JP4894723B2 - Fire detector - Google Patents

Fire detector Download PDF

Info

Publication number
JP4894723B2
JP4894723B2 JP2007279705A JP2007279705A JP4894723B2 JP 4894723 B2 JP4894723 B2 JP 4894723B2 JP 2007279705 A JP2007279705 A JP 2007279705A JP 2007279705 A JP2007279705 A JP 2007279705A JP 4894723 B2 JP4894723 B2 JP 4894723B2
Authority
JP
Japan
Prior art keywords
frequency component
sound source
source unit
receiving element
wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007279705A
Other languages
Japanese (ja)
Other versions
JP2009110127A (en
Inventor
祥文 渡部
由明 本多
雅則 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Electric Works Co Ltd
Original Assignee
Panasonic Corp
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Works Ltd filed Critical Panasonic Corp
Priority to JP2007279705A priority Critical patent/JP4894723B2/en
Priority to PCT/JP2008/069002 priority patent/WO2009054359A1/en
Priority to CN2008801134078A priority patent/CN101836244B/en
Priority to US12/682,300 priority patent/US8519854B2/en
Priority to EP08841498A priority patent/EP2214146B8/en
Publication of JP2009110127A publication Critical patent/JP2009110127A/en
Application granted granted Critical
Publication of JP4894723B2 publication Critical patent/JP4894723B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、監視空間の煙濃度から火災の有無を判断する火災感知器に関するものである。   The present invention relates to a fire detector that determines the presence or absence of a fire from the smoke density in a monitoring space.

従来から、火災時などに発生する煙を感知する火災感知器として、散乱光式煙感知器(たとえば特許文献1参照)や、減光式煙感知器(たとえば特許文献2参照)が知られている。ここにおいて、散乱光式煙感知器は、発光ダイオード素子よりなる投光素子から監視空間に照射された光の煙粒子による散乱光をフォトダイオードよりなる受光素子で受光するように構成されたものであり、監視空間に煙粒子が存在すれば散乱光が生じることによって受光素子での受光量が増大するから、受光素子での受光量の増加量に基づいて煙粒子の存否を検知できる。一方、減光式煙感知器は、投光素子から照射された光を受光素子により直接受光するように構成されたものであり、投光素子と受光素子との間の監視空間に煙粒子が存在すれば受光素子の受光量が減少するから、受光素子での受光量の減光量に基づいて煙粒子の存否を検知できる。   2. Description of the Related Art Conventionally, as a fire detector that detects smoke generated in the event of a fire, a scattered light type smoke detector (see, for example, Patent Document 1) and a dimming smoke detector (see, for example, Patent Document 2) are known. Yes. Here, the scattered light type smoke detector is configured to receive light scattered by smoke particles of light irradiated to the monitoring space from a light projecting element made of a light emitting diode element by a light receiving element made of a photodiode. In addition, if smoke particles are present in the monitoring space, the amount of light received by the light receiving element is increased due to the generation of scattered light. Therefore, the presence or absence of smoke particles can be detected based on the amount of increase in the amount of light received by the light receiving element. On the other hand, the dimming smoke detector is configured so that light emitted from the light projecting element is directly received by the light receiving element, and smoke particles are present in the monitoring space between the light projecting element and the light receiving element. If it is present, the amount of light received by the light receiving element is reduced, and therefore the presence or absence of smoke particles can be detected based on the amount of light received by the light receiving element.

ところで、散乱光式煙感知器は、迷光対策としてラビリンス体を設ける必要があるので、空気の流れが少ない場合には、火災発生時に監視空間へ煙粒子が侵入するまでの時間が長くなり、応答性に問題があった。また、減光式煙感知器においては、火災が発生していないにもかかわらずバックグランド光の影響で発報してしまう(非火災報が発生してしまう)ことがあるという問題があった。また、分離型の減光式煙感知器は、投光素子と受光素子との光軸を高精度に軸合わせする必要があり、施工に手間がかかるという問題があった。   By the way, the scattered light type smoke detector needs to be equipped with a labyrinth body as a countermeasure against stray light, so when there is little air flow, the time until smoke particles enter the monitoring space in the event of a fire increases, and the response There was a problem with sex. In addition, there is a problem that the dimming smoke detector may generate a report due to the influence of background light (a non-fire report will be generated) even though no fire has occurred. . In addition, the separate-type dimming smoke detector needs to align the optical axes of the light projecting element and the light receiving element with high accuracy, and there is a problem that it takes a lot of work.

さらにまた、散乱光式煙感知器や減光式煙感知器においては、台所や浴室で使用する場合などに、監視空間に湯気が侵入することによって非火災報が発生してしまったり、あるいは火災感知器を設置している室内の掃除や天井裏の電気工事などの際に、浮遊する粉塵が監視空間に侵入することによって非火災報を生じてしまったりする可能性がある。
特開2001−34862号公報 特開昭61−33595号公報
Furthermore, in the case of scattered light type smoke detectors and dimmable smoke detectors, when used in the kitchen or bathroom, non-fire reports may be generated due to the invasion of steam into the monitoring space, or fires may occur. During cleaning of the room where the sensor is installed, electrical work behind the ceiling, etc., floating dust may enter the surveillance space and cause non-fire reports.
JP 2001-34862 A JP 61-33595 A

上述した光電式の火災感知器の問題点を解決するために、本願出願人は、音波(たとえば超音波)を用いて煙の存否を検知する火災感知器を提案している。   In order to solve the problems of the photoelectric fire detector described above, the present applicant has proposed a fire detector that detects the presence or absence of smoke using sound waves (for example, ultrasonic waves).

この火災感知器は、図15に示すように、超音波を送波可能な音源部1と、音源部1を制御する制御部2と、音源部1から送波された超音波の音圧を検出する受波素子3と、受波素子3の出力に基づいて火災の有無を判別する信号処理部4とを備える。信号処理部4は、受波素子3の出力の基準値からの減衰量に基づいて音源部1と受波素子3との間の監視空間の煙濃度を推定する煙濃度推定手段42と、推定された煙濃度と所定の閾値とを比較して火災の有無を判断する火災判断手段43とを有する。すなわち、監視空間に煙粒子が入り込むと音源部1からの超音波は受波素子3に到達するまでに音圧が低下し、受波素子3の出力の減衰量は監視空間の煙濃度に略比例して増加するので、この減衰量に基づき煙濃度を推定することで、火災の有無を判断することができる。   As shown in FIG. 15, the fire detector includes a sound source unit 1 that can transmit ultrasonic waves, a control unit 2 that controls the sound source unit 1, and a sound pressure of ultrasonic waves transmitted from the sound source unit 1. A wave receiving element 3 to be detected and a signal processing unit 4 for determining the presence or absence of a fire based on the output of the wave receiving element 3 are provided. The signal processing unit 4 is configured to estimate smoke concentration in a monitoring space between the sound source unit 1 and the wave receiving element 3 based on an attenuation amount from the reference value of the output of the wave receiving element 3, and to estimate A fire determination means 43 for comparing the smoke concentration and a predetermined threshold value to determine the presence or absence of a fire. That is, when smoke particles enter the monitoring space, the sound pressure of the ultrasonic waves from the sound source unit 1 decreases before reaching the wave receiving element 3, and the attenuation amount of the output of the wave receiving element 3 is substantially equal to the smoke concentration in the monitoring space. Since it increases in proportion, the presence or absence of a fire can be determined by estimating the smoke density based on this attenuation.

この超音波式の火災感知器では、光電式の火災感知器で問題となるバックグランド光の影響をなくすことができ、散乱光式煙感知器に必要なラビリンス体を不要とすることができて火災発生時に監視空間へ煙粒子が拡散しやすくなるから、散乱光式煙感知器に比べて応答性を向上でき、また、減光式煙感知器に比べて非火災報の低減が可能になる。   This ultrasonic fire detector can eliminate the influence of background light, which is a problem with photoelectric fire detectors, and eliminates the need for a labyrinth that is required for scattered light smoke detectors. Smoke particles easily diffuse into the monitoring space in the event of a fire, improving responsiveness compared to scattered light smoke detectors and reducing non-fire reports compared to dimming smoke detectors. .

ところで、本願出願人は、音源部1と受波素子3との間の監視空間の浮遊粒子の種別に応じて図16に示すように音源部1の出力周波数と音圧の単位減衰率との関係が異なるという知見を得た。ここで、監視空間に浮遊粒子が存在しない状態で受波素子3にて受波される音圧(以下、基準音圧という)をI、減光式煙濃度計(減光式煙感知器)での評価でx〔%/m〕となる濃度の浮遊粒子が監視空間に存在する状態で受波素子3にて受波される音圧をIとしたときに、(I−I)/Iで表される値を音圧の減衰率と定義し、特にx=1のときの減衰率を単位減衰率と定義する。ここにおいて、基準音圧Iと音圧Iとは、監視空間における浮遊粒子の有無を除いては同一の条件で検出されるものとする。図16中の「イ」は浮遊粒子が黒煙の煙粒子である場合の出力周波数と音圧の単位減衰率との関係を示す近似曲線(黒丸が測定データ)、「ロ」は浮遊粒子が白煙の煙粒子である場合の出力周波数と音圧の単位減衰率との関係を示す近似曲線(黒四角が測定データ)、「ハ」は浮遊粒子が湯気の粒子である場合の出力周波数と音圧の単位減衰率との関係を示す近似曲線(黒三角が測定データ)であり、ここに示す単位減衰率は、音源部1と受波素子3との間の距離を30cmに設定したときの各出力周波数ごとのデータである。また、図16における右端の各データは、出力周波数が82kHzのときのデータであり、出力周波数が82kHzのときのデータを1として各出力周波数の単位減衰率を規格化した結果を図17に示す。要するに、図17は、横軸が出力周波数、縦軸が相対的単位減衰率となっている。また、白煙の煙粒子のサイズは800nm程度、黒煙の煙粒子のサイズは200nm程度、湯気の粒子のサイズは数μm〜20μm程度である。 By the way, the applicant of the present application determines the output frequency of the sound source unit 1 and the unit attenuation rate of the sound pressure as shown in FIG. 16 according to the type of suspended particles in the monitoring space between the sound source unit 1 and the wave receiving element 3. I got the knowledge that the relationship is different. Here, the sound pressure (hereinafter referred to as a reference sound pressure) received by the wave receiving element 3 in the absence of suspended particles in the monitoring space is defined as I 0 , a dimming smoke densitometer (darkening smoke detector) the sound pressure of airborne particles of the concentration to be x [% / m] is reception at wave receiving element 3 in the state they exist in the monitoring space when the I x evaluation at), (I 0 -I The value represented by x 1 ) / I 0 is defined as the sound pressure attenuation rate, and in particular, the attenuation rate when x = 1 is defined as the unit attenuation rate. Here, it is assumed that the reference sound pressure I 0 and the sound pressure I x are detected under the same conditions except for the presence or absence of suspended particles in the monitoring space. “A” in FIG. 16 is an approximate curve showing the relationship between the output frequency and unit attenuation rate of sound pressure when the suspended particles are black smoke particles (black circles are measured data), and “B” is the suspended particles. Approximate curve showing the relationship between the output frequency of white smoke particles and the unit attenuation rate of sound pressure (black square is measured data), “C” is the output frequency when the floating particles are steam particles It is an approximate curve (black triangle is measurement data) showing the relationship with the unit attenuation rate of sound pressure, and the unit attenuation rate shown here is when the distance between the sound source unit 1 and the receiving element 3 is set to 30 cm. The data for each output frequency. Further, each data at the right end in FIG. 16 is data when the output frequency is 82 kHz, and FIG. 17 shows the result of normalizing the unit attenuation rate of each output frequency with the data when the output frequency is 82 kHz as 1. . In short, in FIG. 17, the horizontal axis represents the output frequency, and the vertical axis represents the relative unit attenuation rate. The size of white smoke particles is about 800 nm, the size of black smoke particles is about 200 nm, and the size of steam particles is about several μm to 20 μm.

上述の知見に基づいて、本願出願人は、音源部1から周波数の異なる複数種の超音波が送波されるようにし、信号処理部4に、少なくとも受波素子3の出力の基準値(基準音圧に対する受波素子3の出力)、上記監視空間に存在する浮遊粒子の種別および浮遊粒子濃度に応じた音源部1の出力周波数と受波素子3の出力の相対的単位減衰率との関係データ(上述の図17より抽出されるデータ)、煙粒子に関して特定周波数(たとえば、82kHz)における単位減衰率(上述の図16より抽出されるデータ)を記憶した記憶手段44と、音源部1から送波された各周波数の超音波ごとの受波素子3の出力と記憶手段44に記憶されている関係データとを用いて上記監視空間に浮遊している粒子の種別を推定する粒子種別推定手段41とを付加し、粒子種別推定手段41で推定された粒子が煙粒子のときに、特定周波数(たとえば、82kHz)の超音波に対する受波素子3の出力の基準値からの減衰量に基づいて上記監視空間の煙濃度を煙濃度推定手段42に推定させることを提案している。   Based on the above-described knowledge, the applicant of the present application causes a plurality of types of ultrasonic waves having different frequencies to be transmitted from the sound source unit 1, and sends at least a reference value (reference value) of the output of the receiving element 3 to the signal processing unit 4. The output of the wave receiving element 3 with respect to the sound pressure), the relationship between the output frequency of the sound source unit 1 and the relative unit attenuation rate of the output of the wave receiving element 3 according to the type of suspended particles present in the monitoring space and the suspended particle concentration From the sound source unit 1 and the storage means 44 storing data (data extracted from FIG. 17 described above), unit attenuation rate (data extracted from FIG. 16 described above) at a specific frequency (for example, 82 kHz) with respect to smoke particles Particle type estimation means for estimating the type of particles floating in the monitoring space using the output of the wave receiving element 3 for each ultrasonic wave transmitted at each frequency and the relational data stored in the storage means 44 With 41 When the particles estimated by the particle type estimation means 41 are smoke particles, based on the attenuation amount from the reference value of the output of the wave receiving element 3 with respect to ultrasonic waves of a specific frequency (for example, 82 kHz), It is proposed that the smoke density estimation means 42 estimate the smoke density.

これにより、粒子種別推定手段41において上記監視空間に浮遊している粒子の種別を推定することで煙粒子と湯気とを識別可能となるから、散乱光式煙感知器および減光式煙感知器に比べて湯気に起因した非火災報を低減することが可能となり、台所や浴室での使用にも適する。また、火災感知器を設置している室内の掃除や天井裏の電気工事などの際に浮遊する粉塵と煙粒子との識別も可能になるから、粉塵などに起因した非火災報を低減することも可能となる。なお、粒子種別推定手段41において白煙の煙粒子と黒煙の煙粒子とを識別可能となるから、火災の性状の識別に役立てることも可能となる。   As a result, it is possible to distinguish between smoke particles and steam by estimating the type of particles floating in the monitoring space in the particle type estimation means 41. Therefore, the scattered light smoke detector and the dimming smoke detector. It is possible to reduce non-fire reports due to steam as compared with the above, and it is also suitable for use in the kitchen or bathroom. In addition, it is possible to distinguish between dust and smoke particles floating when cleaning the room where the fire detector is installed or for electrical work behind the ceiling, so reduce non-fire reports caused by dust. Is also possible. Since the particle type estimation means 41 can distinguish between white smoke particles and black smoke particles, it can also be used for identifying fire properties.

しかしながら、上述のように浮遊粒子の種別を推定可能とするためには、音源部1から周波数の異なる複数種の超音波を送波させることが必要であり、これにより以下の問題を生じる。すなわち、音源部1から複数種の超音波を送波させるためには、各種の超音波を送波する音源部1を複数個用いるか、あるいは制御部によって1個の音源部1から複数種の超音波を順次送波させる必要がある。前者の場合、音源部1を1個とする構成に比べて音源部1に掛かるコストが高くなり、また火災感知器の大型化にもつながるという問題がある。一方、後者の場合、音源部1から超音波を送波する度に音源部1を異なる駆動周波数で駆動する必要があるため、音源部1から1種類の超音波を送波させる場合に比べて制御部の構成が複雑化して、コスト高につながるという問題がある。また、いずれの場合においても、複数種の超音波が個別に送波されるため、個々の超音波の送波時に送波音圧のばらつきが生じることで浮遊粒子の種別や濃度の推定確度が低くなる可能性があり、さらに、超音波を複数回送波する必要があるため、超音波の送波に伴う消費電力が大きくなる。   However, in order to be able to estimate the type of suspended particles as described above, it is necessary to transmit a plurality of types of ultrasonic waves having different frequencies from the sound source unit 1, which causes the following problems. That is, in order to transmit a plurality of types of ultrasonic waves from the sound source unit 1, a plurality of sound source units 1 that transmit various types of ultrasonic waves are used, or a plurality of types of sound sources 1 can be transmitted from a single sound source unit 1 by a control unit. It is necessary to transmit ultrasonic waves sequentially. In the former case, there is a problem in that the cost required for the sound source unit 1 is higher than that in the configuration in which the sound source unit 1 is one, and the size of the fire detector is increased. On the other hand, in the latter case, it is necessary to drive the sound source unit 1 at a different driving frequency each time an ultrasonic wave is transmitted from the sound source unit 1, so that compared with a case where one type of ultrasonic wave is transmitted from the sound source unit 1. There is a problem in that the configuration of the control unit is complicated, leading to high costs. In any case, since multiple types of ultrasonic waves are individually transmitted, the estimation accuracy of the type and concentration of suspended particles is low due to variations in the transmitted sound pressure during the transmission of individual ultrasonic waves. Furthermore, since it is necessary to transmit the ultrasonic wave a plurality of times, the power consumption accompanying the transmission of the ultrasonic wave increases.

本発明は上記事由に鑑みて為されたものであって、監視空間に浮遊している粒子の種別を推定可能としながらも、音源部から複数種の音波を送波させる必要のない火災感知器を提供することを目的とする。   The present invention has been made in view of the above reasons, and it is possible to estimate the type of particles floating in the monitoring space, but it is not necessary to transmit a plurality of types of sound waves from the sound source unit. The purpose is to provide.

請求項1の発明では、複数の周波数成分を含む音波を送波する音源部と、音源部を制御する制御部と、音源部から送波された音波の音圧を検出する受波素子と、受波素子の出力に基づいて火災の有無を判断する信号処理部とを備え、信号処理部は、受波素子で検出された音波から各周波数成分の強度を抽出する周波数成分抽出手段と、音源部と受波素子との間の監視空間に存在する浮遊粒子の種別および煙濃度に応じた各周波数成分の周波数と強度の基準値からの減衰量との関係データを記憶した記憶手段と、周波数成分抽出手段で抽出された各周波数成分の強度と記憶手段に記憶されている関係データとを用いて監視空間に浮遊している粒子の種別を推定する粒子種別推定手段と、粒子種別推定手段にて推定された粒子が煙粒子のときに特定の周波数成分の強度の基準値からの減衰量に基づいて監視空間の煙濃度を推定する煙濃度推定手段と、煙濃度推定手段にて推定された煙濃度と所定の閾値とを比較して火災の有無を判断する火災判断手段とを有することを特徴とする。   In the invention of claim 1, a sound source unit that transmits a sound wave including a plurality of frequency components, a control unit that controls the sound source unit, a wave receiving element that detects the sound pressure of the sound wave transmitted from the sound source unit, A signal processing unit that determines the presence or absence of a fire based on the output of the wave receiving element, the signal processing unit, a frequency component extracting unit that extracts the intensity of each frequency component from the sound wave detected by the wave receiving element, and a sound source Means for storing relationship data between the frequency of each frequency component and the attenuation from the reference value of the intensity according to the type of suspended particles existing in the monitoring space between the head and the receiving element and the smoke concentration, and the frequency Particle type estimation means for estimating the type of particles floating in the monitoring space using the intensity of each frequency component extracted by the component extraction means and the relational data stored in the storage means, and particle type estimation means Special when the estimated particles are smoke particles The smoke density estimating means for estimating the smoke density in the monitoring space based on the attenuation amount from the reference value of the intensity of the frequency component of the fire, and comparing the smoke density estimated by the smoke density estimating means with a predetermined threshold value, fire It has a fire judgment means for judging the presence or absence of.

この構成によれば、信号処理部が、受波素子で検出された音波から各周波数成分の強度を抽出する周波数成分抽出手段を有し、粒子種別推定手段において、周波数成分抽出手段で抽出された各周波数成分の強度と記憶手段に記憶されている関係データとを用いて監視空間に浮遊している粒子の種別を推定するので、監視空間に浮遊している粒子の種別を推定可能としながらも、音源部から複数種の音波を送波させる必要はない。すなわち、音源部からは複数の周波数成分を含む1種類の音波が送波されればよく、音源部から複数種の音波を送波させる場合に比べて、音源部や制御部に掛かるコストを低く抑えることができ、また、音源部から1回に送波された音波から複数の周波数成分の強度を抽出するようにすれば、個々の音波の送波時に送波音圧のばらつきが生じることで浮遊粒子の種別や濃度の推定確度が低くなったり、音波の送波に伴う消費電力が大きくなったりすることを回避できる。   According to this configuration, the signal processing unit has the frequency component extraction unit that extracts the intensity of each frequency component from the sound wave detected by the receiving element, and is extracted by the frequency component extraction unit in the particle type estimation unit. Since the type of particles floating in the monitoring space is estimated using the intensity of each frequency component and the relational data stored in the storage means, the type of particles floating in the monitoring space can be estimated There is no need to transmit a plurality of types of sound waves from the sound source unit. That is, it is only necessary that one type of sound wave including a plurality of frequency components is transmitted from the sound source unit, and the cost required for the sound source unit and the control unit is lower than when a plurality of types of sound waves are transmitted from the sound source unit. If the intensity of a plurality of frequency components is extracted from the sound wave transmitted at once from the sound source unit, the transmission sound pressure varies when each sound wave is transmitted. It is possible to avoid the estimation accuracy of the type and concentration of particles from being lowered and the power consumption accompanying the transmission of sound waves from being increased.

請求項2の発明は、請求項1の発明において、前記記憶手段が、前記関係データとして各周波数成分の周波数と強度の基準値からの減衰量を基準値で除した減衰率との関係データを記憶していることを特徴とする。   According to a second aspect of the present invention, in the first aspect of the present invention, the storage means includes, as the relational data, relation data between the frequency of each frequency component and an attenuation rate obtained by dividing the attenuation from the reference value of the intensity by the reference value. It is memorized.

この発明によれば、各周波数成分の周波数に応じて当該周波数成分の強度の基準値が変動する場合でも、各周波数成分の周波数と基準値の変動の影響が除去された減衰率との関係データを用いることにより、基準値の変動の影響を受けずに監視空間に浮遊している粒子の種別を推定することができる。   According to the present invention, even when the reference value of the intensity of the frequency component varies according to the frequency of each frequency component, the relationship data between the frequency of each frequency component and the attenuation rate from which the influence of the variation of the reference value is removed By using, it is possible to estimate the type of particles floating in the monitoring space without being affected by the fluctuation of the reference value.

請求項3の発明は、請求項1または請求項2の発明において、前記音源部が、発熱体部への通電に伴う発熱体部の温度変化により空気に熱衝撃を与えることで音波を発生するものであることを特徴とする。   According to a third aspect of the present invention, in the first or second aspect of the present invention, the sound source unit generates a sound wave by applying a thermal shock to the air due to a temperature change of the heat generating unit accompanying energization of the heat generating unit. It is characterized by being.

この構成によれば、音源部は平坦な周波数特性を有しており、発生させる音波の周波数を広範囲にわたって変化させることができる。また、音源部から残響の少ない単パルス状の音波を送波させることも可能となる。   According to this configuration, the sound source unit has a flat frequency characteristic, and the frequency of the sound wave to be generated can be changed over a wide range. It is also possible to transmit a single-pulse sound wave with little reverberation from the sound source unit.

請求項4の発明は、請求項3の発明において、前記音源部が、ベース基板の一表面側に前記発熱体部が形成されるとともに、ベース基板の前記一表面側で前記発熱体部とベース基板との間に設けられて前記発熱体部とベース基板とを熱絶縁する多孔質層からなる熱絶縁層を有してなることを特徴とする。   According to a fourth aspect of the present invention, in the third aspect of the present invention, the sound source section includes the heating element portion formed on the one surface side of the base substrate, and the heating element portion and the base on the one surface side of the base substrate. It is characterized by having a thermal insulation layer comprising a porous layer provided between the substrate and thermally insulating the heating element and the base substrate.

この構成によれば、熱絶縁層が多孔質層からなるので、熱絶縁層が非多孔質層からなる場合に比べて、熱絶縁層の断熱性が向上して発熱体部への入力電圧に対する音波の音圧の比が高くなり、低消費電力化を図ることができる。   According to this configuration, since the heat insulating layer is made of a porous layer, the heat insulating property of the heat insulating layer is improved compared to the case where the heat insulating layer is made of a non-porous layer. The ratio of the sound pressure of the sound wave becomes high, and the power consumption can be reduced.

請求項5の発明は、請求項1ないし請求項4のいずれかの発明において、前記音源部が送波する前記複数の周波数成分を含む音波が、単パルス状の音波であることを特徴とする。   According to a fifth aspect of the present invention, in any one of the first to fourth aspects, the sound wave including the plurality of frequency components transmitted by the sound source unit is a single-pulse sound wave. .

この構成によれば、周波数成分間の強度差が少なく、且つ比較的広範囲の周波数に亘ってパワーが分布した形のパワースペクトルを持つ単パルス状の音波を音源部から送波するので、周波数成分抽出手段においては、強度差が少なく、且つ比較的広範囲の周波数成分の強度を抽出することできる。   According to this configuration, since the intensity difference between frequency components is small and a single-pulse sound wave having a power spectrum in which power is distributed over a relatively wide range of frequencies is transmitted from the sound source unit, the frequency component In the extracting means, the intensity difference is small and the intensity of a relatively wide range of frequency components can be extracted.

請求項6の発明は、請求項1ないし請求項5のいずれかの発明において、前記周波数成分抽出手段が、各周波数成分の信号をそれぞれ通過させるフィルタ手段を有し、前記受波素子の出力を前記フィルタ手段に通すことで各周波数成分の強度を抽出することを特徴とする。   According to a sixth aspect of the present invention, in any one of the first to fifth aspects of the present invention, the frequency component extraction means includes filter means for passing signals of the respective frequency components, and outputs the output of the receiving element. The intensity of each frequency component is extracted by passing through the filter means.

この構成によれば、たとえば受波素子の出力の時系列データについて高速フーリエ変換を行い、その結果から各周波数成分の強度を抽出する構成に比べて、信号処理の負荷を低減することができる。   According to this configuration, for example, it is possible to reduce the load of signal processing as compared with a configuration in which fast Fourier transform is performed on time-series data output from the receiving element and the intensity of each frequency component is extracted from the result.

請求項7の発明は、請求項6の発明において、前記フィルタ手段が各周波数成分ごとに個別に設けられており、前記周波数成分抽出手段が、前記受波素子の出力を各フィルタ手段に分配する分配手段を有することを特徴とする。   According to a seventh aspect of the present invention, in the sixth aspect of the present invention, the filter means is individually provided for each frequency component, and the frequency component extracting means distributes the output of the receiving element to the filter means. It has a distribution means.

この構成によれば、音源部から1回に送波された音波について複数の周波数成分の強度を抽出することができるので、個々の音波の送波時に送波音圧のばらつきが生じることで浮遊粒子の種別や濃度の推定確度が低くなったり、音波の送波に伴う消費電力が大きくなったりすることを回避できる。   According to this configuration, the intensity of a plurality of frequency components can be extracted from the sound wave transmitted at one time from the sound source unit. It is possible to avoid the estimation accuracy of the type and concentration of the sound source from being lowered and the power consumption accompanying the transmission of the sound wave from being increased.

請求項8の発明は、請求項1ないし請求項5のいずれかの発明において、前記周波数成分抽出手段が、高速フーリエ変換により各周波数成分の強度を抽出することを特徴とする。   The invention of claim 8 is characterized in that, in the invention of any one of claims 1 to 5, the frequency component extraction means extracts the intensity of each frequency component by fast Fourier transform.

この構成によれば、多数の周波数成分の強度を抽出可能となり、したがって、多数の周波数成分の強度に基づいて浮遊粒子の種別の推定を行うことにより、粒子種別推定の確度の向上を図ることができる。また、音源部から1回に送波された音波について複数の周波数成分の強度を抽出することができるので、個々の音波の送波時に送波音圧のばらつきが生じることで浮遊粒子の種別や濃度の推定確度が低くなったり、音波の送波に伴う消費電力が大きくなったりすることを回避できる。   According to this configuration, it is possible to extract the intensities of a large number of frequency components. Therefore, the accuracy of particle type estimation can be improved by estimating the type of suspended particles based on the intensities of the numerous frequency components. it can. In addition, since the intensity of a plurality of frequency components can be extracted from the sound wave transmitted at one time from the sound source unit, the type and concentration of suspended particles can be caused by variations in the transmitted sound pressure when each sound wave is transmitted. Thus, it is possible to avoid the estimation accuracy of the signal from being lowered and the power consumption accompanying the transmission of the sound wave from increasing.

請求項9の発明は、請求項1ないし請求項6のいずれかの発明において、前記周波数成分抽出手段が、前記音源部から同時に送波され前記監視空間のうち経路長の異なる伝播経路を通して前記受波素子にそれぞれ伝播された複数の音波の各々から、各周波数成分の強度をそれぞれ抽出することを特徴とする。   According to a ninth aspect of the present invention, in the invention according to any one of the first to sixth aspects, the frequency component extracting means transmits the reception through a propagation path having a different path length in the monitoring space that is simultaneously transmitted from the sound source unit. It is characterized in that the intensity of each frequency component is extracted from each of a plurality of sound waves respectively propagated to the wave element.

この構成によれば、音源部から1回に送波された音波について複数の周波数成分の強度を抽出することができるので、個々の音波の送波時に送波音圧のばらつきが生じることで浮遊粒子の種別や濃度の推定確度が低くなったり、音波の送波に伴う消費電力が大きくなったりすることを回避できる。   According to this configuration, the intensity of a plurality of frequency components can be extracted from the sound wave transmitted at one time from the sound source unit. It is possible to avoid the estimation accuracy of the type and concentration of the sound source from being lowered and the power consumption accompanying the transmission of the sound wave from being increased.

本発明は、周波数成分抽出手段で抽出された各周波数成分の強度と記憶手段に記憶されている関係データとを用いて監視空間に浮遊している粒子の種別を推定するので、監視空間に浮遊している粒子の種別を推定可能としながらも、音源部から複数種の音波を送波させる必要はないという効果がある。   Since the present invention estimates the type of particles floating in the monitoring space using the intensity of each frequency component extracted by the frequency component extracting means and the relational data stored in the storage means, While it is possible to estimate the type of particles being performed, there is an effect that it is not necessary to transmit a plurality of types of sound waves from the sound source unit.

(実施形態1)
本実施形態の火災感知器は、図2に示すように、超音波を送波可能な音源部1と、音源部1を制御する制御部2と、音源部1から送波された超音波の音圧を検出する受波素子3と、受波素子3の出力に基づいて火災の有無を判断する信号処理部4とを備えている。なお、ここでは超音波を送受波する音源部1および受波素子3を採用しているが、音源部1および受波素子3は、超音波に限らず音波を送受波するものであればよい。
(Embodiment 1)
As shown in FIG. 2, the fire detector according to the present embodiment includes a sound source unit 1 capable of transmitting ultrasonic waves, a control unit 2 that controls the sound source unit 1, and an ultrasonic wave transmitted from the sound source unit 1. A wave receiving element 3 that detects sound pressure and a signal processing unit 4 that determines the presence or absence of a fire based on the output of the wave receiving element 3 are provided. Here, the sound source unit 1 and the wave receiving element 3 that transmit and receive ultrasonic waves are employed. However, the sound source unit 1 and the wave receiving element 3 are not limited to ultrasonic waves, but may be anything that transmits and receives sound waves. .

ここにおいて、音源部1と受波素子3とは、図2に示すように、円盤状のプリント基板からなる回路基板5の一表面側において互いに離間して対向配置されており、回路基板5に制御部2および信号処理部4が設けられている。また、回路基板5の上記一表面には、音源部1から送波された超音波の反射を防止する吸音層(図示せず)が設けられているので、音源部1から送波された超音波が回路基板5で反射して受波素子3に入射するのを防止することができて、反射波の干渉を防止することができる。   Here, as shown in FIG. 2, the sound source unit 1 and the wave receiving element 3 are arranged to face each other on the one surface side of the circuit board 5 made of a disk-shaped printed board. A control unit 2 and a signal processing unit 4 are provided. In addition, a sound absorbing layer (not shown) for preventing the reflection of the ultrasonic wave transmitted from the sound source unit 1 is provided on the one surface of the circuit board 5, so that the super wave transmitted from the sound source unit 1 is provided. The sound wave can be prevented from being reflected by the circuit board 5 and entering the wave receiving element 3, and interference of the reflected wave can be prevented.

本実施形態では、音源部1として、後述のように空気に熱衝撃を与えることで超音波を発生させる音波発生素子を用いることで、圧電素子に比べて残響時間が短い超音波を送波するようにし、且つ、受波素子3として、共振特性のQ値が圧電素子に比べて十分に小さく受波信号に含まれる残響成分の発生期間が短い静電容量型のマイクロホンを用いている。   In the present embodiment, a sound wave generating element that generates an ultrasonic wave by applying a thermal shock to air as described later is used as the sound source unit 1 to transmit an ultrasonic wave having a reverberation time shorter than that of a piezoelectric element. In addition, as the wave receiving element 3, a capacitance type microphone is used in which the Q value of the resonance characteristics is sufficiently smaller than that of the piezoelectric element and the generation period of the reverberation component included in the received wave signal is short.

ここにおいて、音源部1は、図3に示すように、単結晶のp形のシリコン基板からなるベース基板11の一表面(図3における上面)側に多孔質シリコン層からなる熱絶縁層(断熱層)12が形成され、熱絶縁層12の表面側に発熱体部として金属薄膜からなる発熱体層13が形成され、ベース基板11の上記一表面側に発熱体層13と電気的に接続された一対のパッド14,14が形成されている。なお、ベース基板11の平面形状は矩形状であって、熱絶縁層12、発熱体層13それぞれの平面形状も矩形状に形成してある。また、ベース基板11の上記一表面側において熱絶縁層12が形成されていない部分の表面にはシリコン酸化膜からなる絶縁膜(図示せず)が形成されている。   Here, as shown in FIG. 3, the sound source unit 1 includes a heat insulating layer (heat insulation) made of a porous silicon layer on one surface (upper surface in FIG. 3) side of a base substrate 11 made of a single crystal p-type silicon substrate. Layer) 12 is formed, and a heating element layer 13 made of a metal thin film is formed on the surface side of the heat insulating layer 12 as a heating element portion, and is electrically connected to the heating element layer 13 on the one surface side of the base substrate 11. A pair of pads 14 and 14 are formed. The planar shape of the base substrate 11 is a rectangular shape, and the planar shapes of the thermal insulating layer 12 and the heating element layer 13 are also rectangular. An insulating film (not shown) made of a silicon oxide film is formed on the surface of the base substrate 11 where the thermal insulating layer 12 is not formed on the one surface side.

上述の音源部1では、発熱体層13の両端のパッド14,14間に通電して発熱体層13に急激な温度変化を生じさせると、発熱体層13に接触している空気(媒質)に急激な温度変化(熱衝撃)が生じる(つまり、発熱体層13に接触している空気に熱衝撃が与えられる)。したがって、発熱体層13に接触している空気は、発熱体層13の温度上昇時には膨張し発熱体層13の温度下降時には収縮するから、発熱体層13への通電を適宜に制御することによって空気中を伝播する超音波を発生させることができる。要するに、音源部1を構成する音波発生素子は、発熱体層13への通電に伴う発熱体層13の急激な温度変化を媒質の膨張収縮に変換することにより媒質を伝播する超音波を発生するので、圧電素子のように機械的振動により超音波を発生する場合に比べて、残響の少ない単パルス状の超音波を送波させることができる。   In the above-described sound source unit 1, when current is passed between the pads 14 and 14 at both ends of the heating element layer 13 to cause a sudden temperature change in the heating element layer 13, the air (medium) that is in contact with the heating element layer 13. A sudden temperature change (thermal shock) occurs (that is, a thermal shock is applied to the air in contact with the heating element layer 13). Accordingly, the air in contact with the heating element layer 13 expands when the temperature of the heating element layer 13 rises and contracts when the temperature of the heating element layer 13 decreases. Therefore, by appropriately controlling energization to the heating element layer 13 Ultrasonic waves propagating in the air can be generated. In short, the sound wave generating element constituting the sound source unit 1 generates an ultrasonic wave propagating through the medium by converting a rapid temperature change of the heat generating body layer 13 accompanying energization to the heat generating body layer 13 into expansion and contraction of the medium. Therefore, it is possible to transmit single-pulse ultrasonic waves with less reverberation compared to the case where ultrasonic waves are generated by mechanical vibration like a piezoelectric element.

上述の音源部1は、ベース基板11としてp形のシリコン基板を用いており、熱絶縁層12を多孔度が略60〜略70%の多孔質シリコン層からなる多孔質層により構成しているので、ベース基板11として用いるシリコン基板の一部をフッ化水素水溶液とエタノールとの混合液からなる電解液中で陽極酸化処理することにより熱絶縁層12となる多孔質シリコン層を形成することができる(ここで、陽極酸化処理により形成された多孔質シリコン層は、結晶粒径がナノメータオーダの微結晶シリコンからなるナノ結晶シリコンを多数含んでいる)。多孔質シリコン層は、多孔度が高くなるにつれて熱伝導率および熱容量が小さくなるので、熱絶縁層12の熱伝導率および熱容量をベース基板11の熱伝導率および熱容量に比べて小さくし、熱絶縁層12の熱伝導率と熱容量との積をベース基板11の熱伝導率と熱容量との積に比べて十分に小さくすることにより、発熱体層13の温度変化を空気に効率よく伝達することができ発熱体層13と空気との間で効率的な熱交換が起こり、且つ、ベース基板11が熱絶縁層12からの熱を効率よく受け取って熱絶縁層12の熱を逃がすことができて発熱体層13からの熱が熱絶縁層12に蓄積されるのを防止することができる。なお、熱伝導率が148W/(m・K)、熱容量が1.63×10J/(m・K)の単結晶のシリコン基板を陽極酸化して形成される多孔度が60%の多孔質シリコン層は、熱伝導率が1W/(m・K)、熱容量が0.7×10J/(m・K)であることが知られている。本実施形態では、熱絶縁層12を多孔度が略70%の多孔質シリコン層により構成してあり、熱絶縁層12の熱伝導率が0.12W/(m・K)、熱容量が0.5×10J/(m・K)となっている。 In the sound source unit 1 described above, a p-type silicon substrate is used as the base substrate 11, and the heat insulating layer 12 is formed of a porous layer made of a porous silicon layer having a porosity of about 60 to about 70%. Therefore, a porous silicon layer serving as the thermal insulating layer 12 can be formed by anodizing a part of the silicon substrate used as the base substrate 11 in an electrolytic solution composed of a mixed solution of hydrogen fluoride and ethanol. (Here, the porous silicon layer formed by the anodic oxidation treatment contains a large number of nanocrystalline silicon composed of microcrystalline silicon having a crystal grain size on the order of nanometers). Since the porous silicon layer has a lower thermal conductivity and heat capacity as the porosity becomes higher, the thermal conductivity and heat capacity of the heat insulating layer 12 are made smaller than the heat conductivity and heat capacity of the base substrate 11, and heat insulation is performed. By making the product of the thermal conductivity and heat capacity of the layer 12 sufficiently smaller than the product of the thermal conductivity and heat capacity of the base substrate 11, the temperature change of the heating element layer 13 can be efficiently transmitted to the air. In addition, efficient heat exchange occurs between the heating element layer 13 and the air, and the base substrate 11 can efficiently receive the heat from the heat insulating layer 12 and release the heat of the heat insulating layer 12 to generate heat. It is possible to prevent heat from the body layer 13 from being accumulated in the heat insulating layer 12. Note that the porosity formed by anodizing a single crystal silicon substrate having a thermal conductivity of 148 W / (m · K) and a heat capacity of 1.63 × 10 6 J / (m 3 · K) is 60%. The porous silicon layer is known to have a thermal conductivity of 1 W / (m · K) and a heat capacity of 0.7 × 10 6 J / (m 3 · K). In this embodiment, the heat insulating layer 12 is composed of a porous silicon layer having a porosity of approximately 70%, the heat conductivity of the heat insulating layer 12 is 0.12 W / (m · K), and the heat capacity is 0.00. It is 5 × 10 6 J / (m 3 · K).

発熱体層13は、高融点金属の一種であるタングステンにより形成してあるが、発熱体層13の材料はタングステンに限らず、たとえば、タンタル、モリブデン、イリジウム、アルミニウムなどを採用してもよい。また、上述の音源部1では、ベース基板11の厚さを300〜700μm、熱絶縁層12の厚さを1〜10μm、発熱体層13の厚さを20〜100nm、各パッド14の厚さを0.5μmとしてあるが、これらの厚さは一例であって特に限定するものではない。また、ベース基板11の材料としてSiを採用しているが、ベース基板11の材料はSiに限らず、たとえば、Ge、SiC、GaP、GaAs、InPなどの陽極酸化処理による多孔質化が可能な他の半導体材料でもよく、いずれの場合にも、ベース基板11の一部を多孔質化することで形成した多孔質層を熱絶縁層12とすることができる。   The heating element layer 13 is made of tungsten, which is a kind of refractory metal, but the material of the heating element layer 13 is not limited to tungsten, and for example, tantalum, molybdenum, iridium, aluminum, or the like may be adopted. In the sound source unit 1 described above, the thickness of the base substrate 11 is 300 to 700 μm, the thickness of the heat insulating layer 12 is 1 to 10 μm, the thickness of the heating element layer 13 is 20 to 100 nm, and the thickness of each pad 14. However, these thicknesses are only examples and are not particularly limited. Further, Si is adopted as the material of the base substrate 11, but the material of the base substrate 11 is not limited to Si, and for example, it can be made porous by anodic oxidation treatment of Ge, SiC, GaP, GaAs, InP or the like. Other semiconductor materials may be used, and in any case, a porous layer formed by making a part of the base substrate 11 porous can be used as the heat insulating layer 12.

上述のように音源部1は、一対のパッド14,14を介した発熱体層13への通電に伴う発熱体層13の温度変化に伴って超音波を発生するものであり、発熱体層13へ与える駆動電圧波形あるいは駆動電流波形からなる駆動入力波形をたとえば周波数がf1の正弦波波形とした場合、理想的には、発熱体層13で生じる温度振動の周波数が駆動入力波形の周波数f1の2倍の周波数f2となり、駆動入力波形f1の略2倍の周波数の超音波を発生させることができる。すなわち、上述の音源部1は、平坦な周波数特性を有しており、発生させる超音波の周波数を広範囲にわたって変化させることができる。また、上述の音源部1では、たとえば正弦波波形の半周期の孤立波を駆動入力波形として一対のパッド14,14間へ与えることによって、残響の少ない略1周期の単パルス状の超音波を発生させることができる。このような単パルス状の超音波を用いることにより、反射による干渉が起こりにくくなるので、上記吸音層を不要にすることもできる。また、音源部1は、熱絶縁層12が多孔質層により構成されているので、熱絶縁層12が非多孔質層(たとえば、SiO膜など)からなる場合に比べて、熱絶縁層12の断熱性が向上して超音波発生効率が高くなり、低消費電力化を図れる。 As described above, the sound source unit 1 generates ultrasonic waves in accordance with the temperature change of the heating element layer 13 due to energization of the heating element layer 13 via the pair of pads 14 and 14. When the drive input waveform composed of the drive voltage waveform or the drive current waveform applied to is a sine wave waveform having a frequency of f1, for example, the frequency of the temperature oscillation generated in the heating element layer 13 is ideally the frequency of the drive input waveform f1. The frequency f2 is doubled, and an ultrasonic wave having a frequency approximately twice that of the drive input waveform f1 can be generated. That is, the above-described sound source unit 1 has a flat frequency characteristic and can change the frequency of the generated ultrasonic wave over a wide range. Further, in the sound source unit 1 described above, for example, a half-cycle solitary wave of a sine wave waveform is applied between the pair of pads 14 and 14 as a drive input waveform, so that a single-pulse ultrasonic wave of approximately one cycle with little reverberation is generated. Can be generated. By using such single-pulse ultrasonic waves, interference due to reflection is less likely to occur, so that the sound absorbing layer can be made unnecessary. Further, in the sound source unit 1, since the heat insulating layer 12 is formed of a porous layer, the heat insulating layer 12 is compared with a case where the heat insulating layer 12 is formed of a non-porous layer (for example, a SiO 2 film). As a result, the heat generation efficiency is improved, the efficiency of ultrasonic generation is increased, and the power consumption can be reduced.

音源部1を制御する制御部2は、図示していないが、音源部1に駆動入力波形を与えて音源部1を駆動する駆動回路と、当該駆動回路を制御するマイクロコンピュータからなる制御回路とで構成されている。   Although not shown, the control unit 2 that controls the sound source unit 1 gives a drive input waveform to the sound source unit 1 to drive the sound source unit 1, and a control circuit that includes a microcomputer that controls the drive circuit; It consists of

また、上述の受波素子3を構成する静電容量型のマイクロホンは、図4に示すように、シリコン基板に厚み方向に貫通する窓孔31aを設けることで形成された矩形枠状のフレーム31と、フレーム31の一表面側においてフレーム31の対向する2つの辺に跨る形で配置されるカンチレバー型の受圧部32とを備えている。ここにおいて、フレーム31の一表面側には熱酸化膜35と熱酸化膜35を覆うシリコン酸化膜36とシリコン酸化膜36を覆うシリコン窒化膜37とが形成されており、受圧部32の一端部がシリコン窒化膜37を介してフレーム31に支持され、他端部が上記シリコン基板の厚み方向においてシリコン窒化膜37に対向している。また、シリコン窒化膜37における受圧部32の他端部との対向面に金属薄膜(たとえば、クロム膜など)からなる固定電極33aが形成され、受圧部32の他端部におけるシリコン窒化膜37との対向面とは反対側に金属薄膜(たとえば、クロム膜など)からなる可動電極33bが形成されている。なお、フレーム31の他表面にはシリコン窒化膜38が形成されている。また、受圧部32は、上記各シリコン窒化膜37,38とは別工程で形成されるシリコン窒化膜により構成されている。   Further, as shown in FIG. 4, the capacitance type microphone constituting the wave receiving element 3 has a rectangular frame-shaped frame 31 formed by providing a window hole 31a penetrating in the thickness direction in the silicon substrate. And a cantilever-type pressure receiving portion 32 disposed on one surface side of the frame 31 so as to straddle two opposing sides of the frame 31. Here, a thermal oxide film 35, a silicon oxide film 36 covering the thermal oxide film 35, and a silicon nitride film 37 covering the silicon oxide film 36 are formed on one surface side of the frame 31, and one end of the pressure receiving portion 32. Is supported by the frame 31 via the silicon nitride film 37, and the other end faces the silicon nitride film 37 in the thickness direction of the silicon substrate. Further, a fixed electrode 33a made of a metal thin film (for example, a chromium film) is formed on the surface of the silicon nitride film 37 facing the other end of the pressure receiving portion 32, and the silicon nitride film 37 at the other end of the pressure receiving portion 32 is formed. A movable electrode 33b made of a metal thin film (for example, a chromium film) is formed on the opposite side of the opposite surface. A silicon nitride film 38 is formed on the other surface of the frame 31. The pressure receiving portion 32 is constituted by a silicon nitride film formed in a separate process from the silicon nitride films 37 and 38 described above.

図4に示した構成の静電容量型のマイクロホンからなる受波素子3では、固定電極33aと可動電極33bとを電極とするコンデンサが形成されるから、受圧部32が疎密波の圧力を受けることにより固定電極33aと可動電極33bとの間の距離が変化し、固定電極33aと可動電極33bとの間の静電容量が変化する。したがって、固定電極33aおよび可動電極33bに設けたパッド(図示せず)間に直流バイアス電圧を印加しておけば、パッドの間には超音波の音圧に応じて微小な電圧変化が生じるから、超音波の音圧を電気信号に変換することができる。   In the wave receiving element 3 composed of a capacitive microphone having the configuration shown in FIG. 4, a capacitor having the fixed electrode 33a and the movable electrode 33b as electrodes is formed, so that the pressure receiving portion 32 receives the pressure of the dense wave. As a result, the distance between the fixed electrode 33a and the movable electrode 33b changes, and the capacitance between the fixed electrode 33a and the movable electrode 33b changes. Therefore, if a DC bias voltage is applied between pads (not shown) provided on the fixed electrode 33a and the movable electrode 33b, a minute voltage change occurs between the pads according to the sound pressure of the ultrasonic waves. The sound pressure of ultrasonic waves can be converted into an electric signal.

ここにおいて、本実施形態の火災感知器は、「発明が解決しようとする課題」の欄で図15を用いて説明した火災感知器と基本構成が共通であって、図1に示すように、信号処理部4には、音源部1と受波素子3との間の監視空間に存在する浮遊粒子の種別を推定する粒子種別推定手段41と、粒子種別推定手段41にて推定された粒子が煙粒子のときに監視空間の煙濃度を推定する煙濃度推定手段42と、煙濃度推定手段42にて推定された煙濃度と所定の閾値とを比較して火災の有無を判断する火災判断手段43と、粒子種別推定手段41および煙濃度推定手段42で使用するデータを記憶した記憶手段44とを具備している。   Here, the fire detector of the present embodiment has the same basic configuration as the fire detector described with reference to FIG. 15 in the column “Problems to be solved by the invention”, and as shown in FIG. In the signal processing unit 4, the particle type estimation unit 41 that estimates the type of suspended particles existing in the monitoring space between the sound source unit 1 and the receiving element 3, and the particles estimated by the particle type estimation unit 41 are included. Smoke density estimation means 42 for estimating the smoke density in the monitoring space when smoke particles are present, and fire judgment means for judging the presence or absence of a fire by comparing the smoke density estimated by the smoke density estimation means 42 with a predetermined threshold value 43, and a storage means 44 for storing data used by the particle type estimation means 41 and the smoke concentration estimation means 42.

火災判断手段43は、煙濃度推定手段42にて推定された煙濃度が上記閾値未満の場合には「火災無し」と判断する一方で、上記閾値以上の場合には「火災有り」と判断して火災感知信号を制御部2へ出力する。ここで、制御部2は、火災判断手段43からの火災感知信号を受信すると、音源部1から可聴域の音波からなる警報音が発生するように音源部1への駆動入力波形を制御する。したがって、音源部1から警報音を発生させることができるので、警報音を出力するスピーカなどを別途に設ける必要がなく、火災感知器全体の小型化および低コスト化が可能となる。なお、火災判断手段43からの火災感知器信号の出力先は制御部2に限らず、たとえば、外部の通報装置へ出力するようにしてもよい。   The fire judging means 43 judges “no fire” when the smoke density estimated by the smoke density estimating means 42 is less than the above threshold value, and judges “fire present” when the smoke density is more than the above threshold value. The fire detection signal is output to the control unit 2. Here, when the control unit 2 receives the fire detection signal from the fire determination unit 43, the control unit 2 controls the drive input waveform to the sound source unit 1 so that an alarm sound composed of sound waves in the audible range is generated from the sound source unit 1. Therefore, since the alarm sound can be generated from the sound source unit 1, it is not necessary to separately provide a speaker for outputting the alarm sound, and the entire fire detector can be reduced in size and cost. In addition, the output destination of the fire detector signal from the fire determination unit 43 is not limited to the control unit 2 and may be output to, for example, an external notification device.

ところで、本実施形態の火災感知器は、以下の構成を採用することによって、音源部1から周波数の異なる複数種の超音波を送波することを不要としている。   By the way, the fire detector of this embodiment makes it unnecessary to transmit a plurality of types of ultrasonic waves having different frequencies from the sound source unit 1 by adopting the following configuration.

すなわち、本実施形態では、音源部1が複数の周波数成分を含む超音波を送波する構成を採用するとともに、受波素子3で検出された超音波から各周波数成分の強度を検出する周波数成分抽出手段40を信号処理部4に付加してある。音源部1から送波される超音波の具体的例および周波数成分抽出手段40の構成例については後述する。さらに、粒子種別推定手段41は、周波数成分抽出手段40で抽出された各周波数成分の強度と記憶手段44に記憶されている関係データとを用いて監視空間に浮遊している粒子の種別を推定するものとし、煙濃度推定手段42は、粒子種別推定手段41にて推定された粒子が煙粒子のときに、特定の周波数成分(たとえば、82kHz)の強度の基準値からの減衰量に基づいて監視空間の煙濃度を推定するものとする。   That is, in this embodiment, the sound source unit 1 employs a configuration in which an ultrasonic wave including a plurality of frequency components is transmitted, and a frequency component that detects the intensity of each frequency component from the ultrasonic wave detected by the wave receiving element 3. An extraction means 40 is added to the signal processing unit 4. A specific example of the ultrasonic wave transmitted from the sound source unit 1 and a configuration example of the frequency component extraction unit 40 will be described later. Further, the particle type estimation unit 41 estimates the type of particles floating in the monitoring space using the intensity of each frequency component extracted by the frequency component extraction unit 40 and the relational data stored in the storage unit 44. The smoke concentration estimation means 42 is based on the attenuation from the reference value of the intensity of a specific frequency component (for example, 82 kHz) when the particles estimated by the particle type estimation means 41 are smoke particles. The smoke density in the surveillance space shall be estimated.

また、記憶手段44には、少なくとも受波素子3の出力から周波数成分抽出手段40によって抽出される各周波数成分の強度の基準値(監視空間に浮遊粒子が存在しない状態で受波素子3にて受波される基準音圧に対する受波素子3の出力から抽出される各周波数成分の強度)、上記監視空間に存在する浮遊粒子の種別および浮遊粒子濃度に応じた各周波数成分の周波数と同周波数成分の強度の相対的単位減衰率との関係データ(図17より抽出されるデータ)、煙粒子に関して特定周波数(たとえば、82kHz)における単位減衰率(図16より抽出されるデータ)を記憶している。   Further, the storage means 44 stores at least the reference value of the intensity of each frequency component extracted from the output of the wave receiving element 3 by the frequency component extracting means 40 (in the wave receiving element 3 in a state where no suspended particles exist in the monitoring space). The intensity of each frequency component extracted from the output of the receiving element 3 with respect to the received reference sound pressure), the type of suspended particles present in the monitoring space, and the frequency of each frequency component corresponding to the suspended particle concentration Data relating to the relative unit attenuation rate of the component intensity (data extracted from FIG. 17) and unit attenuation rate (data extracted from FIG. 16) at a specific frequency (for example, 82 kHz) with respect to smoke particles are stored. Yes.

なお、信号処理部4は、マイクロコンピュータにより構成されており、上記各手段40〜44は、上記マイクロコンピュータに適宜のプログラムを搭載することにより実現されている。また、信号処理部4には、受波素子3の出力信号をアナログ−ディジタル変換するA/D変換器なども設けられている。   The signal processing unit 4 is configured by a microcomputer, and each of the means 40 to 44 is realized by mounting an appropriate program on the microcomputer. The signal processing unit 4 is also provided with an A / D converter for analog-digital conversion of the output signal of the wave receiving element 3.

以下に、本実施形態の火災感知器の動作例を図5のフローチャートを参照して説明する。まず、音源部1から複数の周波数成分を含んだ超音波を送波させ、当該超音波に対する受波素子3の出力を信号処理部4で計測する(ステップS11)。周波数成分抽出手段40は受波素子3の出力から各周波数成分の強度を抽出し、粒子種別推定手段41は、周波数成分抽出手段40で抽出された各周波数成分の強度と記憶手段44に記憶されている基準値とから、各周波数成分について強度の減衰率を求め(ステップS12)、中心周波数が82kHzの周波数成分の減衰率に対する中心周波数が20kHzの周波数成分の減衰率の比を算出する(ステップS13)。記憶手段44には、各周波数成分の周波数と同周波数成分の強度の相対的単位減衰率との上記関係データとして、出力周波数が82kHzでの相対的単位減衰率に対する20kHzでの相対的単位減衰率の比(図17の場合、白煙が0、黒煙が0.2、湯気が0.5となる)が記憶されており、粒子種別推定手段41は、算出した減衰率の比を記憶手段44に記憶されている関係データと比較し、関係データの中で減衰率の比が最も近い種別の粒子を監視空間に浮遊している粒子と推定する(ステップS14)。ここで、推定された粒子が煙粒子であれば煙濃度推定手段42での処理に移行する(ステップS15)。ここにおいて、白煙の場合には図6に示すように減光式煙濃度計で計測される煙濃度と音圧の減衰率との関係は直線で示すことのできるデータであり、他の粒子においても同様であるから、煙濃度推定手段42は、推定された粒子種別について特定の周波数成分(たとえば、82kHz)の減衰率の記憶手段44に記憶されている単位減衰率に対する比を算出し、その比の値がyの場合に監視空間の煙濃度が減光式煙濃度計での評価における煙濃度y〔%/m〕に相当すると推定する(ステップS16)。火災判断手段43は、ステップS16で推定された煙濃度と所定の閾値(たとえば、減光式煙濃度計での評価で10%/mとなる煙濃度)とを比較し、推定された煙濃度が上記閾値未満の場合には「火災無し」と判断する一方で、上記閾値以上の場合には「火災有り」と判断して火災感知信号を制御部2へ出力する。   Below, the operation example of the fire detector of this embodiment is demonstrated with reference to the flowchart of FIG. First, an ultrasonic wave including a plurality of frequency components is transmitted from the sound source unit 1, and the output of the wave receiving element 3 for the ultrasonic wave is measured by the signal processing unit 4 (step S11). The frequency component extraction means 40 extracts the intensity of each frequency component from the output of the receiving element 3, and the particle type estimation means 41 is stored in the storage means 44 with the intensity of each frequency component extracted by the frequency component extraction means 40. The attenuation rate of the intensity for each frequency component is obtained from the reference value (step S12), and the ratio of the attenuation rate of the frequency component having the center frequency of 20 kHz to the attenuation rate of the frequency component having the center frequency of 82 kHz is calculated (step S12). S13). The storage means 44 stores the relative unit attenuation rate at 20 kHz with respect to the relative unit attenuation rate at the output frequency of 82 kHz as the relational data of the frequency of each frequency component and the relative unit attenuation rate of the intensity of the frequency component. (In the case of FIG. 17, white smoke is 0, black smoke is 0.2, and steam is 0.5), and the particle type estimation means 41 stores the calculated ratio of the attenuation rate as storage means. Compared with the relational data stored in 44, the type of particle having the closest ratio of the attenuation rate in the relational data is estimated as the particle floating in the monitoring space (step S14). Here, if the estimated particles are smoke particles, the process proceeds to processing in the smoke concentration estimating means 42 (step S15). Here, in the case of white smoke, as shown in FIG. 6, the relationship between the smoke density measured by the dimming smoke densitometer and the sound pressure attenuation rate is data that can be represented by a straight line, and other particles Therefore, the smoke concentration estimation means 42 calculates the ratio of the attenuation rate of a specific frequency component (for example, 82 kHz) to the unit attenuation rate stored in the storage means 44 for the estimated particle type, When the value of the ratio is y, it is estimated that the smoke density in the monitoring space corresponds to the smoke density y [% / m] in the evaluation with the dimming smoke densitometer (step S16). The fire determination means 43 compares the smoke density estimated in step S16 with a predetermined threshold (for example, a smoke density that is 10% / m in the evaluation with a light-reducing smoke densitometer), and the estimated smoke density. Is less than the threshold value, it is determined that there is no fire. On the other hand, if it is greater than the threshold value, it is determined that there is a fire, and a fire detection signal is output to the control unit 2.

上述の例では、粒子種別推定手段41は中心周波数が82kHzの周波数成分の減衰率と中心周波数が20kHzの周波数成分の減衰率とを用いているが、これらの周波数成分の組み合わせに限定するものではなく、異なる組み合わせの周波数成分を用いてもよい。さらに、より多くの周波数成分の減衰率を用いてもよく、その場合は粒子種別の推定の確度を向上させることができる。また、本実施形態では、煙濃度推定手段42が特定の周波数成分として1周波数成分を対象としているが、特定の周波数成分として複数の周波数成分を対象とし、各周波数成分ごとに推定した煙濃度の平均値を求めるようにしてもよく、この場合、煙濃度の推定の確度が向上する。   In the above example, the particle type estimation means 41 uses the attenuation rate of the frequency component with the center frequency of 82 kHz and the attenuation rate of the frequency component with the center frequency of 20 kHz, but the combination is not limited to these frequency components. Alternatively, different combinations of frequency components may be used. Furthermore, the attenuation rate of more frequency components may be used, and in that case, the accuracy of estimation of the particle type can be improved. In the present embodiment, the smoke density estimation means 42 targets one frequency component as the specific frequency component, but targets a plurality of frequency components as the specific frequency component, and the smoke density estimated for each frequency component. An average value may be obtained. In this case, the accuracy of smoke density estimation is improved.

ところで、本実施形態では、音源部1から複数の周波数成分を含んだ超音波を送波させるために、制御部2は音源部1に対して正弦波波形の半周期の孤立波を駆動入力波形として与えている。これにより、音源部1からは図7(a)に示すような略1周期の単パルス(インパルス)状の超音波が送波されることとなる。この種の単パルス状の超音波のパワースペクトルは、図7(b)に示すようにパルス幅に応じた周波数f0を中心周波数として広範囲の周波数に亘って強度(エネルギ)が分布した形となる。要するに、本実施形態のように単パルス状の超音波を音源部1から送波させることによって、音源部1からは複数の周波数成分を含んだ超音波が送波されることとなる。したがって、周波数成分抽出手段40は、たとえば図7(b)にB1〜B3で示す各周波数帯域について周波数成分の強度を抽出することができる。   By the way, in this embodiment, in order to transmit an ultrasonic wave including a plurality of frequency components from the sound source unit 1, the control unit 2 drives the sound source unit 1 with a half-cycle isolated wave of a sine wave waveform as a drive input waveform. As given. As a result, a single-pulse (impulse) ultrasonic wave having approximately one cycle as shown in FIG. 7A is transmitted from the sound source unit 1. The power spectrum of this kind of single-pulse ultrasonic wave has a shape in which intensity (energy) is distributed over a wide range of frequencies with a frequency f0 corresponding to the pulse width as a center frequency as shown in FIG. 7B. . In short, by transmitting single-pulse ultrasonic waves from the sound source unit 1 as in the present embodiment, the sound source unit 1 transmits ultrasonic waves including a plurality of frequency components. Therefore, the frequency component extraction means 40 can extract the intensity of the frequency component for each frequency band indicated by B1 to B3 in FIG. 7B, for example.

これに対して、ある程度の波数(たとえば3周期程度)を持つバースト波のパワースペクトルは、周期に応じた周波数f0にピークを持ち、その他の周波数帯域においては強度が低くなる。そのため、本実施形態のように単パルス状の超音波を用いる場合に比べて、周波数成分抽出手段40において抽出可能な周波数成分は、強度差が大きく、且つ周波数範囲が狭くなる。なお、音源部1からの超音波が図8(a)のようにある周波数f0の連続波になると、超音波のパワースペクトルは、図8(b)に示すように前記周波数f0に鋭いピークを持ち、その他の周波数帯域においては強度が大幅に低下する形になるので、周波数成分抽出手段40において各周波数成分の強度を抽出できなくなる。   On the other hand, the power spectrum of a burst wave having a certain number of waves (for example, about 3 cycles) has a peak at a frequency f0 corresponding to the cycle, and the intensity is low in other frequency bands. Therefore, compared with the case where single pulse ultrasonic waves are used as in the present embodiment, the frequency components that can be extracted by the frequency component extraction means 40 have a large intensity difference and a narrow frequency range. When the ultrasonic wave from the sound source unit 1 becomes a continuous wave of a certain frequency f0 as shown in FIG. 8A, the ultrasonic power spectrum has a sharp peak at the frequency f0 as shown in FIG. 8B. In other frequency bands, the intensity is greatly reduced, and the frequency component extracting means 40 cannot extract the intensity of each frequency component.

一方、受波素子3においては、共振特性のQ値が圧電素子に比べて十分に小さい静電容量型のマイクロホンを用いているため、音源部1からの超音波に含まれる複数の周波数成分について感度に大きなばらつきはない。ただし、図9(b)に示すように受波素子3の共振周波数fcよりも高い周波数帯域では感度が低下するので、図9(a)に示すように周波数成分抽出手段40で周波数成分の強度が抽出される周波数帯域B1〜B3よりも高い周波数を共振周波数とする受波素子3を用いることが望ましい。なお、パワースペクトルを示す図7(b)、図8(b)、図9並びに以下の説明で用いる図10、図11では、横軸を周波数、縦軸を強度(パワー)とする。   On the other hand, since the receiving element 3 uses a capacitance type microphone whose resonance characteristic Q value is sufficiently smaller than that of the piezoelectric element, a plurality of frequency components included in the ultrasonic wave from the sound source unit 1 are used. There is no great variation in sensitivity. However, since sensitivity decreases in a frequency band higher than the resonance frequency fc of the receiving element 3 as shown in FIG. 9B, the intensity of the frequency component is obtained by the frequency component extracting means 40 as shown in FIG. 9A. It is desirable to use the wave receiving element 3 having a resonance frequency that is higher than the frequency band B1 to B3 from which the noise is extracted. In FIGS. 7B, 8B, and 9 showing the power spectrum, and FIGS. 10 and 11 used in the following description, the horizontal axis represents frequency and the vertical axis represents intensity (power).

次に、周波数成分抽出手段40の構成について説明する。   Next, the configuration of the frequency component extraction unit 40 will be described.

一例として、音源部1からは図10(a)に示すように周期が3.33μs(つまり、300kHz相当)の単パルス状の超音波が送波され、これにより、受波素子3で受波される超音波のパワースペクトルが図10(b)に示すように300kHzにピークを持つ形になったものと仮定する。この場合において、図11における周波数帯域B1〜B3の各周波数成分の強度を抽出するため、図12に示すように、150〜250kHz(周波数帯域B1)の信号を通過させる第1のフィルタ手段(たとえば、バンドパスフィルタ)45aと、250〜350kHz(周波数帯域B2)の信号を通過させる第2のフィルタ手段45bと、350〜450kHz(周波数帯域B3)の信号を通過させる第3のフィルタ手段45cとを周波数成分抽出手段40に設け、第1〜第3の各フィルタ手段45a〜45cの出力を各周波数成分の強度として取り出すようにする。   As an example, the sound source unit 1 transmits a single-pulse ultrasonic wave having a period of 3.33 μs (that is, equivalent to 300 kHz) as shown in FIG. It is assumed that the power spectrum of the ultrasonic wave to be formed has a peak at 300 kHz as shown in FIG. In this case, in order to extract the intensity of each frequency component in the frequency bands B1 to B3 in FIG. 11, as shown in FIG. 12, a first filter means (for example, a filter of 150 to 250 kHz (frequency band B1)) is passed. , A band pass filter) 45a, a second filter means 45b for passing a signal of 250 to 350 kHz (frequency band B2), and a third filter means 45c for passing a signal of 350 to 450 kHz (frequency band B3). Provided in the frequency component extraction means 40, the outputs of the first to third filter means 45a to 45c are extracted as the intensity of each frequency component.

ここで、周波数成分抽出手段40は、受波素子3の出力を増幅するアンプAmpと、アンプAmpで増幅された受波素子3の出力を各フィルタ手段45a〜45cに略均等に分配する分配手段46とを有しており、受波素子3の出力が各フィルタ手段45a〜45cを通して後段の粒子種別推定手段41に出力されるようにしてある。これにより、周波数成分抽出手段40においては、音源部1から1回に送波された超音波から複数の周波数成分の強度を抽出することができる。ここで、フィルタ手段45a〜45cはプログラムによって実現してもよいが、ハードウェアで実現すれば信号処理の負荷を低減することができ、信号処理の高速化を図ることができる。   Here, the frequency component extraction means 40 is an amplifier Amp that amplifies the output of the wave receiving element 3, and a distribution means that distributes the output of the wave receiving element 3 amplified by the amplifier Amp substantially equally to each of the filter means 45a to 45c. 46, and the output of the wave receiving element 3 is output to the subsequent particle type estimation means 41 through the filter means 45a to 45c. Thereby, in the frequency component extraction means 40, the intensity | strength of a several frequency component can be extracted from the ultrasonic wave transmitted at once from the sound source part 1. FIG. Here, the filter means 45a to 45c may be realized by a program, but if realized by hardware, the load of signal processing can be reduced, and the speed of signal processing can be increased.

なお、本実施形態では、各周波数成分の周波数と強度の相対的単位減衰率との関係データを記憶手段44に記憶した例を示したが、そもそも監視空間に存在する浮遊粒子の種別に応じて周波数成分の周波数ごとに変化するのは周波数成分の強度の基準値からの減衰量(I−I)であるから、記憶手段44に記憶する上記関係データは、各周波数成分の周波数と同周波数成分の強度の基準値からの減衰量との関係を示すデータであればよく、上述の相対的単位減衰率に代えて、たとえば、周波数成分の強度の基準値からの減衰量や、周波数成分の強度の基準値からの減衰量を基準値(I)で除しただけの減衰率、あるいは単位減衰率を採用した関係データを記憶手段44に記憶するようにしてもよい。 In the present embodiment, the example in which the relationship data between the frequency of each frequency component and the relative unit attenuation rate of the intensity is stored in the storage unit 44 is shown. However, depending on the type of suspended particles existing in the monitoring space in the first place. Since the attenuation amount (I 0 -I x ) from the reference value of the intensity of the frequency component changes for each frequency of the frequency component, the relational data stored in the storage unit 44 is the same as the frequency of each frequency component. Any data showing the relationship with the attenuation amount from the reference value of the intensity of the frequency component may be used. Instead of the above relative unit attenuation rate, for example, the attenuation amount from the reference value of the intensity of the frequency component or the frequency component It is also possible to store in the storage means 44 the attenuation rate obtained by dividing the attenuation amount from the reference value of the intensity by the reference value (I 0 ) or the relation data adopting the unit attenuation rate.

以上説明した本実施形態の火災感知器によれば、周波数成分抽出手段40が、受波素子3で検出された超音波から各周波数成分の強度を抽出し、粒子種別推定手段41においては、周波数成分抽出手段40で抽出された各周波数成分の強度と記憶手段44に記憶されている関係データとを用いて監視空間に存在する浮遊粒子の種別を推定するので、浮遊粒子の種別を推定可能としながらも、音源部1から複数種の超音波を送波させる必要はない。   According to the fire detector of the present embodiment described above, the frequency component extraction unit 40 extracts the intensity of each frequency component from the ultrasonic wave detected by the wave receiving element 3, and the particle type estimation unit 41 determines the frequency. Since the type of suspended particles existing in the monitoring space is estimated using the intensity of each frequency component extracted by the component extracting unit 40 and the relationship data stored in the storage unit 44, the type of suspended particles can be estimated. However, it is not necessary to transmit a plurality of types of ultrasonic waves from the sound source unit 1.

すなわち、粒子種別推定手段41において上記監視空間に浮遊している粒子の種別を推定することで煙粒子と湯気とを識別可能となるから、散乱光式煙感知器および減光式煙感知器に比べて湯気に起因した非火災報を低減することが可能となり、台所や浴室での使用にも適する。また、火災感知器を設置している室内の掃除や天井裏の電気工事などの際に浮遊する粉塵と煙粒子との識別も可能になるから、粉塵などに起因した非火災報を低減することも可能となる。なお、粒子種別推定手段41において白煙の煙粒子と黒煙の煙粒子とを識別可能となるから、火災の性状の識別に役立てることも可能となる。   That is, it is possible to distinguish between smoke particles and steam by estimating the type of particles floating in the monitoring space in the particle type estimation means 41. Therefore, the scattered light type smoke detector and the dimming type smoke detector are used. In comparison, non-fire reports due to steam can be reduced, making it suitable for use in kitchens and bathrooms. In addition, it is possible to distinguish between dust and smoke particles floating when cleaning the room where the fire detector is installed or for electrical work behind the ceiling, so reduce non-fire reports caused by dust. Is also possible. Since the particle type estimation means 41 can distinguish between white smoke particles and black smoke particles, it can also be used for identifying fire properties.

しかも、音源部1からは複数の周波数成分を含む1種類の超音波(ここでは、単パルス状の超音波)が送波されればよく、音源部1から複数種の超音波を送波させる場合に比べて、音源部1や制御部2に掛かるコストを低く抑えることができる。また、周波数成分抽出手段40は音源部1から1回に送波された超音波から複数の周波数成分の強度を抽出するので、個々の超音波の送波時に送波音圧のばらつきが生じることで浮遊粒子の種別や濃度の推定確度が低くなったり、超音波の送波に伴う消費電力が大きくなったりすることを回避できるという利点もある。   In addition, it is only necessary to transmit one type of ultrasonic wave (in this case, a single pulsed ultrasonic wave) including a plurality of frequency components from the sound source unit 1, and a plurality of types of ultrasonic waves are transmitted from the sound source unit 1. Compared to the case, the cost of the sound source unit 1 and the control unit 2 can be kept low. Further, since the frequency component extraction means 40 extracts the intensity of a plurality of frequency components from the ultrasonic wave transmitted from the sound source unit 1 at a time, the transmission sound pressure varies when each ultrasonic wave is transmitted. There is also an advantage that it is possible to avoid the estimation accuracy of the type and concentration of suspended particles from being lowered and the power consumption accompanying the transmission of ultrasonic waves from being increased.

ところで、周波数成分抽出手段40は、上述したようにフィルタ手段45a〜45cによって各周波数成分の強度を抽出するものに限らず、たとえば受波素子3の出力の時系列データについて高速フーリエ変換(FFT)を行い、その結果から各周波数成分の強度を抽出するものであってもよい。この場合、多数の周波数成分の強度を抽出することが容易となり、多数の周波数成分の強度に基づいて浮遊粒子の種別の推定を行うことにより、粒子種別の推定の確度の向上を図ることができる。また、分配手段46を用いることなく、音源部1から1回に送波された超音波について複数の周波数成分の強度を抽出することができるという利点もある。ただし、この場合、フィルタ手段45a〜45cによって各周波数成分の強度を抽出する構成に比べて、信号処理の負荷が大きくなる。   Incidentally, the frequency component extracting means 40 is not limited to extracting the intensity of each frequency component by the filter means 45a to 45c as described above. For example, fast Fourier transform (FFT) is performed on the time series data of the output of the receiving element 3. And the intensity of each frequency component may be extracted from the result. In this case, it becomes easy to extract the intensities of a large number of frequency components, and by estimating the type of suspended particles based on the intensities of the large number of frequency components, it is possible to improve the accuracy of estimation of the particle type. . Further, there is also an advantage that the intensity of a plurality of frequency components can be extracted from the ultrasonic wave transmitted at one time from the sound source unit 1 without using the distributing means 46. However, in this case, the load of signal processing becomes larger than the configuration in which the intensity of each frequency component is extracted by the filter means 45a to 45c.

また、音源部1からは複数の周波数成分を含んだ超音波が送波されればよく、上述したような単パルス状の超音波に限らず、波数の少ないバースト波状の超音波、あるいは周波数の異なる複数の超音波を重畳させて成る超音波を音源部1から送波させるようにしてもよい。   The sound source unit 1 only needs to transmit an ultrasonic wave including a plurality of frequency components, and is not limited to the single-pulse ultrasonic wave as described above. An ultrasonic wave formed by superposing a plurality of different ultrasonic waves may be transmitted from the sound source unit 1.

(実施形態2)
本実施形態の火災感知器は、基本構成が実施形態1と略同じであり、周波数成分抽出手段40の構成が実施形態1の火災感知器と相違する。なお、実施形態1と同様の構成要素には同一の符号を付して説明を適宜省略する。
(Embodiment 2)
The basic structure of the fire detector of the present embodiment is substantially the same as that of the first embodiment, and the configuration of the frequency component extraction means 40 is different from that of the fire detector of the first embodiment. In addition, the same code | symbol is attached | subjected to the component similar to Embodiment 1, and description is abbreviate | omitted suitably.

本実施形態では、音源部1と受波素子3との間に経路長の異なる複数の伝播経路を形成し、音源部1から送波された超音波を複数の伝播経路に分岐し、各伝播経路を通して受波素子3で受波されるように構成する。ここで、周波数成分抽出手段40は、音源部1から同時に送波され経路長の異なる伝播経路を通して受波素子3にそれぞれ伝播された複数の超音波の各々から、各周波数成分の強度をそれぞれ抽出する。   In the present embodiment, a plurality of propagation paths having different path lengths are formed between the sound source unit 1 and the wave receiving element 3, and the ultrasonic waves transmitted from the sound source unit 1 are branched into a plurality of propagation paths. The signal is received by the wave receiving element 3 through the path. Here, the frequency component extracting means 40 extracts the intensity of each frequency component from each of a plurality of ultrasonic waves transmitted simultaneously from the sound source unit 1 and propagated to the receiving element 3 through propagation paths having different path lengths. To do.

本実施形態の一例として、図13(a)に示すように内部空間に形成された超音波の伝播経路の経路長が異なる複数種類の筒体6a,6bを、音源部1と受波素子3との間に並列に介在させる構成が考えられる。すなわち、図13(a)のように音源部1と受波素子3との間に、直管状であって管長さLの筒体6aと、湾曲した形であって管長さL(>L)の筒体6bとを、音源部1および受波素子3の対向する方向に直交する面内で並ぶように配設し、音源部1からの超音波が両筒体6a,6bに分岐されて各筒体6a,6bの内部空間を通るようにする。しかして、音源部1から送波される超音波は、両筒体6a,6bの入り口(図13(a)では左端面)で第1および第2の超音波Sw1,Sw2に分岐され、第1の超音波Sw1が管長さLの筒体6aの内部空間(経路長Lの伝播経路)を通って受波素子3に伝播されるとともに、第2の超音波Sw2が管長さLの筒体6bの内部空間(経路長Lの伝播経路)を通って受波素子3に伝播されることになる。その後、周波数成分抽出手段40で超音波Sw1,Sw2の各々から、各周波数成分の強度がそれぞれ抽出される。 As an example of the present embodiment, as shown in FIG. 13A, a plurality of types of cylinders 6 a and 6 b having different propagation lengths of ultrasonic waves formed in an internal space are used as a sound source unit 1 and a wave receiving element 3. It is conceivable to intervene in parallel with each other. That is, between the sound source unit 1 and wave receiving element 3 as shown in FIG. 13 (a), the a cylindrical body 6a of a straight tubular pipe length L 1, a curved shape tube length L 2 (> L 1 ) cylinders 6b are arranged in a plane orthogonal to the direction in which the sound source unit 1 and the receiving element 3 face each other, and the ultrasonic waves from the sound source unit 1 are applied to both the cylinders 6a and 6b. It branches so that it may pass through the internal space of each cylinder 6a, 6b. Accordingly, the ultrasonic wave transmitted from the sound source unit 1 is branched into the first and second ultrasonic waves Sw1 and Sw2 at the entrances (the left end face in FIG. 13A) of both the cylinders 6a and 6b. while being propagated in the wave receiving element 3 1 ultrasonic Sw1 is through the interior space of the cylindrical body 6a of tube length L 1 (propagation path of the path length L 1), second ultrasonic Sw2 is tube length L 2 It will be propagated to the wave receiving element 3 through the interior space of the cylindrical body 6b (the propagation path of the path length L 2). Thereafter, the frequency component extraction means 40 extracts the intensity of each frequency component from each of the ultrasonic waves Sw1 and Sw2.

ここにおいて、各超音波Sw1,Sw2が受波素子3に到達するタイミングには、図13(b)に示すように伝播経路の経路長L,Lの差に応じた時間差Tdが生じる。この時間差Tdは、経路長L,Lの差を音速で除することにより求められる。受波素子3において各超音波Sw1,Sw2を区別するためには、受波素子3で各超音波Sw1,Sw2をそれぞれ受波する期間を前記時間差Td内に収める必要がある。 Here, at the timing when each of the ultrasonic waves Sw1 and Sw2 arrives at the wave receiving element 3, a time difference Td corresponding to the difference between the path lengths L 1 and L 2 of the propagation path is generated as shown in FIG. 13B. This time difference Td is obtained by dividing the difference between the path lengths L 1 and L 2 by the speed of sound. In order to distinguish the ultrasonic waves Sw1 and Sw2 in the wave receiving element 3, it is necessary to keep the period during which the ultrasonic waves Sw1 and Sw2 are received by the wave receiving element 3 within the time difference Td.

つまり、たとえば音速が340m/sで、音源部1から送波される超音波の周波数が100kHzである場合、超音波は周期10μs、波長3.4mmとなるので、経路長L,Lの差を68mmにすると、超音波の波数が20波を超えれば超音波同士の重なりが生じ、受波素子3で各超音波Sw1,Sw2を区別できなくなる。そこで、経路長L,Lの差と音源部1から1回に送波する超音波の波数とを調整することにより、超音波同士の重なりが生じないようにする。火災感知器を小型化するために経路長L,Lの差を小さくする場合などには、実施形態1で説明したように、発熱体層13への通電に伴う発熱体層13の温度変化により空気に熱衝撃を与えることで超音波を発生する構成であって、残響の少ない単パルス状の超音波を送波可能な音源部1を採用することが有用である。 That is, for example, the sound velocity at 340m / s, when the frequency of the ultrasonic wave transmitted from the sound source unit 1 is 100kHz, ultrasound period 10 [mu] s, since the wavelength 3.4 mm, the path length L 1, L 2 When the difference is set to 68 mm, if the wave number of the ultrasonic wave exceeds 20, the ultrasonic waves overlap each other, and the wave receiving element 3 cannot distinguish the ultrasonic waves Sw1 and Sw2. Therefore, by adjusting the difference between the path lengths L 1 and L 2 and the wave number of the ultrasonic wave transmitted from the sound source unit 1 at one time, the ultrasonic waves do not overlap each other. When reducing the difference between the path lengths L 1 and L 2 in order to reduce the size of the fire detector, the temperature of the heating element layer 13 accompanying the energization of the heating element layer 13 as described in the first embodiment is used. It is useful to employ a sound source unit 1 that is configured to generate an ultrasonic wave by applying a thermal shock to the air by a change and that can transmit a single-pulse ultrasonic wave with little reverberation.

さらに、図13(a)の構成によれば、音源部1と受波素子3との間に筒体6a,6bを設けたことにより、音源部1から送波される超音波は、筒体6a,6bの内部空間を通ることで拡散が抑制され、音源部1と受波素子3との間における超音波の拡散による音圧の低下を抑制することができるので、監視空間中に煙粒子がない状態において受波素子3で受波される超音波の音圧を高く維持でき、煙濃度の変化量に対する受波素子3の出力の変化量が比較的大きくなり、その結果、SN比が向上するという効果がある。   Furthermore, according to the configuration of FIG. 13A, since the cylinders 6 a and 6 b are provided between the sound source unit 1 and the wave receiving element 3, the ultrasonic waves transmitted from the sound source unit 1 are cylindrical. Diffusion is suppressed by passing through the internal spaces 6a and 6b, and a decrease in sound pressure due to diffusion of ultrasonic waves between the sound source unit 1 and the receiving element 3 can be suppressed. The sound pressure of the ultrasonic wave received by the wave receiving element 3 can be maintained high in the absence of noise, and the amount of change in the output of the wave receiving element 3 relative to the amount of change in smoke density becomes relatively large. There is an effect of improving.

なお、図13の例では、筒体6a,6bの各開口端面に音源部1および受波素子3がそれぞれ突き合わされるように配置されており、各筒体6a,6bの内部が監視空間となるので、たとえば筒体6a,6bの長手方向に沿う側面には内部に煙等を案内する孔(図示せず)が形成される。   In the example of FIG. 13, the sound source unit 1 and the receiving element 3 are arranged so as to face each opening end face of the cylinders 6 a and 6 b, and the inside of each cylinder 6 a and 6 b is a monitoring space. Therefore, for example, holes (not shown) for guiding smoke or the like are formed in the side surfaces along the longitudinal direction of the cylinders 6a and 6b.

また、本実施形態の他の例として、一方の筒体6aを省略して、音源部1から受波素子3に直接伝わる超音波を第1の超音波Sw1とする構成や、音源部1と受波素子3とが並ぶ方向に沿った反射面を音源部1および受波素子3の側方に形成し、音源部1から受波素子3に直接伝わる超音波を第1の超音波Sw1とするとともに、音源部1から送波された後に反射面で反射されて受波素子3に伝わる超音波を第2の超音波Sw2とする構成も考えられる。   As another example of the present embodiment, one cylindrical body 6a is omitted, and the ultrasonic wave directly transmitted from the sound source unit 1 to the wave receiving element 3 is used as the first ultrasonic wave Sw1, A reflection surface along the direction in which the wave receiving elements 3 are arranged is formed on the side of the sound source unit 1 and the wave receiving element 3, and the ultrasonic wave directly transmitted from the sound source unit 1 to the wave receiving element 3 is referred to as the first ultrasonic wave Sw1. In addition, a configuration in which the ultrasonic wave reflected from the reflection surface and transmitted to the wave receiving element 3 after being transmitted from the sound source unit 1 is the second ultrasonic wave Sw2 is also conceivable.

あるいは、音源部1と受波素子3との間に経路長の異なる複数の伝播経路を形成するために、図14に示すように第1および第2の反射面7a,7bを、音源部1から送波された超音波の進行方向(図14の左右方向)において互いに対向するように配置してもよい。各反射面7a,7bはそれぞれ超音波を反射するものであって、受波素子3は第1の反射面7a上に、音源部1は第2の反射面7b上にそれぞれ配設される。ここで、周波数成分抽出手段40は、音源部1から受波素子3に伝播されるまでに反射面7a,7bで反射された回数の異なる複数の超音波の各々から、各周波数成分の強度をそれぞれ抽出する。   Alternatively, in order to form a plurality of propagation paths having different path lengths between the sound source unit 1 and the wave receiving element 3, the first and second reflecting surfaces 7a and 7b are replaced with the sound source unit 1 as shown in FIG. They may be arranged so as to face each other in the traveling direction of the ultrasonic waves transmitted from (the left-right direction in FIG. 14). Each of the reflection surfaces 7a and 7b reflects ultrasonic waves. The wave receiving element 3 is disposed on the first reflection surface 7a, and the sound source unit 1 is disposed on the second reflection surface 7b. Here, the frequency component extraction means 40 obtains the intensity of each frequency component from each of a plurality of ultrasonic waves having different numbers of times reflected by the reflection surfaces 7a and 7b before being propagated from the sound source unit 1 to the wave receiving element 3. Extract each one.

すなわち、図14のように音源部1から受波素子3に直接伝わる超音波を第1の超音波Sw1とするとともに、音源部1から送波された後に第1の反射面7aで反射され、さらに第2の反射面7bで反射されることによって受波素子3に伝わる超音波を第2の超音波Sw2とする。しかして、反射面7a,7bでの反射回数が0回の第1の超音波Sw1と、反射面7a,7bでの反射回数が2回の第2の超音波Sw2とでは、伝播経路の経路長が異なることとなり、周波数成分抽出手段40ではこれらの超音波Sw1,Sw2の各々から各周波数成分の強度が算出される。ここにおいて、受波素子3で各超音波Sw1,Sw2を区別可能とするため、各超音波Sw1,Sw2の経路長の差と音源部1から1回に送波する超音波の波数とを調整することにより超音波同士の重なりが生じないようにする点は、図13の例と同様である。   That is, the ultrasonic wave directly transmitted from the sound source unit 1 to the wave receiving element 3 as shown in FIG. 14 is set as the first ultrasonic wave Sw1, and after being transmitted from the sound source unit 1, is reflected by the first reflecting surface 7a. Furthermore, an ultrasonic wave transmitted to the wave receiving element 3 by being reflected by the second reflecting surface 7b is referred to as a second ultrasonic wave Sw2. Thus, the path of the propagation path between the first ultrasonic wave Sw1 with 0 reflections on the reflection surfaces 7a and 7b and the second ultrasonic wave Sw2 with 2 reflections on the reflection surfaces 7a and 7b. The lengths are different, and the frequency component extraction means 40 calculates the intensity of each frequency component from each of the ultrasonic waves Sw1 and Sw2. Here, in order to enable the wave receiving element 3 to distinguish the ultrasonic waves Sw1 and Sw2, the difference in path length between the ultrasonic waves Sw1 and Sw2 and the wave number of the ultrasonic waves transmitted from the sound source unit 1 at once are adjusted. This is the same as the example of FIG. 13 in that the ultrasonic waves do not overlap each other.

ところで、図14の例では、各反射面7a,7bが反射波を他方の反射面7a,7b上に集音する形に湾曲した凹型の曲面からなる。さらに、音源部1と受波素子3とは各反射面7a,7b上において、他方の反射面7a,7bに平面波として入射し反射された超音波が焦点を結ぶ位置に配置されている。   By the way, in the example of FIG. 14, each reflective surface 7a, 7b consists of a concave curved surface curved in the shape which collects a reflected wave on the other reflective surface 7a, 7b. Furthermore, the sound source unit 1 and the wave receiving element 3 are disposed on the reflecting surfaces 7a and 7b at positions where the reflected ultrasonic waves incident on the other reflecting surfaces 7a and 7b and reflected are focused.

要するに、第2の反射面7b上に配置された音源部1から放射状に広がりながら受波素子3側の第1の反射面7aに到達した超音波は、第1の反射面7aで反射されることによって音源部1側の第2の反射面7bに対する平行波となり、その後、第2の反射面7bで反射されることによって第1の反射面7a上の受波素子3の位置で焦点を結ぶこととなる。そのため、反射面7a,7bでの反射を繰り返しても超音波は拡散しにくく、したがって、音源部1と受波素子3との間における超音波の拡散による音圧の低下を抑制することができる。その結果、煙濃度の変化量に対する受波素子3の出力の変化量が比較的大きくなり、SN比が向上する。   In short, the ultrasonic waves that reach the first reflecting surface 7a on the wave receiving element 3 side while spreading radially from the sound source unit 1 disposed on the second reflecting surface 7b are reflected by the first reflecting surface 7a. As a result, a parallel wave is generated with respect to the second reflecting surface 7b on the sound source unit 1 side, and then the light is reflected by the second reflecting surface 7b, thereby focusing at the position of the wave receiving element 3 on the first reflecting surface 7a. It will be. Therefore, even if the reflection on the reflecting surfaces 7a and 7b is repeated, the ultrasonic wave is not easily diffused. Therefore, a decrease in sound pressure due to the diffusion of the ultrasonic wave between the sound source unit 1 and the wave receiving element 3 can be suppressed. . As a result, the change amount of the output of the wave receiving element 3 with respect to the change amount of the smoke density becomes relatively large, and the SN ratio is improved.

以上説明した本実施形態の火災感知器では、周波数成分抽出手段40は音源部1から同時に送波された超音波から複数の周波数成分の強度を抽出するので、個々の超音波の送波時に送波音圧のばらつきが生じることで浮遊粒子の種別や濃度の推定確度が低くなったり、超音波の送波に伴う消費電力が大きくなったりすることを回避できる。また、周波数成分抽出手段40は、異なるタイミングで受波素子3に到達した超音波Sw1,Sw2の各々から各周波数成分の強度を順次抽出するので、受波素子3の出力を複数のフィルタ手段45a〜45cに同時に通す必要はなく、分配手段46を省略することができる。   In the fire detector according to the present embodiment described above, the frequency component extraction means 40 extracts the intensity of a plurality of frequency components from the ultrasonic waves transmitted simultaneously from the sound source unit 1, so that it is transmitted when each ultrasonic wave is transmitted. It can be avoided that the estimation accuracy of the type and concentration of suspended particles is reduced due to the variation of the wave sound pressure, and that the power consumption accompanying the transmission of ultrasonic waves is increased. Further, since the frequency component extraction means 40 sequentially extracts the intensity of each frequency component from each of the ultrasonic waves Sw1 and Sw2 that have reached the wave receiving element 3 at different timings, the output of the wave receiving element 3 is output to a plurality of filter means 45a. ˜45c need not be passed simultaneously, and the distribution means 46 can be omitted.

なお、その他の構成および機能は実施形態1と同様である。   Other configurations and functions are the same as those in the first embodiment.

ところで、上記各実施形態の火災感知器は、音源部1からの超音波の拡散範囲を狭める拡散防止部材を備えるものであってもよい。すなわち、図13の例では音源部1と受波素子3との間に設けられた筒体6a,6bが拡散防止部材として機能しているが、筒体6a,6b以外の拡散防止部材を適用してもよい。たとえば、音源部1からの超音波の拡散範囲を狭める拡散防止部材として一対の拡散防止板を用いることができる。   By the way, the fire detector of each said embodiment may be provided with the diffusion prevention member which narrows the diffusion range of the ultrasonic wave from the sound source part 1. FIG. That is, in the example of FIG. 13, the cylinders 6 a and 6 b provided between the sound source unit 1 and the wave receiving element 3 function as diffusion preventing members, but diffusion preventing members other than the cylinders 6 a and 6 b are applied. May be. For example, a pair of diffusion prevention plates can be used as a diffusion prevention member that narrows the diffusion range of ultrasonic waves from the sound source unit 1.

各拡散防止板はそれぞれ平面視矩形状の平板からなり、一対の拡散防止板は一表面同士を対向させるように略平行に配設される。ここで、一対の拡散防止板は、音源部1からの超音波を互いに対向する前記一表面間の空間に通すことで当該超音波の拡散範囲を狭めるものであって、対向する前記一表面間の空間を通して音源部1からの超音波を伝搬させるように、前記一表面の間に音源部1と受波素子3とを挟みこむ形で配設される。このように拡散防止板を設けたことにより、音源部1から送波される超音波は、拡散防止板の前記一表面で囲まれた監視空間を通ることで拡散が抑制され、したがって音源部1と受波素子3との間における超音波の拡散による音圧の低下を抑制することができる。   Each diffusion prevention plate is a flat plate having a rectangular shape in plan view, and the pair of diffusion prevention plates are arranged substantially in parallel so that one surface faces each other. Here, the pair of diffusion prevention plates narrows the diffusion range of the ultrasonic wave by passing the ultrasonic wave from the sound source unit 1 through the space between the one surface facing each other. The sound source unit 1 and the wave receiving element 3 are sandwiched between the surfaces so that the ultrasonic waves from the sound source unit 1 are propagated through the space. By providing the diffusion preventing plate in this manner, the ultrasonic wave transmitted from the sound source unit 1 is prevented from diffusing by passing through the monitoring space surrounded by the one surface of the diffusion preventing plate. And a decrease in sound pressure due to diffusion of ultrasonic waves between the receiving element 3 and the wave receiving element 3 can be suppressed.

また、上記各実施形態では、音源部1と制御部2と受波素子3と信号処理部4とを1枚の回路基板5に設けて図示しない器体内に収納してあるが、音源部1と制御部2とを備えた音源側ユニットと、受波素子3と信号処理部4とを備えた受波側ユニットとを別体として互いに対向配置する分離型の火災報知機を構成するようにしてもよい。また、音源部1は上述の図3に示した構成の音波発生素子に限らず、たとえば、アルミニウム製の薄板を発熱体部として当該発熱体部への通電に伴う発熱体部の急激な温度変化による熱衝撃によって音波を発生させるものでもよい。   In each of the above embodiments, the sound source unit 1, the control unit 2, the wave receiving element 3, and the signal processing unit 4 are provided on a single circuit board 5 and housed in a container (not shown). And a sound source side unit provided with the control unit 2 and a reception side unit provided with the wave receiving element 3 and the signal processing unit 4 are configured as separate units to constitute a separate type fire alarm. May be. Further, the sound source unit 1 is not limited to the sound wave generating element having the configuration shown in FIG. 3 described above. For example, a rapid temperature change of the heat generating unit accompanying energization of the heat generating unit with a thin aluminum plate as the heat generating unit. A sound wave may be generated by a thermal shock due to.

さらにまた、上記各実施形態において、制御部2が、音源部1から防虫効果のある周波数の超音波を送波させるようにすれば、上記監視空間に虫が侵入するのを防止することができ、虫に起因した非火災報を低減できる。ここで、制御部2は、煙濃度を推定するために音源部1から送波させる超音波とは別に、防虫効果のある周波数の超音波を定期的に送波させるようにしてもよいし、煙濃度を推定するために音源部1から送波する超音波に防虫効果のある周波数成分を含むようにしてもよい。   Furthermore, in each of the above embodiments, if the control unit 2 transmits ultrasonic waves having a frequency having an insect-proofing effect from the sound source unit 1, it is possible to prevent insects from entering the monitoring space. , Can reduce non-fire reports caused by insects. Here, the control unit 2 may be configured to periodically transmit ultrasonic waves having an insect-proofing effect separately from the ultrasonic waves transmitted from the sound source unit 1 in order to estimate the smoke density, In order to estimate the smoke density, the ultrasonic wave transmitted from the sound source unit 1 may include a frequency component having an insecticidal effect.

本発明の実施形態1の構成を示すブロック図である。It is a block diagram which shows the structure of Embodiment 1 of this invention. 同上の要部を示し、(a)は概略下面図、(b)は概略側面図である。The principal part same as the above is shown, (a) is a schematic bottom view, (b) is a schematic side view. 同上に用いる音波発生素子を示す概略断面図である。It is a schematic sectional drawing which shows the sound wave generation element used for the same as the above. 同上に用いる受波素子を示し、(a)は一部破断した概略斜面図、(b)は概略断面図である。The wave receiving element used for the above is shown, (a) is a partially broken schematic perspective view, and (b) is a schematic sectional view. 同上の動作例を示すフローチャートである。It is a flowchart which shows the operation example same as the above. 同上に用いる煙濃度と特定の周波数成分の減衰率との関係を示す説明図である。It is explanatory drawing which shows the relationship between the smoke density used for the same as above, and the attenuation factor of a specific frequency component. (a)は音源部からの超音波の波形図、(b)は(a)のパワースペクトル図である。(A) is a waveform diagram of ultrasonic waves from the sound source section, and (b) is a power spectrum diagram of (a). (a)は超音波の波形図、(b)は(a)のパワースペクトル図である。(A) is a waveform diagram of ultrasonic waves, (b) is a power spectrum diagram of (a). (a)は受波素子の出力のパワースペクトル図、(b)は他のパワースペクトル図である。(A) is the power spectrum figure of the output of a receiving element, (b) is another power spectrum figure. (a)は音源部からの超音波の波形図、(b)は(a)のパワースペクトル図である。(A) is a waveform diagram of ultrasonic waves from the sound source section, and (b) is a power spectrum diagram of (a). 同上の周波数成分の強度の抽出方法の説明図である。It is explanatory drawing of the extraction method of the intensity | strength of a frequency component same as the above. 同上の要部の概略構成図である。It is a schematic block diagram of the principal part same as the above. 本発明の実施形態2の動作を示す概略図である。It is the schematic which shows the operation | movement of Embodiment 2 of this invention. 同上の他の構成例を示す概略図である。It is the schematic which shows the other structural example same as the above. 従来例の構成を示すブロック図である。It is a block diagram which shows the structure of a prior art example. 同上の音源部の出力周波数と音圧の単位減衰率との関係を示す説明図である。It is explanatory drawing which shows the relationship between the output frequency of a sound source part same as the above, and the unit attenuation rate of a sound pressure. 同上の音源部の出力周波数と相対的単位減衰率との関係を示す説明図である。It is explanatory drawing which shows the relationship between the output frequency of a sound source part same as the above, and a relative unit attenuation factor.

符号の説明Explanation of symbols

1 音源部
2 制御部
3 受波素子
4 信号処理部
11 ベース基板
12 熱絶縁層
13 発熱体層(発熱体部)
40 周波数成分抽出手段
41 粒子種別推定手段
42 煙濃度推定手段
43 火災判断手段
44 記憶手段
45a〜45c フィルタ手段
46 分配手段
DESCRIPTION OF SYMBOLS 1 Sound source part 2 Control part 3 Receiver element 4 Signal processing part 11 Base board 12 Thermal insulation layer 13 Heat generating body layer (heat generating body part)
40 Frequency component extraction means 41 Particle type estimation means 42 Smoke density estimation means 43 Fire judgment means 44 Storage means 45a to 45c Filter means 46 Distribution means

Claims (9)

複数の周波数成分を含む音波を送波する音源部と、音源部を制御する制御部と、音源部から送波された音波の音圧を検出する受波素子と、受波素子の出力に基づいて火災の有無を判断する信号処理部とを備え、信号処理部は、受波素子で検出された音波から各周波数成分の強度を抽出する周波数成分抽出手段と、音源部と受波素子との間の監視空間に存在する浮遊粒子の種別および煙濃度に応じた各周波数成分の周波数と強度の基準値からの減衰量との関係データを記憶した記憶手段と、周波数成分抽出手段で抽出された各周波数成分の強度と記憶手段に記憶されている関係データとを用いて監視空間に浮遊している粒子の種別を推定する粒子種別推定手段と、粒子種別推定手段にて推定された粒子が煙粒子のときに特定の周波数成分の強度の基準値からの減衰量に基づいて監視空間の煙濃度を推定する煙濃度推定手段と、煙濃度推定手段にて推定された煙濃度と所定の閾値とを比較して火災の有無を判断する火災判断手段とを有することを特徴とする火災感知器。   Based on a sound source unit that transmits a sound wave including a plurality of frequency components, a control unit that controls the sound source unit, a receiving element that detects sound pressure of the sound wave transmitted from the sound source unit, and an output of the receiving element A signal processing unit for determining whether or not there is a fire, and the signal processing unit includes frequency component extraction means for extracting the intensity of each frequency component from the sound wave detected by the wave receiving element, and a sound source unit and the wave receiving element. The storage means for storing the relationship data between the frequency of each frequency component and the attenuation from the reference value of the intensity according to the type of smoke particles and the concentration of suspended particles existing in the monitoring space, and the frequency component extraction means Particle type estimation means for estimating the type of particles floating in the monitoring space using the intensity of each frequency component and the relational data stored in the storage means, and the particles estimated by the particle type estimation means are smoke Intensity of specific frequency components when particles Smoke density estimation means that estimates smoke density in the monitoring space based on the attenuation from the reference value, and a fire that judges the presence or absence of a fire by comparing the smoke density estimated by the smoke density estimation means with a predetermined threshold And a fire detector. 前記記憶手段は、前記関係データとして各周波数成分の周波数と強度の基準値からの減衰量を基準値で除した減衰率との関係データを記憶していることを特徴とする請求項1記載の火災感知器。   2. The storage device according to claim 1, wherein the storage means stores relationship data between the frequency of each frequency component and an attenuation rate obtained by dividing an attenuation amount from a reference value of intensity by a reference value as the relationship data. Fire detector. 前記音源部は、発熱体部への通電に伴う発熱体部の温度変化により空気に熱衝撃を与えることで音波を発生するものであることを特徴とする請求項1または請求項2に記載の火災感知器。   3. The sound source unit according to claim 1, wherein the sound source unit generates a sound wave by applying a thermal shock to air due to a temperature change of the heat generating unit accompanying energization of the heat generating unit. Fire detector. 前記音源部は、ベース基板の一表面側に前記発熱体部が形成されるとともに、ベース基板の前記一表面側で前記発熱体部とベース基板との間に設けられて前記発熱体部とベース基板とを熱絶縁する多孔質層からなる熱絶縁層を有してなることを特徴とする請求項3記載の火災感知器。   The sound source unit is formed between the heat generating unit and the base substrate on the one surface side of the base substrate, and the heat generating unit and the base are formed on the one surface side of the base substrate. 4. The fire detector according to claim 3, further comprising a thermal insulation layer comprising a porous layer that thermally insulates the substrate. 前記音源部が送波する前記複数の周波数成分を含む音波は、単パルス状の音波であることを特徴とする請求項1ないし請求項4のいずれか1項に記載の火災感知器。   5. The fire detector according to claim 1, wherein the sound wave including the plurality of frequency components transmitted by the sound source unit is a single-pulse sound wave. 6. 前記周波数成分抽出手段は、各周波数成分の信号をそれぞれ通過させるフィルタ手段を有し、前記受波素子の出力を前記フィルタ手段に通すことで各周波数成分の強度を抽出することを特徴とする請求項1ないし請求項5のいずれか1項に記載の火災感知器。   The frequency component extraction unit includes a filter unit that allows a signal of each frequency component to pass therethrough, and extracts the intensity of each frequency component by passing the output of the receiving element through the filter unit. The fire detector according to any one of claims 1 to 5. 前記フィルタ手段は各周波数成分ごとに個別に設けられており、前記周波数成分抽出手段は、前記受波素子の出力を各フィルタ手段に分配する分配手段を有することを特徴とする請求項6記載の火災感知器。   7. The filter means according to claim 6, wherein the filter means is provided separately for each frequency component, and the frequency component extraction means has distribution means for distributing the output of the receiving element to each filter means. Fire detector. 前記周波数成分抽出手段は、高速フーリエ変換により各周波数成分の強度を抽出することを特徴とする請求項1ないし請求項5のいずれか1項に記載の火災感知器。   The fire detector according to any one of claims 1 to 5, wherein the frequency component extraction means extracts the intensity of each frequency component by fast Fourier transform. 前記周波数成分抽出手段は、前記音源部から同時に送波され前記監視空間のうち経路長の異なる伝播経路を通して前記受波素子にそれぞれ伝播された複数の音波の各々から、各周波数成分の強度をそれぞれ抽出することを特徴とする請求項1ないし請求項6のいずれか1項に記載の火災感知器。   The frequency component extracting means transmits the intensity of each frequency component from each of a plurality of sound waves transmitted simultaneously from the sound source unit and propagated to the receiving element through propagation paths having different path lengths in the monitoring space. The fire detector according to claim 1, wherein the fire detector is extracted.
JP2007279705A 2007-10-26 2007-10-26 Fire detector Expired - Fee Related JP4894723B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2007279705A JP4894723B2 (en) 2007-10-26 2007-10-26 Fire detector
PCT/JP2008/069002 WO2009054359A1 (en) 2007-10-26 2008-10-21 Fire alarm system
CN2008801134078A CN101836244B (en) 2007-10-26 2008-10-21 Fire alarm system
US12/682,300 US8519854B2 (en) 2007-10-26 2008-10-21 Fire alarm system
EP08841498A EP2214146B8 (en) 2007-10-26 2008-10-21 Fire alarm system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007279705A JP4894723B2 (en) 2007-10-26 2007-10-26 Fire detector

Publications (2)

Publication Number Publication Date
JP2009110127A JP2009110127A (en) 2009-05-21
JP4894723B2 true JP4894723B2 (en) 2012-03-14

Family

ID=40778583

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007279705A Expired - Fee Related JP4894723B2 (en) 2007-10-26 2007-10-26 Fire detector

Country Status (1)

Country Link
JP (1) JP4894723B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5438595B2 (en) * 2010-05-24 2014-03-12 パナソニック株式会社 Fire detector
JP7319076B2 (en) 2019-04-11 2023-08-01 ホーチキ株式会社 sensor
CN112304829B (en) * 2020-09-11 2024-02-20 香港理工大学深圳研究院 Three-dimensional fire scene information detection and analysis method and system based on sound field change
CN114783140B (en) * 2022-04-21 2024-01-30 湖南大学 Non-contact fire monitoring system and method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58135956A (en) * 1982-02-08 1983-08-12 Central Res Inst Of Electric Power Ind Monitoring method of smoke by sound wave
JPS61180390A (en) * 1985-02-06 1986-08-13 芝浦メカトロニクス株式会社 Vending machine
JP4396333B2 (en) * 2004-03-11 2010-01-13 パナソニック株式会社 Disaster prevention alarm device
JP4893397B2 (en) * 2006-05-12 2012-03-07 パナソニック電工株式会社 Fire detector

Also Published As

Publication number Publication date
JP2009110127A (en) 2009-05-21

Similar Documents

Publication Publication Date Title
WO2007132671A1 (en) Smoke sensor of acoustic wave type
JP5166991B2 (en) Airborne particle measurement system
US8519854B2 (en) Fire alarm system
JP4894723B2 (en) Fire detector
JP2006220636A (en) Sonic wave sensor
JP2007024688A (en) Human body abnormality detection sensor, and information system using the same
JP5144457B2 (en) Fire detector
JP2007000121A (en) Apparatus for threatening small animal
JP4862533B2 (en) Airborne particle measurement system
JP4950842B2 (en) Airborne particle measurement system
JP4893397B2 (en) Fire detector
JP4894722B2 (en) Fire detector
JP5049209B2 (en) Fire detector
JP4950709B2 (en) Fire detector
JP4826631B2 (en) Sonic smoke detector
JP5438595B2 (en) Fire detector
JP4816524B2 (en) Fire detector
JP4894724B2 (en) Fire detector
JP5166827B2 (en) Airborne particle measurement system
JP4816526B2 (en) Fire detector
JP4816525B2 (en) Fire detector
JP5438596B2 (en) Fire detector
JP4678252B2 (en) Security system
JP2006064528A (en) Sensor system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100525

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100816

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111129

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111212

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150106

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees