JP5381623B2 - Physical property value detection method for measurement object and physical property value detection system for measurement object - Google Patents

Physical property value detection method for measurement object and physical property value detection system for measurement object Download PDF

Info

Publication number
JP5381623B2
JP5381623B2 JP2009251901A JP2009251901A JP5381623B2 JP 5381623 B2 JP5381623 B2 JP 5381623B2 JP 2009251901 A JP2009251901 A JP 2009251901A JP 2009251901 A JP2009251901 A JP 2009251901A JP 5381623 B2 JP5381623 B2 JP 5381623B2
Authority
JP
Japan
Prior art keywords
physical property
property value
measurement object
frequency
ultrasonic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009251901A
Other languages
Japanese (ja)
Other versions
JP2011095210A (en
Inventor
清市 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2009251901A priority Critical patent/JP5381623B2/en
Publication of JP2011095210A publication Critical patent/JP2011095210A/en
Application granted granted Critical
Publication of JP5381623B2 publication Critical patent/JP5381623B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Description

本発明は、測定対象物を透過させた後に受波した超音波ビームの強度から、その測定対象物の物性値を検知する物性値検知方法、及び、物性値検知システムに関する。   The present invention relates to a physical property value detection method and a physical property value detection system for detecting a physical property value of an object to be measured from the intensity of an ultrasonic beam received after passing through the object to be measured.

薄板形状の測定対象物の厚みを測定する場合には、マイクロメータ、ダイヤルゲージ等で測定対象物を直接挟んで測定する手法や、測定対象物を透過させた放射線、超音波等の透過強度に基づいて、測定対象物の厚みを検知する手法が知られている。
このような手法を用いた測定対象物の厚みの測定方法のうち、特許文献1には、超音波を用いた測定方法、即ち、対象物に対して超音波を送信し、透過した超音波の受信強度に基づいて対象物の厚みを測定する超音波厚み測定方法が記載されている。この特許文献1の超音波厚み測定方法では、対象物に放射する超音波の波長が、温度による音速の変化に伴って変化しても、その波長に関する超音波の測定条件が同一となる周波数を含むように、周波数の設定範囲を定め、この設定範囲にわたって周波数を連続的に変化させる。
When measuring the thickness of a thin plate-shaped measurement object, it is possible to measure by directly sandwiching the measurement object with a micrometer, dial gauge, etc., or the transmission intensity of radiation, ultrasonic waves, etc. transmitted through the measurement object. Based on this, a technique for detecting the thickness of a measurement object is known.
Among the methods for measuring the thickness of a measurement object using such a technique, Patent Document 1 discloses a measurement method using ultrasonic waves, that is, transmitting ultrasonic waves to an object and transmitting transmitted ultrasonic waves. An ultrasonic thickness measurement method is described in which the thickness of an object is measured based on received intensity. In the ultrasonic thickness measurement method of Patent Document 1, even if the wavelength of the ultrasonic wave radiated to the object changes with the change in the sound speed due to temperature, the frequency at which the ultrasonic measurement conditions related to the wavelength are the same is used. The frequency setting range is determined so as to include the frequency, and the frequency is continuously changed over the setting range.

特開2004−156917号公報Japanese Patent Application Laid-Open No. 2004-156917

この特許文献1では、超音波(超音波ビーム)の周波数を設定範囲内で連続的に変えてはいるが、これは音速の変化に伴って変化した測定条件を補正するためのものであり、実質上、超音波(超音波ビーム)の周波数について、単一の周波数(例えば、40kHz付近)を用いて、対象物(測定対象物)の厚み(物性値)を測定しているといえる。しかしながら、このように、単一の周波数の超音波(超音波ビーム)を用いた場合には、十分な測定精度が得られない虞がある。   In this Patent Document 1, the frequency of the ultrasonic wave (ultrasonic beam) is continuously changed within the set range, but this is for correcting the measurement conditions that have changed along with the change in the sound speed, It can be said that the thickness (physical property value) of the object (measurement object) is actually measured using a single frequency (for example, around 40 kHz) as the frequency of the ultrasonic wave (ultrasound beam). However, there is a possibility that sufficient measurement accuracy cannot be obtained when ultrasonic waves (ultrasonic beams) having a single frequency are used.

本発明は、かかる現状に鑑みてなされたものであって、超音波ビームを用いて、物性値を精度良く検知できる測定対象物の物性値検知方法、及び、測定対象物の物性値検知システムを提供することを目的とする。   The present invention has been made in view of the current situation, and provides a physical property value detection method for a measurement object and a physical property value detection system for the measurement object that can accurately detect the physical property value using an ultrasonic beam. The purpose is to provide.

本発明の一態様は、空中に放射された超音波ビームを、測定対象物に透過させた後に受波し、受波した上記超音波ビームの強度から、上記測定対象物の物性値を検知する測定対象物の物性値検知方法であって、互いに周波数の異なる上記超音波ビームについて、それぞれ予め得ておいた、上記強度と上記測定対象物の物性値との相関関係に基づいて、各周波数の上記超音波ビームについての上記強度から、それぞれ上記測定対象物の周波数別物性値を得、各々の上記周波数別物性値に基づき、上記測定対象物の上記物性値を特定し、前記測定対象物は、集電箔上に活物質層を形成してなる、電池用の電極板であり、前記物性値は、上記活物質層の目付量である測定対象物の物性値検知方法である。 In one embodiment of the present invention, an ultrasonic beam radiated into the air is transmitted through a measurement object and then received, and a physical property value of the measurement object is detected from the intensity of the received ultrasonic beam. A method for detecting a physical property value of an object to be measured, wherein the ultrasonic beams having different frequencies are obtained in advance based on the correlation between the intensity and the physical property value of the object to be measured. From the intensity of the ultrasonic beam, a physical property value for each frequency of the measurement object is obtained, the physical property value of the measurement object is specified based on each physical property value for each frequency , and the measurement object is An electrode plate for a battery, in which an active material layer is formed on a current collector foil, and the physical property value is a physical property value detection method for an object to be measured, which is a basis weight of the active material layer .

上述の測定対象物の物性値検知方法では、超音波ビームの強度と測定対象物の物性値との相関関係に基づいて、各周波数の超音波ビームの強度から、それぞれ測定対象物の周波数別物性値を得る。そして、それら各々の周波数別物性値に基づいて物性値を特定する。このため、単一の周波数の、1つの超音波ビームに基づく物性値よりも、測定対象物の物性値を精度良く検知することができる。   In the above-described physical property value detection method of the measurement object, based on the correlation between the intensity of the ultrasonic beam and the physical property value of the measurement object, the physical property by frequency of the measurement object is determined from the intensity of the ultrasonic beam of each frequency. Get the value. And the physical property value is specified based on the physical property value for each frequency. For this reason, the physical property value of the measurement object can be detected more accurately than the physical property value based on one ultrasonic beam having a single frequency.

なお、物性値としては、例えば、測定対象物の厚み、密度、基体に塗布された塗膜などの目付量(単位面積あたりの重量)等が挙げられる。   Examples of the physical property value include the thickness and density of the measurement object, and the basis weight (weight per unit area) of the coating film applied to the substrate.

ところで、集電箔に活物質層を形成した電極板(正電極板及び負電極板)において、活物質層の目付量(単位面積あたりの重量)を測定するにあたっては、例えば、マイクロメータやダイヤルゲージ等の、測定対象物に接触させて測る計測工具を用いることも考えられる。しかし、集電箔や活物質層の厚みが薄い(例えば、100μm程度)電極板では、測定が困難であり、また、測定に時間がかかる。
これに対し、上述の測定対象物の物性値検知方法によれば、非接触で活物質層の目付量を検知するので、電極板を傷つけることもなく容易に、かつ、短時間で検知することができる。
By the way, in measuring the basis weight (weight per unit area) of the active material layer in the electrode plate (positive electrode plate and negative electrode plate) in which the active material layer is formed on the current collector foil, for example, a micrometer or dial It is also conceivable to use a measuring tool such as a gauge that measures the object by contacting it. However, it is difficult to measure with an electrode plate having a thin current collector foil or active material layer (for example, about 100 μm), and the measurement takes time.
On the other hand, according to the above-described physical property value detection method of the measurement object, since the basis weight of the active material layer is detected in a non-contact manner, it can be easily detected in a short time without damaging the electrode plate. Can do.

また、本発明の他の態様は、空中に超音波ビームを放射する放射部を有する超音波放射手段と、上記超音波ビームを受波し、電気信号に変換する受波部を有する超音波受波手段と、を備え、上記超音波受波手段で受波した、上記放射部と上記受波部との間に配置した測定対象物を透過させた上記超音波ビームの強度から、上記測定対象物の物性値を検知する測定対象物の物性値検知システムであって、上記超音波放射手段は、上記放射部から、互いに周波数の異なる上記超音波ビームを放射可能とされてなり、上記測定対象物を透過させて受波した各周波数の上記超音波ビームについて、それぞれ予め得ておいた、上記強度と上記測定対象物の上記物性値との相関関係に基づいて、各周波数の上記超音波ビームの上記強度から、上記測定対象物の周波数別物性値をそれぞれ得る周波数別物性値取得手段と、各々の上記周波数別物性値に基づき、上記測定対象物の上記物性値を特定する物性値特定手段と、を備え、前記測定対象物は、集電箔上に活物質層を形成してなる、電池用の電極板であり、前記物性値は、上記活物質層の目付量である測定対象物の物性値検知システムである。 According to another aspect of the present invention, there is provided an ultrasonic wave receiving means having a radiation unit that radiates an ultrasonic beam in the air and a wave receiving unit that receives the ultrasonic beam and converts it into an electrical signal. Wave measurement means, and from the intensity of the ultrasonic beam transmitted through the measurement object disposed between the radiation part and the wave reception part received by the ultrasonic wave reception means, the measurement object A physical property value detection system for a measurement object for detecting a physical property value of a physical object, wherein the ultrasonic radiation means is configured to be capable of emitting the ultrasonic beams having different frequencies from the radiation unit, and the measurement target The ultrasonic beam of each frequency is obtained based on the correlation between the intensity and the physical property value of the measurement object obtained in advance for the ultrasonic beam of each frequency transmitted through the object. From the strength of A frequency different thing of value obtaining means for obtaining respective frequency different things of value, based on each of said frequency different thing of value, and a physical property value specifying means for specifying the physical properties of the measurement object, the measurement object Is an electrode plate for a battery formed by forming an active material layer on a current collector foil, and the physical property value is a physical property value detection system for an object to be measured, which is the basis weight of the active material layer .

上述の測定対象物の物性値検知システムでは、上述の周波数別物性値取得手段と物性値特定手段とを備えるので、互いに周波数の異なる超音波ビームに基づく、複数の周波数別物性値を用いて、測定対象物の物性値を特定することができる。従って、単一の周波数の超音波ビームに基づいて物性値を求めるものよりも、測定対象物の物性値を精度良く検知することができる。   In the above-described physical property value detection system for an object to be measured, since the above-described physical property value acquisition unit by frequency and physical property value specifying unit are provided, a plurality of physical property values by frequency based on ultrasonic beams having different frequencies are used. The physical property value of the measurement object can be specified. Therefore, the physical property value of the measurement object can be detected with higher accuracy than the physical property value obtained based on the ultrasonic beam having a single frequency.

上述の測定対象物の物性値検知システムでは、非接触で活物質層の目付量を検知するので、マイクロメータ等の計測工具を用いて計測するのに比べ、電極板を傷つけることもなく容易に、かつ、短時間に検知することができる。   In the above-described physical property value detection system of the measurement object, the basis weight of the active material layer is detected in a non-contact manner, so that it is easy to damage without damaging the electrode plate as compared with measurement using a measurement tool such as a micrometer. And it can detect in a short time.

実施形態の電池の斜視図である。It is a perspective view of the battery of an embodiment. 実施形態の電極板(正電極板,負電極板)の斜視図である。It is a perspective view of the electrode plate (positive electrode plate, negative electrode plate) of an embodiment. 実施形態にかかる物性値検知装置の説明図である。It is explanatory drawing of the physical-property value detection apparatus concerning embodiment. 周波数の異なる超音波ビームの強度と、測定対象物(正電極板,負電極板)の目付量との相関関係を示す検量線である。It is a calibration curve showing the correlation between the intensity of ultrasonic beams having different frequencies and the basis weight of the measurement object (positive electrode plate, negative electrode plate). 実施形態の測定対象物の物性値検知方法のフローチャートである。It is a flowchart of the physical-property value detection method of the measuring object of embodiment.

(実施形態)
次に、本発明の実施形態について、図面を参照しつつ説明する。
なお、本実施形態にかかる測定対象物の物性値検知装置100、及び、これを用いた物性検知方法では、測定対象物として電池1用の電極板(後述する正電極板30及び負電極板40)を用いる。そこで、まず、電池1について、図1,2を参照しつつ説明する。
この電池1は、いずれも長手方向DAに延びる帯状の正電極板30、負電極板40及びセパレータ20を備え、これらを捲回した捲回型の発電要素10をなすリチウムイオン二次電池である(図1参照)。なお、電池1は、図1に示すように、発電要素10を電池ケース80に収容してなる。
(Embodiment)
Next, embodiments of the present invention will be described with reference to the drawings.
In addition, in the physical property value detection apparatus 100 of the measurement object according to the present embodiment and the physical property detection method using the same, an electrode plate for the battery 1 (a positive electrode plate 30 and a negative electrode plate 40 described later) is used as the measurement object. ) Is used. First, the battery 1 will be described with reference to FIGS.
The battery 1 is a lithium ion secondary battery that includes a belt-like positive electrode plate 30, a negative electrode plate 40, and a separator 20 that extend in the longitudinal direction DA, and forms a wound power generation element 10 that is wound around these. (See FIG. 1). In addition, the battery 1 accommodates the electric power generation element 10 in the battery case 80, as shown in FIG.

この電池ケース80は、共にアルミニウム製の電池ケース本体81及び封口蓋82を有する。このうち電池ケース本体81は有底矩形箱形であり、この電池ケース80と発電要素10との間には、樹脂からなり、箱状に折り曲げた絶縁フィルム(図示しない)が介在させてある。また、封口蓋82は矩形板状であり、電池ケース本体81の開口を閉塞して、この電池ケース本体81に溶接されている。この封口蓋82には、発電要素10と接続している正極集電部材91及び負極集電部材92のうち、それぞれ先端に位置する正極端子部91A及び負極端子部92Aが貫通しており、図1中、上方に向く蓋表面82aから突出している。これら正極端子部91A及び負極端子部92Aと封口蓋82との間には、それぞれ絶縁性の樹脂からなる絶縁部材95が介在し、互いを絶縁している。さらに、この封口蓋82には矩形板状の安全弁97も封着されている。   The battery case 80 has a battery case body 81 and a sealing lid 82 both made of aluminum. Among these, the battery case main body 81 has a bottomed rectangular box shape, and an insulating film (not shown) made of resin and bent into a box shape is interposed between the battery case 80 and the power generation element 10. The sealing lid 82 has a rectangular plate shape, closes the opening of the battery case body 81, and is welded to the battery case body 81. Of the positive electrode current collecting member 91 and the negative electrode current collecting member 92 connected to the power generation element 10, the positive electrode terminal portion 91 </ b> A and the negative electrode terminal portion 92 </ b> A located at the tips of the sealing lid 82 pass through, respectively. 1 protrudes from the lid surface 82a facing upward. Insulating members 95 made of insulating resin are interposed between the positive electrode terminal portion 91A and the negative electrode terminal portion 92A and the sealing lid 82 to insulate each other. Further, a rectangular plate-shaped safety valve 97 is also sealed on the sealing lid 82.

また、発電要素10は、帯状の正電極板30及び負電極板40が、帯状のセパレータ20を介して扁平形状に捲回されてなる捲回型である(図1参照)。この発電要素10の最外側及び最内側には、セパレータ20のみが捲回されている。なお、この発電要素10の正電極板30及び負電極板40はそれぞれ、クランク状に屈曲した板状の正極集電部材91又は負極集電部材92と接合している(図1参照)。このうち、ポリエチレンからなるセパレータ20には、エチレンカーボネート(EC)とエチルメチルカーボネート(EMC)との混合有機溶媒に溶質(LiPF6)を添加してなる電解液(図示しない)が含浸されている。 The power generation element 10 is a wound type in which a strip-like positive electrode plate 30 and a negative electrode plate 40 are wound into a flat shape via a strip-like separator 20 (see FIG. 1). Only the separator 20 is wound on the outermost and innermost sides of the power generation element 10. The positive electrode plate 30 and the negative electrode plate 40 of the power generation element 10 are joined to a plate-like positive current collector 91 or negative current collector 92 bent in a crank shape, respectively (see FIG. 1). Among these, the separator 20 made of polyethylene is impregnated with an electrolytic solution (not shown) obtained by adding a solute (LiPF 6 ) to a mixed organic solvent of ethylene carbonate (EC) and ethyl methyl carbonate (EMC). .

また、薄板形状の正電極板30は、図2の斜視図に示すように、長手方向DAに延びる帯状で、アルミニウム製のアルミ箔38と、このアルミ箔38の両主面上に、それぞれ長手方向DAに延びる帯状に形成・配置された2つの正極活物質層31,31とを有している。
この正極活物質層31は、LiCoO2からなる正極活物質粒子(図示しない)と、アセチレンブラックからなる導電材(図示しない)と、ポリフッ化ビニリデン(PVDF)からなる結着材(図示しない)とを含む。
Further, as shown in the perspective view of FIG. 2, the thin plate-shaped positive electrode plate 30 has a belt-like shape extending in the longitudinal direction DA, and the aluminum foil 38 made of aluminum and the main surfaces of the aluminum foil 38 are respectively long. It has two positive electrode active material layers 31 and 31 formed and arranged in a strip shape extending in the direction DA.
The positive electrode active material layer 31 includes positive electrode active material particles (not shown) made of LiCoO 2 , a conductive material (not shown) made of acetylene black, and a binder (not shown) made of polyvinylidene fluoride (PVDF). including.

一方、薄板形状の負電極板40も、図2に示すように、長手方向DAに延びる帯状で銅製の銅箔48と、この銅箔48の両主面上に、それぞれ長手方向DAに延びる帯状に形成・配置された2つの負極活物質層41,41とを有している。
このうち負極活物質層41は、グラファイトからなる負極活物質粒子(図示しない)、及び、PVDFからなる結着材(図示しない)を含む。
On the other hand, as shown in FIG. 2, the thin negative electrode plate 40 also has a strip shape extending in the longitudinal direction DA and a copper foil 48 made of copper, and strips extending in the longitudinal direction DA on both main surfaces of the copper foil 48. And two negative electrode active material layers 41, 41 formed and arranged on the substrate.
Among these, the negative electrode active material layer 41 includes negative electrode active material particles (not shown) made of graphite and a binder (not shown) made of PVDF.

次に、本実施形態にかかる物性値検知装置100について、図3を参照しつつ説明する。
この物性値検知装置100は、超音波ビームUSを放射する超音波放射部110と、その超音波ビームUSを受波し、これを電気信号(具体的には超音波ビームUSの大きさに応じた振幅、かつ、超音波ビームUSの周波数と同じ周波数の交流信号)に変換する超音波受波部120と、これら超音波放射部110及び超音波受波部120を保持する、コの字形状のアーム130と、超音波放射部110及び超音波受波部120を制御すると共に電気信号を処理する制御部150とを有する。
Next, the physical property value detection apparatus 100 according to the present embodiment will be described with reference to FIG.
The physical property detection device 100 receives an ultrasonic wave radiation unit 110 that radiates an ultrasonic beam US and the ultrasonic beam US, and outputs the received electric signal (specifically, depending on the size of the ultrasonic beam US). And an ultrasonic wave receiving portion 120 that converts the amplitude into an AC signal having the same frequency as the frequency of the ultrasonic beam US, and a U-shape that holds the ultrasonic wave radiating portion 110 and the ultrasonic wave receiving portion 120. Arm 130 and a control unit 150 that controls the ultrasonic radiation unit 110 and the ultrasonic wave reception unit 120 and processes an electrical signal.

このうち、制御部150は、CPU、ROM、RAMを含む公知のマイクロコンピュータ(図示しない)を有し、記憶されているプログラムに従って、超音波放射部110及び超音波受波部120を制御する等の処理を行う。
また、超音波放射部110は、超音波振動子を有し、超音波ビームUSを放射する放射部111と、超音波振動子を所定の周波数で駆動する駆動回路116とからなる。なお、超音波ビームUSは、進行に伴いビーム径が小さくなる収束超音波ビームとされている。このため、超音波受波部120で受波される超音波ビームUSの強度をより高くすることができ、測定対象物(正電極板30,負電極板40)の物性値(このうちの、正極活物質層31,負極活物質層41の目付量)をより確実に検知できる。また、超音波放射部110の駆動回路116は、制御部150の指示に従って、放射部111を駆動する駆動電圧の周波数f1,f2,f3を所定時間毎(例えば1秒毎)に順に切り換えるので、放射部111からは、周波数f1,f2,f3の超音波ビームUSが順に放射される。
Among these, the control unit 150 includes a known microcomputer (not shown) including a CPU, a ROM, and a RAM, and controls the ultrasonic radiation unit 110 and the ultrasonic wave reception unit 120 according to a stored program. Perform the process.
The ultrasonic radiation unit 110 includes an ultrasonic transducer, and includes a radiation unit 111 that emits an ultrasonic beam US, and a drive circuit 116 that drives the ultrasonic transducer at a predetermined frequency. Note that the ultrasonic beam US is a convergent ultrasonic beam whose beam diameter decreases as it progresses. For this reason, the intensity | strength of the ultrasonic beam US received by the ultrasonic receiving part 120 can be made higher, and the physical property value (among these, the positive electrode plate 30, the negative electrode plate 40) The basis weight of the positive electrode active material layer 31 and the negative electrode active material layer 41) can be detected more reliably. Further, the drive circuit 116 of the ultrasonic radiation unit 110 sequentially switches the frequencies f1, f2, and f3 of the drive voltage for driving the radiation unit 111 at predetermined time intervals (for example, every second) in accordance with an instruction from the control unit 150. From the radiation unit 111, ultrasonic beams US having frequencies f1, f2, and f3 are sequentially emitted.

一方、超音波受波部120は、放射部111に対向して配置され、超音波ビームUSを受波するとその強度に応じた振幅の電気信号を発生する超音波振動子を有する受波部121、及び、この超音波振動子の出力(電気信号)を、その大きさに応じた電圧値を有する直流電圧信号に変換する受波回路126からなる。   On the other hand, the ultrasonic wave receiving unit 120 is disposed opposite to the radiation unit 111, and when receiving the ultrasonic beam US, the ultrasonic wave receiving unit 121 includes an ultrasonic transducer that generates an electric signal having an amplitude corresponding to the intensity. And a wave receiving circuit 126 for converting the output (electric signal) of the ultrasonic transducer into a DC voltage signal having a voltage value corresponding to the magnitude.

さらに、制御部150では、前述したように超音波放射部110(駆動回路116)に対し、周波数の切換を指示するほか、超音波受波部120から出力される、受波した超音波ビームUSの強度に応じた直流電圧信号の電圧値をA/D変換して取り込む。そして、この信号の電圧値の大きさから、測定対象物(正電極板30,負電極板40)の物性値(正極活物質層31,負極活物質層41の目付量)の検知を行う。   Further, as described above, the control unit 150 instructs the ultrasonic radiation unit 110 (drive circuit 116) to switch the frequency, and also receives the received ultrasonic beam US output from the ultrasonic reception unit 120. The voltage value of the DC voltage signal corresponding to the intensity of the signal is A / D converted and captured. Based on the magnitude of the voltage value of this signal, the physical property value (the weight per unit area of the positive electrode active material layer 31 and the negative electrode active material layer 41) of the measurement object (positive electrode plate 30, negative electrode plate 40) is detected.

なお、この制御部150には、各周波数f1,f2,f3毎に、受波部121で受波した超音波ビームUSの強度UC(直流電圧信号の大きさ)と、測定対象物(正電極板30,負電極板40)の周波数別物性値(正極活物質層31,負極活物質層41の目付量AP)との相関関係を示す検量線(図4参照)のデータがそれぞれ記憶されている。このため、この検量線を用いて、各周波数f1,f2,f3毎に得られた強度(後述する強度UC1,UC2,UC3)から、周波数別物性値(後述する周波数目付量AP1,AP2,AP3)を得ることができる。
この検量線は、予め、物性値が既知の試料を用い、この物性値と透過させた超音波ビームの強度UCとの関係を、様々な物性値の試料について得ておき、これらから求めたものである。
The control unit 150 includes an intensity UC (a magnitude of the DC voltage signal) of the ultrasonic beam US received by the wave receiving unit 121 and a measurement object (positive electrode) for each frequency f1, f2, and f3. The data of the calibration curve (see FIG. 4) indicating the correlation with the physical properties by frequency of the plate 30 and the negative electrode plate 40 (the basis weight AP of the positive electrode active material layer 31 and the negative electrode active material layer 41) are respectively stored. Yes. For this reason, by using this calibration curve, from the intensity obtained for each frequency f1, f2, f3 (intensities UC1, UC2, UC3 described later), the physical property values for each frequency (frequency basis weights AP1, AP2, AP3 described later). ) Can be obtained.
This calibration curve was obtained in advance using samples with known physical property values, and obtaining the relationship between this physical property value and the intensity UC of the transmitted ultrasonic beam for samples with various physical property values. It is.

但し、本実施形態では、検量線を以下のようにして得た。
ところで、集電箔上の活物質層の目付量(厚みや密度)を変えたものを多数用意するのは難しく、これについての目付量と透過する超音波ビームの強度との関係を得るのが難しい。また、透過した超音波ビームの強度は、電極板程度の厚さや密度の物質においては、物質によらず、単位面積あたりの重量に応じて変化する。そこで、試料として、電極板、即ち、集電箔上に活物質層を形成したものを用いるのに代えて、厚みの異なる金属箔を用いた。これについて単位面積あたりの重量と透過した超音波ビームの強度との関係を得る方が容易だからである。
However, in this embodiment, the calibration curve was obtained as follows.
By the way, it is difficult to prepare a large number of active material layers with different basis weights (thicknesses and densities) on the current collector foil, and obtaining the relationship between the basis weight and the intensity of the transmitted ultrasonic beam is difficult. difficult. The intensity of the transmitted ultrasonic beam varies depending on the weight per unit area, regardless of the substance, in a substance having a thickness or density similar to that of an electrode plate. Therefore, metal foils having different thicknesses were used as samples instead of using an electrode plate, that is, a current collector foil having an active material layer formed thereon. This is because it is easier to obtain the relationship between the weight per unit area and the intensity of the transmitted ultrasonic beam.

試料として、正電極板30の集電箔として用いるアルミ箔38と同材質で、10〜100μmの厚みの金属箔を5μm間隔で用意した。そして、各厚みの金属箔について、第1周波数f1(100kHz)の超音波ビームを放射し、透過させた超音波ビームの強度UCと単位面積あたりの重量との関係を得る。なお、正電極板30に用いるアルミ箔38の厚み(従って、単位面積あたりの重量)は一定であるので、この分を差し引けば、強度UCと正極活物質層31の目付量APとの関係を得たことになる。
具体的には、横軸を超音波ビームの強度UC1とし、縦軸を目付量AP1としたグラフに、各試料(金属箔)について、強度と目付量とで与えられる点をプロットする。そして、プロットした複数の点に基づいて、第1周波数f1について、超音波ビームの強度をxとしたとき目付量をyとして得る2次式(y=ax2+bx+c(a,b,cは定数))の形式の近似式(検量線G1)を得ておく。
さらに、同様にして、第2周波数f2(200kHz)及び第3周波数f3(400kHz)の超音波ビームについて、2次式で示す検量線G2,G3をそれぞれ得ておく(図4参照)。
また、負電極板40に用いる銅箔48と同材質の金属箔についても、同様にして、第1周波数f1,第2周波数f2,第3周波数f3の超音波ビームについて、2次式の形式の検量線をそれぞれ得ておく。
As a sample, a metal foil having a thickness of 10 to 100 μm made of the same material as the aluminum foil 38 used as a current collector foil of the positive electrode plate 30 was prepared at intervals of 5 μm. And about the metal foil of each thickness, the ultrasonic beam of 1st frequency f1 (100 kHz) is radiated | emitted and the relationship between the intensity | strength UC of the transmitted ultrasonic beam and the weight per unit area is obtained. Since the thickness of aluminum foil 38 used for positive electrode plate 30 (and hence the weight per unit area) is constant, the relationship between strength UC and basis weight AP of positive electrode active material layer 31 is obtained by subtracting this thickness. I got.
Specifically, the points given by the intensity and the basis weight are plotted for each sample (metal foil) on a graph in which the horizontal axis is the intensity UC1 of the ultrasonic beam and the vertical axis is the basis weight AP1. Then, based on the plotted points, for the first frequency f1, a quadratic expression (y = ax 2 + bx + c (a, b, and c are constants) that obtains the basis weight y when the intensity of the ultrasonic beam is x. )) In the form of an approximate expression (calibration curve G1).
Further, similarly, calibration curves G2 and G3 represented by quadratic expressions are respectively obtained for the ultrasonic beams having the second frequency f2 (200 kHz) and the third frequency f3 (400 kHz) (see FIG. 4).
Similarly, for the metal foil made of the same material as the copper foil 48 used for the negative electrode plate 40, the ultrasonic beam having the first frequency f1, the second frequency f2, and the third frequency f3 is in the form of a quadratic expression. Obtain a calibration curve for each.

上述した物性値検知装置100を用いて、電池1における、正電極板30の正極活物質層31の目付量APを検知する物性値検知方法について、図5に示すフローチャートを参照して説明する。
なお、測定対象物となる正電極板30の正極活物質層31は、電池1の製造工程において、塗工及び圧縮されて完成した状態のものである。
A physical property value detection method for detecting the basis weight AP of the positive electrode active material layer 31 of the positive electrode plate 30 in the battery 1 using the physical property value detection device 100 described above will be described with reference to the flowchart shown in FIG.
In addition, the positive electrode active material layer 31 of the positive electrode plate 30 serving as a measurement object is in a state of being completed by coating and compression in the manufacturing process of the battery 1.

まず、図3に示すように、正電極板30を、超音波放射部110と超音波受波部120との間に配置する。そして、図5に示すフローチャートのステップS1では、放射部111から、第1周波数f1(100kHz)の超音波ビームUSを、正電極板30に放射させる。
続いて、受波部121で受波した超音波ビームUSの強度(第1周波数強度UC1)から、制御部150において、図4に示す検量線G1に基づき、正極活物質層31の目付量(第1周波数目付量AP1)を算出する(ステップS2)。
First, as shown in FIG. 3, the positive electrode plate 30 is disposed between the ultrasonic radiation unit 110 and the ultrasonic wave reception unit 120. Then, in step S <b> 1 of the flowchart shown in FIG. 5, the ultrasonic beam US having the first frequency f <b> 1 (100 kHz) is radiated from the radiation unit 111 to the positive electrode plate 30.
Subsequently, from the intensity (first frequency intensity UC1) of the ultrasonic beam US received by the wave receiving unit 121, the control unit 150 uses the calibration amount G1 shown in FIG. First frequency basis weight AP1) is calculated (step S2).

次に、ステップS3では、放射部111から、第1周波数f1に代えて、第2周波数f2(200kHz)の超音波ビームUSを、正電極板30に放射させる。
そして、ステップS4では、受波部121で受波した超音波ビームUSの強度(第2周波数強度UC2)から、図4に示す検量線G2に基づき、正極活物質層31の目付量(第2周波数目付量AP2)を算出する。
Next, in step S <b> 3, an ultrasonic beam US having a second frequency f <b> 2 (200 kHz) is emitted from the radiation unit 111 to the positive electrode plate 30 instead of the first frequency f <b> 1.
In step S4, the basis weight of the positive electrode active material layer 31 (second frequency) is calculated based on the calibration curve G2 shown in FIG. 4 from the intensity (second frequency intensity UC2) of the ultrasonic beam US received by the wave receiver 121. The frequency basis weight AP2) is calculated.

続いて、ステップS5では、放射部111から、第2周波数f2に代えて、第3周波数f3(400kHz)の超音波ビームUSを、正電極板30に放射させる。
そして、ステップS6では、受波部121で受波した超音波ビームUSの強度(第3周波数強度UC3)から、図4に示す検量線G3に基づき、正極活物質層31の目付量(第3周波数目付量AP3)を算出する。
Subsequently, in step S5, instead of the second frequency f2, the ultrasonic beam US having the third frequency f3 (400 kHz) is emitted from the radiation unit 111 to the positive electrode plate 30.
In step S6, the basis weight of the positive electrode active material layer 31 (third value) is calculated based on the calibration curve G3 shown in FIG. 4 from the intensity (third frequency intensity UC3) of the ultrasonic beam US received by the wave receiver 121. The frequency basis weight AP3) is calculated.

続いて、ステップS7では、上述した第1周波数目付量AP1、第2周波数目付量AP2及び第3周波数目付量AP3に基づいて、正極活物質層31の目付量APを算出する。具体的には、第1周波数目付量AP1、第2周波数目付量AP2及び第3周波数目付量AP3の平均値を算出して目付量APとする。   Subsequently, in step S7, the basis weight AP of the positive electrode active material layer 31 is calculated based on the first frequency basis weight AP1, the second frequency basis weight AP2, and the third frequency basis weight AP3. Specifically, the average value of the first frequency basis weight AP1, the second frequency basis weight AP2, and the third frequency basis weight AP3 is calculated as the basis weight AP.

なお、本実施形態では、ステップS2,S4,S6が周波数別物性値取得手段に、ステップS7が物性値特定手段に、それぞれ対応する。
また、電池1における、負電極板40の負極活物質層41の目付量APを検知する物性値検知方法についても、上述した物性値検知装置100を用いて、正極活物質層31と同様にして行うので、説明を省略する。
In the present embodiment, steps S2, S4, and S6 correspond to frequency-specific property value acquisition means, and step S7 corresponds to property value specification means.
In addition, the physical property value detection method for detecting the basis weight AP of the negative electrode active material layer 41 of the negative electrode plate 40 in the battery 1 is the same as that of the positive electrode active material layer 31 using the physical property value detection device 100 described above. Since this is done, the description is omitted.

以上より、本実施形態にかかる正電極板30(負電極板40)の物性値検知方法では、検量線G1,G2,G3に基づいて、各周波数f1,f2,f3の超音波ビームUSの強度UC1,UC2,UC3から、正極活物質層31(負極活物質層41)の周波数目付量AP1,AP2,AP3をそれぞれ得る。そして、これら周波数目付量AP1,AP2,AP3に基づいて、正極活物質層31(負極活物質層41)の目付量APを特定する。このため、単一の周波数の、1つの超音波ビームに基づく目付量よりも、正極活物質層31(負極活物質層41)の目付量APを精度良く検知することができる。   As described above, in the physical property value detection method for the positive electrode plate 30 (negative electrode plate 40) according to the present embodiment, the intensity of the ultrasonic beam US having the frequencies f1, f2, and f3 based on the calibration curves G1, G2, and G3. From UC1, UC2, and UC3, the frequency basis weights AP1, AP2, and AP3 of the positive electrode active material layer 31 (negative electrode active material layer 41) are obtained, respectively. Based on these frequency basis weights AP1, AP2, AP3, the basis weight AP of the positive electrode active material layer 31 (the negative electrode active material layer 41) is specified. Therefore, the basis weight AP of the positive electrode active material layer 31 (the negative electrode active material layer 41) can be detected with higher accuracy than the basis weight based on one ultrasonic beam having a single frequency.

また、アルミ箔38(銅箔48)に正極活物質層31(負極活物質層41)を形成した正電極板30(負電極板40)において、正極活物質層31(負極活物質層41)の目付量APを測定するにあたっては、例えば、マイクロメータやダイヤルゲージ等の、測定対象物に接触させて測る計測工具を用いることも考えられる。しかし、アルミ箔38(銅箔48)や正極活物質層31(負極活物質層41)の厚みが薄い(例えば、100μm程度)正電極板30(負電極板40)では測定が困難であり、また、測定に時間がかかる。
これに対し、本実施形態にかかる正電極板30(負電極板40)の物性値検知方法によれば、非接触で正極活物質層31(負極活物質層41)の目付量APを検知するので、正電極板30(負電極板40)を傷つけることもなく容易に、かつ、短時間に検知することができる。
Further, in the positive electrode plate 30 (negative electrode plate 40) in which the positive electrode active material layer 31 (negative electrode active material layer 41) is formed on the aluminum foil 38 (copper foil 48), the positive electrode active material layer 31 (negative electrode active material layer 41). In measuring the basis weight AP, for example, it is also conceivable to use a measuring tool such as a micrometer or a dial gauge that is measured in contact with an object to be measured. However, it is difficult to measure with the positive electrode plate 30 (negative electrode plate 40) in which the thickness of the aluminum foil 38 (copper foil 48) and the positive electrode active material layer 31 (negative electrode active material layer 41) is thin (for example, about 100 μm), Moreover, it takes time to measure.
On the other hand, according to the physical property value detection method of the positive electrode plate 30 (negative electrode plate 40) according to the present embodiment, the basis weight AP of the positive electrode active material layer 31 (negative electrode active material layer 41) is detected in a non-contact manner. Therefore, the positive electrode plate 30 (negative electrode plate 40) can be detected easily and in a short time without damaging the positive electrode plate 30 (negative electrode plate 40).

また、本実施形態にかかる正電極板30(負電極板40)の物性値検知装置100では、上述の周波数別物性値取得手段(ステップS2,S4,S6)と物性値特定手段(ステップS7)とを備えるので、互いに周波数の異なる超音波ビームUSに基づく、複数の周波数別物性値AP1,AP2,AP3を用いて、正極活物質層31(負極活物質層41)の目付量APを特定することができる。従って、単一の周波数の超音波ビームに基づいて目付量を求めるものよりも、正極活物質層31(負極活物質層41)の目付量APを精度良く検知することができる。   Further, in the physical property value detection device 100 of the positive electrode plate 30 (negative electrode plate 40) according to the present embodiment, the above-described physical property value acquisition means (steps S2, S4, S6) and physical property value specifying means (step S7). Therefore, the basis weight AP of the positive electrode active material layer 31 (negative electrode active material layer 41) is specified using a plurality of physical property values AP1, AP2, AP3 by frequency based on ultrasonic beams US having different frequencies. be able to. Therefore, the basis weight AP of the positive electrode active material layer 31 (the negative electrode active material layer 41) can be detected with higher accuracy than that in which the basis weight is obtained based on an ultrasonic beam having a single frequency.

また、物性値検知装置100を用いれば、非接触で正極活物質層31(負極活物質層41)の目付量APを検知するので、マイクロメータ等の計測工具を用いて計測するのに比べ、正電極板30(負電極板40)を傷つけることもなく容易に、かつ、短時間に検知することができる。   Further, if the physical property value detection device 100 is used, the basis weight AP of the positive electrode active material layer 31 (negative electrode active material layer 41) is detected in a non-contact manner, compared with measurement using a measurement tool such as a micrometer. Detection can be performed easily and in a short time without damaging the positive electrode plate 30 (negative electrode plate 40).

以上において、本発明を実施形態に即して説明したが、本発明は上記実施形態に限定されるものではなく、その要旨を逸脱しない範囲で、適宜変更して適用できることは言うまでもない。
例えば、実施形態では、各周波数の超音波ビームの強度(UC1等)に基づいた周波数別物性値(AP1等)を、予め得ておいた検量線の式から算出、取得した。しかし、例えば、各周波数の強度(UC1等)の値と、周波数別物性値(AP1等)の値とを対応づけて記憶させておいたルックアップテーブルを用いて、得られた強度から周波数別物性値を取得しても良い。また、実施形態では、測定対象物の物性値として、電極板における活物質層の目付量を得るものを示した。しかし、物性値としては、例えば、測定対象物の厚み、密度などを測定することもできる。
In the above, the present invention has been described with reference to the embodiment. However, the present invention is not limited to the above embodiment, and it is needless to say that the present invention can be appropriately modified and applied without departing from the gist thereof.
For example, in the embodiment, the physical property value by frequency (AP1 or the like) based on the intensity (UC1 or the like) of the ultrasonic beam of each frequency is calculated and obtained from the calibration curve formula obtained in advance. However, for example, by using a look-up table in which the value of the intensity (UC1 or the like) of each frequency is associated with the value of the physical property value (AP1 or the like) for each frequency, A sex value may be acquired. In the embodiment, the physical property value of the measurement object is obtained by obtaining the basis weight of the active material layer in the electrode plate. However, as the physical property values, for example, the thickness and density of the measurement object can be measured.

1 電池
30 正電極板(電極板,測定対象物)
31 正極活物質層(活物質層)
38 アルミ箔(集電箔)
40 負電極板(電極板,測定対象物)
41 負極活物質層(活物質層)
48 銅箔(集電箔)
100 物性値検知装置(測定対象物の物性値検知システム)
110 超音波放射部(超音波放射手段)
111 放射部
120 超音波受波部(超音波受波手段)
121 受波部
AP (活物質層の)目付量(物性値)
AP1 第1周波数目付量(周波数別物性値)
AP2 第2周波数目付量(周波数別物性値)
AP3 第3周波数目付量(周波数別物性値)
f1 第1周波数(周波数)
f2 第2周波数(周波数)
f3 第3周波数(周波数)
G1,G2,G3 検量線(相関関係)
UC 強度
UC1 第1周波数強度(強度)
UC2 第2周波数強度(強度)
UC3 第3周波数強度(強度)
US 超音波ビーム
1 Battery 30 Positive electrode plate (electrode plate, measurement object)
31 Positive electrode active material layer (active material layer)
38 Aluminum foil (current collector foil)
40 Negative electrode plate (electrode plate, measurement object)
41 Negative electrode active material layer (active material layer)
48 Copper foil (current collector foil)
100 Physical property value detector (physical property value detection system for measurement object)
110 Ultrasonic radiation part (ultrasonic radiation means)
111 Radiation unit 120 Ultrasonic wave receiving unit (Ultrasonic wave receiving means)
121 Wave receiver AP (active material layer) basis weight (property value)
AP1 first frequency basis weight (property value by frequency)
AP2 Second frequency basis weight (property value by frequency)
AP3 Third frequency basis weight (property value by frequency)
f1 First frequency (frequency)
f2 Second frequency (frequency)
f3 Third frequency (frequency)
G1, G2, G3 calibration curve (correlation)
UC intensity UC1 first frequency intensity (intensity)
UC2 Second frequency intensity (intensity)
UC3 Third frequency intensity (strength)
US ultrasonic beam

Claims (4)

空中に放射された超音波ビームを、測定対象物に透過させた後に受波し、受波した上記超音波ビームの強度から、上記測定対象物の物性値を検知する
測定対象物の物性値検知方法であって、
互いに周波数の異なる上記超音波ビームについて、それぞれ予め得ておいた、上記強度と上記測定対象物の物性値との相関関係に基づいて、各周波数の上記超音波ビームについての上記強度から、それぞれ上記測定対象物の周波数別物性値を得、各々の上記周波数別物性値に基づき、上記測定対象物の上記物性値を特定し、
前記測定対象物は、
集電箔上に活物質層を形成してなる、電池用の電極板であり、
前記物性値は、
上記活物質層の目付量である
測定対象物の物性値検知方法。
Detecting the physical property value of the measurement object, detecting the physical property value of the measurement object from the intensity of the ultrasonic beam received after the ultrasonic beam emitted in the air is transmitted through the measurement object A method,
Based on the correlation between the intensity and the physical property value of the measurement object obtained in advance for the ultrasonic beams having different frequencies, the intensity of the ultrasonic beam of each frequency Obtain the physical property value by frequency of the measurement object, and specify the physical property value of the measurement object based on each physical property value by frequency ,
The measurement object is
An electrode plate for a battery, in which an active material layer is formed on a current collector foil,
The physical property values are
A method for detecting a physical property value of an object to be measured, which is a basis weight of the active material layer .
請求項1に記載の測定対象物の物性値検知方法であって、A method for detecting a physical property value of a measurement object according to claim 1,
前記超音波ビームは、  The ultrasonic beam is
進行に伴いビーム径が小さくなる収束超音波ビームである    It is a convergent ultrasonic beam whose beam diameter decreases as it progresses
測定対象物の物性値検知方法。A method for detecting physical properties of a measurement object.
空中に超音波ビームを放射する放射部を有する超音波放射手段と、
上記超音波ビームを受波し、電気信号に変換する受波部を有する超音波受波手段と、を備え、
上記超音波受波手段で受波した、上記放射部と上記受波部との間に配置した測定対象物を透過させた上記超音波ビームの強度から、上記測定対象物の物性値を検知する
測定対象物の物性値検知システムであって、
上記超音波放射手段は、
上記放射部から、互いに周波数の異なる上記超音波ビームを放射可能とされてなり、
上記測定対象物を透過させて受波した各周波数の上記超音波ビームについて、それぞれ予め得ておいた、上記強度と上記測定対象物の上記物性値との相関関係に基づいて、各周波数の上記超音波ビームの上記強度から、上記測定対象物の周波数別物性値をそれぞれ得る周波数別物性値取得手段と、
各々の上記周波数別物性値に基づき、上記測定対象物の上記物性値を特定する物性値特定手段と、を備え
前記測定対象物は、
集電箔上に活物質層を形成してなる、電池用の電極板であり、
前記物性値は、
上記活物質層の目付量である
測定対象物の物性値検知システム。
An ultrasonic radiation means having a radiation part for emitting an ultrasonic beam in the air;
An ultrasonic wave receiving means having a wave receiving portion for receiving the ultrasonic beam and converting it into an electrical signal;
The physical property value of the measurement object is detected from the intensity of the ultrasonic beam received by the ultrasonic wave receiving means and transmitted through the measurement object disposed between the radiation part and the wave reception part. A physical property value detection system for a measurement object,
The ultrasonic radiation means is
From the radiation part, it is possible to radiate the ultrasonic beams having different frequencies from each other,
Based on the correlation between the intensity and the physical property value of the measurement object obtained in advance for the ultrasonic beam of each frequency transmitted through the measurement object and received, From the intensity of the ultrasonic beam, the physical property value acquisition means by frequency for obtaining the physical property value by frequency of the measurement object,
Physical property value specifying means for specifying the physical property value of the measurement object based on each physical property value by frequency , and
The measurement object is
An electrode plate for a battery, in which an active material layer is formed on a current collector foil,
The physical property values are
A physical property value detection system for an object to be measured which is a basis weight of the active material layer .
請求項3に記載の測定対象物の物性値検知システムであって、A physical property value detection system for a measurement object according to claim 3,
前記超音波ビームは、  The ultrasonic beam is
進行に伴いビーム径が小さくなる収束超音波ビームである    It is a convergent ultrasonic beam whose beam diameter decreases as it progresses
測定対象物の物性値検知システム。Physical property value detection system for measurement objects.
JP2009251901A 2009-11-02 2009-11-02 Physical property value detection method for measurement object and physical property value detection system for measurement object Active JP5381623B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009251901A JP5381623B2 (en) 2009-11-02 2009-11-02 Physical property value detection method for measurement object and physical property value detection system for measurement object

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009251901A JP5381623B2 (en) 2009-11-02 2009-11-02 Physical property value detection method for measurement object and physical property value detection system for measurement object

Publications (2)

Publication Number Publication Date
JP2011095210A JP2011095210A (en) 2011-05-12
JP5381623B2 true JP5381623B2 (en) 2014-01-08

Family

ID=44112269

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009251901A Active JP5381623B2 (en) 2009-11-02 2009-11-02 Physical property value detection method for measurement object and physical property value detection system for measurement object

Country Status (1)

Country Link
JP (1) JP5381623B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102116427B1 (en) * 2019-06-28 2020-05-28 리얼룩앤컴퍼니 주식회사 3d forming film production device with foaming film identification function and method for manufacturing 3d forming film using the same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101547816B1 (en) * 2012-11-08 2015-08-27 주식회사 엘지화학 The Method for Confirming Defective Electrode for Secondary battery
JP6222035B2 (en) * 2014-10-17 2017-11-01 トヨタ自動車株式会社 Secondary battery measuring device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3680985B2 (en) * 1999-06-11 2005-08-10 トヨタ自動車株式会社 Method for manufacturing battery sheet electrode
JP2002042789A (en) * 2000-07-21 2002-02-08 Matsushita Electric Ind Co Ltd Method and device for manufacturing electrode for battery
JP3814573B2 (en) * 2002-11-01 2006-08-30 アムス株式会社 Ultrasonic thickness measurement method and apparatus
JP2006132981A (en) * 2004-11-02 2006-05-25 Mitsubishi Heavy Ind Ltd Ultrasonic wall-thickness measuring instrument and ultrasonic wall-thickness measuring method
JP4894724B2 (en) * 2007-03-16 2012-03-14 パナソニック電工株式会社 Fire detector

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102116427B1 (en) * 2019-06-28 2020-05-28 리얼룩앤컴퍼니 주식회사 3d forming film production device with foaming film identification function and method for manufacturing 3d forming film using the same
WO2020263021A1 (en) * 2019-06-28 2020-12-30 리얼룩앤컴퍼니 주식회사 3d forming film manufacturing apparatus having forming film identification function, and 3d forming film manufacturing method using same

Also Published As

Publication number Publication date
JP2011095210A (en) 2011-05-12

Similar Documents

Publication Publication Date Title
TWI775862B (en) Battery life assessment and capacity restoration
US11527783B2 (en) Battery state monitoring using ultrasonic guided waves
US20200251788A1 (en) Systems, methods, and devices for health monitoring of an energy storage device
JP5293818B2 (en) Battery internal state detection device and method
KR101234434B1 (en) Inspection device
JP5915182B2 (en) Aerial ultrasonic flaw detector
JP5381623B2 (en) Physical property value detection method for measurement object and physical property value detection system for measurement object
US8181524B2 (en) Ultrasonic stress measurement method and device
US20170074731A1 (en) Methods and devices for electrochemical system analysis
US20210194070A1 (en) Diagnosis of batteries
JP2010101656A (en) Method and device for measuring film thickness
JP2014049401A (en) Battery state estimation device, vehicle including the battery state estimation device, and battery state estimation method
JP5141964B2 (en) Sealed battery manufacturing method
JP2010040318A (en) Method and device for detecting ae signal generating part of secondary battery
JP5341567B2 (en) Inspection device
Siegl et al. An electromagnetic acoustic transducer for generating acoustic waves in lithium-ion pouch cells
US11417917B2 (en) Method of testing battery, battery testing apparatus, and battery
CN107860710A (en) A kind of method for measuring bond strength between electrodes of lithium-ion batteries electrode material and collector
JP7025250B2 (en) Electrode plate inspection device and electrode plate inspection method
KR102055721B1 (en) Thickness measurement device for electrode assembly and thickness measurement method for electrode assembly
JP6222035B2 (en) Secondary battery measuring device
JP2015056297A (en) Process of manufacturing secondary battery and assembly device for secondary battery
KR20220169787A (en) Device for detecting disconnection of electrode tabs using micro-vibration
JP5344216B2 (en) Method and apparatus for detecting amount of electrolyte in secondary battery
Guillet et al. In-operando techniques for battery monitoring and safety issues prevention

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120312

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130507

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130619

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130903

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130916

R151 Written notification of patent or utility model registration

Ref document number: 5381623

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151