JP4894724B2 - Fire detector - Google Patents

Fire detector Download PDF

Info

Publication number
JP4894724B2
JP4894724B2 JP2007279706A JP2007279706A JP4894724B2 JP 4894724 B2 JP4894724 B2 JP 4894724B2 JP 2007279706 A JP2007279706 A JP 2007279706A JP 2007279706 A JP2007279706 A JP 2007279706A JP 4894724 B2 JP4894724 B2 JP 4894724B2
Authority
JP
Japan
Prior art keywords
sound source
source unit
receiving element
wave
sound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007279706A
Other languages
Japanese (ja)
Other versions
JP2008262530A (en
Inventor
祥文 渡部
由明 本多
裕司 高田
尚之 西川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Electric Works Co Ltd
Original Assignee
Panasonic Corp
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Works Ltd filed Critical Panasonic Corp
Priority to JP2007279706A priority Critical patent/JP4894724B2/en
Priority to CN2008801134078A priority patent/CN101836244B/en
Priority to EP08841498A priority patent/EP2214146B8/en
Priority to PCT/JP2008/069002 priority patent/WO2009054359A1/en
Priority to US12/682,300 priority patent/US8519854B2/en
Publication of JP2008262530A publication Critical patent/JP2008262530A/en
Application granted granted Critical
Publication of JP4894724B2 publication Critical patent/JP4894724B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/02809Concentration of a compound, e.g. measured by a surface mass change
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/02818Density, viscosity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/02872Pressure
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/02881Temperature

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Fire-Detection Mechanisms (AREA)

Description

本発明は、火災感知器に関するものである。   The present invention relates to a fire detector.

従来から、火災時などに発生する煙を感知する火災感知器として、散乱光式煙感知器(たとえば特許文献1参照)や、減光式煙感知器(たとえば特許文献2参照)が知られている。ここにおいて、散乱光式煙感知器は、発光ダイオード素子よりなる投光素子から監視空間に照射された光の煙粒子による散乱光をフォトダイオードよりなる受光素子で受光するように構成されたものであり、監視空間に煙粒子が存在すれば散乱光が生じることによって受光素子での受光量が増大するから、受光素子での受光量の増加量に基づいて煙粒子の存否を検知できる。一方、減光式煙感知器は、投光素子から照射された光を受光素子により直接受光するように構成されたものであり、投光素子と受光素子との間の監視空間に煙粒子が存在すれば受光素子の受光量が減少するから、受光素子での受光量の減光量に基づいて煙粒子の存否を検知できる。   2. Description of the Related Art Conventionally, as a fire detector that detects smoke generated in the event of a fire, a scattered light type smoke detector (see, for example, Patent Document 1) and a dimming smoke detector (see, for example, Patent Document 2) are known. Yes. Here, the scattered light type smoke detector is configured to receive light scattered by smoke particles of light irradiated to the monitoring space from a light projecting element made of a light emitting diode element by a light receiving element made of a photodiode. In addition, if smoke particles are present in the monitoring space, the amount of light received by the light receiving element is increased due to the generation of scattered light. Therefore, the presence or absence of smoke particles can be detected based on the amount of increase in the amount of light received by the light receiving element. On the other hand, the dimming smoke detector is configured so that light emitted from the light projecting element is directly received by the light receiving element, and smoke particles are present in the monitoring space between the light projecting element and the light receiving element. If it is present, the amount of light received by the light receiving element is reduced, and therefore the presence or absence of smoke particles can be detected based on the amount of light received by the light receiving element.

ところで、散乱光式煙感知器は、迷光対策としてラビリンス体を設ける必要があるので、空気の流れが少ない場合には、火災発生時に監視空間へ煙粒子が侵入するまでの時間が長くなり、応答性に問題があった。また、減光式煙感知器においては、火災が発生していないにもかかわらずバックグランド光の影響で発報してしまう(非火災報が発生してしまう)ことがあるという問題があった。また、分離型の減光式煙感知器は、投光素子と受光素子との光軸を高精度に軸合わせする必要があり、施工に手間がかかるという問題があった。
特開2001−34862号公報 特開昭61−33595号公報
By the way, the scattered light type smoke detector needs to be equipped with a labyrinth body as a countermeasure against stray light, so when there is little air flow, the time until smoke particles enter the monitoring space in the event of a fire increases, and the response There was a problem with sex. In addition, there is a problem that the dimming smoke detector may generate a report due to the influence of background light (a non-fire report will be generated) even though no fire has occurred. . In addition, the separate-type dimming smoke detector needs to align the optical axes of the light projecting element and the light receiving element with high accuracy, and there is a problem that it takes a lot of work.
JP 2001-34862 A JP 61-33595 A

上述した光電式の火災感知器の問題点を解決するために、本願出願人は、超音波を用いて煙の存否を検知する火災感知器を提案している(図2参照)。   In order to solve the problems of the photoelectric fire detector described above, the present applicant has proposed a fire detector that detects the presence or absence of smoke using ultrasonic waves (see FIG. 2).

この火災感知器は、超音波を送波可能な音源部1と、音源部1を制御する制御部2と音源部1から送波された超音波の音圧を検出する受波素子3と、受波素子3の出力に基づいて火災の有無を判別する信号処理部4とを備える。信号処理部4は、受波素子3の出力の基準値からの減衰量に基づいて音源部1と受波素子3との間の監視空間の煙濃度を推定する煙濃度推定手段41と、推定された煙濃度と所定の閾値とを比較して火災の有無を判断する煙式判断手段42とを有する。すなわち、受波素子3の出力の減衰量は監視空間の煙濃度に略比例して増加するので、この減衰量に基づき煙濃度を推定することで、火災の有無を判断することができる。   The fire detector includes a sound source unit 1 capable of transmitting ultrasonic waves, a control unit 2 that controls the sound source unit 1, a wave receiving element 3 that detects sound pressure of ultrasonic waves transmitted from the sound source unit 1, And a signal processing unit 4 for determining the presence or absence of a fire based on the output of the wave receiving element 3. The signal processing unit 4 includes smoke concentration estimation means 41 that estimates the smoke concentration in the monitoring space between the sound source unit 1 and the wave receiving element 3 based on the attenuation amount from the reference value of the output of the wave receiving element 3, and the estimation A smoke type judgment means 42 for judging the presence or absence of a fire by comparing the smoke concentration and a predetermined threshold value. That is, since the attenuation amount of the output of the wave receiving element 3 increases substantially in proportion to the smoke concentration in the monitoring space, the presence or absence of a fire can be determined by estimating the smoke concentration based on this attenuation amount.

この超音波式の火災感知器では、光電式の火災感知器で問題となるバックグランド光の影響をなくすことができ、散乱光式煙感知器に必要なラビリンス体を不要とすることができて火災発生時に監視空間へ煙粒子が拡散しやすくなるから、散乱光式煙感知器に比べて応答性を向上でき、また、減光式煙感知器に比べて非火災報の低減が可能になる。   This ultrasonic fire detector can eliminate the influence of background light, which is a problem with photoelectric fire detectors, and eliminates the need for a labyrinth that is required for scattered light smoke detectors. Smoke particles easily diffuse into the monitoring space in the event of a fire, improving responsiveness compared to scattered light smoke detectors and reducing non-fire reports compared to dimming smoke detectors. .

ところで、上述した超音波式の火災感知器においては、煙濃度の変化量に対する受波素子3の出力の変化量(つまり受波素子3での受波音圧の変化量)を極力大きくするために、音源部1への供給電力を音源部1が損傷しない範囲内で大きくし音源部1から送波される超音波の音圧を大きくすること等が考えられる。   By the way, in the ultrasonic fire detector described above, in order to maximize the amount of change in the output of the wave receiving element 3 relative to the amount of change in smoke density (that is, the amount of change in the received sound pressure at the wave receiving element 3). It is conceivable to increase the power supplied to the sound source unit 1 within a range in which the sound source unit 1 is not damaged and increase the sound pressure of the ultrasonic wave transmitted from the sound source unit 1.

しかし、音源部1から送波される超音波の音圧を大きくしても、音源部1と受波素子3との間で超音波が拡散することによって、監視空間中の煙粒子の存否に関係なく受波素子3で受波される超音波の音圧は低下する。その結果、煙濃度の変化量に対する受波素子3の出力の変化量は比較的小さくなり、SN比が小さくなるという問題がある。   However, even if the sound pressure of the ultrasonic wave transmitted from the sound source unit 1 is increased, the ultrasonic wave diffuses between the sound source unit 1 and the wave receiving element 3, thereby determining whether smoke particles exist in the monitoring space. Regardless of this, the sound pressure of the ultrasonic wave received by the wave receiving element 3 decreases. As a result, there is a problem that the amount of change in the output of the wave receiving element 3 with respect to the amount of change in smoke density is relatively small, and the SN ratio is small.

本発明は上記事由に鑑みて為されたものであって、音源部と受波素子との間の監視空間における超音波の減衰量に基づいて火災の有無を判別する構成において、SN比を向上させた火災感知器を提供することを目的とする。   The present invention has been made in view of the above-described reasons, and improves the SN ratio in a configuration in which the presence or absence of a fire is determined based on the amount of ultrasonic attenuation in the monitoring space between the sound source unit and the receiving element. The purpose is to provide a fire detector.

請求項1の発明では、超音波を送波可能な音源部と、音源部を制御する制御部と、音源部から送波された超音波の音圧を検出する受波素子と、受波素子の出力に基づいて火災の有無を判断する信号処理部とを備え、信号処理部は、受波素子の出力の基準値からの減衰量に基づいて音源部と受波素子との間の監視空間の煙濃度を推定する煙濃度推定手段と、煙濃度推定手段にて推定された煙濃度と所定の閾値とを比較して火災の有無を判断する煙式判断手段とを有し、少なくとも一部が互いに対向するように配置された内表面を具備し音源部からの超音波を対向する内表面間の空間に通すことで当該超音波の拡散範囲を狭める拡散防止部材が、音源部から送波され受波素子で受波される超音波の伝搬経路上に配設されていることを特徴とする。   In the invention of claim 1, a sound source unit capable of transmitting an ultrasonic wave, a control unit for controlling the sound source unit, a wave receiving element for detecting the sound pressure of the ultrasonic wave transmitted from the sound source unit, and a wave receiving element A signal processing unit for determining the presence or absence of a fire based on the output of the signal, the signal processing unit is a monitoring space between the sound source unit and the receiving element based on the attenuation from the reference value of the output of the receiving element Smoke density estimation means for estimating the smoke density of the smoke, and smoke type judgment means for judging the presence or absence of a fire by comparing the smoke density estimated by the smoke density estimation means with a predetermined threshold, at least in part The diffusion preventing member that has inner surfaces arranged so as to face each other and that narrows the diffusion range of the ultrasonic waves by passing the ultrasonic waves from the sound source unit through the space between the opposed inner surfaces is transmitted from the sound source unit. And disposed on a propagation path of an ultrasonic wave received by the wave receiving element.

この構成によれば、少なくとも一部が互いに対向するように配置された内表面を具備し音源部からの超音波を対向する内表面間の空間に通すことで当該超音波の拡散範囲を狭める拡散防止部材が、音源部から送波され受波素子で受波される超音波の伝搬経路上に配設されているので、音源部からの超音波は対向する内表面間の空間を通ることで拡散が抑制されることにより、音源部と受波素子との間における超音波の拡散による音圧の低下を抑制することができる。したがって、監視空間中に煙粒子がない状態において受波素子で受波される超音波の音圧を高く維持でき、煙濃度の変化量に対する受波素子の出力の変化量が比較的大きくなり、SN比が向上するという利点がある。   According to this configuration, the diffusion has an inner surface arranged so that at least a part thereof faces each other, and narrows the diffusion range of the ultrasonic wave by passing the ultrasonic wave from the sound source unit through the space between the opposed inner surfaces. Since the prevention member is disposed on the propagation path of the ultrasonic wave transmitted from the sound source unit and received by the wave receiving element, the ultrasonic wave from the sound source unit passes through the space between the opposing inner surfaces. By suppressing diffusion, it is possible to suppress a decrease in sound pressure due to diffusion of ultrasonic waves between the sound source unit and the receiving element. Therefore, the sound pressure of the ultrasonic wave received by the wave receiving element when there is no smoke particle in the monitoring space can be maintained high, and the amount of change in the output of the wave receiving element with respect to the amount of change in smoke concentration is relatively large, There is an advantage that the SN ratio is improved.

請求項2の発明は、請求項1の発明において、前記拡散防止部材が、筒状に形成され長手方向に沿う内側面を前記内表面とする筒体からなることを特徴とする。   According to a second aspect of the present invention, in the first aspect of the invention, the diffusion preventing member is formed of a cylindrical body that is formed in a cylindrical shape and has an inner surface along the longitudinal direction as the inner surface.

この構成によれば、音源部からの超音波は内表面により四方が囲まれた筒体の内部空間を通ることとなるので、たとえば一方向にのみ対向する一対の平面を内表面として具備する拡散防止部材を用いる場合に比べて、音源部と受波素子との間における超音波の拡散を確実に抑制することができ、したがって、超音波の拡散による音圧の低下をより抑制することができる。   According to this configuration, since the ultrasonic wave from the sound source part passes through the inner space of the cylinder surrounded on the four sides by the inner surface, for example, diffusion having a pair of planes facing only in one direction as the inner surface Compared with the case where the prevention member is used, the diffusion of the ultrasonic wave between the sound source unit and the wave receiving element can be surely suppressed, and therefore the decrease in the sound pressure due to the diffusion of the ultrasonic wave can be further suppressed. .

請求項3の発明は、請求項1または請求項2の発明において、前記音源部が周波数の異なる複数種の超音波を送波可能であって、前記信号処理部が、前記監視空間に存在する浮遊粒子の種別および煙濃度に応じた前記音源部の出力周波数と前記受波素子の出力の基準値からの減衰量との関係データを記憶した記憶手段と、前記音源部から送波された各周波数の超音波ごとの前記受波素子の出力と記憶手段に記憶されている関係データとを用いて前記監視空間に浮遊している粒子の種別を推定する粒子種別推定手段とを有し、前記煙濃度推定手段が、粒子種別推定手段にて推定された粒子が煙粒子のときに特定周波数の超音波に対する前記受波素子の出力の基準値からの減衰量に基づいて前記監視空間の煙濃度を推定することを特徴とする。   According to a third aspect of the present invention, in the first or second aspect of the present invention, the sound source unit can transmit a plurality of types of ultrasonic waves having different frequencies, and the signal processing unit exists in the monitoring space. Storage means for storing relationship data between the output frequency of the sound source unit according to the type of suspended particles and the smoke concentration and the attenuation from the reference value of the output of the receiving element, and each of the waves transmitted from the sound source unit Particle type estimation means for estimating the type of particles floating in the monitoring space using the output of the receiving element for each ultrasonic wave of the frequency and the relational data stored in the storage means, and The smoke concentration estimation means is configured to detect smoke concentration in the monitoring space based on an attenuation amount from a reference value of the output of the wave receiving element with respect to an ultrasonic wave of a specific frequency when the particle estimated by the particle type estimation means is smoke particle. Is estimated.

この構成によれば、信号処理部では、粒子種別推定手段において、音源部から送波された各周波数の超音波ごとの受波素子の出力と記憶手段に記憶されている関係データとを用いて監視空間に浮遊している粒子の種別を推定し、粒子種別推定手段にて推定された粒子が煙粒子のときに、煙濃度推定手段において、特定周波数の超音波に対する受波素子の出力の基準値からの減衰量に基づいて監視空間の煙濃度を推定するので、粒子種別識別手段において監視空間に浮遊している粒子の種別を推定することで、たとえば煙粒子と湯気とを識別可能となるから、散乱光式煙感知器および減光式煙感知器に比べて湯気に起因した非火災報を低減することが可能となり、台所や浴室での使用にも適する。   According to this configuration, in the signal processing unit, the particle type estimation unit uses the output of the receiving element for each ultrasonic wave of each frequency transmitted from the sound source unit and the relational data stored in the storage unit. Estimate the type of particles floating in the monitoring space, and when the particles estimated by the particle type estimation means are smoke particles, the smoke concentration estimation means uses the output standard of the receiving element for ultrasonic waves of a specific frequency. Since the smoke concentration in the monitoring space is estimated based on the amount of attenuation from the value, it is possible to identify, for example, smoke particles and steam by estimating the type of particles floating in the monitoring space in the particle type identifying means. Therefore, it is possible to reduce non-fire reports caused by steam as compared with the scattered light smoke detector and the reduced light smoke detector, and it is also suitable for use in the kitchen or bathroom.

請求項4の発明は、請求項3の発明において、前記記憶手段は、前記関係データとして前記音源部の出力周波数と前記受波素子の出力の基準値からの減衰量を基準値で除した減衰率との関係データを記憶していることを特徴とする。   According to a fourth aspect of the present invention, in the third aspect of the present invention, the storage means is an attenuation obtained by dividing an attenuation amount from the reference value of the output frequency of the sound source unit and the output of the receiving element by the reference value as the relation data. It stores the relationship data with the rate.

この発明によれば、前記音源部の出力周波数に応じて前記受波素子の出力の基準値が変動する場合でも、前記音源部の出力周波数と基準値の変動の影響が除去された減衰率との関係データを用いることにより、基準値の変動の影響を受けずに前記監視空間に浮遊している粒子の種別を推定することができる。   According to the present invention, even when the reference value of the output of the receiving element varies according to the output frequency of the sound source unit, the attenuation rate from which the influence of the variation of the output frequency of the sound source unit and the reference value is removed, and By using the relationship data, it is possible to estimate the type of particles floating in the monitoring space without being affected by the fluctuation of the reference value.

請求項5の発明は、請求項3または請求項4の発明において、前記音源部が前記複数種の超音波を送波可能な単一の音波発生素子からなり、前記制御部が音波発生素子から複数種の超音波が順次送波されるように前記音源部を制御することを特徴とする。   According to a fifth aspect of the present invention, in the third or fourth aspect of the invention, the sound source unit includes a single sound wave generation element capable of transmitting the plurality of types of ultrasonic waves, and the control unit includes a sound wave generation element. The sound source unit is controlled so that a plurality of types of ultrasonic waves are sequentially transmitted.

この構成によれば、各種の超音波を送波可能な音波発生素子を複数個備える場合に比べて、音源部の小型化、低コスト化が可能となる。   According to this configuration, it is possible to reduce the size and cost of the sound source unit as compared with a case where a plurality of sound wave generating elements capable of transmitting various types of ultrasonic waves are provided.

請求項6の発明は、請求項1ないし請求項5のいずれかの発明において、前記音源部が、空気に振動を与える送波面が、前記拡散防止部材における超音波が入射する入射側端面と対向して配置され、且つ前記内表面の互いに対向する方向において内表面間の距離以上の幅寸法を有することを特徴とする。   According to a sixth aspect of the present invention, in the invention according to any one of the first to fifth aspects, the sound source section has a wave transmitting surface that vibrates air facing an incident side end surface on which the ultrasonic waves are incident on the diffusion preventing member. And having a width dimension equal to or greater than the distance between the inner surfaces in the opposing direction of the inner surfaces.

この構成によれば、音源部の送波面から送波される超音波は拡散防止部材の内表面間の空間を当該内表面に沿って進行するので、当該内表面で超音波が反射することによる超音波の干渉が生じることはなく、干渉に起因した音圧の低下を回避することができる。たとえば拡散防止部材が直管状の筒体であるときに、音源部の送波面から送波される超音波は筒体内を平面波として進行するので、筒体の長手方向に沿う側面で超音波が反射することによる超音波の干渉が生じることはなく、筒体内での干渉に起因した音圧の低下を回避することができる。   According to this configuration, since the ultrasonic wave transmitted from the transmission surface of the sound source unit travels along the inner surface in the space between the inner surfaces of the diffusion preventing member, the ultrasonic wave is reflected by the inner surface. Ultrasonic interference does not occur, and a decrease in sound pressure due to interference can be avoided. For example, when the diffusion prevention member is a straight tubular cylinder, the ultrasonic wave transmitted from the transmission surface of the sound source section travels as a plane wave in the cylindrical body, so that the ultrasonic wave is reflected on the side surface along the longitudinal direction of the cylindrical body. As a result, no ultrasonic interference occurs, and a decrease in sound pressure due to the interference in the cylinder can be avoided.

請求項7の発明は、請求項1ないし請求項6のいずれかの発明において、前記音源部が、発熱体部への通電に伴う発熱体部の温度変化により空気に熱衝撃を与えることで超音波を発生するものであることを特徴とする。   According to a seventh aspect of the present invention, the sound source unit according to any one of the first to sixth aspects of the present invention is characterized by applying a thermal shock to the air due to a change in temperature of the heat generating unit accompanying energization of the heat generating unit. It is characterized by generating sound waves.

この構成によれば、音源部は平坦な周波数特性を有しており、発生させる超音波の周波数を広範囲にわたって変化させることができる。また、音源部から残響の少ない単パルス状の超音波を送波させることも可能となる。   According to this configuration, the sound source unit has a flat frequency characteristic, and the frequency of the generated ultrasonic wave can be changed over a wide range. It is also possible to transmit single-pulse ultrasonic waves with little reverberation from the sound source unit.

請求項8の発明は、請求項7の発明において、前記音源部が、ベース基板の一表面側に前記発熱体部が形成されるとともに、ベース基板の前記一表面側で前記発熱体部とベース基板との間に設けられて前記発熱体部とベース基板とを熱絶縁する多孔質層からなる熱絶縁層を有してなることを特徴とする。   The invention according to claim 8 is the invention according to claim 7, wherein the sound source section is formed with the heating element portion on one surface side of the base substrate, and the heating element portion and the base on the one surface side of the base substrate. It is characterized by having a thermal insulation layer comprising a porous layer provided between the substrate and thermally insulating the heating element and the base substrate.

この構成によれば、熱絶縁層が多孔質層からなるので、熱絶縁層が非多孔質層からなる場合に比べて、熱絶縁層の断熱性が向上して発熱体部への入力電圧に対する超音波の音圧の比が高くなり、低消費電力化を図ることができる。   According to this configuration, since the heat insulating layer is made of a porous layer, the heat insulating property of the heat insulating layer is improved compared to the case where the heat insulating layer is made of a non-porous layer. The ratio of the sound pressure of the ultrasonic wave becomes high, and low power consumption can be achieved.

請求項9の発明は、請求項1または請求項2の発明において、前記制御部が、前記音源部から送波され前記受波素子で受波される超音波の伝搬距離に基づく共振周波数の超音波を、少なくとも前記音源部から前記受波素子に超音波が伝搬するのに要する伝搬時間よりも長い送波時間に亘って連続的に前記音源部から送波させるように前記音源部を制御することを特徴とする。   According to a ninth aspect of the present invention, in the first or second aspect of the present invention, the control unit has a resonance frequency exceeding that based on a propagation distance of an ultrasonic wave transmitted from the sound source unit and received by the receiving element. Controlling the sound source unit to continuously transmit a sound wave from the sound source unit over a transmission time longer than a propagation time required for the ultrasonic wave to propagate from at least the sound source unit to the receiving element. It is characterized by that.

この構成によれば、拡散防止部材の内表面間の空間において共振が発生し音源部から送波された超音波の音圧が増大するので、煙濃度の変化量に対する受波素子の出力の変化量が大きくなり、SN比が向上する。また、共振により音源部あるいは受波素子で反射した超音波においては、実効的な送波距離が反射の回数に応じて延長され、煙濃度の変化量に対する受波素子の出力の変化量がより一層大きくなる。   According to this configuration, resonance occurs in the space between the inner surfaces of the diffusion prevention member, and the sound pressure of the ultrasonic wave transmitted from the sound source unit increases, so the change in the output of the wave receiving element with respect to the amount of change in smoke concentration The amount increases and the signal to noise ratio improves. In addition, in the ultrasonic wave reflected by the sound source unit or the receiving element due to resonance, the effective transmission distance is extended according to the number of reflections, and the amount of change in the output of the receiving element with respect to the amount of change in smoke density is more It gets bigger.

請求項10の発明は、請求項3ないし請求項5のいずれかの発明において、前記制御部が、前記音源部から送波され前記受波素子で受波される超音波の伝搬距離に基づく共振周波数であって互いに周波数の異なる複数種の超音波を、それぞれ少なくとも前記音源部から前記受波素子に超音波が伝搬するのに要する伝搬時間よりも長い送波時間に亘って連続的に前記音源部から送波させるように前記音源部を制御することを特徴とする。   According to a tenth aspect of the present invention, in the invention according to any one of the third to fifth aspects, the control unit resonates based on a propagation distance of an ultrasonic wave transmitted from the sound source unit and received by the receiving element. A plurality of types of ultrasonic waves that have different frequencies and are continuously transmitted over a transmission time longer than a propagation time required for the ultrasonic waves to propagate from at least the sound source unit to the receiving element. The sound source unit is controlled to transmit from the unit.

この構成によれば、拡散防止部材の内表面間の空間において共振が発生し音源部から送波された超音波の音圧が増大するので、煙濃度の変化量に対する受波素子の出力の変化量が大きくなり、SN比が向上する。また、共振により音源部あるいは受波素子で反射した超音波においては、実効的な送波距離が反射の回数に応じて延長され、煙濃度の変化量に対する受波素子の出力の変化量がより一層大きくなる。   According to this configuration, resonance occurs in the space between the inner surfaces of the diffusion prevention member, and the sound pressure of the ultrasonic wave transmitted from the sound source unit increases, so the change in the output of the wave receiving element with respect to the amount of change in smoke concentration The amount increases and the signal to noise ratio improves. In addition, in the ultrasonic wave reflected by the sound source unit or the receiving element due to resonance, the effective transmission distance is extended according to the number of reflections, and the amount of change in the output of the receiving element with respect to the amount of change in smoke density is more It gets bigger.

請求項11の発明は、請求項9または請求項10の発明において、前記拡散防止部材において前記音源部からの超音波を通す内表面間の空間が、前記超音波の伝搬方向の両端面が超音波を反射する反射面によって閉じられており、一方の反射面に前記音源部が配置され、いずれかの反射面に前記受波素子が配置されていることを特徴とする。   According to an eleventh aspect of the present invention, in the ninth or tenth aspect of the present invention, in the diffusion preventing member, the space between the inner surfaces through which the ultrasonic waves from the sound source portion pass is superfluous at both end surfaces in the ultrasonic wave propagation direction. The sound source section is closed by a reflecting surface that reflects sound waves, the sound source unit is disposed on one reflecting surface, and the wave receiving element is disposed on any reflecting surface.

この構成によれば、拡散防止部材において音源部からの超音波を通す内表面間の空間は両端面が閉じた音響管を共振させた場合と同様に超音波の伝搬方向の両端で超音波による圧力変化が最大になるので、受波素子は超音波による圧力変化が最大となる部位で超音波の音圧を検出することとなる。すなわち、煙濃度の変化量に対する受波素子の出力の変化量を極力大きくすることができる。   According to this configuration, in the diffusion preventing member, the space between the inner surfaces through which the ultrasonic waves from the sound source portion pass is ultrasonic waves at both ends in the ultrasonic propagation direction, as in the case where the acoustic tube having both end surfaces closed is resonated. Since the pressure change is maximized, the wave receiving element detects the sound pressure of the ultrasonic wave at the site where the pressure change due to the ultrasonic wave is maximized. That is, the change amount of the output of the wave receiving element with respect to the change amount of the smoke density can be maximized.

請求項12の発明は、請求項9または請求項10の発明において、前記拡散防止部材において前記音源部からの超音波を通す内表面間の空間が、前記超音波の伝搬方向の両端面が超音波を反射する反射面によって閉じられており、一方の反射面に前記音源部が配置され、前記伝搬方向に沿う前記内表面のうち前記音源部からの超音波による圧力変化が最大となる位置に前記受波素子が配置されていることを特徴とする。   According to a twelfth aspect of the present invention, in the ninth or tenth aspect of the present invention, the space between the inner surfaces through which the ultrasonic waves from the sound source portion pass in the diffusion preventing member is superfluous at both end surfaces in the propagation direction of the ultrasonic waves. Closed by a reflection surface that reflects sound waves, the sound source unit is disposed on one reflection surface, and the inner surface along the propagation direction is at a position where the pressure change due to the ultrasonic wave from the sound source unit is maximized. The wave receiving element is arranged.

この構成によれば、受波素子は拡散防止部材の内表面のうち音源部からの超音波による圧力変化が最大となる位置に配置されているので、煙濃度の変化量に対する受波素子の出力の変化量を極力大きくすることができる。また、両端面を反射面で閉じた空間で共振を発生させた場合、反射面で超音波が反射することにより共振し、特に、波長の短い超音波では、反射面に微小な凹凸があるだけでも反射面で反射する際に音圧が低下することになるが、請求項12の構成によれば、超音波の伝搬方向に沿う内表面に受波素子が設けられているので、反射面に受波素子が設けられる場合に比べて、反射面を凹凸の少ない平坦な面とすることができ、結果的に、反射面での超音波の反射を受波素子で阻害することなく共振による音圧の増加が可能となる。   According to this configuration, since the wave receiving element is disposed at a position where the pressure change due to the ultrasonic wave from the sound source portion is maximized on the inner surface of the diffusion preventing member, the output of the wave receiving element with respect to the amount of change in smoke density Can be increased as much as possible. In addition, when resonance is generated in a space where both end faces are closed by a reflecting surface, resonance is caused by reflection of ultrasonic waves on the reflecting surface, and in particular, ultrasonic waves with a short wavelength have only minute irregularities on the reflecting surface. However, when the sound is reflected by the reflecting surface, the sound pressure is reduced. However, according to the structure of claim 12, since the wave receiving element is provided on the inner surface along the propagation direction of the ultrasonic wave, the reflecting surface is provided. Compared with the case where a wave receiving element is provided, the reflecting surface can be a flat surface with less unevenness, and as a result, the sound caused by resonance can be prevented without obstructing the reflection of the ultrasonic wave on the reflecting surface by the wave receiving element. The pressure can be increased.

請求項13の発明は、請求項12の発明において、前記制御部が、前記反射面間の距離を自然数で除した長さの波長の超音波が前記音源部から送波されるように前記音源部を制御し、前記受波素子は、両反射面の中間位置に配置されていることを特徴とする。   According to a thirteenth aspect of the present invention, in the twelfth aspect of the invention, the control unit causes the sound source so that an ultrasonic wave having a length obtained by dividing the distance between the reflecting surfaces by a natural number is transmitted from the sound source unit. The wave receiving element is arranged at an intermediate position between the reflecting surfaces.

この構成によれば、反射面間の距離を自然数で除した長さの波長の超音波が音源部から送波されるので、両反射面の中間位置においては前記超音波による圧力変化が常に最大となる。したがって、上述した波長の条件を満たしていれば超音波の周波数が異なる場合でも、両反射面の中間位置に配置された受波素子のみで、前記超音波による圧力変化が最大となる位置での音圧の検出が可能となり、複数箇所に受波素子を配置する場合に比べて低コスト化が可能となる。   According to this configuration, since the ultrasonic wave having a length obtained by dividing the distance between the reflecting surfaces by a natural number is transmitted from the sound source unit, the pressure change due to the ultrasonic waves is always the maximum at the intermediate position between the reflecting surfaces. It becomes. Therefore, even if the frequency of the ultrasonic wave is different as long as the wavelength condition described above is satisfied, only at the wave receiving element arranged at the intermediate position between the two reflecting surfaces, the pressure change due to the ultrasonic wave is maximized. Sound pressure can be detected, and the cost can be reduced compared to the case where receiving elements are arranged at a plurality of locations.

請求項14の発明は、請求項9ないし請求項13のいずれかの発明において、前記制御部が、温度変化による音速の変化に応じて前記音源部から送波する超音波の周波数を補正する周波数補正手段を有することを特徴とする。   According to a fourteenth aspect of the present invention, in the invention according to any one of the ninth to thirteenth aspects, the control unit corrects a frequency of an ultrasonic wave transmitted from the sound source unit according to a change in sound velocity due to a temperature change. It has a correction means.

この構成によれば、超音波の伝搬距離に基づく共振周波数が温度変化による音速の変化に起因して変動することがあっても、音源部から送波される超音波の周波数は周波数補正手段により変動後の共振周波数に補正されるので、確実に共振が発生し当該超音波の音圧が増大することになる。   According to this configuration, even if the resonance frequency based on the propagation distance of the ultrasonic wave may fluctuate due to a change in sound velocity due to a temperature change, the frequency of the ultrasonic wave transmitted from the sound source unit is adjusted by the frequency correction unit. Since the resonance frequency after the fluctuation is corrected, resonance surely occurs and the sound pressure of the ultrasonic wave increases.

請求項15の発明は、請求項14の発明において、前記周波数補正手段が、前記音源部が超音波を送波してから当該超音波が前記受波素子に受波されるまでの時間差に基づいて求まる音速を用いて周波数を補正することを特徴とする。   The invention according to claim 15 is the invention according to claim 14, wherein the frequency correction means is based on a time difference from when the sound source section transmits an ultrasonic wave until the ultrasonic wave is received by the receiving element. The frequency is corrected using the speed of sound obtained in this way.

この構成によれば、周波数補正手段において、音源部が超音波を送波してから当該超音波が受波素子に受波されるまでの時間差に基づいて求まる音速を用いて周波数を補正するので、音速を求める手段を別途設ける場合に比べて構成を簡単にすることができる。   According to this configuration, in the frequency correction unit, the frequency is corrected using the speed of sound obtained based on the time difference from when the sound source unit transmits an ultrasonic wave until the ultrasonic wave is received by the receiving element. The configuration can be simplified as compared with the case where a means for obtaining the sound speed is separately provided.

本発明は、音源部と受波素子との間における超音波の拡散による音圧の低下を抑制することができるので、監視空間中に煙粒子がない状態において受波素子で受波される超音波の音圧を高く維持でき、煙濃度の変化量に対する受波素子の出力の変化量が比較的大きくなり、SN比が向上するという効果がある。   Since the present invention can suppress a decrease in sound pressure due to the diffusion of ultrasonic waves between the sound source unit and the receiving element, the ultrasonic wave received by the receiving element in a state where there is no smoke particle in the monitoring space. The sound pressure of the sound wave can be kept high, the amount of change in the output of the wave receiving element with respect to the amount of change in smoke density is relatively large, and the SN ratio is improved.

(実施形態1)
本実施形態の火災感知器は、図2に示すように、超音波を送波可能な音源部1と、音源部1を制御する制御部2と、音源部1から送波された超音波の音圧を検出する受波素子3と、受波素子3の出力に基づいて火災の有無を判断する信号処理部4とを備えている。ここにおいて、音源部1と受波素子3とは、図1に示すように、円盤状のプリント基板からなる回路基板5の一表面側において互いに離間して対向配置されており、回路基板5に制御部2および信号処理部4が設けられている。音源部1と受波素子3との間には筒状に形成された後述の筒体6が配設されている。また、回路基板5の上記一表面には、音源部1から送波された超音波の反射を防止する吸音層(図示せず)が設けられているので、音源部1から送波された超音波が回路基板5で反射して受波素子3に入射するのを防止することができて、反射波の干渉を防止することができ、特に、音源部1から送波させる超音波として連続波を用いる場合に有効である。
(Embodiment 1)
As shown in FIG. 2, the fire detector according to the present embodiment includes a sound source unit 1 capable of transmitting ultrasonic waves, a control unit 2 that controls the sound source unit 1, and an ultrasonic wave transmitted from the sound source unit 1. A wave receiving element 3 that detects sound pressure and a signal processing unit 4 that determines the presence or absence of a fire based on the output of the wave receiving element 3 are provided. Here, as shown in FIG. 1, the sound source unit 1 and the wave receiving element 3 are disposed so as to face each other on the one surface side of the circuit board 5 made of a disk-shaped printed board. A control unit 2 and a signal processing unit 4 are provided. Between the sound source unit 1 and the wave receiving element 3, a cylindrical body 6 described later formed in a cylindrical shape is disposed. In addition, a sound absorbing layer (not shown) for preventing the reflection of the ultrasonic wave transmitted from the sound source unit 1 is provided on the one surface of the circuit board 5, so that the super wave transmitted from the sound source unit 1 is provided. A sound wave can be prevented from being reflected by the circuit board 5 and incident on the wave receiving element 3, and interference of the reflected wave can be prevented. In particular, a continuous wave is transmitted as an ultrasonic wave transmitted from the sound source unit 1. It is effective when using.

本実施形態では、音源部1として、後述のように空気に熱衝撃を与えることで超音波を発生させる音波発生素子を用いることで、圧電素子に比べて残響時間が短い超音波を送波するようにし、且つ、受波素子3として共振特性のQ値が圧電素子に比べて十分に小さく受波信号に含まれる残響成分の発生期間が短い静電容量型のマイクロホンを用いている。   In the present embodiment, a sound wave generating element that generates an ultrasonic wave by applying a thermal shock to air as described later is used as the sound source unit 1 to transmit an ultrasonic wave having a reverberation time shorter than that of a piezoelectric element. In addition, as the wave receiving element 3, a capacitance type microphone is used in which the Q value of the resonance characteristics is sufficiently smaller than that of the piezoelectric element and the generation period of the reverberation component included in the received wave signal is short.

ここにおいて、音源部1は、図3に示すように、単結晶のp形のシリコン基板からなるベース基板11の一表面(図3における上面)側に多孔質シリコン層からなる熱絶縁層(断熱層)12が形成され、熱絶縁層12の表面側に発熱体部として金属薄膜からなる発熱体層13が形成され、ベース基板11の上記一表面側に発熱体層13と電気的に接続された一対のパッド14,14が形成されている。なお、ベース基板11の平面形状は矩形状であって、熱絶縁層12、発熱体層13それぞれの平面形状も矩形状に形成してある。また、ベース基板11の上記一表面側において熱絶縁層12が形成されていない部分の表面にはシリコン酸化膜からなる絶縁膜(図示せず)が形成されている。   Here, as shown in FIG. 3, the sound source unit 1 includes a heat insulating layer (heat insulation) made of a porous silicon layer on one surface (upper surface in FIG. 3) side of a base substrate 11 made of a single crystal p-type silicon substrate. Layer) 12 is formed, and a heating element layer 13 made of a metal thin film is formed on the surface side of the heat insulating layer 12 as a heating element portion, and is electrically connected to the heating element layer 13 on the one surface side of the base substrate 11. A pair of pads 14 and 14 are formed. The planar shape of the base substrate 11 is a rectangular shape, and the planar shapes of the thermal insulating layer 12 and the heating element layer 13 are also rectangular. An insulating film (not shown) made of a silicon oxide film is formed on the surface of the base substrate 11 where the thermal insulating layer 12 is not formed on the one surface side.

上述の音源部1では、発熱体層13の両端のパッド14,14間に通電して発熱体層13に急激な温度変化を生じさせると、発熱体層13に接触している空気(媒質)に急激な温度変化(熱衝撃)が生じる(つまり、発熱体層13に接触している空気に熱衝撃が与えられる)。したがって、発熱体層13に接触している空気は、発熱体層13の温度上昇時には膨張し発熱体層13の温度下降時には収縮するから、発熱体層13への通電を適宜に制御することによって空気中を伝搬する超音波を発生させることができる。要するに、音源部1を構成する音波発生素子は、発熱体層13への通電に伴う発熱体層13の急激な温度変化を媒質の膨張収縮に変換することにより媒質を伝搬する超音波を発生するので、圧電素子のように機械的振動により超音波を発生する場合に比べて、残響の少ない単パルス状の超音波を送波させることができる。   In the above-described sound source unit 1, when current is passed between the pads 14 and 14 at both ends of the heating element layer 13 to cause a sudden temperature change in the heating element layer 13, the air (medium) that is in contact with the heating element layer 13. A sudden temperature change (thermal shock) occurs (that is, a thermal shock is applied to the air in contact with the heating element layer 13). Accordingly, the air in contact with the heating element layer 13 expands when the temperature of the heating element layer 13 rises and contracts when the temperature of the heating element layer 13 decreases. Therefore, by appropriately controlling energization to the heating element layer 13 Ultrasonic waves that propagate in the air can be generated. In short, the sound wave generating element constituting the sound source unit 1 generates an ultrasonic wave propagating through the medium by converting a rapid temperature change of the heat generating body layer 13 accompanying energization to the heat generating body layer 13 into expansion and contraction of the medium. Therefore, it is possible to transmit single-pulse ultrasonic waves with less reverberation compared to the case where ultrasonic waves are generated by mechanical vibration like a piezoelectric element.

上述の音源部1は、ベース基板11としてp形のシリコン基板を用いており、熱絶縁層12を多孔度が略60〜略70%の多孔質シリコン層からなる多孔質層により構成しているので、ベース基板11として用いるシリコン基板の一部をフッ化水素水溶液とエタノールとの混合液からなる電解液中で陽極酸化処理することにより熱絶縁層12となる多孔質シリコン層を形成することができる(ここで、陽極酸化処理により形成された多孔質シリコン層は、結晶粒径がナノメータオーダの微結晶シリコンからなるナノ結晶シリコンを多数含んでいる)。多孔質シリコン層は、多孔度が高くなるにつれて熱伝導率および熱容量が小さくなるので、熱絶縁層12の熱伝導率および熱容量をベース基板11の熱伝導率および熱容量に比べて小さくし、熱絶縁層12の熱伝導率と熱容量との積をベース基板11の熱伝導率と熱容量との積に比べて十分に小さくすることにより、発熱体層13の温度変化を空気に効率よく伝達することができ発熱体層13と空気との間で効率的な熱交換が起こり、且つ、ベース基板11が熱絶縁層12からの熱を効率よく受け取って熱絶縁層12の熱を逃がすことができて発熱体層13からの熱が熱絶縁層12に蓄積されるのを防止することができる。なお、熱伝導率が148W/(m・K)、熱容量が1.63×10J/(m・K)の単結晶のシリコン基板を陽極酸化して形成される多孔度が60%の多孔質シリコン層は、熱伝導率が1W/(m・K)、熱容量が0.7×10J/(m・K)であることが知られている。本実施形態では、熱絶縁層12を多孔度が略70%の多孔質シリコン層により構成してあり、熱絶縁層12の熱伝導率が0.12W/(m・K)、熱容量が0.5×10J/(m・K)となっている。 In the sound source unit 1 described above, a p-type silicon substrate is used as the base substrate 11, and the heat insulating layer 12 is formed of a porous layer made of a porous silicon layer having a porosity of about 60 to about 70%. Therefore, a porous silicon layer serving as the thermal insulating layer 12 can be formed by anodizing a part of the silicon substrate used as the base substrate 11 in an electrolytic solution composed of a mixed solution of hydrogen fluoride and ethanol. (Here, the porous silicon layer formed by the anodic oxidation treatment contains a large number of nanocrystalline silicon composed of microcrystalline silicon having a crystal grain size on the order of nanometers). Since the porous silicon layer has a lower thermal conductivity and heat capacity as the porosity becomes higher, the thermal conductivity and heat capacity of the heat insulating layer 12 are made smaller than the heat conductivity and heat capacity of the base substrate 11, and heat insulation is performed. By making the product of the thermal conductivity and heat capacity of the layer 12 sufficiently smaller than the product of the thermal conductivity and heat capacity of the base substrate 11, the temperature change of the heating element layer 13 can be efficiently transmitted to the air. In addition, efficient heat exchange occurs between the heating element layer 13 and the air, and the base substrate 11 can efficiently receive the heat from the heat insulating layer 12 and release the heat of the heat insulating layer 12 to generate heat. It is possible to prevent heat from the body layer 13 from being accumulated in the heat insulating layer 12. Note that the porosity formed by anodizing a single crystal silicon substrate having a thermal conductivity of 148 W / (m · K) and a heat capacity of 1.63 × 10 6 J / (m 3 · K) is 60%. The porous silicon layer is known to have a thermal conductivity of 1 W / (m · K) and a heat capacity of 0.7 × 10 6 J / (m 3 · K). In this embodiment, the heat insulating layer 12 is composed of a porous silicon layer having a porosity of approximately 70%, the heat conductivity of the heat insulating layer 12 is 0.12 W / (m · K), and the heat capacity is 0.00. It is 5 × 10 6 J / (m 3 · K).

発熱体層13は、高融点金属の一種であるタングステンにより形成してあるが、発熱体層13の材料はタングステンに限らず、たとえば、タンタル、モリブデン、イリジウム、アルミニウムなどを採用してもよい。また、上述の音源部1では、ベース基板11の厚さを300〜700μm、熱絶縁層12の厚さを1〜10μm、発熱体層13の厚さを20〜100nm、各パッド14の厚さを0.5μmとしてあるが、これらの厚さは一例であって特に限定するものではない。また、ベース基板11の材料としてSiを採用しているが、ベース基板11の材料はSiに限らず、たとえば、Ge、SiC、GaP、GaAs、InPなどの陽極酸化処理による多孔質化が可能な他の半導体材料でもよく、いずれの場合にも、ベース基板11の一部を多孔質化することで形成した多孔質層を熱絶縁層12とすることができる。   The heating element layer 13 is made of tungsten, which is a kind of refractory metal, but the material of the heating element layer 13 is not limited to tungsten, and for example, tantalum, molybdenum, iridium, aluminum, or the like may be adopted. In the sound source unit 1 described above, the thickness of the base substrate 11 is 300 to 700 μm, the thickness of the heat insulating layer 12 is 1 to 10 μm, the thickness of the heating element layer 13 is 20 to 100 nm, and the thickness of each pad 14. However, these thicknesses are only examples and are not particularly limited. Further, Si is adopted as the material of the base substrate 11, but the material of the base substrate 11 is not limited to Si, and for example, it can be made porous by anodic oxidation treatment of Ge, SiC, GaP, GaAs, InP or the like. Other semiconductor materials may be used, and in any case, a porous layer formed by making a part of the base substrate 11 porous can be used as the heat insulating layer 12.

上述のように音源部1は、一対のパッド14,14を介した発熱体層13への通電に伴う発熱体層13の温度変化に伴って超音波を発生するものであり、発熱体層13へ与える駆動電圧波形あるいは駆動電流波形からなる駆動入力波形をたとえば周波数がf1の正弦波波形とした場合、理想的には、発熱体層13で生じる温度振動の周波数が駆動入力波形の周波数f1の2倍の周波数f2となり、駆動入力波形f1の略2倍の周波数の超音波を発生させることができる。すなわち、上述の音源部1は、平坦な周波数特性を有しており、発生させる超音波の周波数を広範囲にわたって変化させることができる。また、上述の音源部1では、たとえば正弦波波形の半周期の孤立波を駆動入力波形として一対のパッド14,14間へ与えることによって、残響の少ない略1周期の単パルス状の超音波を発生させることができる。このような単パルス状の超音波を用いることにより、反射による干渉が起こりにくくなるので、上記吸音層を不要にすることもできる。また、音源部1は、熱絶縁層12が多孔質層により構成されているので、熱絶縁層12が非多孔質層(たとえば、SiO膜など)からなる場合に比べて、熱絶縁層12の断熱性が向上して超音波発生効率が高くなり、低消費電力化を図れる。 As described above, the sound source unit 1 generates ultrasonic waves in accordance with the temperature change of the heating element layer 13 due to energization of the heating element layer 13 via the pair of pads 14 and 14. When the drive input waveform composed of the drive voltage waveform or the drive current waveform applied to is a sine wave waveform having a frequency of f1, for example, the frequency of the temperature oscillation generated in the heating element layer 13 is ideally the frequency of the drive input waveform f1. The frequency f2 is doubled, and an ultrasonic wave having a frequency approximately twice that of the drive input waveform f1 can be generated. That is, the above-described sound source unit 1 has a flat frequency characteristic and can change the frequency of the generated ultrasonic wave over a wide range. Further, in the sound source unit 1 described above, for example, a half-cycle solitary wave of a sine wave waveform is applied between the pair of pads 14 and 14 as a drive input waveform, so that a single-pulse ultrasonic wave of approximately one cycle with little reverberation is generated. Can be generated. By using such single-pulse ultrasonic waves, interference due to reflection is less likely to occur, so that the sound absorbing layer can be made unnecessary. Further, in the sound source unit 1, since the heat insulating layer 12 is formed of a porous layer, the heat insulating layer 12 is compared with a case where the heat insulating layer 12 is formed of a non-porous layer (for example, a SiO 2 film). As a result, the heat generation efficiency is improved, the efficiency of ultrasonic generation is increased, and the power consumption can be reduced.

音源部1を制御する制御部2は、図示していないが、音源部1に駆動入力波形を与えて音源部1を駆動する駆動回路と、当該駆動回路を制御するマイクロコンピュータからなる制御回路とで構成されている。   Although not shown, the control unit 2 that controls the sound source unit 1 gives a drive input waveform to the sound source unit 1 to drive the sound source unit 1, and a control circuit that includes a microcomputer that controls the drive circuit; It consists of

また、上述の受波素子3を構成する静電容量型のマイクロホンは、図4に示すように、シリコン基板に厚み方向に貫通する窓孔31aを設けることで形成された矩形枠状のフレーム31と、フレーム31の一表面側においてフレーム31の対向する2つの辺に跨る形で配置されるカンチレバー型の受圧部32とを備えている。ここにおいて、フレーム31の一表面側には熱酸化膜35と熱酸化膜35を覆うシリコン酸化膜36とシリコン酸化膜36を覆うシリコン窒化膜37とが形成されており、受圧部32の一端部がシリコン窒化膜37を介してフレーム31に支持され、他端部が上記シリコン基板の厚み方向においてシリコン窒化膜37に対向している。また、シリコン窒化膜37における受圧部32の他端部との対向面に金属薄膜(たとえば、クロム膜など)からなる固定電極33aが形成され、受圧部32の他端部におけるシリコン窒化膜37との対向面とは反対側に金属薄膜(たとえば、クロム膜など)からなる可動電極33bが形成されている。なお、フレーム31の他表面にはシリコン窒化膜38が形成されている。また、受圧部32は、上記各シリコン窒化膜37,38とは別工程で形成されるシリコン窒化膜により構成されている。   Further, as shown in FIG. 4, the capacitance type microphone constituting the wave receiving element 3 has a rectangular frame-shaped frame 31 formed by providing a window hole 31a penetrating in the thickness direction in the silicon substrate. And a cantilever-type pressure receiving portion 32 disposed on one surface side of the frame 31 so as to straddle two opposing sides of the frame 31. Here, a thermal oxide film 35, a silicon oxide film 36 covering the thermal oxide film 35, and a silicon nitride film 37 covering the silicon oxide film 36 are formed on one surface side of the frame 31, and one end of the pressure receiving portion 32. Is supported by the frame 31 via the silicon nitride film 37, and the other end faces the silicon nitride film 37 in the thickness direction of the silicon substrate. Further, a fixed electrode 33a made of a metal thin film (for example, a chromium film) is formed on the surface of the silicon nitride film 37 facing the other end of the pressure receiving portion 32, and the silicon nitride film 37 at the other end of the pressure receiving portion 32 is formed. A movable electrode 33b made of a metal thin film (for example, a chromium film) is formed on the opposite side of the opposite surface. A silicon nitride film 38 is formed on the other surface of the frame 31. The pressure receiving portion 32 is constituted by a silicon nitride film formed in a separate process from the silicon nitride films 37 and 38 described above.

図4に示した構成の静電容量型のマイクロホンからなる受波素子3では、固定電極33aと可動電極33bとを電極とするコンデンサが形成されるから、受圧部32が疎密波の圧力を受けることにより固定電極33aと可動電極33bとの間の距離が変化し、固定電極33aと可動電極33bとの間の静電容量が変化する。したがって、固定電極33aおよび可動電極33bに設けたパッド(図示せず)間に直流バイアス電圧を印加しておけば、パッドの間には超音波の音圧に応じて微小な電圧変化が生じるから、超音波の音圧を電気信号に変換することができる。   In the wave receiving element 3 composed of a capacitive microphone having the configuration shown in FIG. 4, a capacitor having the fixed electrode 33a and the movable electrode 33b as electrodes is formed, so that the pressure receiving portion 32 receives the pressure of the dense wave. As a result, the distance between the fixed electrode 33a and the movable electrode 33b changes, and the capacitance between the fixed electrode 33a and the movable electrode 33b changes. Therefore, if a DC bias voltage is applied between pads (not shown) provided on the fixed electrode 33a and the movable electrode 33b, a minute voltage change occurs between the pads according to the sound pressure of the ultrasonic waves. The sound pressure of ultrasonic waves can be converted into an electric signal.

ところで、信号処理部4は、受波素子3の出力の基準値からの減衰量に基づいて音源部1と受波素子3との間の監視空間の煙濃度を推定する煙濃度推定手段41と、煙濃度推定手段41にて推定された煙濃度と所定の閾値とを比較して火災の有無を判断する煙式判断手段42と、音源部1が超音波を送波してから当該超音波が受波素子3に受波されるまでの時間差に基づいて音速を求める音速検出手段43と、音速検出手段43で求めた音速に基づいて上記監視空間の温度を推定する温度推定手段44と、温度推定手段44で推定された温度と規定温度とを比較して火災の有無を判断する熱式判断手段45とを有している。信号処理部4は、マイクロコンピュータにより構成されており、上記各手段41〜45は、上記マイクロコンピュータに適宜のプログラムを搭載することにより実現されている。また、信号処理部4は、受波素子3の出力信号をアナログ−ディジタル変換するA/D変換器などが設けられている。   By the way, the signal processing unit 4 includes a smoke density estimation unit 41 that estimates the smoke density in the monitoring space between the sound source unit 1 and the wave receiving element 3 based on the attenuation amount from the reference value of the output of the wave receiving element 3. The smoke type estimation means 42 for comparing the smoke density estimated by the smoke density estimation means 41 with a predetermined threshold value to determine the presence or absence of a fire, and the sound source unit 1 transmits the ultrasonic wave, and then the ultrasonic wave A sound speed detecting means 43 for obtaining the sound speed based on the time difference until the wave receiving element 3 receives the wave, a temperature estimating means 44 for estimating the temperature of the monitoring space based on the sound speed obtained by the sound speed detecting means 43, Thermal type determination means 45 that compares the temperature estimated by the temperature estimation means 44 with a specified temperature to determine the presence or absence of a fire is provided. The signal processing unit 4 is configured by a microcomputer, and each of the means 41 to 45 is realized by mounting an appropriate program on the microcomputer. The signal processing unit 4 is provided with an A / D converter for analog-digital conversion of the output signal of the wave receiving element 3.

煙濃度推定手段41は、音源部1からの超音波の音圧を検出する受波素子3の出力の基準値からの減衰量に基づいて煙濃度を推定するものであるが、音源部1から送波される超音波の周波数が一定であれば、上記減衰量は上記監視空間の煙濃度に略比例して増加するので、あらかじめ測定した煙濃度と減衰量との関係データに基づいて煙濃度と減衰量との関係式を求めて記憶しておけば、上記関係式を用いて減衰量から煙濃度を推定することができる。また、煙式判断手段42は、煙濃度推定手段41にて推定された煙濃度が上記閾値未満の場合には「火災無し」と判断する一方で、上記閾値以上の場合には「火災有り」と判断して火災感知信号を制御部2へ出力する。ここで、制御部2は、煙式判断手段42からの火災感知信号を受信すると、音源部1から可聴域の音波からなる警報音が発生するように音源部1への駆動入力波形を制御する。したがって、音源部1から警報音を発生させることができるので、警報音を出力するスピーカなどを別途に設ける必要がなく、火災感知器全体の小型化および低コスト化が可能となる。   The smoke density estimation means 41 estimates the smoke density based on the attenuation amount from the reference value of the output of the wave receiving element 3 that detects the sound pressure of the ultrasonic wave from the sound source unit 1. If the frequency of the transmitted ultrasonic wave is constant, the amount of attenuation increases approximately in proportion to the smoke concentration in the monitoring space, so the smoke concentration is based on the relationship data between the smoke concentration and attenuation measured in advance. If the relational expression between and the amount of attenuation is obtained and stored, the smoke density can be estimated from the amount of attenuation using the relational expression. The smoke type determination means 42 determines “no fire” when the smoke concentration estimated by the smoke concentration estimation means 41 is less than the above threshold value, while “no fire” when it exceeds the threshold value. And the fire detection signal is output to the control unit 2. Here, when the control unit 2 receives the fire detection signal from the smoke type determination means 42, the control unit 2 controls the drive input waveform to the sound source unit 1 so that an alarm sound including an audible sound wave is generated from the sound source unit 1. . Therefore, since the alarm sound can be generated from the sound source unit 1, it is not necessary to separately provide a speaker for outputting the alarm sound, and the entire fire detector can be reduced in size and cost.

また、音速検出手段43は、音源部1と受波素子3との間の距離と上記時間差とを用いて音速を求める。また、温度推定手段44は、周知の大気中の音速と絶対温度との関係式を利用して音速から上記監視空間の温度を推定する。また、熱式判断手段45は、温度推定手段44にて推定された温度が上記規定温度未満の場合には「火災無し」と判断する一方で、上記規定温度以上の場合には「火災有り」と判断して火災感知信号を制御部2へ出力する。ここで、制御部2は、熱式判断手段45からの火災感知信号を受信した場合にも、音源部1から可聴域の音波からなる警報音が発生するように音源部1への駆動入力波形を制御する。   The sound speed detection means 43 obtains the sound speed using the distance between the sound source unit 1 and the wave receiving element 3 and the time difference. Moreover, the temperature estimation means 44 estimates the temperature of the said monitoring space from a sound speed using the well-known relational expression of the sound speed in air and absolute temperature. The thermal determination means 45 determines “no fire” if the temperature estimated by the temperature estimation means 44 is lower than the specified temperature, while “fire” if the temperature is higher than the specified temperature. And the fire detection signal is output to the control unit 2. Here, even when the control unit 2 receives the fire detection signal from the thermal determination unit 45, the drive input waveform to the sound source unit 1 is generated so that an alarm sound including an audible sound wave is generated from the sound source unit 1. To control.

ところで、本実施形態において音源部1と受波素子3との間に設けられた前記筒体6は、音源部1からの超音波の拡散範囲を狭める拡散防止部材として機能するものであって、内部空間を通して音源部1からの超音波を伝搬させるように超音波の伝搬経路の少なくとも一部に音源部1と受波素子3との対向する方向に沿って配置されている。具体的には、筒体6は長手方向の両端面が開放された直管状の角筒であって、図1に示すように長手方向の一端面(図1における右端面)を音源部1に近接させて配置されることにより当該一端面が音源部1で閉じられ、他端面(図1における左端面)を受波素子3に対して所定の間隔を空けて対向させるように配置される。この筒体6を設けたことにより、音源部1から送波される超音波は、筒体6の長手方向に沿った内側面(内表面)で四方が囲まれた筒体6の内部空間を通ることで拡散が抑制され、したがって音源部1と受波素子3との間における超音波の拡散による音圧の低下を抑制することができる。   By the way, in the present embodiment, the cylindrical body 6 provided between the sound source unit 1 and the wave receiving element 3 functions as a diffusion preventing member that narrows the diffusion range of the ultrasonic wave from the sound source unit 1. It is arranged along the direction in which the sound source unit 1 and the wave receiving element 3 are opposed to at least a part of the propagation path of the ultrasonic wave so as to propagate the ultrasonic wave from the sound source unit 1 through the internal space. Specifically, the cylindrical body 6 is a straight tubular rectangular tube whose both end surfaces in the longitudinal direction are open. As shown in FIG. 1, one end surface in the longitudinal direction (the right end surface in FIG. 1) is used as the sound source unit 1. By being arranged close to each other, the one end surface is closed by the sound source unit 1, and the other end surface (left end surface in FIG. 1) is disposed to face the wave receiving element 3 with a predetermined interval. By providing the cylindrical body 6, the ultrasonic wave transmitted from the sound source unit 1 passes through the internal space of the cylindrical body 6 surrounded by the inner surface (inner surface) along the longitudinal direction of the cylindrical body 6. The diffusion is suppressed by passing through, so that a decrease in sound pressure due to the diffusion of ultrasonic waves between the sound source unit 1 and the wave receiving element 3 can be suppressed.

しかも、本実施形態の火災感知器では、図5(a)に示すように音源部1のうち媒質としての空気に振動を与える発熱体層13の表面(送波面)が、筒体6における超音波が入射する入射側端面(つまり、音源部1側の端面)に対向して配置され、且つ入射側端面と同一以上の大きさに形成されている。一例として、筒体6の入射側端面である開口面が10mm角の正方形状のとき、発熱体層13の表面を10mm角の正方形状とする。この構成によれば、発熱体層13の急激な温度変化が筒体6の入射側端面の全域に一様に伝わることになるので、音源部1から送波される超音波は筒体6内を平面波として進行する。したがって、超音波は筒体6の長手方向に沿う側面での反射波による干渉を生じることはなく、筒体6内での干渉による超音波の音圧低下を回避することができる。   Moreover, in the fire detector of the present embodiment, the surface of the heating element layer 13 (wave transmission surface) that vibrates the air as the medium in the sound source unit 1 is super-high in the cylinder 6 as shown in FIG. It is disposed opposite to the incident side end face (that is, the end face on the sound source unit 1 side) on which the sound wave is incident, and is formed in the same size or larger than the incident side end face. As an example, when the opening surface that is the incident side end face of the cylindrical body 6 is a 10 mm square, the surface of the heating element layer 13 is a 10 mm square. According to this configuration, since the rapid temperature change of the heating element layer 13 is uniformly transmitted to the entire area of the incident side end face of the cylinder 6, the ultrasonic wave transmitted from the sound source unit 1 is in the cylinder 6. Proceed as a plane wave. Therefore, the ultrasonic wave does not cause interference due to the reflected wave on the side surface along the longitudinal direction of the cylindrical body 6, and a decrease in the sound pressure of the ultrasonic wave due to the interference in the cylindrical body 6 can be avoided.

なお、図5(b)に示すように音源部1を複数の音波発生素子1aで構成しこれらの音波発生素子1aを同期させて同時に駆動する場合には、これら複数の音波発生素子1aを並べて形成される音源部1の送波面を、筒体6の入射側端面に対向させ、且つ入射側端面と同一以上の大きさとすれば、上述した図5(a)の例と同じ効果を得ることができる。たとえば、筒体6の入射側端面である開口面が10mm角の正方形状のとき、それぞれ発熱体層13の表面が5mm角の正方形状である4つの音波発生素子1aを並べて10mm角の正方形状の送波面を形成すればよい。   As shown in FIG. 5B, when the sound source unit 1 is composed of a plurality of sound wave generating elements 1a and these sound wave generating elements 1a are driven simultaneously in synchronization, the plurality of sound wave generating elements 1a are arranged side by side. If the transmission surface of the sound source unit 1 to be formed is opposed to the incident side end surface of the cylindrical body 6 and is equal to or larger than the incident side end surface, the same effect as the example of FIG. 5A described above can be obtained. Can do. For example, when the opening surface that is the incident side end face of the cylindrical body 6 is a 10 mm square, the surface of the heating element layer 13 is arranged in a square shape of 10 mm square by arranging four sound wave generating elements 1 a each having a square shape of 5 mm square. It is sufficient to form the wave transmission surface.

また、本実施形態では図1に示す構成の筒体6を例示しているが、筒体6の構成は図1のものに限らず、たとえば、図6に示すように音源部1を筒体6で覆った構成や、図7に示すように筒体6の一端面を音源部1に対して所定の間隔を空けて対向させる構成などを採用してもよい。音源部1の中心軸と受波素子3の中心軸とが同一軸上にない場合、つまり音源部1の中心軸に対して受波素子3が傾いて配置されている場合には、図8に示すように音源部1と受波素子3との間の超音波の伝搬経路の一部に当該伝搬経路に沿って曲げられた筒体6を配置するようにしてもよい。さらに、図9に示すように音源部1と受波素子3との間隔と同じ長さの筒体6を用いて音源部1と受波素子3とで筒体6の長手方向の両端面を閉じた構成とすることも考えられる。ただし、両端面を閉じた構成では筒体6内が監視空間となるので、たとえば筒体6の長手方向に沿う側面には内部に煙等を案内する孔(図示せず)が形成される。図10に示すように長手方向に直交する断面が、超音波が出て行く端面(受波素子3に対向する端面)側ほど大きくなる音響ホーンを筒体6として用いてもよい。ここに、各筒体6は角筒に限らず丸筒であってもよい。   Further, in the present embodiment, the cylindrical body 6 having the configuration shown in FIG. 1 is illustrated, but the configuration of the cylindrical body 6 is not limited to that of FIG. 1. For example, as shown in FIG. 6 or a configuration in which one end face of the cylindrical body 6 is opposed to the sound source unit 1 with a predetermined interval as shown in FIG. When the central axis of the sound source unit 1 and the central axis of the wave receiving element 3 are not on the same axis, that is, when the wave receiving element 3 is arranged to be inclined with respect to the central axis of the sound source unit 1, FIG. As shown in FIG. 6, a cylindrical body 6 bent along the propagation path may be disposed in a part of the propagation path of the ultrasonic wave between the sound source unit 1 and the receiving element 3. Further, as shown in FIG. 9, both end surfaces in the longitudinal direction of the cylindrical body 6 are formed between the sound source unit 1 and the wave receiving element 3 by using the cylindrical body 6 having the same length as the interval between the sound source unit 1 and the wave receiving element 3. A closed configuration is also conceivable. However, in the configuration in which both end surfaces are closed, the inside of the cylindrical body 6 becomes a monitoring space, and therefore, a hole (not shown) for guiding smoke or the like is formed in the side surface along the longitudinal direction of the cylindrical body 6, for example. As shown in FIG. 10, an acoustic horn whose cross section perpendicular to the longitudinal direction becomes larger toward the end face (end face facing the wave receiving element 3) from which the ultrasonic wave is emitted may be used as the cylindrical body 6. Here, each cylinder 6 is not limited to a square cylinder but may be a round cylinder.

なお、本実施形態では、煙式判断手段42や熱式判断手段45から出力される火災感知器信号を制御部2へ出力するようにしているが、制御部2に限らず、たとえば、外部の通報装置へ出力するようにしてもよい。   In this embodiment, the fire detector signal output from the smoke determination unit 42 or the thermal determination unit 45 is output to the control unit 2, but is not limited to the control unit 2. You may make it output to a notification apparatus.

以上説明した本実施形態の火災感知器では、煙濃度推定手段41において、受波素子3の出力の基準値からの減衰量に基づいて音源部1と受波素子3との間の監視空間の煙濃度を推定し、煙式判断手段42において、煙濃度推定手段41にて推定された煙濃度と所定の閾値とを比較して火災の有無を判断するので、散乱光式煙感知器や減光式煙感知器のような光電式の火災感知器で問題となるバックグランド光の影響をなくすことができ、散乱光式煙感知器に必要なラビリンス体を不要とすることができて火災発生時に監視空間へ煙粒子が拡散しやすくなるから、散乱光式煙感知器に比べて応答性を向上でき、さらに、減光式煙感知器に比べて非火災報の低減が可能になる。   In the fire detector according to the present embodiment described above, the smoke density estimation means 41 determines the monitoring space between the sound source unit 1 and the wave receiving element 3 based on the attenuation amount from the reference value of the output of the wave receiving element 3. The smoke density is estimated, and the smoke type judging means 42 compares the smoke density estimated by the smoke density estimating means 41 with a predetermined threshold value to judge the presence or absence of a fire. A photoelectric fire detector such as a light smoke detector can eliminate the influence of background light, which is a problem, and can eliminate the labyrinth required for the scattered light smoke detector, resulting in a fire. Occasionally, smoke particles are likely to diffuse into the surveillance space, so that responsiveness can be improved compared to scattered light smoke detectors, and non-fire reports can be reduced compared to dimmed smoke detectors.

また、本実施形態では、音源部1と受波素子3との間の超音波の伝搬経路の少なくとも一部に筒体6を設けたことにより、音源部1から送波される超音波は、筒体6の内部空間を通ることで拡散が抑制され、音源部1と受波素子3との間における超音波の拡散による音圧の低下を抑制することができるので、監視空間中に煙粒子がない状態において受波素子3で受波される超音波の音圧を高く維持でき、煙濃度の変化量に対する受波素子3の出力の変化量が比較的大きくなり、その結果、SN比が向上するという効果がある。さらにまた、発熱体層13の表面が、筒体6の入射側端面に対向して配置され、且つ入射側端面と同一以上の大きさに形成されていることで、筒体6内での干渉による超音波の音圧の低下も回避することができる。   Further, in the present embodiment, the ultrasonic wave transmitted from the sound source unit 1 is provided by providing the cylindrical body 6 in at least a part of the ultrasonic wave propagation path between the sound source unit 1 and the wave receiving element 3. Diffusion is suppressed by passing through the internal space of the cylindrical body 6, and a decrease in sound pressure due to diffusion of ultrasonic waves between the sound source unit 1 and the wave receiving element 3 can be suppressed. The sound pressure of the ultrasonic wave received by the wave receiving element 3 can be maintained high in the absence of noise, and the amount of change in the output of the wave receiving element 3 relative to the amount of change in smoke density becomes relatively large. There is an effect of improving. Furthermore, the surface of the heating element layer 13 is disposed to face the incident side end face of the cylindrical body 6 and is formed to have the same size or larger than the incident side end face, so that interference within the cylindrical body 6 occurs. A decrease in the sound pressure of the ultrasonic wave due to can also be avoided.

さらに、本実施形態の火災感知器では、音速検出手段43において、音源部1が超音波を送波してから当該超音波が受波素子3に受波されるまでの時間差に基づいて音速を求め、温度推定手段44において、音速検出手段43で求めた音速に基づいて上記監視空間の温度を推定し、熱式判断手段45において、温度推定手段44で推定された温度と規定温度とを比較して火災の有無を判断するので、別途に温度検出素子を用いることなく火災発生時の温度上昇によっても火災を感知することが可能となり、火災をより確実に感知することが可能になる。   Furthermore, in the fire detector according to the present embodiment, the sound speed detection means 43 determines the sound speed based on the time difference from when the sound source unit 1 transmits an ultrasonic wave until the ultrasonic wave is received by the wave receiving element 3. The temperature estimation means 44 estimates the temperature of the monitoring space based on the sound speed obtained by the sound speed detection means 43, and the thermal type judgment means 45 compares the temperature estimated by the temperature estimation means 44 with the specified temperature. Therefore, it is possible to detect the fire even when the temperature rises at the time of the fire without using a separate temperature detecting element, and to detect the fire more reliably.

(実施形態2)
本実施形態の火災感知器は、基本構成が実施形態1と略同じであり、制御部2の構成および筒体6の構成が実施形態1の火災感知器と相違する。なお、実施形態1と同様の構成要素には同一の符号を付して説明を適宜省略する。
(Embodiment 2)
The basic structure of the fire detector of the present embodiment is substantially the same as that of the first embodiment, and the configuration of the control unit 2 and the configuration of the cylinder 6 are different from the fire detector of the first embodiment. In addition, the same code | symbol is attached | subjected to the component similar to Embodiment 1, and description is abbreviate | omitted suitably.

本実施形態では、図9に示すように音源部1と受波素子3との間隔と同じ長さの筒体6を用い、音源部1と受波素子3とで筒体6の長手方向の両端面を閉じた構成を採用している。このとき、音源部1および受波素子3において筒体6の内部空間に臨む各面は、超音波を反射する反射面としても機能する。この構成により、筒体6は長手方向の両端面が閉じられた周知の音響管と同様に、固有の共振周波数を有する。つまり、筒体6の長手方向の寸法をLとするときに、L=(n/2)×λの関係(ただし、nは自然数)を満たす波長λに対応する周波数f(波の伝搬速度をcとしてf=c/λで表される)が筒体6の共振周波数となる。したがって、L=(n/2)×λの関係を満たす超音波の連続波が長手方向の端面から筒体6内に入射すると、当該超音波の少なくとも一部が筒体6の長手方向の両端面で反射を繰り返すことにより、反射波と音源部1からの直接波とが重なって共振し、筒体6の内部において図11に示すように時間経過に応じて前記超音波の音圧が増大する。そこで、本実施形態は制御部2において、筒体6に固有の前記共振周波数の超音波を音源部1から送波させるように音源部1を制御することにより、筒体6内で共振を生じさせ音源部1からの超音波の音圧を増大させるようにしてある。この場合、筒体6内で共振を生じさせるために、単パルス状の超音波ではなく、L/λを超える複数周期(以下、m周期という)の超音波を音源部1から送波させる必要があるので、制御部2は、m(>L/λ)周期の超音波の連続波を音源部1から送波させるように音源部1を制御する。言い換えると、音源部1から超音波を連続して送波させる送波時間t(つまりt=m×λ/c)が、筒体6の長手方向の両端間を超音波が伝搬するのに要する伝搬時間t(つまりt=L/c)よりも大きくなる(つまりt>t)ように制御部2で音源部1を制御する。受波素子3は、筒体6内で共振が発生して超音波の音圧が飽和したタイミング(図11中の「S」のタイミング)で超音波の音圧を検出する。通常、音源部1からの超音波の送波が終了した時点で超音波の音圧が飽和するので、一例として音源部1からの超音波の送波を終了するのと同時に受波素子3において超音波の音圧を検出することが考えられる。 In the present embodiment, as shown in FIG. 9, a cylindrical body 6 having the same length as the distance between the sound source unit 1 and the wave receiving element 3 is used, and the sound source unit 1 and the wave receiving element 3 are arranged in the longitudinal direction of the cylindrical body 6. The structure which closed both end surfaces is adopted. At this time, each surface facing the internal space of the cylindrical body 6 in the sound source unit 1 and the wave receiving element 3 also functions as a reflection surface that reflects ultrasonic waves. With this configuration, the cylindrical body 6 has a specific resonance frequency, similar to a known acoustic tube whose both end faces in the longitudinal direction are closed. That is, when the longitudinal dimension of the cylinder 6 is L, the frequency f (wave propagation velocity) corresponding to the wavelength λ satisfying the relationship of L = (n / 2) × λ (where n is a natural number). (represented by f = c / λ as c) is the resonance frequency of the cylinder 6. Therefore, when a continuous wave of ultrasonic waves satisfying the relationship L = (n / 2) × λ is incident into the cylindrical body 6 from the end face in the longitudinal direction, at least a part of the ultrasonic wave is at both ends in the longitudinal direction of the cylindrical body 6. By repeating reflection on the surface, the reflected wave and the direct wave from the sound source unit 1 overlap and resonate, and the sound pressure of the ultrasonic wave increases with time as shown in FIG. To do. Thus, in the present embodiment, the control unit 2 controls the sound source unit 1 to transmit the ultrasonic wave having the resonance frequency unique to the cylinder 6 from the sound source unit 1, thereby causing resonance in the cylinder 6. The sound pressure of the ultrasonic wave from the sound source unit 1 is increased. In this case, in order to generate resonance in the cylindrical body 6, it is necessary to transmit ultrasonic waves of a plurality of periods exceeding L / λ (hereinafter referred to as m periods) from the sound source unit 1 instead of single-pulse ultrasonic waves. Therefore, the control unit 2 controls the sound source unit 1 so as to transmit a continuous wave of ultrasonic waves having an m (> L / λ) period from the sound source unit 1. In other words, the transmission time t p (that is, t p = m × λ / c) in which the ultrasonic wave is continuously transmitted from the sound source unit 1 propagates between both ends in the longitudinal direction of the cylindrical body 6. The sound source unit 1 is controlled by the control unit 2 so as to be longer than the propagation time t s (that is, t s = L / c) required (ie, t p > t s ). The wave receiving element 3 detects the sound pressure of the ultrasonic wave at the timing when the resonance occurs in the cylindrical body 6 and the sound pressure of the ultrasonic wave is saturated (“S” timing in FIG. 11). Usually, since the sound pressure of the ultrasonic wave is saturated when the transmission of the ultrasonic wave from the sound source unit 1 is completed, as an example, the wave receiving element 3 simultaneously ends the transmission of the ultrasonic wave from the sound source unit 1. It is conceivable to detect the sound pressure of ultrasonic waves.

本実施形態の音源部1と受波素子3と筒体6とは、図12に示すように、筒体6の長手方向の一端面(図12における左端面)に音源部1が位置し、筒体6の長手方向の他端面(図12における右端面)に受波素子3が位置する位置関係になっている。ここで、長手方向の両端面が閉じた音響管においては周知のように長手方向の両端で超音波による圧力変化が最大になるので、上述の位置関係により、受波素子3は超音波による圧力変化が最大となる部位で超音波の音圧を検出することができる。言い換えると、超音波の音圧の腹(つまり空気の移動速度の節)となる部位で受波素子3が超音波の音圧を検出することができる(図12中の「A」と「B」との縦方向の間隔が圧力変化の大きさを表す)。その結果、煙濃度の変化量に対する受波素子3の出力の変化量を極力大きくすることができる。なお、図13に示すように、筒体6の長手方向の一端面(図13における左端面)に音源部1および受波素子3を並べて配置し、筒体6の長手方向の他端面(図13における右端面)を閉じた形状とした場合でも、受波素子3は超音波による圧力変化が最大となる部位で超音波の音圧を検出することができる。   As shown in FIG. 12, the sound source unit 1, the wave receiving element 3, and the cylindrical body 6 of the present embodiment are located on one end surface (left end surface in FIG. 12) in the longitudinal direction of the cylindrical body 6. The wave receiving element 3 is positioned on the other end surface in the longitudinal direction of the cylindrical body 6 (the right end surface in FIG. 12). Here, as is well known, in an acoustic tube whose both end faces in the longitudinal direction are closed, the pressure change due to the ultrasonic waves is maximized at both ends in the longitudinal direction. The sound pressure of the ultrasonic wave can be detected at the site where the change is maximum. In other words, the wave receiving element 3 can detect the sound pressure of the ultrasonic wave at the part that becomes the antinode of the sound pressure of the ultrasonic wave (that is, the node of the moving speed of the air) (“A” and “B” in FIG. 12). ”Represents the magnitude of the pressure change). As a result, the amount of change in the output of the wave receiving element 3 with respect to the amount of change in smoke density can be increased as much as possible. As shown in FIG. 13, the sound source unit 1 and the wave receiving element 3 are arranged side by side on one end surface in the longitudinal direction of the cylinder 6 (left end surface in FIG. 13), and the other end surface in the longitudinal direction of the cylinder 6 (see FIG. 13). Even when the right end surface in Fig. 13 is closed, the wave receiving element 3 can detect the sound pressure of the ultrasonic wave at the site where the pressure change due to the ultrasonic wave is maximized.

また、図12や図13の構成に限らず、図14(a)に示すように長手方向の両端面が反射面で閉じられた筒体6における長手方向の一端面に音源部1を配置し、長手方向に沿う側面のうち音源部1からの超音波による圧力変化が最大となる位置に受波素子3を配置しても、受波素子3は超音波による圧力変化が最大となる部位で超音波の音圧を検出することができる。すなわち、長手方向の両端面が閉じた音響管においては長手方向の両端だけでなく、長手方向に沿って一端面からλ/2(λは超音波の波長)ごとに超音波による圧力変化が最大となる箇所があり、この箇所に受波素子3を配置することにより長手方向のいずれかの端面に受波素子3を配置した場合と同様に、煙濃度の変化量に対する受波素子3の出力の変化量を極力大きくすることができる。   Moreover, the configuration of the sound source unit 1 is not limited to the configuration of FIG. 12 and FIG. 13, and the sound source unit 1 is disposed on one end surface in the longitudinal direction of the cylindrical body 6 whose both end surfaces in the longitudinal direction are closed by reflecting surfaces as shown in FIG. Even if the wave receiving element 3 is arranged at a position where the pressure change due to the ultrasonic wave from the sound source unit 1 is maximized on the side surface along the longitudinal direction, the wave receiving element 3 is a part where the pressure change due to the ultrasonic wave is maximized. Ultrasonic sound pressure can be detected. That is, in an acoustic tube whose both end surfaces in the longitudinal direction are closed, the pressure change due to the ultrasonic wave is maximized not only at both ends in the longitudinal direction but also from one end surface along the longitudinal direction every λ / 2 (λ is the wavelength of the ultrasonic wave). As in the case where the wave receiving element 3 is disposed at any end face in the longitudinal direction by arranging the wave receiving element 3 at this position, the output of the wave receiving element 3 with respect to the amount of change in smoke density Can be increased as much as possible.

図14(b)は、筒体6の側面のうち音源部1からの超音波による圧力変化が最大となる位置に受波素子3を配置した一例であって、具体的には、制御部2が、筒体6の内部空間における長さ寸法Lを自然数nで除した長さの波長λ(つまりλ=L/n)の超音波を音源部1から送波させるように音源部1を制御することを前提として、筒体6の長手方向の中央部(つまり、両反射面の中間位置)に受波素子3を配置している。要するに、上記波長λ(=L/n)の超音波が音源部1から送波されると、筒体6の長手方向の中央部は長手方向の一端面から必然的にλ/2のn倍だけ離れた位置となり超音波による圧力変化が常に最大となるので、筒体6の長手方向の中央部に配置された受波素子3は超音波による圧力変化が最大となる位置で音圧を検出することができる。この構成では、上述した波長λ(=L/n)の条件を満たしていれば超音波の周波数が異なる場合でも、筒体6の長手方向の中央部に配置された受波素子3のみで、前記超音波による圧力変化が最大となる位置での音圧の検出が可能となり、超音波の周波数ごとに異なる位置に受波素子3を配置する場合に比べて、筒体6の設計が容易になる。   FIG. 14B is an example in which the wave receiving element 3 is disposed at a position where the pressure change due to the ultrasonic wave from the sound source unit 1 is maximized on the side surface of the cylindrical body 6, specifically, the control unit 2. However, the sound source unit 1 is controlled so that an ultrasonic wave having a wavelength λ (that is, λ = L / n) having a length obtained by dividing the length L in the internal space of the cylindrical body 6 by the natural number n is transmitted from the sound source unit 1. As a premise, the wave receiving element 3 is arranged at the center of the cylindrical body 6 in the longitudinal direction (that is, at the intermediate position between both reflecting surfaces). In short, when the ultrasonic wave having the wavelength λ (= L / n) is transmitted from the sound source unit 1, the central portion in the longitudinal direction of the cylindrical body 6 is necessarily n times λ / 2 from one end surface in the longitudinal direction. Since the pressure change due to the ultrasonic wave is always the maximum, the wave receiving element 3 arranged at the center in the longitudinal direction of the cylindrical body 6 detects the sound pressure at the position where the pressure change due to the ultrasonic wave is maximum. can do. In this configuration, if the frequency of the ultrasonic wave is different as long as the above-described wavelength λ (= L / n) condition is satisfied, only the receiving element 3 disposed at the center in the longitudinal direction of the cylindrical body 6 The sound pressure can be detected at a position where the pressure change due to the ultrasonic wave is maximum, and the design of the cylindrical body 6 is easier than in the case where the wave receiving element 3 is arranged at a different position for each ultrasonic frequency. Become.

ここにおいて、両端面が閉じた音響管を共振させた場合、長手方向の各端面で超音波が反射することにより共振し、特に、波長の短い超音波では、端面に微小な凹凸があるだけでも端面で反射する際に干渉による音圧低下につながるが、図14のように筒体6の長手方向に沿う側面に受波素子3を配置した構成によれば、筒体6の端面に受波素子3が設けられる場合に比べて、筒体6の端面を凹凸の少ない平坦な面とすることができ、結果的に、筒体6の端面での超音波の反射を受波素子3で阻害することなく共振による音圧の増加が可能になる。なお、図12ないし図14の構成でも、図9の構成と同様に筒体6内が監視空間となるので、たとえば筒体6の長手方向に沿う側面には内部に煙等を案内する孔(図示せず)が形成される。   Here, when an acoustic tube whose both end surfaces are closed is resonated, it resonates by reflection of ultrasonic waves at each end surface in the longitudinal direction. When reflected at the end face, the sound pressure is reduced due to interference. However, according to the configuration in which the wave receiving element 3 is arranged on the side surface along the longitudinal direction of the cylindrical body 6 as shown in FIG. Compared with the case where the element 3 is provided, the end surface of the cylindrical body 6 can be a flat surface with less unevenness. As a result, the wave receiving element 3 inhibits the reflection of ultrasonic waves at the end surface of the cylindrical body 6. It is possible to increase the sound pressure due to the resonance without doing so. In the configuration of FIGS. 12 to 14, the inside of the cylinder 6 becomes a monitoring space as in the configuration of FIG. 9. For example, the side surface along the longitudinal direction of the cylinder 6 has a hole for guiding smoke or the like ( (Not shown) is formed.

ところで、超音波の伝搬速度である音速cは媒質の絶対温度に応じて変化するので、筒体6の共振周波数は常に一定ではなく、媒質の温度変化による音速変化に起因して変動する。そのため、音源部1から送波させる超音波の周波数を筒体6の共振周波数と正確に合わせるためには、音源部1から送波させる超音波の周波数を温度変化による音速変化に応じて補正する必要がある。そこで、本実施形態では、温度変化による音速の変化に応じて音源部1から送波させる超音波の周波数を補正する周波数補正手段(図示せず)を制御部2に有している。したがって、音速の変化に起因して筒体6の共振周波数が変動することがあっても、音源部1から送波される超音波の周波数は周波数補正手段により変動後の筒体6の共振周波数に補正されるので、筒体6内において確実に共振を発生させることができる。また、この周波数補正手段は、実施形態1で説明した音速検出手段43において、音源部1が超音波を送波してから当該超音波が受波素子3に受波されるまでの時間差に基づいて求められた音速を用いて、音源部1から送波させる超音波の周波数を補正しており、結果的に、音速を求める手段を別途設ける場合に比べて構成を簡単にすることができる。   By the way, since the speed of sound c, which is the propagation speed of ultrasonic waves, changes according to the absolute temperature of the medium, the resonance frequency of the cylindrical body 6 is not always constant and varies due to changes in the speed of sound due to changes in the temperature of the medium. Therefore, in order to accurately match the frequency of the ultrasonic wave transmitted from the sound source unit 1 with the resonance frequency of the cylindrical body 6, the frequency of the ultrasonic wave transmitted from the sound source unit 1 is corrected in accordance with the change in sound velocity due to the temperature change. There is a need. Therefore, in the present embodiment, the control unit 2 includes frequency correction means (not shown) that corrects the frequency of the ultrasonic wave transmitted from the sound source unit 1 in accordance with the change in sound speed due to the temperature change. Therefore, even if the resonance frequency of the cylinder 6 varies due to a change in the sound speed, the frequency of the ultrasonic wave transmitted from the sound source unit 1 is changed by the frequency correction means. Therefore, the resonance can be reliably generated in the cylindrical body 6. Further, this frequency correction means is based on the time difference from when the sound source unit 1 transmits ultrasonic waves to when the ultrasonic waves are received by the wave receiving element 3 in the sound speed detection means 43 described in the first embodiment. The frequency of the ultrasonic wave transmitted from the sound source unit 1 is corrected using the sound speed obtained in this way, and as a result, the configuration can be simplified as compared with the case where a means for obtaining the sound speed is separately provided.

以下に、本実施形態の具体例を挙げる。音速cが340m/s、筒体6の長手方向の寸法Lが34mmのとき、L=(n/2)×λの関係を満たすには、音源部1から送波させる超音波の周波数f(=c/λ)をたとえば100kHz(n=20)や、50kHz(n=10)とすればよい。すなわち、100kHzや50kHzは筒体6の共振周波数であり、これらの周波数の超音波を音源部1から送波させることにより、図11に示すように時間経過に応じて前記超音波の音圧が共振によって増大する。ここで、上述したようにm(>L/λ)周期の超音波の連続波を音源部1から送波させるように音源部1を制御する必要があるので、制御部2はたとえば100kHzの場合には100周期、50kHzの場合には50周期程度の超音波を音源部1から連続的に送波させるように音源部1を制御する。この構成では、筒体6内で共振が発生して超音波の音圧が飽和したタイミング(図11中の「S」のタイミング)で受波素子3が検出する超音波の音圧は、筒体6のない構成で単パルス状の超音波を送受波した場合の数十倍の音圧となる。   Specific examples of this embodiment will be given below. When the speed of sound c is 340 m / s and the longitudinal dimension L of the cylindrical body 6 is 34 mm, the frequency f () of the ultrasonic wave transmitted from the sound source unit 1 is satisfied in order to satisfy the relationship L = (n / 2) × λ. = C / λ) may be set to, for example, 100 kHz (n = 20) or 50 kHz (n = 10). That is, 100 kHz and 50 kHz are resonance frequencies of the cylindrical body 6, and by transmitting ultrasonic waves of these frequencies from the sound source unit 1, the sound pressure of the ultrasonic waves changes with time as shown in FIG. Increased by resonance. Here, as described above, it is necessary to control the sound source unit 1 so as to transmit a continuous wave of ultrasonic waves of m (> L / λ) period from the sound source unit 1, so that the control unit 2 is, for example, 100 kHz The sound source unit 1 is controlled so as to continuously transmit ultrasonic waves from the sound source unit 1 for 100 cycles, and in the case of 50 kHz, about 50 cycles. In this configuration, the sound pressure of the ultrasonic wave detected by the wave receiving element 3 at the timing at which resonance occurs in the cylinder 6 and the sound pressure of the ultrasonic wave is saturated (timing “S” in FIG. 11) The sound pressure is several tens of times that when a single-pulse ultrasonic wave is transmitted and received in a configuration without the body 6.

また、本実施形態では筒体6の長手方向の両端面を閉じた構成を例示しているが、この構成に限らず、たとえば実施形態1で説明した図1のように筒体6の長手方向の一端面のみを閉じた(他端面が開口した)構成を採用してもよい。図1の構成では、筒体6は長手方向の一端面が閉じられた周知の音響管と同様に、固有の共振周波数を有する。つまり、筒体6の長手方向の寸法をLとするときに、L=(1/4+n/2)×λの関係(ただし、n=0,1,2,3,…)を満たす波長λに対応する周波数f(=c/λ)が筒体6の共振周波数となる。したがって、L=(1/4+n/2)×λの関係を満たす超音波の連続波が長手方向の端面から筒体6内に入射すると、当該超音波の少なくとも一部が筒体6の長手方向の両端面で反射を繰り返すことにより、反射波と音源部1からの直接波とが重なって共振し、筒体6の内部において図11に示すように時間経過に応じて前記超音波の音圧が増大する。そこで、図1の構成を採用する場合でも、制御部2において、筒体6に固有の前記共振周波数の超音波が音源部1から送波されるように音源部1を制御すれば、筒体6内で共振を生じさせ音源部1からの超音波の音圧を増大させることができる。この場合、筒体6内で共振を生じさせるために、制御部2は、単パルス状の超音波ではなく、m(>L/λ)周期の超音波の連続波を音源部1から送波させるように音源部1を制御する。言い換えると、音源部1から超音波を連続して送波させる送波時間t(=m×λ/c)が、筒体6の長手方向の両端間を超音波が伝搬するのに要する伝搬時間t(=L/c)よりも大きくなる(つまりt>t)ように制御部2で音源部1を制御する。なお、図1のように一方の端面を開口端とする場合、周知のように開口端よりも僅かΔLだけ外側に、超音波の音圧の節(つまり空気の移動速度の腹)が生じるので、共振周波数を求める際に用いる長さLを上記ΔLだけ補正(開口端の補正)すれば、より正確な共振周波数を求めることができる。 Further, in the present embodiment, a configuration in which both end surfaces in the longitudinal direction of the cylindrical body 6 are closed is illustrated, but not limited to this configuration, for example, the longitudinal direction of the cylindrical body 6 as illustrated in FIG. 1 described in the first embodiment. Alternatively, a configuration in which only one end face is closed (the other end face is opened) may be employed. In the configuration of FIG. 1, the cylindrical body 6 has a specific resonance frequency in the same manner as a known acoustic tube whose one end surface in the longitudinal direction is closed. That is, when the longitudinal dimension of the cylindrical body 6 is L, the wavelength λ satisfies the relationship L = (1/4 + n / 2) × λ (where n = 0, 1, 2, 3,...). The corresponding frequency f (= c / λ) is the resonance frequency of the cylinder 6. Therefore, when a continuous wave of ultrasonic waves satisfying the relationship of L = (1/4 + n / 2) × λ enters the cylindrical body 6 from the end face in the longitudinal direction, at least a part of the ultrasonic waves is longitudinal in the cylindrical body 6. The reflection wave and the direct wave from the sound source unit 1 overlap and resonate by repeating the reflection at both end surfaces of the sound wave, and the sound pressure of the ultrasonic wave as time elapses as shown in FIG. Will increase. Therefore, even when the configuration of FIG. 1 is adopted, if the sound source unit 1 is controlled in the control unit 2 so that the ultrasonic wave having the resonance frequency inherent to the cylinder 6 is transmitted from the sound source unit 1, the cylinder body. 6 can resonate and increase the sound pressure of the ultrasonic wave from the sound source unit 1. In this case, in order to cause resonance in the cylindrical body 6, the control unit 2 transmits a continuous wave of ultrasonic waves having a period of m (> L / λ) from the sound source unit 1 instead of a single-pulse ultrasonic wave. The sound source unit 1 is controlled so that In other words, a transmission time t p (= m × λ / c) for continuously transmitting ultrasonic waves from the sound source unit 1 is required for the ultrasonic waves to propagate between both ends in the longitudinal direction of the cylindrical body 6. The sound source unit 1 is controlled by the control unit 2 so as to be longer than the time t s (= L / c) (that is, t p > t s ). When one end face is an open end as shown in FIG. 1, as is well known, an ultrasonic sound pressure node (that is, an antinode of air moving speed) is generated slightly outside the open end by ΔL. If the length L used for obtaining the resonance frequency is corrected by the above ΔL (correction of the opening end), a more accurate resonance frequency can be obtained.

以上説明した本実施形態の火災感知器では、筒体6に固有の共振周波数であってm(>L/λ)周期の超音波の連続波を音源部1から送波させることにより、筒体6内で共振を生じさせ音源部1からの超音波の音圧を増大させているので、音源部1と受波素子3との間における音圧の低下をより一層抑制することができ、煙濃度の変化量に対する受波素子3の出力の変化量が大きくなってSN比が一層向上する。しかも、共振により筒体6の長手方向の端面で反射を繰り返す超音波においては、実効的な送波距離が反射の回数に応じて延長され、実質、超音波は筒体6の長手方向の寸法Lの数倍の送波距離を経て受波素子3に到達する。このことも煙濃度の変化量に対する受波素子3の出力の変化量の増大に寄与しており、非共振の単パルス状の超音波が受波素子3で受波される場合に比較して超音波の減衰量は数倍に増大する。   In the fire sensor according to the present embodiment described above, the cylindrical body 6 transmits a continuous wave of ultrasonic waves having a resonance frequency inherent to the cylindrical body 6 and m (> L / λ) cycles from the sound source unit 1. 6 is caused to resonate and the sound pressure of the ultrasonic wave from the sound source unit 1 is increased, so that a decrease in sound pressure between the sound source unit 1 and the receiving element 3 can be further suppressed, and smoke The amount of change in the output of the wave receiving element 3 with respect to the amount of change in density is increased, and the SN ratio is further improved. Moreover, in the ultrasonic wave that repeats reflection at the end face in the longitudinal direction of the cylindrical body 6 due to resonance, the effective transmission distance is extended according to the number of reflections, and the ultrasonic wave is substantially the dimension in the longitudinal direction of the cylindrical body 6. It reaches the wave receiving element 3 through a transmission distance several times L. This also contributes to an increase in the amount of change in the output of the wave receiving element 3 with respect to the amount of change in the smoke density, as compared with the case where a non-resonant single-pulse ultrasonic wave is received by the wave receiving element 3. The attenuation of ultrasonic waves increases several times.

なお、その他の構成および機能は実施形態1と同様である。   Other configurations and functions are the same as those in the first embodiment.

ところで、筒体6は、たとえば長手方向の全長に亘ってスリットが形成されることで一側方に開放されているものなど完全な筒状でないものであっても、共振の効果はやや薄れるものの、一般的には上記実施形態と同様に固有の共振周波数を有するので、上記実施形態において用いる筒体6は完全な筒状でなくてもよい。すなわち、完全な筒状でない筒体6を用いても、筒体6内で共振を生じさせて音源部1からの超音波の音圧を増大させ、煙濃度の変化量に対する受波素子3の出力の変化量の向上を図ることが可能である。   By the way, even if the cylindrical body 6 is not a complete cylindrical shape, for example, one that is opened to one side by forming a slit over the entire length in the longitudinal direction, the effect of resonance is slightly diminished. Generally, since it has a specific resonance frequency as in the above embodiment, the cylindrical body 6 used in the above embodiment may not be a perfect cylinder. That is, even if the cylindrical body 6 that is not completely cylindrical is used, resonance is generated in the cylindrical body 6 to increase the sound pressure of the ultrasonic wave from the sound source unit 1, and the wave receiving element 3 with respect to the amount of change in the smoke density is increased. It is possible to improve the amount of change in output.

(実施形態3)
本実施形態の火災感知器は、音源部1からの超音波の拡散範囲を狭める拡散防止部材として、筒体6に代えて図15に示す一対の拡散防止板6’を用いた点が実施形態1または実施形態2の火災感知器と相違する。
(Embodiment 3)
The fire detector according to this embodiment uses a pair of diffusion prevention plates 6 ′ shown in FIG. 15 instead of the cylinder 6 as a diffusion prevention member that narrows the diffusion range of ultrasonic waves from the sound source unit 1. It differs from the fire detector of 1 or Embodiment 2.

各拡散防止板6’はそれぞれ平面視矩形状の平板からなり、一対の拡散防止板6’は一表面同士を対向させるように略平行に配設される。ここで、一対の拡散防止板6’は、音源部1からの超音波を互いに対向する前記一表面(内表面)間の空間に通すことで当該超音波の拡散範囲を狭めるものであって、対向する前記一表面間の空間を通して音源部1からの超音波を伝搬させるように、超音波の伝搬経路の少なくとも一部に音源部1と受波素子3との対向する方向に前記一表面の長手方向を一致させる形で配置される。具体的には、図15に示すように、音源部1と受波素子3とは一直線上に対向する形で配置されており、一対の拡散防止板6’は前記一表面の間に音源部1と受波素子3とを挟みこむように配設される。ここで、一対の拡散防止板6’の対向する前記一表面の間が監視空間となり、音源部1は当該監視空間の長手方向の一端部に配設され、受波素子3は監視空間の長手方向の他端部に配設される。このように拡散防止板6’を設けたことにより、音源部1から送波される超音波は、拡散防止板6’の前記一表面(内表面)で図15の上下が囲まれた監視空間を通ることで拡散が抑制され、したがって音源部1と受波素子3との間における超音波の拡散による音圧の低下を抑制することができる。   Each diffusion prevention plate 6 ′ is a flat plate having a rectangular shape in plan view, and the pair of diffusion prevention plates 6 ′ are arranged substantially in parallel so that one surface faces each other. Here, the pair of diffusion preventing plates 6 'narrows the diffusion range of the ultrasonic waves by passing the ultrasonic waves from the sound source unit 1 through the space between the one surface (inner surface) facing each other, The ultrasonic wave from the sound source unit 1 is propagated through the space between the one surface facing each other, so that the surface of the one surface is opposed to the sound source unit 1 and the receiving element 3 in at least a part of the propagation path of the ultrasonic wave. It arrange | positions in the form which makes a longitudinal direction correspond. Specifically, as shown in FIG. 15, the sound source unit 1 and the wave receiving element 3 are arranged so as to face each other in a straight line, and the pair of diffusion prevention plates 6 ′ is located between the one surface and the sound source unit. 1 and the wave receiving element 3 are interposed. Here, a space between the opposing one surfaces of the pair of diffusion prevention plates 6 ′ is a monitoring space, the sound source unit 1 is disposed at one end in the longitudinal direction of the monitoring space, and the wave receiving element 3 is the longitudinal length of the monitoring space. It is arrange | positioned at the other end part of a direction. By providing the diffusion preventing plate 6 ′ in this way, the ultrasonic wave transmitted from the sound source unit 1 is monitored space in which the upper and lower sides of FIG. 15 are surrounded by the one surface (inner surface) of the diffusion preventing plate 6 ′. By passing through, diffusion is suppressed, and hence a decrease in sound pressure due to diffusion of ultrasonic waves between the sound source unit 1 and the wave receiving element 3 can be suppressed.

この構成によれば、監視空間の幅方向の両端面が開放されているので、実施形態1のように音源部1からの超音波が内表面により四方が囲まれた筒体6の内部空間を通る構成に比べると、超音波の拡散が抑制される効果は低くなるものの、監視空間内に煙等が案内され易くなる。   According to this configuration, since both end faces in the width direction of the monitoring space are open, the ultrasonic wave from the sound source unit 1 is surrounded by the inner surface of the cylindrical body 6 as in the first embodiment. Compared to a passing configuration, the effect of suppressing the diffusion of ultrasonic waves is reduced, but smoke or the like is easily guided into the monitoring space.

なお、本実施形態では互いに対向する一対の拡散防止板6’を拡散防止部材として用いる例を示したが、この例に限らず、少なくとも一部が互いに対向するように配置された内表面を具備し音源部1からの超音波を対向する内表面間の空間に通すことで当該超音波の拡散範囲を狭める拡散防止部材が、音源部1から送波され受波素子3で受波される超音波の伝搬経路上に配設されている構成であればよい。   In the present embodiment, an example in which a pair of diffusion prevention plates 6 'facing each other is used as a diffusion prevention member is shown. However, the present invention is not limited to this example, and at least a part of the inner surface is disposed so as to face each other. The diffusion preventing member that narrows the diffusion range of the ultrasonic wave by passing the ultrasonic wave from the sound source unit 1 through the space between the opposing inner surfaces is transmitted from the sound source unit 1 and received by the wave receiving element 3. Any configuration may be used as long as it is disposed on the propagation path of the sound wave.

その他の構成および機能は実施形態1または実施形態2と同様である。   Other configurations and functions are the same as those in the first or second embodiment.

(実施形態4)
本実施形態の火災感知器は、基本構成が実施形態1〜3と略同じであり、図16に示すように制御部2および信号処理部4の構成が相違する。なお、実施形態1〜3と同様の構成要素には同一の符号を付して説明を適宜省略する。
(Embodiment 4)
The basic structure of the fire detector of the present embodiment is substantially the same as that of the first to third embodiments, and the configurations of the control unit 2 and the signal processing unit 4 are different as shown in FIG. In addition, the same code | symbol is attached | subjected to the component similar to Embodiment 1-3, and description is abbreviate | omitted suitably.

ところで、本願発明者らは、音源部1と受波素子3との間の監視空間の浮遊粒子の種別に応じて図17に示すように音源部1の出力周波数と音圧の単位減衰率との関係が異なるという知見を得た。ここで、監視空間に浮遊粒子が存在しない状態で受波素子3にて受波される音圧(以下、基準音圧という)をI、減光式煙濃度計(減光式煙感知器)での評価でx%/mとなる濃度の浮遊粒子が監視空間に存在する状態で受波素子3にて受波される音圧をIとしたときに、(I−I)/Iで表される値を音圧の減衰率と定義し、特にx=1のときの減衰率を単位減衰率と定義する。ここにおいて、基準音圧Iと音圧Iとは、監視空間における浮遊粒子の有無を除いては同一の条件で検出されるものとする。図17中の「イ」は浮遊粒子が黒煙の煙粒子である場合の出力周波数と音圧の単位減衰率との関係を示す近似曲線(黒丸が測定データ)、「ロ」は浮遊粒子が白煙の煙粒子である場合の出力周波数と音圧の単位減衰率との関係を示す近似曲線(黒四角が測定データ)、「ハ」は浮遊粒子が湯気の粒子である場合の出力周波数と音圧の単位減衰率との関係を示す近似曲線(黒三角が測定データ)であり、ここに示す単位減衰率は、音源部1と受波素子3との間の距離を30cmに設定したときの各出力周波数ごとのデータである。また、図17における右端の各データは、出力周波数が82kHzのときのデータであり、出力周波数が82kHzのときのデータを1として各出力周波数の単位減衰率を規格化した結果を図18に示す。要するに、図18は、横軸が出力周波数、縦軸が相対的単位減衰率となっている。また、白煙の煙粒子のサイズは800nm程度、黒煙の煙粒子のサイズは200nm程度、湯気の粒子のサイズは数μm〜20μm程度である。 By the way, the inventors of the present application indicate that the output frequency of the sound source unit 1 and the unit attenuation rate of the sound pressure as shown in FIG. 17 according to the type of suspended particles in the monitoring space between the sound source unit 1 and the wave receiving element 3. I got the knowledge that the relationship is different. Here, the sound pressure (hereinafter referred to as a reference sound pressure) received by the wave receiving element 3 in the absence of suspended particles in the monitoring space is defined as I 0 , a dimming smoke densitometer (a dimming smoke detector). (I 0 −I x ), where I x is the sound pressure received by the wave receiving element 3 in a state where suspended particles having a concentration of x% / m exist in the monitoring space. The value represented by / I 0 is defined as the sound pressure attenuation rate, and in particular, the attenuation rate when x = 1 is defined as the unit attenuation rate. Here, it is assumed that the reference sound pressure I 0 and the sound pressure I x are detected under the same conditions except for the presence or absence of suspended particles in the monitoring space. “A” in FIG. 17 is an approximate curve (the black circle is measured data) showing the relationship between the output frequency and the unit attenuation rate of sound pressure when the suspended particles are black smoke particles, and “B” is the suspended particles. Approximate curve showing the relationship between the output frequency of white smoke particles and the unit attenuation rate of sound pressure (black square is measured data), “C” is the output frequency when the floating particles are steam particles It is an approximate curve (black triangle is measurement data) showing the relationship with the unit attenuation rate of sound pressure, and the unit attenuation rate shown here is when the distance between the sound source unit 1 and the receiving element 3 is set to 30 cm. The data for each output frequency. Further, each data at the right end in FIG. 17 is data when the output frequency is 82 kHz, and FIG. 18 shows the result of normalizing the unit attenuation rate of each output frequency with the data when the output frequency is 82 kHz as 1. . In short, in FIG. 18, the horizontal axis represents the output frequency, and the vertical axis represents the relative unit attenuation rate. The size of white smoke particles is about 800 nm, the size of black smoke particles is about 200 nm, and the size of steam particles is about several μm to 20 μm.

上述の知見に基づいて、本実施形態では、制御部2が、音源部1から周波数の異なる複数種の超音波が順次送波されるように音源部1を制御するようにし、信号処理部4は、少なくとも受波素子3の基準出力(基準音圧に対する受波素子3の出力)、上記監視空間に存在する浮遊粒子の種別および浮遊粒子濃度に応じた音源部1の出力周波数と受波素子3の出力の相対的単位減衰率との関係データ(上述の図18より抽出されるデータ)、煙粒子に関して特定周波数(たとえば、82kHz)における単位減衰率(上述の図17より抽出されるデータ)を記憶した記憶手段48と、音源部1から送波された各周波数の超音波ごとの受波素子3の出力と記憶手段48に記憶されている関係データとを用いて上記監視空間に浮遊している粒子の種別を推定する粒子種別推定手段46と、粒子種別推定手段46にて推定された粒子が煙粒子のときに特定周波数(たとえば、82kHz)の超音波に対する受波素子3の出力の基準値からの減衰量に基づいて上記監視空間の煙濃度を推定する煙濃度推定手段47と、煙濃度推定手段47にて推定された煙濃度と所定の閾値とを比較して火災の有無を判断する煙式判断手段42とを有するようにしてある。   Based on the above knowledge, in the present embodiment, the control unit 2 controls the sound source unit 1 so that plural types of ultrasonic waves having different frequencies are sequentially transmitted from the sound source unit 1, and the signal processing unit 4. Is at least the reference output of the wave receiving element 3 (the output of the wave receiving element 3 with respect to the reference sound pressure), the output frequency of the sound source unit 1 and the wave receiving element corresponding to the type of floating particles present in the monitoring space and the concentration of floating particles 3 relative data of the relative unit attenuation rate of the output (data extracted from FIG. 18 described above), unit attenuation rate at a specific frequency (for example, 82 kHz) with respect to smoke particles (data extracted from FIG. 17 described above) Is stored in the monitoring space using the storage means 48 storing the signal, the output of the wave receiving element 3 for each ultrasonic wave transmitted from the sound source unit 1 and the relational data stored in the storage means 48. Particle seeds The particle type estimation means 46 for estimating the frequency, and when the particles estimated by the particle type estimation means 46 are smoke particles, the attenuation from the reference value of the output of the wave receiving element 3 with respect to the ultrasonic wave of a specific frequency (for example, 82 kHz) Smoke density estimation means 47 for estimating the smoke density in the monitoring space based on the quantity, and smoke type judgment for judging the presence or absence of a fire by comparing the smoke density estimated by the smoke density estimation means 47 with a predetermined threshold Means 42.

以下に、本実施形態の火災感知器の動作例を図19のフローチャートを参照して説明する。まず、音源部1から複数種の超音波を順次送波させ各超音波に対する受波素子3の出力を信号処理部4で計測する(ステップS11)。粒子種別推定手段46は、各出力周波数ごとに受波素子3の出力と記憶手段48に記憶されている基準出力とから音圧の減衰率を求め(ステップS12)、出力周波数が82kHzでの音圧の減衰率に対する20kHzでの音圧の減衰率の比を算出する(ステップS13)。記憶手段48には、音源部1の出力周波数と受波素子3の出力の相対的単位減衰率との上記関係データとして、出力周波数が82kHzでの相対的単位減衰率に対する20kHzでの相対的単位減衰率の比(図18の場合、白煙が0、黒煙が0.2、湯気が0.5となる)が記憶されており、粒子種別推定手段46は、算出した減衰率の比を記憶手段48に記憶されている関係データと比較し、関係データの中で減衰率の比が最も近い種別の粒子を監視空間に浮遊している粒子と推定する(ステップS14)。ここで、推定された粒子が煙粒子であれば煙濃度推定手段47での処理に移行する(ステップS15)。ここにおいて、白煙の場合には図20に示すように減光式煙濃度計で計測される煙濃度と音圧の減衰率との関係は直線で示すことのできるデータであり、他の粒子においても同様であるから、煙濃度推定手段47は、推定された粒子種別について特定周波数(たとえば、82kHz)の超音波に対する受波素子3の出力の減衰率の記憶手段48に記憶されている単位減衰率に対する比を算出し、その比の値がyの場合に監視空間の煙濃度が減光式煙濃度計での評価における煙濃度y%/mに相当すると推定する(ステップS16)。煙式判断手段42は、ステップS16で推定された煙濃度と所定の閾値(たとえば、減光式煙濃度計での評価で10%/mとなる煙濃度)とを比較し、推定された煙濃度が上記閾値未満の場合には「火災無し」と判断する一方で、上記閾値以上の場合には「火災有り」と判断して火災感知信号を制御部2へ出力する。   Below, the operation example of the fire detector of this embodiment is demonstrated with reference to the flowchart of FIG. First, a plurality of types of ultrasonic waves are sequentially transmitted from the sound source unit 1, and the output of the wave receiving element 3 for each ultrasonic wave is measured by the signal processing unit 4 (step S11). The particle type estimation means 46 obtains the sound pressure attenuation rate from the output of the wave receiving element 3 and the reference output stored in the storage means 48 for each output frequency (step S12), and the sound at the output frequency of 82 kHz. The ratio of the sound pressure attenuation rate at 20 kHz to the pressure attenuation rate is calculated (step S13). In the storage means 48, as the above relational data between the output frequency of the sound source unit 1 and the relative unit attenuation rate of the output of the wave receiving element 3, the relative unit at 20 kHz with respect to the relative unit attenuation rate at the output frequency of 82 kHz is stored. The ratio of the attenuation rate (in the case of FIG. 18, white smoke is 0, black smoke is 0.2, steam is 0.5) is stored, and the particle type estimation means 46 calculates the calculated attenuation rate ratio. Compared with the relational data stored in the storage means 48, the type of particle having the closest ratio of the attenuation rate in the relational data is estimated as the particle floating in the monitoring space (step S14). Here, if the estimated particles are smoke particles, the process proceeds to the processing in the smoke concentration estimating means 47 (step S15). Here, in the case of white smoke, as shown in FIG. 20, the relationship between the smoke density measured by the dimming smoke densitometer and the attenuation rate of the sound pressure is data that can be represented by a straight line. Therefore, the smoke concentration estimation means 47 is a unit stored in the storage means 48 of the attenuation factor of the output of the wave receiving element 3 with respect to the ultrasonic wave of a specific frequency (for example, 82 kHz) for the estimated particle type. A ratio with respect to the attenuation rate is calculated, and when the value of the ratio is y, it is estimated that the smoke density in the monitoring space corresponds to the smoke density y% / m in the evaluation with the dimming smoke densitometer (step S16). The smoke type determination means 42 compares the smoke density estimated in step S16 with a predetermined threshold value (for example, a smoke density that is 10% / m in the evaluation with the dimming smoke densitometer), and the estimated smoke. When the concentration is less than the above threshold, it is determined that “no fire”, while when it is equal to or greater than the above threshold, it is determined that “fire exists” and a fire detection signal is output to the control unit 2.

上述の例では、粒子種別推定手段46は出力周波数が82kHzのときの減衰率と20kHzのときの減衰率とを用いているが、これらの出力周波数の組み合わせに限定するものではなく、異なる組み合わせの出力周波数を用いてもよい。さらに、より多くの出力周波数に対する減衰率を用いてもよく、その場合は粒子種別の推定の確度を向上させることができる。また、本実施形態では、煙濃度推定手段47が特定周波数として1周波数を対象としているが、特定周波数として複数の周波数を対象とし、各特定周波数ごとに推定した煙濃度の平均値を求めるようにしてもよく、この場合、煙濃度の推定の確度が向上する。なお、信号処理部4は、マイクロコンピュータにより構成されており、粒子種別推定手段46、煙濃度推定手段47、煙式判断手段42は、上記マイクロコンピュータに適宜のプログラムを搭載することにより実現されている。また、信号処理部4は、受波素子3の出力信号をアナログ−ディジタル変換するA/D変換器などが設けられている。   In the above example, the particle type estimation means 46 uses the attenuation rate when the output frequency is 82 kHz and the attenuation rate when the output frequency is 20 kHz. However, the present invention is not limited to the combination of these output frequencies, and different combinations are possible. An output frequency may be used. Furthermore, attenuation rates for more output frequencies may be used, and in that case, the accuracy of estimation of the particle type can be improved. In this embodiment, the smoke density estimation means 47 targets one frequency as the specific frequency, but targets a plurality of frequencies as the specific frequency, and obtains an average value of the smoke density estimated for each specific frequency. In this case, the accuracy of smoke density estimation is improved. The signal processing unit 4 is constituted by a microcomputer, and the particle type estimation means 46, the smoke concentration estimation means 47, and the smoke type determination means 42 are realized by mounting an appropriate program on the microcomputer. Yes. The signal processing unit 4 is provided with an A / D converter for analog-digital conversion of the output signal of the wave receiving element 3.

本実施形態では、音源部1として実施形態1にて説明した音波発生素子を1つ用いており、上述の制御部2は、音源部1へ与える駆動入力波形の周波数を順次変化させることにより、音源部1から周波数の異なる複数種の超音波を順次送波させる。ここにおいて、制御部2は、音源部1から送波させる超音波の周波数を所定の周波数範囲(たとえば、20kHz〜82kHz)の下限周波数(たとえば、20kHz)から上限周波数(たとえば、82kHz)まで変化させる。なお、本実施形態では、音源部1から周波数の異なる4種類の超音波が順次送波されるように制御部2が音源部1を制御するように構成してあるが、音源部1から送波させる超音波の周波数は4種類に限らず複数種類であればよく、たとえば、2種類とすれば、3種類以上の超音波を順次送波させる場合に比べて、制御部2および信号処理部4の負担を軽減できるとともに制御部2および信号処理部4の簡略化を図れる。本実施形態では、上述のように音源部1として実施形態1にて説明した音波発生素子を用いることで、順次送波する超音波をそれぞれ周波数の異なる超音波とすることができるので、音源部1として共振周波数の異なる複数の圧電素子を用いて各圧電素子から連続波の超音波を送波させる場合に比べて低コスト化を図れる。   In the present embodiment, one sound wave generating element described in the first embodiment is used as the sound source unit 1, and the above-described control unit 2 sequentially changes the frequency of the drive input waveform applied to the sound source unit 1. A plurality of types of ultrasonic waves having different frequencies are sequentially transmitted from the sound source unit 1. Here, the control unit 2 changes the frequency of the ultrasonic wave transmitted from the sound source unit 1 from a lower limit frequency (for example, 20 kHz) to an upper limit frequency (for example, 82 kHz) in a predetermined frequency range (for example, 20 kHz to 82 kHz). . In the present embodiment, the control unit 2 is configured to control the sound source unit 1 so that four types of ultrasonic waves having different frequencies are sequentially transmitted from the sound source unit 1. The frequency of the ultrasonic wave to be waved is not limited to four types, but may be a plurality of types. For example, if two types are used, the control unit 2 and the signal processing unit are compared with the case where three or more types of ultrasonic waves are sequentially transmitted. 4 can be reduced, and the control unit 2 and the signal processing unit 4 can be simplified. In the present embodiment, since the sound wave generating element described in the first embodiment is used as the sound source unit 1 as described above, the ultrasonic waves sequentially transmitted can be converted into ultrasonic waves having different frequencies. The cost can be reduced as compared with the case where a continuous wave ultrasonic wave is transmitted from each piezoelectric element using a plurality of piezoelectric elements having different resonance frequencies as 1.

また、本実施形態においては、実施形態2と同様に図9に示すように音源部1と受波素子3との間隔と同じ長さの筒体6を用い、音源部1と受波素子3とで筒体6の長手方向の両端面を閉じた構成を採用するとともに、制御部2が、筒体6に固有の共振周波数であってm(>L/λ)周期の超音波が音源部1から送波されるように音源部1を制御することにより、筒体6内で共振を生じさせ音源部1からの超音波の音圧を増大させるようにしてある。要するに、制御部2は、いずれも筒体6に固有の共振周波数から選択され互いに周波数の異なる複数種(たとえば4種)の超音波を音源部1から送波させるように音源部1を制御する。   Further, in the present embodiment, as in the second embodiment, as shown in FIG. 9, the cylindrical body 6 having the same length as the distance between the sound source unit 1 and the wave receiving element 3 is used, and the sound source unit 1 and the wave receiving element 3 are used. And adopting a configuration in which both end faces in the longitudinal direction of the cylinder 6 are closed, and the control unit 2 generates an ultrasonic wave having a resonance frequency inherent to the cylinder 6 and having an m (> L / λ) period as a sound source unit. By controlling the sound source unit 1 so as to be transmitted from 1, a resonance is generated in the cylindrical body 6 and the sound pressure of the ultrasonic wave from the sound source unit 1 is increased. In short, the control unit 2 controls the sound source unit 1 so that a plurality of types (for example, four types) of ultrasonic waves that are selected from the resonance frequency inherent in the cylinder 6 and have different frequencies are transmitted from the sound source unit 1. .

ここにおいて、実施形態2で説明した図14の例のように長手方向の両端面が閉じた筒体6における長手方向の一端面に音源部1を配置し、長手方向に沿う側面のうち音源部1からの超音波による圧力変化が最大となる位置に受波素子3を配置する場合には、音源部1から送波される超音波の周波数ごとに筒体6の一端面からλ/2(λは超音波の波長)のn倍だけ離れた各箇所にそれぞれ受波素子3を配置するようにしてもよいが、望ましくは音源部1から送波させる超音波を波長λ=L/nの超音波に限定し、図14(b)のように筒体6の長手方向の中央部にのみ受波素子3を配置し、この受波素子3で複数種の周波数の超音波を検出するようにすればよい。これにより超音波の周波数ごとに異なる各位置にそれぞれ受波素子3を配置する場合に比べて、受波素子3の必要数が減り低コスト化が可能となる。   Here, as in the example of FIG. 14 described in the second embodiment, the sound source unit 1 is arranged on one end surface in the longitudinal direction of the cylindrical body 6 whose both end surfaces in the longitudinal direction are closed, and the sound source unit among the side surfaces along the longitudinal direction. In the case where the wave receiving element 3 is arranged at a position where the pressure change due to the ultrasonic wave from 1 is maximized, λ / 2 (from the one end surface of the cylindrical body 6 for each frequency of the ultrasonic wave transmitted from the sound source unit 1 ( The receiving element 3 may be arranged at each position separated by n times the wavelength of the ultrasonic wave), but preferably the ultrasonic wave transmitted from the sound source unit 1 has a wavelength of λ = L / n. As shown in FIG. 14B, the wave receiving element 3 is arranged only at the central portion in the longitudinal direction of the cylindrical body 6 and the wave receiving element 3 detects ultrasonic waves of plural kinds of frequencies. You can do it. Thereby, compared with the case where the receiving element 3 is arrange | positioned in each different position for every frequency of an ultrasonic wave, the required number of the receiving elements 3 reduces and cost reduction is attained.

なお、本実施形態では、音源部1の出力周波数と受波素子3の出力の相対的単位減衰率との関係データを記憶手段48に記憶した例を示したが、そもそも監視空間に存在する浮遊粒子の種別に応じて音源部1の出力周波数ごとに変化するのは受波素子3の出力の基準値からの減衰量(I−I)であるから、記憶手段48に記憶する上記関係データは、音源部1の出力周波数と受波素子3の出力の基準値からの減衰量との関係を示すデータであればよく、上述の相対的単位減衰率に代えて、たとえば、受波素子3の出力の基準値からの減衰量や、受波素子3の出力の基準値からの減衰量を基準値(I)で除しただけの減衰率、あるいは単位減衰率を採用した関係データを記憶手段48に記憶するようにしてもよい。 In the present embodiment, the example in which the relationship data between the output frequency of the sound source unit 1 and the relative unit attenuation rate of the output of the receiving element 3 is stored in the storage unit 48 has been shown. Since the amount of attenuation (I 0 −I x ) from the reference value of the output of the wave receiving element 3 changes for each output frequency of the sound source unit 1 according to the type of particle, the above relationship stored in the storage means 48 The data may be data indicating the relationship between the output frequency of the sound source unit 1 and the attenuation amount from the reference value of the output of the wave receiving element 3. Instead of the above relative unit attenuation rate, for example, the wave receiving element Attenuation amount from the reference value of the output of 3 or the attenuation value obtained by dividing the attenuation amount from the reference value of the output of the receiving element 3 by the reference value (I 0 ), or related data adopting the unit attenuation rate You may make it memorize | store in the memory | storage means 48. FIG.

以上説明した本実施形態の火災感知器では、粒子種別推定手段46において、音源部1から送波された各周波数の超音波ごとの受波素子3の出力と記憶手段48に記憶されている関係データとを用いて上記監視空間に浮遊している粒子の種別を推定し、粒子種別推定手段46にて推定された粒子が煙粒子のときに、煙濃度推定手段47において、特定周波数の超音波に対する受波素子3の出力の基準値からの減衰量に基づいて上記監視空間の煙濃度を推定し、煙式判断手段42において、煙濃度推定手段47にて推定された煙濃度と所定の閾値とを比較して火災の有無を判断するので、散乱光式煙感知器や減光式煙感知器のような光電式の火災感知器で問題となるバックグランド光の影響をなくすことができ、散乱光式煙感知器に必要なラビリンス体を不要とすることができて散乱光式煙感知器に比べて応答性を向上でき、また、減光式煙感知器に比べて非火災報の低減が可能になる。しかも、粒子種別推定手段46において上記監視空間に浮遊している粒子の種別を推定することで煙粒子と湯気とを識別可能となるから、散乱光式煙感知器および減光式煙感知器に比べて湯気に起因した非火災報を低減することが可能となり、台所や浴室での使用にも適する。また、粒子種別推定手段46において白煙の煙粒子と黒煙の煙粒子とを識別可能となるから、火災の性状の識別に役立てることも可能となる。また、火災感知器を設置している室内の掃除や天井裏の電気工事などの際に浮遊する粉塵と煙粒子との識別も可能になるから、粉塵などに起因した非火災報を低減することも可能となる。   In the fire detector of the present embodiment described above, in the particle type estimation unit 46, the relationship between the output of the receiving element 3 for each ultrasonic wave transmitted from the sound source unit 1 and the storage unit 48 is stored. The type of particles floating in the monitoring space is estimated using the data, and when the particle estimated by the particle type estimation unit 46 is a smoke particle, the smoke density estimation unit 47 uses the ultrasonic wave of a specific frequency. The smoke density in the monitoring space is estimated based on the attenuation amount from the reference value of the output of the wave receiving element 3 with respect to the smoke density, and the smoke type estimating means 42 uses the smoke density estimated by the smoke density estimating means 47 and a predetermined threshold value. In order to judge the presence or absence of a fire, it is possible to eliminate the influence of background light, which is a problem with photoelectric fire detectors such as scattered light smoke detectors and dimming smoke detectors, Rabi required for scattered smoke detectors Compared to light scattering type smoke detector to be able to eliminate the Nsu body can improve the response and the reduction of non-fire report is made possible as compared with the dimming smoke sensor. Moreover, since the particle type estimation means 46 can identify the smoke particles and steam by estimating the type of particles floating in the monitoring space, the scattered light type smoke detector and the dimming type smoke detector can be used. In comparison, non-fire reports due to steam can be reduced, making it suitable for use in kitchens and bathrooms. Further, since the white smoke particles and the black smoke particles can be discriminated by the particle type estimation means 46, it is also possible to use it for identifying the nature of the fire. In addition, it is possible to distinguish between dust and smoke particles floating when cleaning the room where the fire detector is installed or for electrical work behind the ceiling, so reduce non-fire reports caused by dust. Is also possible.

ところで、本実施形態では音源部1を単一の音波発生素子により構成し、制御部2が音源部1へ与える駆動入力波形の周波数を順次変化させることにより、音源部1から周波数の異なる複数種の超音波を順次送波させるようにしているが、互いに出力周波数の異なる複数の音波発生素子で音源部1を構成してもよい。この場合には、各音波発生素子として圧電素子のように機械的振動により超音波を発生する素子を用い、各音波発生素子をそれぞれの共振周波数で駆動することにより、音源部1から送波される超音波の音圧を高めてSN比の向上に寄与することができる。また、各音波発生素子を順次駆動して複数種の超音波を順次送波させるだけでなく、複数の音波発生素子を一斉に駆動して複数種の超音波を同時に送波させることも可能になる。   By the way, in this embodiment, the sound source unit 1 is constituted by a single sound wave generating element, and the control unit 2 sequentially changes the frequency of the drive input waveform applied to the sound source unit 1, so that a plurality of types having different frequencies from the sound source unit 1 can be obtained. However, the sound source unit 1 may be composed of a plurality of sound wave generating elements having different output frequencies. In this case, an element that generates ultrasonic waves by mechanical vibration, such as a piezoelectric element, is used as each sound wave generating element, and each sound wave generating element is driven at the respective resonance frequency to be transmitted from the sound source unit 1. It is possible to increase the sound pressure of the ultrasonic wave and contribute to the improvement of the SN ratio. In addition to sequentially driving each sound wave generating element to send multiple types of ultrasonic waves, it is also possible to simultaneously drive multiple sound wave generating elements to send multiple types of ultrasonic waves simultaneously Become.

また、各種の超音波に対してそれぞれ個別の受波素子3を設けるようにしてもよく、この場合には、各受波素子3として共振特性のQ値が比較的大きな圧電素子などを用い、各受波素子3をそれぞれの共振周波数の超音波の受波に用いることにより、受波素子3の感度を向上させることができる。さらに、複数の音波発生素子を一斉に駆動して複数種の超音波を同時に送波させれば、複数種の超音波の音圧の減衰量を同時に検出することができ、監視空間の経時的変化(たとえば浮遊粒子の濃度変化)の影響を受けることなく複数種の超音波について音圧の減衰量を検出して、浮遊粒子の種別や煙濃度を精度よく推定することができる。また、音源部1を構成する音波発生素子を受波素子3に兼用することも考えられ、この場合、音波発生素子から送波される超音波を当該音波発生素子に向けて反射する反射面が必要であるものの、素子数の低減による低コスト化を図ることができる。   In addition, individual receiving elements 3 may be provided for various types of ultrasonic waves. In this case, piezoelectric elements having a relatively large Q value of resonance characteristics are used as the receiving elements 3. The sensitivity of the wave receiving element 3 can be improved by using each wave receiving element 3 for receiving ultrasonic waves of the respective resonance frequencies. Furthermore, by simultaneously driving multiple sound wave generating elements and transmitting multiple types of ultrasonic waves, it is possible to detect the amount of attenuation of the sound pressure of multiple types of ultrasonic waves at the same time. It is possible to accurately estimate the type of suspended particles and the smoke concentration by detecting the attenuation of sound pressure for a plurality of types of ultrasonic waves without being affected by changes (for example, changes in the concentration of suspended particles). It is also conceivable that the sound wave generating element constituting the sound source unit 1 is also used as the wave receiving element 3. In this case, there is a reflection surface that reflects the ultrasonic wave transmitted from the sound wave generating element toward the sound wave generating element. Although necessary, the cost can be reduced by reducing the number of elements.

なお、その他の構成および機能は実施形態1〜3と同様であり、たとえば本実施形態の火災感知器においても、図2に示した実施形態1と同様、信号処理部4に、音速検出手段43、温度推定手段44、熱式判断手段45を設けてもよい。   The other configurations and functions are the same as those of the first to third embodiments. For example, also in the fire detector of the present embodiment, the sound speed detecting means 43 is provided in the signal processing unit 4 as in the first embodiment shown in FIG. Further, a temperature estimation unit 44 and a thermal type determination unit 45 may be provided.

ところで、上記各実施形態では、音源部1と制御部2と受波素子3と信号処理部4とを1枚の回路基板5に設けて図示しない器体内に収納してあるが、音源部1と制御部2とを備えた音源側ユニットと、受波素子3と信号処理部4とを備えた受波側ユニットとを別体として互いに対向配置する分離型の火災報知機を構成するようにしてもよい。この場合、筒体6は音源側ユニットと受波側ユニットとの少なくとも一方に設けられるか、あるいは音源側ユニットおよび受波側ユニットとは別に設けられる。また、音源部1は上述の図3に示した構成の音波発生素子に限らず、たとえば、アルミニウム製の薄板を発熱体部として当該発熱体部への通電に伴う発熱体部の急激な温度変化による熱衝撃によって音波を発生させるものでもよい。   By the way, in each of the above embodiments, the sound source unit 1, the control unit 2, the wave receiving element 3, and the signal processing unit 4 are provided on one circuit board 5 and housed in a container (not shown). And a sound source side unit provided with the control unit 2 and a reception side unit provided with the wave receiving element 3 and the signal processing unit 4 are configured as separate units to constitute a separate type fire alarm. May be. In this case, the cylindrical body 6 is provided in at least one of the sound source side unit and the wave receiving side unit, or is provided separately from the sound source side unit and the wave receiving side unit. Further, the sound source unit 1 is not limited to the sound wave generating element having the configuration shown in FIG. 3 described above. For example, a rapid temperature change of the heat generating unit accompanying energization of the heat generating unit with a thin aluminum plate as the heat generating unit. A sound wave may be generated by a thermal shock due to.

さらにまた、信号処理部4は、定期的に、所定周波数(たとえば、上述の特定周波数と同じ82kHz)の超音波に対する受波素子3の出力に基づいて、音源部1の出力変動や受波素子3の感度変動がキャンセルされるように制御部2による音源部1の制御条件と受波素子3の出力の信号処理条件との少なくとも一方を変更するようにすれば、音源部1の出力変動や受波素子3の感度変動を定期的にキャンセルすることが可能となり、長期的な信頼性が高くなる。   Furthermore, the signal processing unit 4 periodically changes the output of the sound source unit 1 and the wave receiving element based on the output of the wave receiving element 3 with respect to an ultrasonic wave having a predetermined frequency (for example, 82 kHz which is the same as the specific frequency described above). If at least one of the control condition of the sound source section 1 by the control section 2 and the signal processing condition of the output of the receiving element 3 is changed so that the sensitivity fluctuation of 3 is canceled, the output fluctuation of the sound source section 1 Sensitivity fluctuations of the wave receiving element 3 can be periodically canceled, and long-term reliability is improved.

また、上記各実施形態において、制御部2が、音源部1から防虫効果のある周波数の超音波を送波させるようにすれば、上記監視空間に虫が侵入するのを防止することができ、虫に起因した非火災報を低減できる。ここで、制御部2は、煙濃度を推定するために音源部1から送波させる周波数の超音波とは別に、防虫効果のある周波数の超音波を定期的に送波させるようにしてもよいし、煙濃度を推定するために音源部1から送波する超音波の周波数を防虫効果のある周波数に設定するようにしてもよい。   Moreover, in each said embodiment, if the control part 2 is made to transmit the ultrasonic wave of the frequency which has an insect-proof effect from the sound source part 1, it can prevent that an insect penetrate | invades in the said monitoring space, Non-fire reports caused by insects can be reduced. Here, the control unit 2 may periodically transmit ultrasonic waves having a frequency having an insect-proofing effect separately from the ultrasonic waves having a frequency transmitted from the sound source unit 1 in order to estimate the smoke density. In order to estimate the smoke concentration, the frequency of the ultrasonic wave transmitted from the sound source unit 1 may be set to a frequency having an insect-proof effect.

本発明の実施形態1の要部を示し、(a)は概略下面図、(b)は概略側面図である。The principal part of Embodiment 1 of this invention is shown, (a) is a schematic bottom view, (b) is a schematic side view. 同上の構成を示すブロック図である。It is a block diagram which shows a structure same as the above. 同上に用いる音波発生素子を示す概略断面図である。It is a schematic sectional drawing which shows the sound wave generation element used for the same as the above. 同上に用いる受波素子を示し、(a)は一部破断した概略斜面図、(b)は概略断面図である。The wave receiving element used for the above is shown, (a) is a partially broken schematic perspective view, and (b) is a schematic sectional view. (a)は同上の要部を示す概略斜視図、(b)は(a)の他の例を示す概略側面図である。(A) is a schematic perspective view which shows the principal part same as the above, (b) is a schematic side view which shows the other example of (a). 同上の他の例を示す概略側面図である。It is a schematic side view which shows the other example same as the above. 同上のさらに他の例を示す概略下面図である。It is a schematic bottom view which shows another example same as the above. 同上のさらに他の例を示す概略下面図である。It is a schematic bottom view which shows another example same as the above. 同上のさらに他の例を示す概略側面図である。It is a schematic side view which shows another example same as the above. 同上のさらに他の例を示す概略側面図である。It is a schematic side view which shows another example same as the above. 本発明の実施形態2の共振による音圧変化を示す説明図である。It is explanatory drawing which shows the sound pressure change by resonance of Embodiment 2 of this invention. 同上の要部を示す概略側面図である。It is a schematic side view which shows the principal part same as the above. 同上の他の例を示す概略側面図である。It is a schematic side view which shows the other example same as the above. (a)は同上のさらに他の例を示す概略側面図、(b)は(a)の他の例を示す概略側面図である。(A) is a schematic side view which shows another example same as the above, (b) is a schematic side view which shows the other example of (a). 本発明の実施形態3の構成を示す概略斜視図である。It is a schematic perspective view which shows the structure of Embodiment 3 of this invention. 本発明の実施形態4の構成を示すブロック図である。It is a block diagram which shows the structure of Embodiment 4 of this invention. 同上の音源部の出力周波数と音圧の単位減衰率との関係を示す説明図である。It is explanatory drawing which shows the relationship between the output frequency of a sound source part same as the above, and the unit attenuation rate of a sound pressure. 同上の音源部の出力周波数と相対的単位減衰率との関係を示す説明図である。It is explanatory drawing which shows the relationship between the output frequency of a sound source part same as the above, and a relative unit attenuation factor. 同上の動作例を示すフローチャートである。It is a flowchart which shows the operation example same as the above. 同上の煙濃度と特定周波数の超音波の減衰率との関係を示す説明図である。It is explanatory drawing which shows the relationship between smoke density same as the above and the attenuation factor of the ultrasonic wave of a specific frequency.

符号の説明Explanation of symbols

1 音源部
1a 音波発生素子
2 制御部
3 受波素子
4 信号処理部
6 筒体(拡散防止部材)
6’ 拡散防止板(拡散防止部材)
11 ベース基板
12 熱絶縁層
13 発熱体層(発熱体部)
41 煙濃度推定手段
42 煙式判断手段
46 粒子種別推定手段
47 煙濃度推定手段
48 記憶手段
DESCRIPTION OF SYMBOLS 1 Sound source part 1a Sound wave generation element 2 Control part 3 Receiving element 4 Signal processing part 6 Cylindrical body (diffusion prevention member)
6 'Diffusion prevention plate (Diffusion prevention member)
11 Base substrate 12 Thermal insulation layer 13 Heating element layer (heating element part)
41 Smoke density estimation means 42 Smoke type judgment means 46 Particle type estimation means 47 Smoke density estimation means 48 Storage means

Claims (15)

超音波を送波可能な音源部と、音源部を制御する制御部と、音源部から送波された超音波の音圧を検出する受波素子と、受波素子の出力に基づいて火災の有無を判断する信号処理部とを備え、信号処理部は、受波素子の出力の基準値からの減衰量に基づいて音源部と受波素子との間の監視空間の煙濃度を推定する煙濃度推定手段と、煙濃度推定手段にて推定された煙濃度と所定の閾値とを比較して火災の有無を判断する煙式判断手段とを有し、少なくとも一部が互いに対向するように配置された内表面を具備し音源部からの超音波を対向する内表面間の空間に通すことで当該超音波の拡散範囲を狭める拡散防止部材が、音源部から送波され受波素子で受波される超音波の伝搬経路上に配設されていることを特徴とする火災感知器。   A sound source unit capable of transmitting ultrasonic waves, a control unit for controlling the sound source unit, a receiving element for detecting the sound pressure of the ultrasonic wave transmitted from the sound source unit, and a fire based on the output of the receiving element A signal processing unit for determining the presence or absence of smoke, and the signal processing unit is configured to estimate smoke concentration in a monitoring space between the sound source unit and the wave receiving element based on an attenuation amount from a reference value of the output of the wave receiving element. It has density estimation means and smoke type judgment means for judging the presence or absence of a fire by comparing the smoke density estimated by the smoke density estimation means with a predetermined threshold, and is arranged so that at least a part thereof faces each other A diffusion preventing member that has a defined inner surface and that allows ultrasonic waves from the sound source unit to pass through the space between the opposing inner surfaces to narrow the diffusion range of the ultrasonic waves is transmitted from the sound source unit and received by the receiving element. A fire detector, which is disposed on a propagation path of ultrasonic waves. 前記拡散防止部材は、筒状に形成され長手方向に沿う内側面を前記内表面とする筒体からなることを特徴とする請求項1記載の火災感知器。   The fire detector according to claim 1, wherein the diffusion preventing member is formed in a cylindrical shape and has a cylindrical body whose inner surface along the longitudinal direction is the inner surface. 前記音源部は周波数の異なる複数種の超音波を送波可能であって、前記信号処理部は、前記監視空間に存在する浮遊粒子の種別および煙濃度に応じた前記音源部の出力周波数と前記受波素子の出力の基準値からの減衰量との関係データを記憶した記憶手段と、前記音源部から送波された各周波数の超音波ごとの前記受波素子の出力と記憶手段に記憶されている関係データとを用いて前記監視空間に浮遊している粒子の種別を推定する粒子種別推定手段とを有し、前記煙濃度推定手段は、粒子種別推定手段にて推定された粒子が煙粒子のときに特定周波数の超音波に対する前記受波素子の出力の基準値からの減衰量に基づいて前記監視空間の煙濃度を推定することを特徴とする請求項1または請求項2に記載の火災感知器。   The sound source unit can transmit a plurality of types of ultrasonic waves having different frequencies, and the signal processing unit is configured to output the output frequency of the sound source unit according to the type of suspended particles present in the monitoring space and the smoke concentration, and the Stored in the storage means for storing the relationship data with the attenuation amount from the reference value of the output of the receiving element, and the output of the receiving element for each ultrasonic wave transmitted from the sound source unit and stored in the storing means Particle type estimation means for estimating the type of particles floating in the monitoring space using the relationship data, and the smoke concentration estimation means is configured such that the particles estimated by the particle type estimation means are smoked. The smoke density in the monitoring space is estimated based on an attenuation amount from a reference value of the output of the receiving element with respect to ultrasonic waves of a specific frequency when the particles are particles. Fire detector. 前記記憶手段は、前記関係データとして前記音源部の出力周波数と前記受波素子の出力の基準値からの減衰量を基準値で除した減衰率との関係データを記憶していることを特徴とする請求項3記載の火災感知器。   The storage means stores, as the relationship data, relationship data between an output frequency of the sound source unit and an attenuation rate obtained by dividing an attenuation amount from a reference value of the output of the receiving element by a reference value. The fire detector according to claim 3. 前記音源部は前記複数種の超音波を送波可能な単一の音波発生素子からなり、前記制御部は音波発生素子から複数種の超音波が順次送波されるように前記音源部を制御することを特徴とする請求項3または請求項4記載の火災感知器。   The sound source unit includes a single sound wave generating element capable of transmitting the plurality of types of ultrasonic waves, and the control unit controls the sound source unit so that the plurality of types of ultrasonic waves are sequentially transmitted from the sound wave generating elements. The fire detector according to claim 3 or 4, characterized by: 前記音源部は、空気に振動を与える送波面が、前記拡散防止部材における超音波が入射する入射側端面と対向して配置され、且つ前記内表面の互いに対向する方向において内表面間の距離以上の幅寸法を有することを特徴とする請求項1ないし請求項5のいずれか1項に記載の火災感知器。   In the sound source unit, a transmission surface that vibrates air is disposed to face an incident side end surface on which ultrasonic waves are incident on the diffusion preventing member, and the inner surface is equal to or more than a distance between inner surfaces in a direction facing each other. The fire sensor according to any one of claims 1 to 5, wherein the fire sensor has a width dimension of. 前記音源部は、発熱体部への通電に伴う発熱体部の温度変化により空気に熱衝撃を与えることで超音波を発生するものであることを特徴とする請求項1ないし請求項6のいずれか1項に記載の火災感知器。   7. The sound source unit according to claim 1, wherein the sound source unit generates an ultrasonic wave by applying a thermal shock to air due to a temperature change of the heat generating unit accompanying energization of the heat generating unit. The fire detector according to claim 1. 前記音源部は、ベース基板の一表面側に前記発熱体部が形成されるとともに、ベース基板の前記一表面側で前記発熱体部とベース基板との間に設けられて前記発熱体部とベース基板とを熱絶縁する多孔質層からなる熱絶縁層を有してなることを特徴とする請求項7記載の火災感知器。   The sound source unit is formed between the heat generating unit and the base substrate on the one surface side of the base substrate, and the heat generating unit and the base are formed on the one surface side of the base substrate. 8. The fire detector according to claim 7, further comprising a thermal insulation layer comprising a porous layer that thermally insulates the substrate. 前記制御部は、前記音源部から送波され前記受波素子で受波される超音波の伝搬距離に基づく共振周波数の超音波を、少なくとも前記音源部から前記受波素子に超音波が伝搬するのに要する伝搬時間よりも長い送波時間に亘って連続的に前記音源部から送波させるように前記音源部を制御することを特徴とする請求項1または請求項2に記載の火災感知器。   The control unit transmits an ultrasonic wave having a resonance frequency based on a propagation distance of an ultrasonic wave transmitted from the sound source unit and received by the wave receiving element, and at least the ultrasonic wave propagates from the sound source unit to the wave receiving element. 3. The fire detector according to claim 1, wherein the sound source unit is controlled to continuously transmit the sound from the sound source unit over a transmission time longer than a propagation time required for the transmission. 4. . 前記制御部は、前記音源部から送波され前記受波素子で受波される超音波の伝搬距離に基づく共振周波数であって互いに周波数の異なる複数種の超音波を、それぞれ少なくとも前記音源部から前記受波素子に超音波が伝搬するのに要する伝搬時間よりも長い送波時間に亘って連続的に前記音源部から送波させるように前記音源部を制御することを特徴とする請求項3ないし請求項5のいずれか1項に記載の火災感知器。   The control unit transmits a plurality of types of ultrasonic waves having resonance frequencies based on a propagation distance of an ultrasonic wave transmitted from the sound source unit and received by the receiving element, each having a different frequency from at least the sound source unit. 4. The sound source unit is controlled to continuously transmit from the sound source unit over a transmission time longer than a propagation time required for an ultrasonic wave to propagate to the wave receiving element. The fire detector according to any one of claims 5 to 6. 前記拡散防止部材において前記音源部からの超音波を通す内表面間の空間は、前記超音波の伝搬方向の両端面が超音波を反射する反射面によって閉じられており、一方の反射面に前記音源部が配置され、いずれかの反射面に前記受波素子が配置されていることを特徴とする請求項9または請求項10に記載の火災感知器。   In the diffusion preventing member, the space between the inner surfaces through which the ultrasonic waves from the sound source section pass is closed by reflection surfaces that reflect ultrasonic waves at both end surfaces in the ultrasonic wave propagation direction, The fire detector according to claim 9 or 10, wherein a sound source is disposed, and the wave receiving element is disposed on any of the reflecting surfaces. 前記拡散防止部材において前記音源部からの超音波を通す内表面間の空間は、前記超音波の伝搬方向の両端面が超音波を反射する反射面によって閉じられており、一方の反射面に前記音源部が配置され、前記伝搬方向に沿う前記内表面のうち前記音源部からの超音波による圧力変化が最大となる位置に前記受波素子が配置されていることを特徴とする請求項9または請求項10に記載の火災感知器。   In the diffusion preventing member, the space between the inner surfaces through which the ultrasonic waves from the sound source section pass is closed by reflection surfaces that reflect ultrasonic waves at both end surfaces in the ultrasonic wave propagation direction, A sound source is disposed, and the wave receiving element is disposed at a position where the pressure change due to the ultrasonic wave from the sound source is maximized on the inner surface along the propagation direction. The fire detector according to claim 10. 前記制御部は、前記反射面間の距離を自然数で除した長さの波長の超音波が前記音源部から送波されるように前記音源部を制御し、前記受波素子は、両反射面の中間位置に配置されていることを特徴とする請求項12記載の火災感知器。   The control unit controls the sound source unit so that an ultrasonic wave having a length obtained by dividing a distance between the reflection surfaces by a natural number is transmitted from the sound source unit, and the receiving element is configured to receive both reflection surfaces. The fire sensor according to claim 12, wherein the fire sensor is disposed at an intermediate position. 前記制御部は、温度変化による音速の変化に応じて前記音源部から送波する超音波の周波数を補正する周波数補正手段を有することを特徴とする請求項9ないし請求項13のいずれか1項に記載の火災感知器。   The said control part has a frequency correction means which correct | amends the frequency of the ultrasonic wave transmitted from the said sound source part according to the change of the sound speed by a temperature change, The any one of Claim 9 thru | or 13 characterized by the above-mentioned. Fire detector as described in 前記周波数補正手段は、前記音源部が超音波を送波してから当該超音波が前記受波素子に受波されるまでの時間差に基づいて求まる音速を用いて周波数を補正することを特徴とする請求項14記載の火災感知器。   The frequency correction means corrects the frequency using a sound speed obtained based on a time difference from when the sound source unit transmits an ultrasonic wave until the ultrasonic wave is received by the receiving element. The fire detector according to claim 14.
JP2007279706A 2007-03-16 2007-10-26 Fire detector Expired - Fee Related JP4894724B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2007279706A JP4894724B2 (en) 2007-03-16 2007-10-26 Fire detector
CN2008801134078A CN101836244B (en) 2007-10-26 2008-10-21 Fire alarm system
EP08841498A EP2214146B8 (en) 2007-10-26 2008-10-21 Fire alarm system
PCT/JP2008/069002 WO2009054359A1 (en) 2007-10-26 2008-10-21 Fire alarm system
US12/682,300 US8519854B2 (en) 2007-10-26 2008-10-21 Fire alarm system

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007069088 2007-03-16
JP2007069088 2007-03-16
JP2007279706A JP4894724B2 (en) 2007-03-16 2007-10-26 Fire detector

Publications (2)

Publication Number Publication Date
JP2008262530A JP2008262530A (en) 2008-10-30
JP4894724B2 true JP4894724B2 (en) 2012-03-14

Family

ID=39984936

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007279706A Expired - Fee Related JP4894724B2 (en) 2007-03-16 2007-10-26 Fire detector

Country Status (1)

Country Link
JP (1) JP4894724B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5381623B2 (en) * 2009-11-02 2014-01-08 トヨタ自動車株式会社 Physical property value detection method for measurement object and physical property value detection system for measurement object

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58135956A (en) * 1982-02-08 1983-08-12 Central Res Inst Of Electric Power Ind Monitoring method of smoke by sound wave
JPS61180390A (en) * 1985-02-06 1986-08-13 芝浦メカトロニクス株式会社 Vending machine
JP4396333B2 (en) * 2004-03-11 2010-01-13 パナソニック株式会社 Disaster prevention alarm device
JP4893397B2 (en) * 2006-05-12 2012-03-07 パナソニック電工株式会社 Fire detector

Also Published As

Publication number Publication date
JP2008262530A (en) 2008-10-30

Similar Documents

Publication Publication Date Title
US8253578B2 (en) Smoke sensor of the sound wave type including a smoke density estimation unit
JP5166991B2 (en) Airborne particle measurement system
US8519854B2 (en) Fire alarm system
JP5144457B2 (en) Fire detector
JP2007000121A (en) Apparatus for threatening small animal
JP4894723B2 (en) Fire detector
JP4862533B2 (en) Airborne particle measurement system
JP4893397B2 (en) Fire detector
JP4950709B2 (en) Fire detector
JP4894724B2 (en) Fire detector
TW201721128A (en) Noise canceling detector
JP4894722B2 (en) Fire detector
JP5049209B2 (en) Fire detector
JP4826631B2 (en) Sonic smoke detector
JP4816524B2 (en) Fire detector
JP4816526B2 (en) Fire detector
JP4950842B2 (en) Airborne particle measurement system
JP5166827B2 (en) Airborne particle measurement system
JP4816525B2 (en) Fire detector
JP5438596B2 (en) Fire detector
JP5438595B2 (en) Fire detector
JP2008180516A (en) Flow measuring system, its program, ultrasonic flowmeter, and flow measuring method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100525

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100816

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111129

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111212

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150106

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees