250 ° C. or higher, molten slag inflow is not uniform and vertical slab cracking may be promoted. In addition, by adjusting the powder composition and physical properties to the above-mentioned appropriate range, the amount of crystals that grow after the slag film solidifies is increased by reducing the crystallization temperature to 1200 ° C. or less, thereby solidifying the slag film. The effect of promoting the deformation and further increasing the surface roughness can be obtained.

モールドパウダーには、上記した成分以外に、例えば以下のAl2O3、MgO、F、Cを含有するようにする。
Al2O3は、10質量%以下とすることが好ましい。10質量%を超えて含有すると溶融スラグが分離し、モールドと凝固シェル間に均一に流入し難くなる。なお、より好ましくは1〜8質量%であり、さらに好ましくは2〜8質量%である。
In addition to the above components, the mold powder contains, for example, the following Al 2 O 3 , MgO, F, and C.
Al 2 O 3 is preferably 10% by mass or less. When the content exceeds 10% by mass, the molten slag is separated, and it is difficult to uniformly flow between the mold and the solidified shell. In addition, More preferably, it is 1-8 mass%, More preferably, it is 2-8 mass%.

Fは、5〜15質量%とすることが好ましい。15質量%を超えて含有してもCaxFyOを含む化合物の晶出を促進させる効果が飽和し、逆にCaF2の結晶が晶出しやすくなる。一方、Fが5質量%未満ではスラグフィルム中にCaxFyOを含む化合物の晶出しにくく好ましくないため、5質量%以上とすることが好ましい。
また、モールドパウダーには滓化または溶融速度の調整剤としてC(カーボン)原料を添加する。その添加量は1〜18質量%の範囲で調節することが好ましい。
F is preferably 5 to 15% by mass. Even if the content exceeds 15% by mass, the effect of promoting crystallization of the compound containing Ca x F y O is saturated, and on the contrary, crystals of CaF 2 are easily crystallized. On the other hand, if F is less than 5% by mass, it is not preferable because the compound containing Ca x F y O is not easily crystallized in the slag film.
In addition, a C (carbon) raw material is added to the mold powder as a hatching or melting rate adjusting agent. The addition amount is preferably adjusted in the range of 1 to 18% by mass.

これらのほか、モールドパウダーには必要に応じてMgO、BaO、SrO、MnO、B2O3、ZrO2、TiO2のうち1種または2種以上を合計で6質量%未満含有させてもよい。しかし、これらの合計量が6質量%以上になると、鋳片上のスケールの生成量が低下し、スケールの剥離性も悪化するため好ましくない。
モールドパウダーは、その形状は限定されるものではなく、例えば、粉末、押し出し顆粒、中空スプレー顆粒、攪拌顆粒など、全ての形状のものを使用することができる。
In addition to these, the mold powder may contain one or more of MgO, BaO, SrO, MnO, B 2 O 3 , ZrO 2 , and TiO 2 if necessary, in total less than 6% by mass. . However, if the total amount of these is 6% by mass or more, the amount of scale produced on the slab is reduced, and the peelability of the scale is also deteriorated.
The shape of the mold powder is not limited, and for example, powders of all shapes such as powder, extruded granules, hollow spray granules, and stirred granules can be used.

また、モールドパウダーの原料の性状も特に限定されるものではないが、モールドパウダーの嵩密度は、粉末、顆粒とも1.0g/cm3以下が好ましく、さらに好ましくは0.8g/cm3以下である。嵩密度が1.0g/cm3を超えると、モールド内で溶融性が悪化するため好ましくない。 Further, although the properties of the raw material of the mold powder are not particularly limited, the bulk density of the mold powder is preferably 1.0 g / cm 3 or less, more preferably 0.8 g / cm 3 or less for both powder and granule. If the bulk density exceeds 1.0 g / cm 3 , the meltability deteriorates in the mold, which is not preferable.

表1に示す組成の溶鋼(中炭素鋼)を転炉で溶製し、タンディッシュを介して水冷鋳型に注湯し、鋳型内溶鋼の表面に表2に示すモールドパウダーを供給しながら表3に示す鋳造速度で、垂直曲げ型連続鋳造機を用いて連続鋳造し、厚さ250mm、幅2304mmの鋳片とした。
表2中、スラグフィルムの表面粗度は以下の手法で測定した。まず、200gのモールドパウダーを電気炉にて1300℃で溶解し、10分保持した後に、水冷鋼板と高温に加熱したセラミック片との間隙に注ぎ込み、スラグフィルムの急冷サンプルを作成した。水冷鋼板と接する面を接触式変位計で測定した。粗さ測定長さ20mmを無作為に選び、5カ所測定した。接触式変位計の型式は株式会社小坂研究所製SE-30Dを用いた。
Molten steel (medium carbon steel) having the composition shown in Table 1 was melted in a converter, poured into a water-cooled mold through a tundish, and the mold powder shown in Table 2 was supplied to the surface of the molten steel in the mold. The casting was continuously cast using a vertical bending type continuous casting machine at the casting speed shown in FIG. 1 to obtain a cast piece having a thickness of 250 mm and a width of 2304 mm.
In Table 2, the surface roughness of the slag film was measured by the following method. First, 200 g of mold powder was melted at 1300 ° C. in an electric furnace, held for 10 minutes, and then poured into a gap between a water-cooled steel sheet and a ceramic piece heated to a high temperature to prepare a rapidly cooled sample of a slag film. The surface in contact with the water-cooled steel sheet was measured with a contact displacement meter. A roughness measurement length of 20 mm was randomly selected and measured at five locations. The model of the contact displacement meter was SE-30D manufactured by Kosaka Laboratory Ltd.

得られた鋳片の表面を全長にわたり目視で観察し、表面割れの有無を調査した。表面割れが一箇所でも認められた鋳片は格落ちとした。そして、各転炉出鋼チャージごとに格落ち率(表面割れが一箇所でも認められた鋳片の本数/連続鋳造した鋳片の本数)を算出し、歩留ロス率とした。得られた結果を表4に示す。   The surface of the obtained slab was visually observed over the entire length to investigate the presence or absence of surface cracks. The slab where surface cracks were observed even at one location was disqualified. Then, for each converter steel charge, the failure rate (number of slabs where surface cracks were observed even at one location / number of continuously cast slabs) was calculated and used as the yield loss rate. Table 4 shows the obtained results.

Figure 2013078797
Figure 2013078797

Figure 2013078797
Figure 2013078797

Figure 2013078797
Figure 2013078797

Figure 2013078797
Figure 2013078797

本発明例は、鋳片の表面割れの発生が防止され、格落ち率が格段に低下している。これに対し、本発明の範囲を外れる比較例は鋳片の表面割れが発生し、格落ち率が高いままである。   In the example of the present invention, the occurrence of surface cracks in the slab is prevented, and the rate of decline is markedly reduced. On the other hand, in the comparative example that is out of the scope of the present invention, the surface crack of the slab is generated, and the failure rate remains high.

1 表面割れ
2 鋳片
3 モールド(鋳型)
4 溶鋼
5 モールドパウダー
6 溶融スラグ層
7 凝固シェル
8 結晶化したスラグ
9 浸漬ノズル
10 タンディッシュノズル
11 タンディッシュ
1 Surface crack 2 Cast slab 3 Mold (mold)
4 Molten Steel 5 Mold Powder 6 Molten Slag Layer 7 Solidified Shell 8 Crystallized Slag 9 Immersion Nozzle
10 Tundish nozzle
11 Tundish

Claims (1)

鋳型内溶鋼表面上にモールドパウダーを供給しながら連続鋳造する鋼の連続鋳造方法であって、前記溶鋼が中炭素鋼であり、前記モールドパウダーを、SiO2、CaOを主成分として、質量%で、CaO/SiO2が1.0以上1.5未満で、Na2O:4.0〜13.0%、Li2O:0.5〜2.0%、を含み、かつ、Na2O/Li2Oが5.0〜8.0及び(Na2O+Li2O)/SiO2が0.32〜0.40を満足するように調整し、1300℃における粘度が0.01〜0.1Pa・sであるパウダーとすることを特徴とする中炭素鋼の連続鋳造方法。 A continuous casting method of steel that is continuously cast while supplying mold powder on the surface of molten steel in a mold, wherein the molten steel is medium carbon steel, and the mold powder is composed mainly of SiO 2 and CaO in mass%. CaO / SiO 2 is 1.0 or more and less than 1.5, Na 2 O: 4.0 to 13.0%, Li 2 O: 0.5 to 2.0%, and Na 2 O / Li 2 O is 5.0 to 8.0 and (Na 2 A continuous casting method for medium carbon steel, characterized in that O + Li 2 O) / SiO 2 is adjusted so as to satisfy 0.32 to 0.40 and a powder having a viscosity at 1300 ° C. of 0.01 to 0.1 Pa · s is obtained.
JP2012207968A 2011-09-21 2012-09-21 Continuous casting method for medium carbon steel Active JP6135081B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012207968A JP6135081B2 (en) 2011-09-21 2012-09-21 Continuous casting method for medium carbon steel

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011205488 2011-09-21
JP2011205488 2011-09-21
JP2012207968A JP6135081B2 (en) 2011-09-21 2012-09-21 Continuous casting method for medium carbon steel

Publications (2)

Publication Number Publication Date
JP2013078797A true JP2013078797A (en) 2013-05-02
JP6135081B2 JP6135081B2 (en) 2017-05-31

Family

ID=48525619

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012207968A Active JP6135081B2 (en) 2011-09-21 2012-09-21 Continuous casting method for medium carbon steel

Country Status (1)

Country Link
JP (1) JP6135081B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016067578A1 (en) * 2014-10-28 2016-05-06 Jfeスチール株式会社 Mold for continuous casting and continuous casting method for steel
CN110695330A (en) * 2019-10-18 2020-01-17 山东钢铁股份有限公司 Stable casting method for sizing nozzle of special-shaped blank tundish
CN114130974A (en) * 2021-12-14 2022-03-04 广东韶钢松山股份有限公司 Covering slag and method for improving pit and pitted surface of medium carbon steel surface

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1058104A (en) * 1996-08-20 1998-03-03 Nippon Steel Metal Prod Co Ltd Mold flux for continuously casting steel
JP2002103008A (en) * 2000-09-28 2002-04-09 Nippon Steel Metal Prod Co Ltd Powder for continuously casting steel
JP3390281B2 (en) * 1995-01-18 2003-03-24 新日本製鐵株式会社 Powder for continuous casting of steel
JP2006231399A (en) * 2005-02-28 2006-09-07 Kobe Steel Ltd Mold powder for continuous casting of medium carbon steel, and continuous casting method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3390281B2 (en) * 1995-01-18 2003-03-24 新日本製鐵株式会社 Powder for continuous casting of steel
JPH1058104A (en) * 1996-08-20 1998-03-03 Nippon Steel Metal Prod Co Ltd Mold flux for continuously casting steel
JP2002103008A (en) * 2000-09-28 2002-04-09 Nippon Steel Metal Prod Co Ltd Powder for continuously casting steel
JP2006231399A (en) * 2005-02-28 2006-09-07 Kobe Steel Ltd Mold powder for continuous casting of medium carbon steel, and continuous casting method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016067578A1 (en) * 2014-10-28 2016-05-06 Jfeスチール株式会社 Mold for continuous casting and continuous casting method for steel
JPWO2016067578A1 (en) * 2014-10-28 2017-04-27 Jfeスチール株式会社 Continuous casting mold and steel continuous casting method
US11331716B2 (en) 2014-10-28 2022-05-17 Jfe Steel Corporation Continuous casting mold and method for continuous casting of steel (as amended)
CN110695330A (en) * 2019-10-18 2020-01-17 山东钢铁股份有限公司 Stable casting method for sizing nozzle of special-shaped blank tundish
CN114130974A (en) * 2021-12-14 2022-03-04 广东韶钢松山股份有限公司 Covering slag and method for improving pit and pitted surface of medium carbon steel surface
CN114130974B (en) * 2021-12-14 2023-06-27 广东韶钢松山股份有限公司 Covering slag and method for improving pit pitting surface on surface of medium carbon steel

Also Published As

Publication number Publication date
JP6135081B2 (en) 2017-05-31

Similar Documents

Publication Publication Date Title
JP5370929B2 (en) Mold flux for continuous casting of steel
JP4422913B2 (en) Mold powder for continuous casting of steel and continuous casting method of steel
JP6269831B2 (en) Mold flux and continuous casting method for continuous casting of Ti-containing subperitectic steel
JP2007290004A (en) Mold powder for continuous casting of high aluminum steel
JP6135081B2 (en) Continuous casting method for medium carbon steel
KR20130061324A (en) Mold flux for casting non-oriented electrical steel sheet with high al content and method for producing non-oriented electrical steel sheet using the same
JP6674093B2 (en) Mold powder for continuous casting of steel and continuous casting method
JP2017087273A (en) CONTINUOUS CASTING MOLD POWDER FOR Ti-CONTAINING STEEL, AND CONTINUOUS CASTING METHOD
JP6871521B2 (en) Manufacturing method of mold powder and medium carbon rope
JP5703919B2 (en) Mold flux for continuous casting of steel and continuous casting method
JP4430638B2 (en) Mold powder for continuous casting of high aluminum steel
JP6169648B2 (en) Mold powder for continuous casting of steel and continuous casting method of steel
JP3876917B2 (en) Steel continuous casting method
JP6510342B2 (en) Continuous casting powder for Al-containing steel and continuous casting method
JP3717049B2 (en) Mold powder for continuous casting of steel and continuous casting method of steel
JP4609119B2 (en) Steel continuous casting method
JP5929744B2 (en) Continuous casting method for round slabs
JP5336058B2 (en) Continuous casting method of steel using mold flux
JP7397361B2 (en) mold powder
KR20130053575A (en) Mold flux for casting twip with high al content and method for producing twip using the same
JP7161035B2 (en) Mold flux and casting method using the same
JP2019048316A (en) Continuous casting method for Al-containing steel
JP7425280B2 (en) Method for producing mold powder for continuous casting and continuous casting method for steel
JP2004122139A (en) Method for continuously casting extra-low carbon steel and mold powder for continuous casting
JP2005305456A (en) Powder for continuous casting for steel and continuous casting method for steel using the same

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140402

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150825

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160608

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160614

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161004

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170303

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170328

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170410

R150 Certificate of patent or registration of utility model

Ref document number: 6135081

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250