JP5144457B2 - Fire detector - Google Patents

Fire detector Download PDF

Info

Publication number
JP5144457B2
JP5144457B2 JP2008263109A JP2008263109A JP5144457B2 JP 5144457 B2 JP5144457 B2 JP 5144457B2 JP 2008263109 A JP2008263109 A JP 2008263109A JP 2008263109 A JP2008263109 A JP 2008263109A JP 5144457 B2 JP5144457 B2 JP 5144457B2
Authority
JP
Japan
Prior art keywords
sound
pressure ratio
sound pressure
wave
source unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008263109A
Other languages
Japanese (ja)
Other versions
JP2010033534A (en
Inventor
祥文 渡部
由明 本多
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2008263109A priority Critical patent/JP5144457B2/en
Priority to PCT/JP2008/069002 priority patent/WO2009054359A1/en
Priority to CN2008801134078A priority patent/CN101836244B/en
Priority to US12/682,300 priority patent/US8519854B2/en
Priority to EP08841498A priority patent/EP2214146B8/en
Publication of JP2010033534A publication Critical patent/JP2010033534A/en
Application granted granted Critical
Publication of JP5144457B2 publication Critical patent/JP5144457B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、監視空間の煙濃度から火災の有無を判断する火災感知器に関するものである。   The present invention relates to a fire detector that determines the presence or absence of a fire from the smoke density in a monitoring space.

従来から、火災時などに発生する煙を感知する火災感知器として、散乱光式煙感知器(たとえば特許文献1参照)や、減光式煙感知器(たとえば特許文献2参照)が知られている。ここにおいて、散乱光式煙感知器は、発光ダイオード素子よりなる投光素子から監視空間に照射された光の煙粒子による散乱光をフォトダイオードよりなる受光素子で受光するように構成されたものであり、監視空間に煙粒子が存在すれば散乱光が生じることによって受光素子での受光量が増大するから、受光素子での受光量の増加量に基づいて煙粒子の存否を検知できる。一方、減光式煙感知器は、投光素子から照射された光を受光素子で直接受光するように構成されたものであり、投光素子と受光素子との間の監視空間に煙粒子が存在すれば受光素子の受光量が減少するから、受光素子での受光量の減光量に基づいて煙粒子の存否を検知できる。   2. Description of the Related Art Conventionally, as a fire detector that detects smoke generated in the event of a fire, a scattered light type smoke detector (see, for example, Patent Document 1) and a dimming smoke detector (see, for example, Patent Document 2) are known. Yes. Here, the scattered light type smoke detector is configured to receive light scattered by smoke particles of light irradiated to the monitoring space from a light projecting element made of a light emitting diode element by a light receiving element made of a photodiode. In addition, if smoke particles are present in the monitoring space, the amount of light received by the light receiving element is increased due to the generation of scattered light. Therefore, the presence or absence of smoke particles can be detected based on the amount of increase in the amount of light received by the light receiving element. On the other hand, the dimming smoke detector is configured so that light emitted from the light projecting element is directly received by the light receiving element, and smoke particles are generated in the monitoring space between the light projecting element and the light receiving element. If it exists, the amount of light received by the light receiving element is reduced, and therefore the presence or absence of smoke particles can be detected based on the amount of light received by the light receiving element.

ところで、散乱光式煙感知器は、迷光対策としてラビリンス体を設ける必要があるので、空気の流れが少ない場合には、火災発生時に監視空間へ煙粒子が侵入するまでの時間が長くなり、応答性に問題があった。また、減光式煙感知器においては、火災が発生していないにもかかわらずバックグランド光の影響で発報してしまう(非火災報が発生してしまう)ことがあるという問題があった。また、分離型の減光式煙感知器は、投光素子と受光素子との光軸を高精度に軸合わせする必要があり、施工に手間がかかるという問題があった。   By the way, the scattered light type smoke detector needs to be equipped with a labyrinth body as a countermeasure against stray light, so when there is little air flow, the time until smoke particles enter the monitoring space in the event of a fire increases, and the response There was a problem with sex. In addition, there is a problem that the dimming smoke detector may generate a report due to the influence of background light (a non-fire report will be generated) even though no fire has occurred. . In addition, the separate-type dimming smoke detector needs to align the optical axes of the light projecting element and the light receiving element with high accuracy, and there is a problem that it takes a lot of work.

上述した光電式の火災感知器の問題点を解決するために、本出願人は、音波(たとえば超音波)を用いて煙の存否を検知する火災感知器を提案している。   In order to solve the problems of the photoelectric fire detector described above, the present applicant has proposed a fire detector that detects the presence or absence of smoke using sound waves (for example, ultrasonic waves).

この火災感知器は、図19に示すように、音波を送波可能な音源部1と、音源部1を制御する制御部(図示せず)と、音源部1から送波された音波の音圧を検出する受波素子3と、受波素子3の出力に基づいて火災の有無を判別する信号処理部(図示せず)とを備える。信号処理部は、受波素子3の出力の基準値からの減衰量に基づいて音源部1と受波素子3との間の監視空間の煙濃度を推定する煙濃度推定手段と、推定された煙濃度と所定の閾値とを比較して火災の有無を判断する火災判断手段とを有する。すなわち、監視空間に煙粒子が入り込むと音源部1からの音波は受波素子3に到達するまでに音圧が低下し、受波素子3の出力の減衰量は監視空間の煙濃度に略比例して増加するので、この減衰量に基づき煙濃度を推定することで、火災の有無を判断することができる。   As shown in FIG. 19, the fire detector includes a sound source unit 1 capable of transmitting sound waves, a control unit (not shown) that controls the sound source unit 1, and sound waves of sound waves transmitted from the sound source unit 1. A wave receiving element 3 that detects pressure and a signal processing unit (not shown) that determines the presence or absence of a fire based on the output of the wave receiving element 3 are provided. The signal processing unit is estimated by smoke concentration estimation means for estimating the smoke concentration in the monitoring space between the sound source unit 1 and the wave receiving element 3 based on the attenuation amount from the reference value of the output of the wave receiving element 3. Fire determining means for comparing the smoke concentration with a predetermined threshold value to determine whether or not there is a fire. That is, when smoke particles enter the monitoring space, the sound pressure from the sound source unit 1 decreases until the sound wave reaches the receiving element 3, and the attenuation of the output of the receiving element 3 is approximately proportional to the smoke concentration in the monitoring space. Therefore, it is possible to determine the presence or absence of a fire by estimating the smoke density based on this attenuation.

上述の音波式の火災感知器では、光電式の火災感知器で問題となるバックグランド光の影響をなくすことができ、散乱光式煙感知器に必要なラビリンス体を不要とすることができて火災発生時に監視空間へ煙粒子が拡散しやすくなるから、散乱光式煙感知器に比べて応答性を向上でき、また、減光式煙感知器に比べて非火災報の低減が可能になる。   In the above-mentioned sonic fire detector, the influence of background light, which is a problem with photoelectric fire detectors, can be eliminated, and the labyrinth required for the scattered light smoke detector can be eliminated. Smoke particles easily diffuse into the monitoring space in the event of a fire, improving responsiveness compared to scattered light smoke detectors and reducing non-fire reports compared to dimming smoke detectors. .

ただ、上述した音波式の火災感知器では、音源部1や受波素子3の経時変化(たとえば、経年劣化)や周囲環境の変化(たとえば、温度、湿度、気圧などの変化)に起因して音源部1や受波素子3に特性変化が生じ、監視空間の煙濃度にかかわらず受波素子3の出力の基準値からの減衰量が変動することで、結果的に非火災報や失報を生じる可能性がある。   However, in the above-described sound wave type fire detector, it is caused by a change over time (for example, aging degradation) of the sound source unit 1 or the wave receiving element 3 or a change in the surrounding environment (for example, change in temperature, humidity, atmospheric pressure, etc.). A characteristic change occurs in the sound source unit 1 and the wave receiving element 3, and the attenuation from the reference value of the output of the wave receiving element 3 fluctuates regardless of the smoke density in the monitoring space. May occur.

そこで、本出願人は、それぞれ経路長の異なる伝播経路を通して音源部1から受波素子3に伝播された複数の音波間の音圧比を算出する音圧比算出手段を信号処理部に付加し、煙濃度推定手段において前記音圧比の初期値からの変化量に基づき監視空間の煙濃度を推定する構成をさらに考えている。具体的には、互いに離間距離の異なる2組の音源部1a,1b(図1参照)および受波素子3a,3b(図1参照)を設け、経路長Lの伝播経路を通して一方の音源部1aから受波素子3aに伝わる音波の音圧と、経路長L(>L)の伝播経路を通して他方の音源部1bから受波素子3bに伝わる音波の音圧との比を音圧比として音圧比算出手段で算出する。 Therefore, the present applicant adds a sound pressure ratio calculating means for calculating a sound pressure ratio between a plurality of sound waves propagated from the sound source unit 1 to the wave receiving element 3 through propagation paths having different path lengths, and adds smoke pressure to the signal processing unit. A configuration is further considered in which the smoke estimation in the monitoring space is estimated based on the amount of change from the initial value of the sound pressure ratio in the density estimation means. Specifically, two sets of the tone generator section 1a having different distances from one another, 1b (see FIG. 1) and wave receiving element 3a, 3b provided (see FIG. 1), one of the tone generator section through the propagation path of the path length L 1 The ratio of the sound pressure of the sound wave transmitted from 1a to the wave receiving element 3a and the sound pressure of the sound wave transmitted from the other sound source unit 1b to the wave receiving element 3b through the propagation path of the path length L 2 (> L 1 ) is defined as the sound pressure ratio. Calculated by sound pressure ratio calculation means.

この構成では、経時変化や周囲環境の変化に応じて音源部1や受波素子3に特性変化が生じたとしても、当該特性変化は伝播経路長の異なる前記複数の音波に一律に影響するため、音圧比算出手段で算出される音圧比に影響することはない。したがって、前記音圧比の初期値からの変化量に基づいて煙濃度を推定する煙濃度推定手段においては、経時変化や周囲環境の変化に起因した音源部1や受波素子3の特性変化の影響を受けることなく煙濃度を推定することができ、結果的に、音源部1や受波素子3に生じる前記特性変化の影響で非火災報や失報を生じることはない。
特開2001−34862号公報 特開昭61−33595号公報
In this configuration, even if a characteristic change occurs in the sound source unit 1 or the receiving element 3 according to a change with time or a change in the surrounding environment, the characteristic change uniformly affects the plurality of sound waves having different propagation path lengths. The sound pressure ratio calculated by the sound pressure ratio calculating means is not affected. Therefore, in the smoke density estimation means for estimating the smoke density based on the amount of change from the initial value of the sound pressure ratio, the influence of changes in the characteristics of the sound source unit 1 and the receiving element 3 due to changes over time and changes in the surrounding environment. The smoke concentration can be estimated without being subjected to the noise, and as a result, the non-fire report or the misreport is not caused by the influence of the characteristic change generated in the sound source unit 1 or the wave receiving element 3.
JP 2001-34862 A JP 61-33595 A

ところで、音波は空気中を伝播する際、空気中における吸収減衰および拡散減衰により音圧が低下するため、音波式の火災感知器では、音源部1から送波された音波は受波素子3に到達するまでの間に音圧が低下する。ここに、吸収減衰および拡散減衰による音圧の低下率B,Bはいずれも伝播経路の経路長xの関数として表すことができ、吸収減衰による音圧低下率BはB=e−α・x、拡散減衰による音圧低下率Bは1/(2πx)で表される。要するに、音源部1から送波される音波の音圧をPとすれば、受波素子3で受波される音圧Pは、以下の式で表される。 By the way, when the sound wave propagates in the air, the sound pressure decreases due to absorption attenuation and diffusion attenuation in the air. Therefore, in the sound wave type fire detector, the sound wave transmitted from the sound source unit 1 is transmitted to the wave receiving element 3. The sound pressure decreases until it reaches. Here, drop rate B 1 of the sound pressure due to absorption attenuation and diffusion damping, B 2 can be either expressed as a function of the path length x of the propagation path, the sound pressure reduction rate B 1 due to absorption decay B 1 = e -Α · x , the sound pressure decrease rate B 2 due to diffusion attenuation is expressed by 1 / (2πx). In short, if the sound pressure of the sound wave transmitted from the sound source unit 1 is P 0 , the sound pressure P x received by the wave receiving element 3 is expressed by the following equation.

Figure 0005144457
Figure 0005144457

ここにおいて、上式中のαは空気による音波の吸収減衰の減衰係数であって、当該減衰係数αは、媒質となる空気の温度、湿度、気圧と、音波の周波数との関数で表されることが知られている(参考文献1:H.E.Bass 外、「Atmospheric absorption ofsound:Further developments」、The Journal of theAcoustical Society of America、1995、Volume 97、Issue 1、p.680−683)。そのため、前記減衰係数αは、周囲環境の変化(たとえば、温度、湿度、気圧などの変化)に起因して変化することがある。   Here, α in the above formula is an attenuation coefficient of absorption and attenuation of sound waves by air, and the attenuation coefficient α is expressed as a function of the temperature, humidity, and atmospheric pressure of air as a medium and the frequency of sound waves. (Reference 1: HEBass et al., “Atmospheric absorption of sound: Further developments”, The Journal of the Acoustic Society of America, 1995, Volume 97, Issue 1, p. 680-683). Therefore, the attenuation coefficient α may change due to changes in the surrounding environment (for example, changes in temperature, humidity, atmospheric pressure, etc.).

そして、減衰係数αが変化すると、監視空間の煙濃度にかかわらず前記音圧比が変動することがある。すなわち、減衰係数αが変化したときに、受波素子3で受波される音波の吸収減衰による音圧低下率Bは変化するが、伝播経路の経路長xが異なる複数の音波間では前記音圧低下率Bの変化量に差が生じるので、減衰係数αが変化することで前記音圧比が変動し、結果的に非火災報や失報を生じる可能性がある。 When the attenuation coefficient α changes, the sound pressure ratio may vary regardless of the smoke density in the monitoring space. That is, when the attenuation coefficient α is changed, the sound pressure reduction rate B 1 due to absorption attenuation of sound waves received at the wave receiving element 3 varies, the across multiple acoustic path length x is different propagation paths since a difference in amount of change sound pressure reduction rate B 1 is generated, the sound pressure ratio varies by the attenuation coefficient α is changed, resulting in can cause non-fire report or loss report.

本発明は上記事由に鑑みて為されたものであって、周囲環境の変化に起因した減衰係数の変化の影響で非火災報や失報を生じることのない火災感知器を提供することを目的とする。   The present invention has been made in view of the above-described reasons, and an object thereof is to provide a fire detector that does not cause non-fire reports or misreports due to the influence of changes in the attenuation coefficient due to changes in the surrounding environment. And

請求項1の発明は、音波を送波可能な音源部と、音源部を制御する制御部と、音源部から送波された音波の音圧を検出する受波素子と、受波素子の出力に基づいて火災の有無を判断する信号処理部とを備え、信号処理部が、音源部と受波素子との間の監視空間のうち経路長の異なる伝播経路を通して音源部から受波素子にそれぞれ伝播された複数の音波間の音圧比を算出する音圧比算出手段と、音圧比算出手段で算出される音圧比に基づいて監視空間の煙濃度を推定し、当該煙濃度と所定の閾値とを比較して火災の有無を判断する火災判断手段と、煙がない状態での前記監視空間における音波の吸収減衰の減衰係数を推定する減衰係数推定手段と、減衰係数推定手段で推定される減衰係数に基づき、当該減衰係数の変化に起因する前記音圧比の変動分を取り除くように前記音圧比を補正する音圧比補正手段とを有することを特徴とする。   The invention according to claim 1 is a sound source unit capable of transmitting sound waves, a control unit for controlling the sound source unit, a wave receiving element for detecting sound pressure of sound waves transmitted from the sound source unit, and an output of the wave receiving element A signal processing unit for determining the presence or absence of a fire based on the signal processing unit from the sound source unit to the receiving element through propagation paths having different path lengths in the monitoring space between the sound source unit and the receiving element. A sound pressure ratio calculating unit that calculates a sound pressure ratio between a plurality of propagated sound waves, a smoke concentration in the monitoring space is estimated based on the sound pressure ratio calculated by the sound pressure ratio calculating unit, and the smoke concentration and a predetermined threshold value are calculated. A fire judgment means for judging the presence or absence of a fire by comparison, an attenuation coefficient estimation means for estimating an attenuation coefficient of absorption attenuation of sound waves in the monitoring space in the absence of smoke, and an attenuation coefficient estimated by the attenuation coefficient estimation means The sound pressure ratio due to the change in the attenuation coefficient And having a sound pressure ratio correcting means for correcting the sound pressure ratio to remove the variation.

この構成によれば、減衰係数推定手段は、監視空間での空気による音波の吸収減衰の減衰係数を推定し、音圧比補正手段では、前記減衰係数の変化に起因する音圧比の変動分を取り除くように音圧比を補正するので、周囲環境の変化に起因して減衰係数が変化することがあっても、当該減衰係数の変化による音圧比の変化は推定される煙濃度には影響しない。結果的に、周囲環境の変化に起因した減衰係数の変化が非火災報や失報の原因となることはない。   According to this configuration, the attenuation coefficient estimating means estimates the attenuation coefficient of the sound wave absorption attenuation by air in the monitoring space, and the sound pressure ratio correcting means removes the fluctuation of the sound pressure ratio due to the change of the attenuation coefficient. Since the sound pressure ratio is corrected in this way, even if the attenuation coefficient changes due to a change in the surrounding environment, the change in the sound pressure ratio due to the change in the attenuation coefficient does not affect the estimated smoke density. As a result, changes in the attenuation coefficient due to changes in the surrounding environment will not cause non-fire reports or misreports.

請求項2の発明は、請求項1の発明において、前記信号処理部が、前記監視空間における温度と湿度と気圧との少なくとも1つをパラメータとして計測するパラメータ取得手段を具備し、前記減衰係数推定手段は、前記パラメータを用いて前記減衰係数を推定することを特徴とする。   According to a second aspect of the present invention, in the first aspect of the invention, the signal processing unit includes parameter acquisition means for measuring at least one of temperature, humidity, and atmospheric pressure in the monitoring space as a parameter, and the attenuation coefficient estimation. The means is characterized by estimating the attenuation coefficient using the parameter.

この構成によれば、監視空間における温度と湿度と気圧との少なくとも1つをパラメータとして減衰係数を推定するので、比較的簡単な方法で取得可能なパラメータを用いながらも、減衰係数を精度よく推定することができる。   According to this configuration, the attenuation coefficient is estimated using at least one of temperature, humidity, and atmospheric pressure in the monitoring space as parameters, so the attenuation coefficient can be estimated accurately while using parameters that can be acquired by a relatively simple method. can do.

請求項3の発明は、請求項2の発明において、前記パラメータ取得手段が、前記監視空間の温度を計測する温度計測手段と、前記監視空間の音速を求める音速計測手段とを有し、前記減衰係数推定手段が、温度計測手段で計測される温度と、当該温度および音速計測手段で求められる音速から算出される湿度とを前記パラメータとして用いることを特徴とする。   According to a third aspect of the present invention, in the second aspect of the invention, the parameter acquisition unit includes a temperature measurement unit that measures a temperature of the monitoring space, and a sound speed measurement unit that determines a sound speed of the monitoring space, and the attenuation. The coefficient estimating means uses the temperature measured by the temperature measuring means and the humidity calculated from the temperature and the sound speed obtained by the sound speed measuring means as the parameters.

この構成によれば、温度計測手段で計測される温度および音速計測手段で求められる音速から湿度を算出しているので、湿度を計測するための新たなデバイスを付加する必要がないという利点がある。   According to this configuration, since the humidity is calculated from the temperature measured by the temperature measuring unit and the sound speed obtained by the sound speed measuring unit, there is an advantage that it is not necessary to add a new device for measuring the humidity. .

請求項4の発明は、請求項1ないし請求項3のいずれかの発明において、前記音源部から送波された音波の進行方向において互いに対向するように配置されそれぞれ音波を反射する一対の反射面が設けられており、前記音源部および前記受波素子が各反射面上にそれぞれ配置され、各反射面が、前記音源部からの音波を集音する形に湾曲した凹曲面からなり、前記音圧比算出手段が、前記音源部から前記受波素子に直接伝播される音波と反射面で反射されて前記受波素子に伝播される音波との間の音圧比を算出し、前記信号処理部が、前記監視空間における音速を求める音速計測手段を有し、前記音圧比補正手段が、音速計測手段で得られた音速に基づき、当該音速の変化に起因する前記音圧比の変動分を取り除くように前記音圧比を補正することを特徴とする。   According to a fourth aspect of the present invention, in any one of the first to third aspects, the pair of reflecting surfaces are arranged so as to face each other in the traveling direction of the sound wave transmitted from the sound source unit and reflect the sound wave, respectively. The sound source unit and the wave receiving element are respectively disposed on each reflection surface, and each reflection surface is formed of a concave curved surface curved to collect sound waves from the sound source unit. A pressure ratio calculating unit calculates a sound pressure ratio between a sound wave directly propagated from the sound source unit to the wave receiving element and a sound wave reflected by a reflecting surface and propagated to the wave receiving element; and the signal processing unit And a sound speed measuring means for obtaining a sound speed in the monitoring space, and the sound pressure ratio correcting means removes the fluctuation of the sound pressure ratio due to the change in the sound speed based on the sound speed obtained by the sound speed measuring means. Correct the sound pressure ratio It is characterized in.

この構成によれば、単一の音源部から送波された音波を経路長の異なる伝播経路を通して単一の受波素子に伝播させることができ、単一の音源部から送波され単一の受波素子で受波される複数の音波間の音圧比を算出することができる。したがって、算出される音圧比は複数の音源部間に生じる特性変化のばらつきの影響や、複数の受波素子間に生じる特性変化のばらつきの影響を受けることがなく、結果的に音圧比の算出精度が向上する。しかも、音源部から同時に送波された音波について音圧比を算出するので、算出される音圧比は音源部の駆動タイミングによって生じる音圧のばらつきの影響を受けることもない。さらに、反射面を用いることにより経路長に対して相対的に火災感知器の小型化を図ることができる。また、各反射面が、前記音源部からの音波を集音する形に湾曲した凹曲面からなるから、反射面での反射を繰り返しても音波が拡散しにくく、したがって、音源部と受波素子との間における音波の拡散による音圧の低下を抑制することができる。その結果、監視空間中に煙粒子がない状態において受波素子で受波される音波の音圧を高く維持でき、煙濃度の変化量に対する受波素子の出力の変化量が比較的大きくなり、SN比が向上するという利点がある。   According to this configuration, sound waves transmitted from a single sound source unit can be propagated to a single receiving element through propagation paths having different path lengths. A sound pressure ratio between a plurality of sound waves received by the receiving element can be calculated. Therefore, the calculated sound pressure ratio is not affected by variations in characteristic changes that occur between multiple sound source units or variations in characteristics that occur between multiple receiving elements, and as a result, the sound pressure ratio is calculated. Accuracy is improved. In addition, since the sound pressure ratio is calculated for the sound waves simultaneously transmitted from the sound source unit, the calculated sound pressure ratio is not affected by variations in sound pressure caused by the driving timing of the sound source unit. Further, the use of the reflective surface can reduce the size of the fire detector relative to the path length. In addition, since each reflection surface is formed of a concave curved surface that is curved to collect sound waves from the sound source unit, sound waves are not easily diffused even if reflection on the reflection surface is repeated, and therefore the sound source unit and the receiving element Decrease in sound pressure due to diffusion of sound waves between the two can be suppressed. As a result, the sound pressure of the sound wave received by the wave receiving element in a state where there is no smoke particle in the monitoring space can be maintained high, and the amount of change in the output of the wave receiving element with respect to the amount of change in smoke concentration is relatively large, There is an advantage that the SN ratio is improved.

請求項5の発明は、請求項3または請求項4の発明において、前記音速計測手段が、前記音圧比算出手段において前記音圧比の算出対象となる複数の音波に関する前記伝播経路の経路長の差を、前記複数の音波がそれぞれ前記音源部から前記受波素子に伝播されるのに要した時間差で除することにより前記音速を算出することを特徴とする。   According to a fifth aspect of the present invention, in the third or fourth aspect of the present invention, the sound speed measurement unit is configured to detect a difference in path lengths of the propagation paths related to a plurality of sound waves to be calculated by the sound pressure ratio calculation unit. The sound speed is calculated by dividing the plurality of sound waves by the time difference required for each of the plurality of sound waves to be propagated from the sound source unit to the receiving element.

この構成によれば、音圧比を算出するために受波素子で検出される複数の音波を利用して監視空間の音速を算出することができるので、音速を計測するために新たなデバイスを付加する必要がないという利点がある。   According to this configuration, the sound speed of the monitoring space can be calculated using a plurality of sound waves detected by the receiving element to calculate the sound pressure ratio, so a new device is added to measure the sound speed. There is an advantage that there is no need to do.

請求項6の発明は、請求項2または請求項3の発明において、前記受波素子が、互いに対向配置された固定電極および可動電極と、気圧が一定に維持されている基準圧室と前記監視空間とを隔てる隔壁を有し、可動電極が前記隔壁の一部に配設され、隔壁が監視空間側から音波を受けることで可動電極と固定電極との距離が変化し可動電極と固定電極との間の静電容量が変化する静電容量型受波素子からなり、前記パラメータ取得手段が、前記静電容量の変化に基づいて前記監視空間の気圧を計測する気圧計測手段を具備することを特徴とする。   According to a sixth aspect of the present invention, in the second or third aspect of the present invention, the receiving element includes a fixed electrode and a movable electrode arranged to face each other, a reference pressure chamber in which an atmospheric pressure is maintained constant, and the monitoring A partition wall that separates the space, the movable electrode is disposed in a part of the partition wall, and the partition wall receives a sound wave from the monitoring space side to change the distance between the movable electrode and the fixed electrode, A capacitance type receiving element that changes in capacitance between the parameters, and the parameter acquisition unit includes a barometric pressure measurement unit that measures a barometric pressure in the monitoring space based on the change in the capacitance. Features.

この構成によれば、受波素子の出力を利用して監視空間の気圧を計測しているので、気圧を計測するための新たなデバイスを付加する必要がないという利点がある。   According to this configuration, since the atmospheric pressure in the monitoring space is measured using the output of the wave receiving element, there is an advantage that it is not necessary to add a new device for measuring the atmospheric pressure.

請求項7の発明は、請求項1ないし請求項6のいずれかの発明において、前記音源部から送波された音波の進行方向において互いに対向するように配置されそれぞれ音波を反射する一対の反射面が設けられており、前記音源部および前記受波素子は各反射面上にそれぞれ配置され、前記音圧比算出手段が、前記音源部から前記受波素子に直接伝播される音波である直接波と反射面で反射されて前記受波素子に伝播される音波である反射波との間の音圧比を算出し、前記信号処理部が、前記直接波と反射面での反射回数の異なる複数の前記反射波との音圧に基づいて反射面における音波の反射率に関する値を推定する反射率変化推定手段と、反射率変化推定手段で推定される値に基づき、前記反射率の変化に起因する前記音圧比の変動分を取り除くように前記音圧比を補正する反射率変化補正手段とを有することを特徴とする。   A seventh aspect of the present invention is the method according to any one of the first to sixth aspects, wherein the pair of reflecting surfaces are arranged so as to face each other in the traveling direction of the sound wave transmitted from the sound source unit and reflect the sound wave, respectively. The sound source unit and the wave receiving element are respectively disposed on each reflecting surface, and the sound pressure ratio calculating means is a direct wave that is a sound wave directly propagated from the sound source unit to the wave receiving element. A sound pressure ratio between a reflected wave that is a sound wave reflected by a reflecting surface and propagated to the receiving element is calculated, and the signal processing unit has a plurality of the different numbers of reflections on the direct wave and the reflecting surface. Reflectance change estimation means for estimating a value related to the reflectance of the sound wave on the reflection surface based on the sound pressure with the reflected wave, and based on the value estimated by the reflectance change estimation means, the change resulting from the change in reflectance Taking the fluctuation of the sound pressure ratio And having a reflectivity change correction means for correcting the sound pressure ratio moves easily.

この構成によれば、反射率変化推定手段は、反射面における音波の反射率に関する値を推定し、反射率変化補正手段では、前記反射率の変化に起因する音圧比の変動分を取り除くように音圧比を補正するので、周囲環境の変化、あるいは反射面の経年劣化や反射面の汚れ等に起因して反射面の反射率が変化することがあっても、当該反射率の変化による音圧比の変化は推定される煙濃度には影響しない。結果的に、周囲環境の変化、あるいは反射面の経年劣化や反射面の汚れ等に起因した反射面の反射率が、非火災報や失報の原因となることはない。なお、反射面の経年劣化や反射面の汚れ等に起因した反射率の変化は、減衰係数の変化とは異なり、監視空間における温度、湿度、気圧をパラメータに用いて推定することはできないが、音源部から受波素子に直接伝播される直接波の音圧と反射面で反射されてから受波素子に伝播される複数の反射波の音圧とを用いれば推定することが可能である。   According to this configuration, the reflectance change estimation means estimates a value related to the reflectance of the sound wave on the reflection surface, and the reflectance change correction means removes the fluctuation of the sound pressure ratio due to the change in reflectance. Since the sound pressure ratio is corrected, even if the reflectivity of the reflective surface may change due to changes in the surrounding environment, aging of the reflective surface, dirt on the reflective surface, etc., the sound pressure ratio due to the change in the reflectivity Changes in do not affect the estimated smoke density. As a result, the reflectivity of the reflecting surface due to changes in the surrounding environment, aging deterioration of the reflecting surface, dirt on the reflecting surface, etc. does not cause non-fire reports or missing reports. In addition, the change in reflectance due to aging of the reflecting surface and dirt on the reflecting surface cannot be estimated using the temperature, humidity, and pressure in the monitoring space as parameters, unlike the change in attenuation coefficient. It can be estimated by using the sound pressure of the direct wave directly propagated from the sound source unit to the wave receiving element and the sound pressure of a plurality of reflected waves reflected by the reflection surface and then propagated to the wave receiving element.

本発明は、周囲環境の変化に起因した減衰係数の変化の影響で非火災報や失報を生じることがないという効果がある。   The present invention has an effect that non-fire reports and misreports do not occur due to the influence of a change in attenuation coefficient due to a change in the surrounding environment.

(実施形態1)
本実施形態の火災感知器は、図1に示すように、超音波を送波可能な一対の音源部1a,1b(以下、両音源部1a,1bを特に区別しないときは音源部1という)と、音源部1a,1bを制御する制御部2と、各音源部1a,1bから送波された超音波の音圧を検出する一対の受波素子3a,3b(以下、両受波素子3a,3bを特に区別しないときは受波素子3という)と、各受波素子3a,3bの出力に基づいて火災の有無を判断する信号処理部4とを備えている。なお、ここでは超音波を送受波する音源部1および受波素子3を採用しているが、音源部1および受波素子3は、超音波に限らず音波を送受波するものであればよい。
(Embodiment 1)
As shown in FIG. 1, the fire detector of the present embodiment has a pair of sound source units 1a and 1b capable of transmitting ultrasonic waves (hereinafter referred to as the sound source unit 1 when the sound source units 1a and 1b are not particularly distinguished). A control unit 2 that controls the sound source units 1a and 1b, and a pair of wave receiving elements 3a and 3b that detect the sound pressure of the ultrasonic waves transmitted from the sound source units 1a and 1b (hereinafter, both wave receiving elements 3a). , 3b is referred to as a receiving element 3) and a signal processing unit 4 that determines the presence or absence of a fire based on the output of each of the receiving elements 3a, 3b. Here, the sound source unit 1 and the wave receiving element 3 that transmit and receive ultrasonic waves are employed. However, the sound source unit 1 and the wave receiving element 3 are not limited to ultrasonic waves, but may be anything that transmits and receives sound waves. .

ここにおいて、音源部1と受波素子3とは、第1の音源部1aと第1の受波素子3aとを組とし、第2の音源部1bと第2の受波素子3bとを組として、円盤状のプリント基板からなる回路基板5(図19参照)の一表面側に、各組を成す音源部1a,1bと受波素子3a,3bとが互いに離間して対向配置されている。回路基板5には制御部2および信号処理部4が設けられている。また、回路基板5の上記一表面には、音源部1から送波された超音波の反射を防止する吸音層(図示せず)が設けられているので、音源部1から送波された超音波が回路基板5で反射して受波素子3に入射するのを防止することができて、反射波の干渉を防止することができ、特に、音源部1から送波させる超音波として連続波を用いる場合に有効である。   Here, the sound source unit 1 and the receiving element 3 are a set of the first sound source unit 1a and the first receiving element 3a, and the second sound source unit 1b and the second receiving element 3b. As shown, the sound source portions 1a and 1b and the wave receiving elements 3a and 3b constituting the respective pairs are arranged to be opposed to each other on one surface side of the circuit board 5 (see FIG. 19) made of a disk-shaped printed board. . The circuit board 5 is provided with a control unit 2 and a signal processing unit 4. In addition, a sound absorbing layer (not shown) for preventing the reflection of the ultrasonic wave transmitted from the sound source unit 1 is provided on the one surface of the circuit board 5, so that the super wave transmitted from the sound source unit 1 is provided. A sound wave can be prevented from being reflected by the circuit board 5 and incident on the wave receiving element 3, and interference of the reflected wave can be prevented. In particular, a continuous wave is transmitted as an ultrasonic wave transmitted from the sound source unit 1. It is effective when using.

本実施形態では、音源部1として、後述のように空気に熱衝撃を与えることで超音波を発生させる音波発生素子を用いることで、圧電素子に比べて残響時間が短い超音波を送波するようにし、且つ、受波素子として、共振特性のQ値が圧電素子に比べて十分に小さく受波信号に含まれる残響成分の発生期間が短い静電容量型のマイクロホンを用いている。   In the present embodiment, a sound wave generating element that generates an ultrasonic wave by applying a thermal shock to air as described later is used as the sound source unit 1 to transmit an ultrasonic wave having a reverberation time shorter than that of a piezoelectric element. In addition, as the receiving element, a capacitance type microphone is used in which the Q value of the resonance characteristics is sufficiently smaller than that of the piezoelectric element and the generation period of the reverberation component included in the received signal is short.

ここにおいて、音源部1は、図2に示すように、単結晶のp形のシリコン基板からなるベース基板11の一表面(図2における上面)側に多孔質シリコン層からなる熱絶縁層(断熱層)12が形成され、熱絶縁層12の表面側に発熱体部として金属薄膜からなる発熱体層13が形成され、ベース基板11の上記一表面側に発熱体層13と電気的に接続された一対のパッド14,14が形成されている。なお、ベース基板11の平面形状は矩形状であって、熱絶縁層12、発熱体層13それぞれの平面形状も矩形状に形成してある。また、ベース基板11の上記一表面側において熱絶縁層12が形成されていない部分の表面にはシリコン酸化膜からなる絶縁膜(図示せず)が形成されている。   Here, as shown in FIG. 2, the sound source unit 1 includes a heat insulating layer (heat insulation) made of a porous silicon layer on one surface (upper surface in FIG. 2) side of a base substrate 11 made of a single crystal p-type silicon substrate. Layer) 12 is formed, and a heating element layer 13 made of a metal thin film is formed on the surface side of the heat insulating layer 12 as a heating element portion, and is electrically connected to the heating element layer 13 on the one surface side of the base substrate 11. A pair of pads 14 and 14 are formed. The planar shape of the base substrate 11 is a rectangular shape, and the planar shapes of the thermal insulating layer 12 and the heating element layer 13 are also rectangular. An insulating film (not shown) made of a silicon oxide film is formed on the surface of the base substrate 11 where the thermal insulating layer 12 is not formed on the one surface side.

上述の音源部1では、発熱体層13の両端のパッド14,14間に通電して発熱体層13に急激な温度変化を生じさせると、発熱体層13に接触している空気(媒質)に急激な温度変化(熱衝撃)が生じる(つまり、発熱体層13に接触している空気に熱衝撃が与えられる)。したがって、発熱体層13に接触している空気は、発熱体層13の温度上昇時には膨張し発熱体層13の温度下降時には収縮するから、発熱体層13への通電を適宜に制御することによって空気中を伝播する超音波を発生させることができる。要するに、音源部1を構成する音波発生素子は、発熱体層13への通電に伴う発熱体層13の急激な温度変化を媒質の膨張収縮に変換することにより媒質を伝播する超音波を発生するので、圧電素子のように機械的振動により超音波を発生する場合に比べて、残響の少ない単パルス状の超音波を送波させることができる。   In the above-described sound source unit 1, when current is passed between the pads 14 and 14 at both ends of the heating element layer 13 to cause a sudden temperature change in the heating element layer 13, the air (medium) that is in contact with the heating element layer 13. A sudden temperature change (thermal shock) occurs (that is, a thermal shock is applied to the air in contact with the heating element layer 13). Accordingly, the air in contact with the heating element layer 13 expands when the temperature of the heating element layer 13 rises and contracts when the temperature of the heating element layer 13 decreases. Therefore, by appropriately controlling energization to the heating element layer 13 Ultrasonic waves propagating in the air can be generated. In short, the sound wave generating element constituting the sound source unit 1 generates an ultrasonic wave propagating through the medium by converting a rapid temperature change of the heat generating body layer 13 accompanying energization to the heat generating body layer 13 into expansion and contraction of the medium. Therefore, it is possible to transmit single-pulse ultrasonic waves with less reverberation compared to the case where ultrasonic waves are generated by mechanical vibration like a piezoelectric element.

上述の音源部1は、ベース基板11としてp形のシリコン基板を用いており、熱絶縁層12を多孔度が略60〜略70%の多孔質シリコン層からなる多孔質層により構成しているので、ベース基板11として用いるシリコン基板の一部をフッ化水素水溶液とエタノールとの混合液からなる電解液中で陽極酸化処理することにより熱絶縁層12となる多孔質シリコン層を形成することができる(ここで、陽極酸化処理により形成された多孔質シリコン層は、結晶粒径がナノメータオーダの微結晶シリコンからなるナノ結晶シリコンを多数含んでいる)。多孔質シリコン層は、多孔度が高くなるにつれて熱伝導率および熱容量が小さくなるので、熱絶縁層12の熱伝導率および熱容量をベース基板11の熱伝導率および熱容量に比べて小さくし、熱絶縁層12の熱伝導率と熱容量との積をベース基板11の熱伝導率と熱容量との積に比べて十分に小さくすることにより、発熱体層13の温度変化を空気に効率よく伝達することができ発熱体層13と空気との間で効率的な熱交換が起こり、且つ、ベース基板11が熱絶縁層12からの熱を効率よく受け取って熱絶縁層12の熱を逃がすことができて発熱体層13からの熱が熱絶縁層12に蓄積されるのを防止することができる。なお、熱伝導率が148W/(m・K)、熱容量が1.63×10J/(m・K)の単結晶のシリコン基板を陽極酸化して形成される多孔度が60%の多孔質シリコン層は、熱伝導率が1W/(m・K)、熱容量が0.7×10J/(m・K)であることが知られている。本実施形態では、熱絶縁層12を多孔度が略70%の多孔質シリコン層により構成してあり、熱絶縁層12の熱伝導率が0.12W/(m・K)、熱容量が0.5×10J/(m・K)となっている。 In the sound source unit 1 described above, a p-type silicon substrate is used as the base substrate 11, and the heat insulating layer 12 is formed of a porous layer made of a porous silicon layer having a porosity of about 60 to about 70%. Therefore, a porous silicon layer serving as the thermal insulating layer 12 can be formed by anodizing a part of the silicon substrate used as the base substrate 11 in an electrolytic solution composed of a mixed solution of hydrogen fluoride and ethanol. (Here, the porous silicon layer formed by the anodic oxidation treatment contains a large number of nanocrystalline silicon composed of microcrystalline silicon having a crystal grain size on the order of nanometers). Since the porous silicon layer has a lower thermal conductivity and heat capacity as the porosity becomes higher, the thermal conductivity and heat capacity of the heat insulating layer 12 are made smaller than the heat conductivity and heat capacity of the base substrate 11, and heat insulation is performed. By making the product of the thermal conductivity and heat capacity of the layer 12 sufficiently smaller than the product of the thermal conductivity and heat capacity of the base substrate 11, the temperature change of the heating element layer 13 can be efficiently transmitted to the air. In addition, efficient heat exchange occurs between the heating element layer 13 and the air, and the base substrate 11 can efficiently receive the heat from the heat insulating layer 12 and release the heat of the heat insulating layer 12 to generate heat. It is possible to prevent heat from the body layer 13 from being accumulated in the heat insulating layer 12. Note that the porosity formed by anodizing a single crystal silicon substrate having a thermal conductivity of 148 W / (m · K) and a heat capacity of 1.63 × 10 6 J / (m 3 · K) is 60%. The porous silicon layer is known to have a thermal conductivity of 1 W / (m · K) and a heat capacity of 0.7 × 10 6 J / (m 3 · K). In this embodiment, the heat insulating layer 12 is composed of a porous silicon layer having a porosity of approximately 70%, the heat conductivity of the heat insulating layer 12 is 0.12 W / (m · K), and the heat capacity is 0.00. It is 5 × 10 6 J / (m 3 · K).

発熱体層13は、高融点金属の一種であるタングステンにより形成してあるが、発熱体層13の材料はタングステンに限らず、たとえば、タンタル、モリブデン、イリジウム、アルミニウムなどを採用してもよい。また、上述の音源部1では、ベース基板11の厚さを300〜700μm、熱絶縁層12の厚さを1〜10μm、発熱体層13の厚さを20〜100nm、各パッド14の厚さを0.5μmとしてあるが、これらの厚さは一例であって特に限定するものではない。また、ベース基板11の材料としてSiを採用しているが、ベース基板11の材料はSiに限らず、たとえば、Ge、SiC、GaP、GaAs、InPなどの陽極酸化処理による多孔質化が可能な他の半導体材料でもよく、いずれの場合にも、ベース基板11の一部を多孔質化することで形成した多孔質層を熱絶縁層12とすることができる。   The heating element layer 13 is made of tungsten, which is a kind of refractory metal, but the material of the heating element layer 13 is not limited to tungsten, and for example, tantalum, molybdenum, iridium, aluminum, or the like may be adopted. In the sound source unit 1 described above, the thickness of the base substrate 11 is 300 to 700 μm, the thickness of the heat insulating layer 12 is 1 to 10 μm, the thickness of the heating element layer 13 is 20 to 100 nm, and the thickness of each pad 14. However, these thicknesses are only examples and are not particularly limited. Further, Si is adopted as the material of the base substrate 11, but the material of the base substrate 11 is not limited to Si, and for example, it can be made porous by anodic oxidation treatment of Ge, SiC, GaP, GaAs, InP or the like. Other semiconductor materials may be used, and in any case, a porous layer formed by making a part of the base substrate 11 porous can be used as the heat insulating layer 12.

上述のように音源部1は、一対のパッド14,14を介した発熱体層13への通電に伴う発熱体層13の温度変化に伴って超音波を発生するものであり、発熱体層13へ与える駆動電圧波形あるいは駆動電流波形からなる駆動入力波形をたとえば周波数がf1の正弦波波形とした場合、理想的には、発熱体層13で生じる温度振動の周波数が駆動入力波形の周波数f1の2倍の周波数f2となり、駆動入力波形f1の略2倍の周波数の超音波を発生させることができる。すなわち、上述の音源部1は、平坦な周波数特性を有しており、発生させる超音波の周波数を広範囲にわたって変化させることができる。また、上述の音源部1では、たとえば正弦波波形の半周期の孤立波を駆動入力波形として一対のパッド14,14間へ与えることによって、残響の少ない略1周期の単パルス状の超音波を発生させることができる。このような単パルス状の超音波を用いることにより、反射による干渉が起こりにくくなるので、上記吸音層を不要にすることもできる。また、音源部1は、熱絶縁層12が多孔質層により構成されているので、熱絶縁層12が非多孔質層(たとえば、SiO膜など)からなる場合に比べて、熱絶縁層12の断熱性が向上して超音波発生効率が高くなり、低消費電力化を図れる。 As described above, the sound source unit 1 generates ultrasonic waves in accordance with the temperature change of the heating element layer 13 due to energization of the heating element layer 13 via the pair of pads 14 and 14. When the drive input waveform composed of the drive voltage waveform or the drive current waveform applied to is a sine wave waveform having a frequency of f1, for example, the frequency of the temperature oscillation generated in the heating element layer 13 is ideally the frequency of the drive input waveform f1. The frequency f2 is doubled, and an ultrasonic wave having a frequency approximately twice that of the drive input waveform f1 can be generated. That is, the above-described sound source unit 1 has a flat frequency characteristic and can change the frequency of the generated ultrasonic wave over a wide range. Further, in the sound source unit 1 described above, for example, a half-cycle solitary wave of a sine wave waveform is applied between the pair of pads 14 and 14 as a drive input waveform, so that a single-pulse ultrasonic wave of approximately one cycle with little reverberation is generated. Can be generated. By using such single-pulse ultrasonic waves, interference due to reflection is less likely to occur, so that the sound absorbing layer can be made unnecessary. Further, in the sound source unit 1, since the heat insulating layer 12 is formed of a porous layer, the heat insulating layer 12 is compared with a case where the heat insulating layer 12 is formed of a non-porous layer (for example, a SiO 2 film). As a result, the heat generation efficiency is improved, the efficiency of ultrasonic generation is increased, and the power consumption can be reduced.

音源部1を制御する制御部2は、図示していないが、音源部1に駆動入力波形を与えて音源部1を駆動する駆動回路と、当該駆動回路を制御するマイクロコンピュータからなる制御回路とで構成されており、音源部1から超音波が間欠的に送波されるように音源部1を間欠的に駆動する。   Although not shown, the control unit 2 that controls the sound source unit 1 gives a drive input waveform to the sound source unit 1 to drive the sound source unit 1, and a control circuit that includes a microcomputer that controls the drive circuit; The sound source unit 1 is intermittently driven so that ultrasonic waves are intermittently transmitted from the sound source unit 1.

また、上述の受波素子3を構成する静電容量型のマイクロホンは、図3に示すように、シリコン基板に厚み方向に貫通する窓孔31aを設けることで形成された矩形枠状のフレーム31と、フレーム31の一表面側においてフレーム31の対向する2つの辺に跨る形で配置されるカンチレバー型の受圧部32とを備えている。ここにおいて、フレーム31の一表面側には熱酸化膜35と熱酸化膜35を覆うシリコン酸化膜36とシリコン酸化膜36を覆うシリコン窒化膜37とが形成されており、受圧部32の一端部がシリコン窒化膜37を介してフレーム31に支持され、他端部が上記シリコン基板の厚み方向においてシリコン窒化膜37に対向している。また、シリコン窒化膜37における受圧部32の他端部との対向面に金属薄膜(たとえば、クロム膜など)からなる固定電極33aが形成され、受圧部32の他端部におけるシリコン窒化膜37との対向面とは反対側に金属薄膜(たとえば、クロム膜など)からなる可動電極33bが形成されている。なお、フレーム31の他表面にはシリコン窒化膜38が形成されている。また、受圧部32は、上記各シリコン窒化膜37,38とは別工程で形成されるシリコン窒化膜により構成されている。   Further, as shown in FIG. 3, the capacitive microphone constituting the wave receiving element 3 is a rectangular frame 31 formed by providing a window hole 31a penetrating in the thickness direction in the silicon substrate. And a cantilever-type pressure receiving portion 32 disposed on one surface side of the frame 31 so as to straddle two opposing sides of the frame 31. Here, a thermal oxide film 35, a silicon oxide film 36 covering the thermal oxide film 35, and a silicon nitride film 37 covering the silicon oxide film 36 are formed on one surface side of the frame 31, and one end of the pressure receiving portion 32. Is supported by the frame 31 via the silicon nitride film 37, and the other end faces the silicon nitride film 37 in the thickness direction of the silicon substrate. Further, a fixed electrode 33a made of a metal thin film (for example, a chromium film) is formed on the surface of the silicon nitride film 37 facing the other end of the pressure receiving portion 32, and the silicon nitride film 37 at the other end of the pressure receiving portion 32 is formed. A movable electrode 33b made of a metal thin film (for example, a chromium film) is formed on the opposite side of the opposite surface. A silicon nitride film 38 is formed on the other surface of the frame 31. The pressure receiving portion 32 is constituted by a silicon nitride film formed in a separate process from the silicon nitride films 37 and 38 described above.

図3に示した構成の静電容量型のマイクロホンからなる受波素子3では、固定電極33aと可動電極33bとを電極とするコンデンサが形成されるから、受圧部32が疎密波の圧力を受けることにより固定電極33aと可動電極33bとの間の距離が変化し、固定電極33aと可動電極33bとの間の静電容量が変化する。したがって、固定電極33aおよび可動電極33bに設けたパッド(図示せず)間に直流バイアス電圧を印加しておけば、パッドの間には超音波の音圧に応じて微小な電圧変化が生じるから、超音波の音圧を電気信号に変換することができる。   In the wave receiving element 3 including the capacitance type microphone having the configuration shown in FIG. 3, a capacitor having the fixed electrode 33a and the movable electrode 33b as electrodes is formed, so that the pressure receiving portion 32 receives the pressure of the dense wave. As a result, the distance between the fixed electrode 33a and the movable electrode 33b changes, and the capacitance between the fixed electrode 33a and the movable electrode 33b changes. Therefore, if a DC bias voltage is applied between pads (not shown) provided on the fixed electrode 33a and the movable electrode 33b, a minute voltage change occurs between the pads according to the sound pressure of the ultrasonic waves. The sound pressure of ultrasonic waves can be converted into an electric signal.

ここにおいて、音源部1a,1bと受波素子3a,3bとは各組ごとに両者間の距離が異なるように配置されており、本実施形態では、第1の音源部1aと第1の受波素子3aとの離間距離に比べて、第2の音源部1bと第2の受波素子3bとの離間距離が長くなる配置を採用している。これにより、図4(a)に示すように、第1の音源部1aから送波された第1の超音波Sw1と第2の音源部1bから送波された第2の超音波Sw2とは、音源部1と受波素子3との間の監視空間のうち経路長の異なる伝播経路を通して、それぞれと組を成す受波素子3a,3bに伝播されることとなる。つまり、第1の受波素子3aで受波される第1の超音波Sw1の伝播経路は、第1の音源部1aと第1の受波素子3aとの離間距離を経路長Lとして有し、一方、第2の受波素子3bで受波される第2の超音波Sw2の伝播経路は、第2の音源部1bと第2の受波素子3bとの離間距離を経路長Lとして有することとなる。なお、各音源部1a,1bからの超音波Sw1,Sw2が互いに干渉することがないように両伝播経路を隔てる隔壁を設けてもよい。 Here, the sound source units 1a and 1b and the wave receiving elements 3a and 3b are arranged so that the distance between them is different for each group. In this embodiment, the first sound source unit 1a and the first receiving unit are arranged. An arrangement is employed in which the distance between the second sound source unit 1b and the second wave receiving element 3b is longer than the distance from the wave element 3a. Thereby, as shown in FIG. 4A, the first ultrasonic wave Sw1 transmitted from the first sound source unit 1a and the second ultrasonic wave Sw2 transmitted from the second sound source unit 1b are defined. In the monitoring space between the sound source unit 1 and the wave receiving element 3, the wave is transmitted to the wave receiving elements 3 a and 3 b forming a pair with each other through propagation paths having different path lengths. In other words, the propagation path of the first ultrasonic Sw1 to be received at the first wave receiving element 3a is closed the distance between the first sound source unit 1a and the first wave receiving element 3a as the path length L 1 On the other hand, the propagation path of the second ultrasonic wave Sw2 received by the second receiving element 3b is the distance L 2 between the second sound source unit 1b and the second receiving element 3b. Will have. In addition, you may provide the partition which separates both propagation paths so that the ultrasonic waves Sw1 and Sw2 from each sound source part 1a, 1b may not interfere with each other.

本実施形態においては、両音源部1a,1bに同一特性のものを用いるとともに、両受波素子3a,3bに同一特性のものを用い、さらに、両音源部1a,1bを同一の条件(たとえば、送波させる超音波の音圧、周波数)で駆動するとともに、両受波素子3a,3bを同一の条件(たとえば、直流バイアス電圧)で使用している。ここに、火災感知器の周囲環境(たとえば、温度、湿度、気圧)が所定の状態に設定され、且つ音源部1や受波素子3に経時変化が生じておらず(たとえば、出荷前)、監視空間に浮遊粒子(煙粒子を含む)の侵入がない状態では、図4(a)のように各音源部1a,1bからの超音波Sw1,Sw2は、上述のように異なる経路長L,Lを持つ伝播経路をそれぞれ通ることにより、各受波素子3a,3bにおいて受波される際には音圧P10,P20(第1の受波素子3aで受波される超音波Sw1の音圧をP10、第2の受波素子3bで受波される超音波Sw2の音圧をP20とする)が互いに異なるものとなる。つまり、音源部1から送波された超音波は監視空間を伝播する際の伝播経路の経路長に応じて音圧が減衰することとなるので、経路長Lの伝播経路を通して第2の音源部1bから第2の受波素子3bに伝わる超音波Sw2の音圧P20は、経路長L(<L)の伝播経路を通して第1の音源部1aから第1の受波素子3aに伝わる超音波Sw1の音圧P10に比べて低くなる。なお、制御部2は両音源部1a,1bを同時に駆動する必要はないものの、超音波の送波時間の累計が両音源部1a,1bで同一となるようにそれぞれを制御する。 In the present embodiment, both sound source units 1a and 1b have the same characteristics, both receiving elements 3a and 3b have the same characteristics, and both sound source units 1a and 1b have the same conditions (for example, ) And the receiving elements 3a and 3b are used under the same conditions (for example, DC bias voltage). Here, the ambient environment (for example, temperature, humidity, atmospheric pressure) of the fire detector is set to a predetermined state, and the sound source unit 1 and the wave receiving element 3 are not changed with time (for example, before shipment). In the state where the suspended particles (including smoke particles) do not enter the monitoring space, the ultrasonic waves Sw1 and Sw2 from the sound source units 1a and 1b as shown in FIG. 4A have different path lengths L 1 as described above. , by passing through respective propagation paths having L 2, ultrasonic each wave receiving element 3a, is when it is reception in 3b which is received at the sound pressure P 10, P 20 (first wave receiving element 3a the sound pressure of sw1 P 10, and P 20 the sound pressure of the ultrasonic Sw2 to be received at the second wave receiving element 3b) is different from one another. That is, since the ultrasonic wave transmitted from the sound source unit 1 is the sound pressure is to be attenuated according to the path length of the propagation path at the time of propagating the monitoring space, the second source through the propagation path of the path length L 2 the sound pressure P 20 of an ultrasound Sw2 from part 1b transmitted to the second wave receiving element 3b from the first sound source unit 1a through the propagation path of the path length L 1 (<L 2) in the first wave receiving element 3a It becomes lower than the sound pressure P 10 of an ultrasound Sw1 transmitted. The control unit 2 does not need to drive both the sound source units 1a and 1b at the same time, but controls each of the two sound source units 1a and 1b so that the total of the ultrasonic wave transmission time is the same.

ところで、信号処理部4は、図1に示すように、第1の受波素子3aと第2の受波素子3bとのそれぞれで受波される超音波Sw1,Sw2間の音圧比を算出する音圧比算出手段40と、音圧比算出手段40で算出される音圧比の初期値からの変化量に基づいて音源部1と受波素子3との間の監視空間の煙濃度を推定する煙濃度推定手段41と、煙濃度推定手段41にて推定された煙濃度と所定の閾値とを比較して火災の有無を判断する火災判断手段42と、音圧比算出手段40で算出された音圧比を記憶する記憶手段43とを有している。   By the way, as shown in FIG. 1, the signal processing unit 4 calculates the sound pressure ratio between the ultrasonic waves Sw1 and Sw2 received by the first wave receiving element 3a and the second wave receiving element 3b, respectively. Smoke density for estimating the smoke density in the monitoring space between the sound source unit 1 and the wave receiving element 3 based on the sound pressure ratio calculation means 40 and the amount of change from the initial value of the sound pressure ratio calculated by the sound pressure ratio calculation means 40 The sound pressure ratio calculated by the sound pressure ratio calculating means 40, the fire determining means 42 for determining the presence or absence of fire by comparing the smoke density estimated by the smoke density estimating means 41 with a predetermined threshold, and the sound pressure ratio calculating means 40. Storage means 43 for storing.

信号処理部4にはさらに、後述の減衰係数を推定する減衰係数推定手段44と前記音圧比を補正する音圧比補正手段45とが設けられているが、以下ではまず、減衰係数推定手段44および音圧比補正手段45を除いた信号処理部4の基本構成について説明する。なお、信号処理部4は、マイクロコンピュータにより構成されており、上記各手段40〜45は、上記マイクロコンピュータに適宜のプログラムを搭載することにより実現されている。また、信号処理部4には、受波素子3の出力信号をアナログ−ディジタル変換するA/D変換器(図示せず)なども設けられている。   The signal processing unit 4 is further provided with an attenuation coefficient estimating means 44 for estimating an attenuation coefficient, which will be described later, and a sound pressure ratio correcting means 45 for correcting the sound pressure ratio. A basic configuration of the signal processing unit 4 excluding the sound pressure ratio correction unit 45 will be described. The signal processing unit 4 is constituted by a microcomputer, and each of the means 40 to 45 is realized by mounting an appropriate program on the microcomputer. The signal processing unit 4 is also provided with an A / D converter (not shown) that performs analog-digital conversion on the output signal of the wave receiving element 3.

ここでは、音圧比算出手段40は、経路長Lの伝播経路を通して第2の音源部1bから第2の受波素子3bに伝わる超音波Sw2の音圧を、経路長L(<L)の伝播経路を通して第1の音源部1aから第1の受波素子3aに伝わる超音波Sw1の音圧で除したものを音圧比として算出する。音圧比の初期値は、上述のように火災感知器の周囲環境が所定の状態に設定され、且つ音源部1や受波素子3に経時変化が生じておらず、さらに監視空間への浮遊粒子の侵入がない図4(a)の状態で、音源部1から受波素子3に超音波を送波することにより音圧比算出手段40で算出される音圧比R(=P20/P10)であって、あらかじめ記憶手段43に記憶される。また、このように算出した音圧比Rを初期値とするのではなく、設計段階で同等の初期値を設定(プログラム上で設定)するようにしてもよい。 Here, sound pressure ratio calculating means 40, the sound pressure of the ultrasonic Sw2 that through propagation path of the path length L 2 transmitted from the second sound source unit 1b in the second wave receiving element 3b, the path length L 1 (<L 2 ) Divided by the sound pressure of the ultrasonic wave Sw1 transmitted from the first sound source unit 1a to the first wave receiving element 3a through the propagation path of) is calculated as the sound pressure ratio. The initial value of the sound pressure ratio is such that the surrounding environment of the fire detector is set to a predetermined state as described above, the sound source unit 1 and the wave receiving element 3 are not changed with time, and suspended particles in the monitoring space 4A, the sound pressure ratio R 0 (= P 20 / P 10) calculated by the sound pressure ratio calculation means 40 by transmitting an ultrasonic wave from the sound source unit 1 to the wave receiving element 3 in the state of FIG. ) And stored in the storage means 43 in advance. Further, instead of setting the calculated sound pressure ratio R 0 as an initial value, an equivalent initial value may be set (set on a program) at the design stage.

煙濃度推定手段41は、音圧比算出手段40で算出される音圧比Rと、あらかじめ記憶手段43に記憶された音圧比の初期値Rとを比較して、両者の差(つまり初期値Rからの音圧比Rの変化量)に基づいて監視空間の煙濃度を推定するものである。詳しくは後述するが、音圧比算出手段40で算出される音圧比Rの初期値Rからの変化量は、監視空間の煙濃度に略比例して増加するので、あらかじめ測定した煙濃度と前記変化量との関係データに基づいて煙濃度と前記変化量との関係式を求めて記憶手段43に記憶しておけば、上記関係式を用いて前記変化量から煙濃度を推定することができる。 The smoke density estimation means 41 compares the sound pressure ratio RS calculated by the sound pressure ratio calculation means 40 with the initial value R0 of the sound pressure ratio stored in advance in the storage means 43, and determines the difference between them (ie, the initial value). The smoke density in the monitoring space is estimated based on the amount of change in the sound pressure ratio R S from R 0 . As will be described in detail later, the amount of change from the initial value R 0 of the sound pressure ratio R S calculated by the sound pressure ratio calculation means 40 increases substantially in proportion to the smoke density in the monitoring space. If a relational expression between the smoke density and the amount of change is obtained based on the relational data with the amount of change and stored in the storage means 43, the smoke density can be estimated from the amount of change using the relational expression. it can.

また、火災判断手段42は、煙濃度推定手段41にて推定された煙濃度が上記閾値未満の場合には「火災無し」と判断する一方で、上記閾値以上の場合には「火災有り」と判断して火災感知信号を制御部2へ出力する。ここで、制御部2は、火災判断手段42からの火災感知信号を受信すると、音源部1から可聴域の音波からなる警報音が発生するように音源部1への駆動入力波形を制御する。したがって、音源部1から警報音を発生させることができるので、警報音を出力するスピーカなどを別途に設ける必要がなく、火災感知器全体の小型化および低コスト化が可能となる。なお、火災判断手段42からの火災感知器信号の出力先は制御部2に限らず、たとえば、外部の通報装置へ出力するようにしてもよい。   The fire determination means 42 determines “no fire” when the smoke concentration estimated by the smoke concentration estimation means 41 is less than the above threshold, while “fire is present” when the smoke concentration is equal to or greater than the above threshold. It judges and outputs a fire detection signal to the control part 2. Here, when receiving the fire detection signal from the fire determination means 42, the control unit 2 controls the drive input waveform to the sound source unit 1 so that an alarm sound composed of sound waves in the audible range is generated from the sound source unit 1. Therefore, since the alarm sound can be generated from the sound source unit 1, it is not necessary to separately provide a speaker for outputting the alarm sound, and the entire fire detector can be reduced in size and cost. Note that the output destination of the fire detector signal from the fire determination means 42 is not limited to the control unit 2 and may be output to an external notification device, for example.

上述した構成によれば、音源部1や受波素子3の経時変化や周囲環境の変化に起因して音源部1や受波素子3に特性変化が生じた場合、図4(b)に示すように第1の受波素子3aで受波される超音波Sw1の音圧P11と、第2の受波素子3bで受波される超音波Sw2の音圧P21のそれぞれは図4(a)の各値(P10,P20)から変動(ここでは低下)するものの、音圧比算出手段40で算出される音圧比R(=P21/P11)に関しては図4(a)の状態で算出される初期値R(=P20/P10)と略同一となる(つまりR=R)。ただし、図4(b)の例では監視空間への浮遊粒子(煙粒子を含む)の侵入はないものとする。すなわち、音源部1の経時変化や周囲環境の変化に起因した音源部1の特性変化は、第1および第2の両音源部1a,1bにおいて同様に生じ、また、受波素子3の経時変化や周囲環境の変化に起因した受波素子3の特性変化は、第1および第2の両受波素子3a,3bにおいて同様に生じるから、これらの特性変化が、音圧比算出手段40で算出される音圧比Rに影響することはない。 According to the above-described configuration, when the sound source unit 1 or the receiving element 3 undergoes a change in characteristics due to a change over time of the sound source unit 1 or the receiving element 3 or a change in the surrounding environment, as shown in FIG. the sound pressure P 11 of an ultrasound Sw1 to be received at the first wave receiving element 3a as, each of the sound pressure P 21 of an ultrasound Sw2 to be received at the second wave receiving element 3b 4 ( Although the sound pressure ratio R 1 (= P 21 / P 11 ) calculated by the sound pressure ratio calculation means 40 varies (decreases in this case) from each value (P 10 , P 20 ) of a), FIG. Is substantially the same as the initial value R 0 (= P 20 / P 10 ) calculated in the state (that is, R 1 = R 0 ). However, in the example of FIG. 4B, it is assumed that there are no suspended particles (including smoke particles) entering the monitoring space. That is, the characteristic change of the sound source unit 1 due to the time change of the sound source unit 1 and the change of the surrounding environment similarly occurs in both the first and second sound source units 1a and 1b, and the time change of the wave receiving element 3 changes. Since the characteristic change of the wave receiving element 3 due to the change of the surrounding environment and the first and second wave receiving elements 3a and 3b occur in the same manner, these characteristic changes are calculated by the sound pressure ratio calculating means 40. It does not affect the sound pressure ratio R 1 that.

一方、音源部1と受波素子3との間の監視空間に煙粒子(あるいはその他の浮遊粒子)が侵入すると、図4(c)に示すように第1の受波素子3aで受波される超音波Sw1の音圧P1Sと、第2の受波素子3bで受波される超音波Sw2の音圧P2Sのそれぞれが図4(a)の各値(P10,P20)から変動(ここでは低下)するだけでなく、音圧比算出手段40で算出される音圧比R(=P2S/P1S)に関しても図4(a)の状態で算出される初期値R(=P20/P10)から変化する(つまり、R≠R)。すなわち、監視空間に煙粒子が入り込むと、音源部1からの超音波は受波素子3に到達するまでに音圧が低下するが、このときの音圧の減衰量は監視空間中を超音波が伝播した距離と監視空間の煙濃度との両方に依存するから、音圧比Rは、音源部1aおよび受波素子3a間の伝播経路の経路長Lと音源部1bおよび受波素子3b間の伝播経路の経路長Lとの差(L−L)、および監視空間の煙濃度に応じた分だけ初期値Rから変化することとなる。 On the other hand, when smoke particles (or other floating particles) enter the monitoring space between the sound source unit 1 and the wave receiving element 3, the wave is received by the first wave receiving element 3a as shown in FIG. that the sound pressure P 1S ultrasonic Sw1, from each respective values shown in FIG. 4 (a) the sound pressure P 2S ultrasonic Sw2 to be received at the second wave receiving element 3b (P 10, P 20) variation as well (here reduced) to, sound pressure ratio is calculated by the sound pressure ratio calculating means 40 R S (= P 2S / P 1S) initial value R 0 is also calculated in the state shown in FIG. 4 (a) with respect to ( = P 20 / P 10 ) (ie, R S ≠ R 0 ). That is, when smoke particles enter the monitoring space, the sound pressure of the ultrasonic wave from the sound source unit 1 decreases before reaching the wave receiving element 3, but the attenuation of the sound pressure at this time is an ultrasonic wave in the monitoring space. Depends on both the distance propagated and the smoke density in the monitoring space, the sound pressure ratio R S is the path length L 1 of the propagation path between the sound source unit 1a and the wave receiving element 3a, and the sound source unit 1b and the wave receiving element 3b. It changes from the initial value R 0 by an amount corresponding to the difference (L 2 −L 1 ) with the path length L 2 of the propagation path between and the smoke density in the monitoring space.

具体的に説明すると、減光式煙濃度計(減光式煙感知器)での評価での監視空間の煙濃度をC〔%/m〕、煙濃度1〔%/m〕に対する1〔m〕当たりの超音波の減衰率をβ、第1の音源部1aから送波され第1の受波素子3aで受波される超音波Sw1の伝播経路の経路長をL〔m〕、第2の音源部1bから送波され第2の受波素子3bで受波される超音波Sw2の伝播経路の経路長をL〔m〕とした場合、第1の受波素子3aで受波される超音波Sw1の音圧P1SはP1S≒P10(1−βCL)で表され、第2の受波素子3bで受波される超音波Sw2の音圧P2SはP2S≒P20(1−βCL)で表される。ここで、P10,P20は図4(a)の例において各受波素子3a,3bでそれぞれ受波される超音波Sw1,Sw2の音圧を表しており、L,LについてはL<L<1と仮定している。上式で表されるP1SおよびP2Sと、音圧比の初期値R=P20/P10とを用いれば、音圧P1SとP2Sとの音圧比R(=P2S/P1S)の初期値Rからの変化量(つまり、R−R)は次式で表される。 More specifically, the smoke density in the monitoring space in the evaluation with the light-reducing smoke densitometer (light-reducing smoke detector) is C [% / m], 1 [m / m] with respect to the smoke density 1 [% / m]. ] Is the attenuation factor of the hit ultrasonic wave, β is the path length of the propagation path of the ultrasonic wave Sw1 transmitted from the first sound source unit 1a and received by the first receiving element 3a, L 1 [m], When the path length of the propagation path of the ultrasonic wave Sw2 transmitted from the second sound source unit 1b and received by the second receiving element 3b is L 2 [m], the first receiving element 3a receives the wave. The sound pressure P 1S of the ultrasonic wave Sw1 is expressed as P 1S ≈P 10 (1-βCL 1 ), and the sound pressure P 2S of the ultrasonic wave Sw2 received by the second wave receiving element 3b is P 2S ≈ It is represented by P 20 (1-βCL 2 ). Here, P 10 and P 20 represent the sound pressures of the ultrasonic waves Sw1 and Sw2 respectively received by the receiving elements 3a and 3b in the example of FIG. 4A, and L 1 and L 2 are as follows. It is assumed that L 1 <L 2 <1. If P 1S and P 2S represented by the above equation and the initial value R 0 = P 20 / P 10 of the sound pressure ratio are used, the sound pressure ratio R S (= P 2S / P) of the sound pressures P 1S and P 2S the amount of change from the initial value R 0 of the 1S) (i.e., R 0 -R S) is expressed by the following equation.

−R=RβC(L−L)/(1−βL
ここにおいてβLが1よりも十分に小さければ、R−R=RβC(L−L)となり、音圧比Rの初期値Rからの変化量(R−R)は、経路長の差(L−L)および監視空間の煙濃度Cに比例する形で表されることとなる。したがって、β、L、Lが既知であれば、音圧比Rの初期値Rからの変化量(R−R)に基づいて監視空間の煙濃度C〔%/m〕を推定することができる。
R 0 -R S = R 0 βC (L 2 -L 1 ) / (1-βL 1 )
If .beta.L 1 is sufficiently smaller than 1 wherein, R 0 -R S = R 0 βC (L 2 -L 1) , and the amount of change from the initial value R 0 of the sound pressure ratio R S (R 0 -R S ) Is expressed in a form proportional to the path length difference (L 2 −L 1 ) and the smoke density C of the monitoring space. Therefore, if β, L 1 , and L 2 are known, the smoke density C [% / m] in the monitoring space is calculated based on the amount of change (R 0 −R S ) from the initial value R 0 of the sound pressure ratio R S. Can be estimated.

また、煙濃度推定手段41は、音圧比Rにおける初期値Rからの変化量を初期値Rで除した変化率(R−R)/Rに基づいて監視空間の煙濃度を推定するようにしてもよい。音圧比の変化率においては、製造過程で生じた音源部1や受波素子3の特性のばらつきなどにより火災感知器間で生じる初期値Rのばらつきの影響が除去されているので、監視空間の煙濃度が同一であれば、初期値Rによらず煙濃度の推定結果を一律に揃えることができる。したがって、煙濃度への換算が容易になる。 Also, smoke density estimation unit 41, smoke density of the sound pressure ratio R S initial value divided by the rate of change variation in the initial value R 0 from R 0 in (R 0 -R S) / R 0 monitored space based upon May be estimated. In the rate of change of the sound pressure ratio, the influence of the variation of the initial value R0 that occurs between the fire detectors due to variations in the characteristics of the sound source unit 1 and the receiving element 3 that have occurred in the manufacturing process has been removed. If the smoke density is the same, the smoke density estimation results can be made uniform regardless of the initial value R0 . Therefore, conversion to smoke density becomes easy.

なお、上述した条件下では、監視空間に煙粒子が流入することで音圧比Rが初期値Rより大きくなること(つまりR−Rが負の値になること)はないから、火災判断手段42では煙濃度推定手段41から出力される煙濃度に対して負の閾値は設定されておらず、万一、煙濃度推定手段41から負の煙濃度が出力されても、火災判断手段42は誤検出と判断して「火災無し」と判断する。 Note that, under the above-described conditions, the sound pressure ratio R S does not become larger than the initial value R 0 due to the smoke particles flowing into the monitoring space (that is, R 0 −R S becomes a negative value). In the fire determination means 42, a negative threshold is not set for the smoke density output from the smoke concentration estimation means 41. Even if a negative smoke concentration is output from the smoke concentration estimation means 41, the fire determination The means 42 judges that there is a false detection and judges “no fire”.

以上説明した本実施形態の火災感知器によれば、経路長L,Lの異なる複数の伝播経路を通して各音源部1a,1bから各受波素子3a,3bにそれぞれ伝播された複数の超音波Sw1,Sw2間の音圧比Rを音圧比算出手段40において算出し、煙濃度推定手段41が、音圧比算出手段40で算出される音圧比Rの初期値Rからの変化量に基づいて監視空間の煙濃度を推定するので、経時変化や周囲環境の変化に応じて音源部1から送波される音波の音圧が変化したり受波素子3の感度が変化したりすることがあっても、これらの特性変化は前記複数の超音波Sw1,Sw2に一律に影響するため、前記複数の超音波Sw1,Sw2の音圧比Rの変化に基づいて煙濃度推定手段41で推定される煙濃度が前記特性変化の影響を受けることはない。結果的に、音源部1や受波素子3に生じる前記特性変化の影響で非火災報や失報を生じることはない。 According to the fire detector of the present embodiment described above, a plurality of super-waves respectively propagated from the sound source units 1a and 1b to the receiving elements 3a and 3b through a plurality of propagation paths having different path lengths L 1 and L 2. The sound pressure ratio R S between the sound waves Sw1 and Sw2 is calculated by the sound pressure ratio calculation means 40, and the smoke density estimation means 41 sets the amount of change from the initial value R 0 of the sound pressure ratio R S calculated by the sound pressure ratio calculation means 40. Since the smoke density in the monitoring space is estimated based on this, the sound pressure of the sound wave transmitted from the sound source unit 1 or the sensitivity of the wave receiving element 3 changes according to changes over time or changes in the surrounding environment. However, since these characteristic changes uniformly affect the plurality of ultrasonic waves Sw1 and Sw2, the smoke concentration estimation unit 41 estimates the change based on the change in the sound pressure ratio R S of the plurality of ultrasonic waves Sw1 and Sw2. The smoke density is a shadow of the characteristic change It will not be affected. As a result, no non-fire report or misreport occurs due to the influence of the characteristic change generated in the sound source unit 1 or the wave receiving element 3.

ところで、本実施形態の火災感知器は、上述の基本構成に加え、周囲環境の変化に応じて変化する空気による超音波の吸収減衰の減衰係数を推定する減衰係数推定手段44と、減衰係数推定手段44で推定された前記減衰係数に基づいて音圧比を補正する音圧比補正手段45とを信号処理部4に有している。以下、減衰係数推定手段44および音圧比補正手段45について説明する。   By the way, in addition to the basic configuration described above, the fire detector of the present embodiment includes an attenuation coefficient estimation unit 44 that estimates an attenuation coefficient of ultrasonic absorption attenuation due to air that changes in accordance with changes in the surrounding environment, and attenuation coefficient estimation. The signal processing unit 4 includes sound pressure ratio correcting means 45 for correcting the sound pressure ratio based on the attenuation coefficient estimated by the means 44. Hereinafter, the attenuation coefficient estimating unit 44 and the sound pressure ratio correcting unit 45 will be described.

すなわち、前述したように、音源部1から送波された超音波は、煙がない状態でも監視空間での吸収減衰および拡散減衰により音圧が低下するが、このうち吸収減衰による音圧低下率Bは、伝播経路の経路長xを用いてB=e−α・xで表すことができる。ここでαは吸収減衰の減衰係数であって、当該減衰係数αは、媒質(空気)の温度、湿度、気圧と、超音波の周波数との関数で表されることが知られている(参考文献1)。超音波の周波数は制御部2によって決定されているので、減衰係数推定手段44は、監視空間の温度と湿度と気圧との少なくとも1つをパラメータとして前記減衰係数αを推定する。 That is, as described above, the sound pressure of the ultrasonic wave transmitted from the sound source unit 1 decreases due to absorption attenuation and diffusion attenuation in the monitoring space even in the absence of smoke. B 1 can be expressed as B 1 = e −α · x using the path length x of the propagation path. Here, α is an attenuation coefficient of absorption attenuation, and it is known that the attenuation coefficient α is expressed as a function of the temperature, humidity, atmospheric pressure of the medium (air) and the frequency of the ultrasonic wave (reference) Reference 1). Since the frequency of the ultrasonic wave is determined by the control unit 2, the attenuation coefficient estimating means 44 estimates the attenuation coefficient α using at least one of the temperature, humidity and atmospheric pressure of the monitoring space as parameters.

本実施形態では、監視空間の温度を計測する温度計測手段46と、監視空間における音速を計測する音速計測手段47とが、前記パラメータを計測するパラメータ取得手段の構成要素として設けられており、減衰係数推定手段44は、温度計測手段46で計測される温度と、当該温度および音速計測手段47で計測される音速から算出される監視空間の湿度とをパラメータに用いて減衰係数αを推定する。つまり、監視空間における音速Cは、監視空間における温度Tと水蒸気圧Eと気圧Pとの関数で次式のように表すことができるので、気圧Pを1(atm)と仮定した場合、音速Cと温度Tとが求まれば次式より水蒸気圧Eが求まり、当該水蒸気圧Eから空気の湿度を算出できる。   In the present embodiment, the temperature measuring means 46 for measuring the temperature of the monitoring space and the sound speed measuring means 47 for measuring the sound speed in the monitoring space are provided as components of the parameter acquisition means for measuring the parameters, and are attenuated. The coefficient estimating means 44 estimates the attenuation coefficient α using the temperature measured by the temperature measuring means 46 and the humidity of the monitoring space calculated from the temperature and the sound speed measured by the sound speed measuring means 47 as parameters. In other words, the sound velocity C in the monitoring space can be expressed as a function of the temperature T, the water vapor pressure E, and the atmospheric pressure P in the monitoring space as shown in the following equation. Therefore, when the atmospheric pressure P is assumed to be 1 (atm), the sound velocity C And the temperature T are obtained, the water vapor pressure E is obtained from the following equation, and the humidity of the air can be calculated from the water vapor pressure E.

Figure 0005144457
Figure 0005144457

温度計測手段46は、サーミスタ、熱電対、温度センサIC等の出力から温度を計測してもよい。音速C(m/s)は監視空間の温度T(摂氏温度)の関数として簡易的にC≒331.5+0.6Tで表すことも可能であり、音速計測手段47は、温度計測手段46の計測結果から音速を概算してもよい。   The temperature measuring means 46 may measure the temperature from the output of a thermistor, thermocouple, temperature sensor IC, or the like. The speed of sound C (m / s) can be simply expressed as C≈331.5 + 0.6 T as a function of the temperature T (degrees Celsius) of the monitoring space, and the speed of sound measuring means 47 is measured by the temperature measuring means 46. The sound speed may be estimated from the result.

また、他の例として、音速計測手段47は、図5に示すように第1および第2の受波素子3a,3bでそれぞれ受波される第1および第2の超音波Sw1,Sw2の伝播経路の経路長差(L−L)を、前記超音波Sw1,Sw2を受波するタイミングの時間差Δt0(図6(a)参照)で除することにより監視空間の音速を算出する構成であってもよい。つまり、前記超音波Sw1,Sw2の伝播経路の経路長差(L−L)は一定値であるが、前記時間差Δt0は図6(b)に示すように監視空間の音速に応じて変化するので、音速の変化を(L−L)/Δt0の変化として求めることができる。なお、図6(a)は音圧比の初期値R(=P20/P10)が算出された状態において受波素子3で受波される第1および第2の超音波Sw1,Sw2の波形を示し、この状態から監視空間の音速のみが変化した状態において受波素子3で受波される第1および第2の超音波Sw1,Sw2の波形を図6(b)に示す。この構成では、音速を計測するためにサーミスタ、熱電対、温度センサICのデバイスを付加する必要がなく、火災感知器の部品点数の削減を図ることができる。 As another example, the sound velocity measuring unit 47 propagates the first and second ultrasonic waves Sw1 and Sw2 received by the first and second wave receiving elements 3a and 3b, respectively, as shown in FIG. A configuration in which the speed of sound in the monitoring space is calculated by dividing the path length difference (L 2 −L 1 ) of the path by the time difference Δt 0 (see FIG. 6A) of the timing of receiving the ultrasonic waves Sw 1 and Sw 2. There may be. That is, the path length difference (L 2 −L 1 ) between the propagation paths of the ultrasonic waves Sw1 and Sw2 is a constant value, but the time difference Δt0 changes according to the sound speed of the monitoring space as shown in FIG. 6B. Therefore, the change in sound speed can be obtained as a change in (L 2 −L 1 ) / Δt0. 6A shows the first and second ultrasonic waves Sw1 and Sw2 received by the wave receiving element 3 in a state where the initial value R 0 (= P 20 / P 10 ) of the sound pressure ratio is calculated. FIG. 6B shows the waveforms of the first and second ultrasonic waves Sw1 and Sw2 received by the wave receiving element 3 when only the sound velocity in the monitoring space is changed from this state. In this configuration, it is not necessary to add a thermistor, a thermocouple, or a temperature sensor IC device to measure the speed of sound, and the number of parts of the fire detector can be reduced.

音圧比補正手段45は、上述のようにして得られた減衰係数αに基づいて、当該減衰係数αに起因した音圧比算出手段40の出力(音圧比R)の初期値Rからの変動分をキャンセルするように前記音圧比Rを補正する。 Based on the attenuation coefficient α obtained as described above, the sound pressure ratio correction means 45 varies the output (sound pressure ratio R S ) of the sound pressure ratio calculation means 40 resulting from the attenuation coefficient α from the initial value R 0. The sound pressure ratio RS is corrected so as to cancel the minute.

要するに、周囲環境の変化(たとえば、温度、湿度、気圧などの変化)に伴い前記減衰係数αが変化すると、監視空間での超音波の吸収減衰による音圧低下率B(=e−α・x)が変化し、その結果、第1の超音波Sw1と第2の超音波Sw2との音圧比Rが変動する。さらに詳しく説明すると、音圧低下率Bは伝播経路の経路長xの関数として表されるものであるから、伝播経路の経路長が異なる第1および第2の超音波Sw1,Sw2間では、減衰係数αの変化量が同じであっても、前記音圧低下率Bの変化量に差が生じる。したがって、減衰係数αが変化すれば、煙濃度にかかわらず第1および第2の超音波Sw1,Sw2の音圧比Rは変化する。 In short, when the attenuation coefficient α changes with changes in the surrounding environment (for example, changes in temperature, humidity, atmospheric pressure, etc.), the sound pressure reduction rate B 1 (= e −α · x ) changes, and as a result, the sound pressure ratio R S between the first ultrasonic wave Sw1 and the second ultrasonic wave Sw2 varies. In more detail, since the sound pressure reduction rate B 1 represents is represented as a function of the path length x of the propagation path, the first and second ultrasonic Sw1 path length of the propagation path is different, between the Sw2, even the amount of change of the attenuation coefficient α is the same, a difference in amount of change the sound pressure reduction rate B 1 is generated. Therefore, if the attenuation coefficient α changes, the sound pressure ratio R S of the first and second ultrasonic waves Sw1 and Sw2 changes regardless of the smoke density.

そこで、本実施形態の音圧比補正手段45は、前記減衰係数αの変化に起因した前記音圧比Rの変動分をキャンセルするように、減衰係数αの変化に応じて前記音圧比Rを補正する。具体的には、図1に示すように音圧比算出手段40の後段に音圧比補正手段45を設け、音圧比算出手段40で算出された音圧比Rを音圧比補正手段45で補正してから煙濃度推定手段41に渡すようにしてある。このときの補正値は、減衰係数αの変化による音圧低下率Bの変動分を取り除くように決定される。これにより、煙濃度推定手段41では、減衰係数αの変化に起因した初期値Rからの変動分がキャンセルされた音圧比Rを用いて、監視空間の煙濃度を推定することができるので、煙濃度推定手段41で推定される煙濃度に、周囲環境変化による減衰係数αの変化が影響することはない。 Therefore, the sound pressure ratio correcting means 45 of the present embodiment, the to cancel the fluctuation of the sound pressure ratio R S due to a change in the attenuation coefficient alpha, the sound pressure ratio R S in accordance with the change of the attenuation coefficient alpha to correct. Specifically, the provided sound pressure ratio correcting means 45 in the subsequent stage of the sound pressure ratio calculating means 40 as shown in FIG. 1, the sound pressure ratio R S calculated by the sound pressure ratio calculating means 40 is corrected by the sound pressure ratio correcting means 45 To the smoke density estimating means 41. The correction value at this time is determined so as to remove the variation in the sound pressure decrease rate B 1 due to the change in the attenuation coefficient α. As a result, the smoke concentration estimation means 41 can estimate the smoke concentration in the monitoring space using the sound pressure ratio R S in which the variation from the initial value R 0 caused by the change in the attenuation coefficient α is cancelled. The smoke density estimated by the smoke density estimating means 41 is not affected by the change in the attenuation coefficient α due to the change in the surrounding environment.

したがって、周囲環境の変化により空気による吸収減衰の減衰係数αが変化することがあっても、火災判断手段42では、当該減衰係数αの変化の影響を受けずに火災発生の有無を判断することで、前記減衰係数αの変化に起因した非火災報や失報を低減することができ、火災の有無の判断の確度が向上するという利点がある。   Therefore, even if the attenuation coefficient α of the absorption attenuation due to air may change due to changes in the surrounding environment, the fire determination means 42 determines whether or not a fire has occurred without being affected by the change in the attenuation coefficient α. Thus, it is possible to reduce the non-fire report and the misreport due to the change in the attenuation coefficient α, and there is an advantage that the accuracy of the determination of the presence or absence of a fire is improved.

(実施形態2)
本実施形態の火災感知器は、各1個ずつの音源部1と受波素子3との間に経路長の異なる複数の伝播経路を形成するために、音源部1から送波された超音波を反射する一対の反射面を設けた点が実施形態1の火災感知器と相違する。なお、実施形態1と同様の構成要素には同一の符号を付して説明を適宜省略する。
(Embodiment 2)
The fire detector according to the present embodiment uses ultrasonic waves transmitted from the sound source unit 1 in order to form a plurality of propagation paths having different path lengths between the sound source unit 1 and the receiving element 3. The difference from the fire detector of the first embodiment is that a pair of reflecting surfaces for reflecting the light is provided. In addition, the same code | symbol is attached | subjected to the component similar to Embodiment 1, and description is abbreviate | omitted suitably.

本実施形態では、図7に示すように第1および第2の反射面7a,7bが音源部1から送波された超音波の進行方向(図7の左右方向)において互いに対向するように配置されている。各反射面7a,7bはそれぞれ超音波を反射するものであって、受波素子3は第1の反射面7a上に、音源部1は第2の反射面7b上にそれぞれ配設される。ここで、音圧比算出手段40は、音源部1から受波素子3に伝播されるまでに反射面7a,7bで反射された回数の異なる複数の超音波間の音圧比を算出する。   In the present embodiment, as shown in FIG. 7, the first and second reflecting surfaces 7a and 7b are arranged so as to face each other in the traveling direction of the ultrasonic wave transmitted from the sound source unit 1 (the left-right direction in FIG. 7). Has been. Each of the reflection surfaces 7a and 7b reflects ultrasonic waves. The wave receiving element 3 is disposed on the first reflection surface 7a, and the sound source unit 1 is disposed on the second reflection surface 7b. Here, the sound pressure ratio calculating means 40 calculates the sound pressure ratio between a plurality of ultrasonic waves having different numbers of times of reflection by the reflecting surfaces 7 a and 7 b before being propagated from the sound source unit 1 to the wave receiving element 3.

すなわち、図7のように音源部1から受波素子3に直接伝わる超音波(直接波)を第1の超音波Sw1とするとともに、音源部1から送波された後に第1の反射面7aで反射され、さらに第2の反射面7bで反射されることによって受波素子3に伝わる超音波(反射波)を第2の超音波Sw2とする。しかして、反射面7a,7bでの反射回数が0回の第1の超音波Sw1と、反射面7a,7bでの反射回数が2回の第2の超音波Sw2とでは、伝播経路の経路長が異なることとなり、音圧比算出手段40ではこれらの超音波Sw1,Sw2の音圧比が算出される。   That is, as shown in FIG. 7, the ultrasonic wave (direct wave) directly transmitted from the sound source unit 1 to the wave receiving element 3 is the first ultrasonic wave Sw1, and the first reflection surface 7a is transmitted after being transmitted from the sound source unit 1. The ultrasonic wave (reflected wave) transmitted to the wave receiving element 3 by being reflected by the second reflection surface 7b and being reflected by the second reflection surface 7b is referred to as a second ultrasonic wave Sw2. Thus, the path of the propagation path between the first ultrasonic wave Sw1 with 0 reflections on the reflection surfaces 7a and 7b and the second ultrasonic wave Sw2 with 2 reflections on the reflection surfaces 7a and 7b. The lengths are different, and the sound pressure ratio calculation means 40 calculates the sound pressure ratio of these ultrasonic waves Sw1 and Sw2.

なお、第2の超音波Sw2に関して反射面7a,7bでの反射回数を増やせば、第1の超音波Sw1と第2の超音波Sw2との間の経路長差が大きくなるから、監視空間に煙粒子が入り込んだときの音圧比Rの初期値Rからの変化量は大きくなるものの、第2の超音波Sw2の伝播経路の経路長が長くなることで受波素子3に到達する第2の超音波Sw2の音圧は低下する。したがって、第2の超音波Sw2の反射面7a,7bでの反射回数は、受波素子3で受波される第2の超音波Sw2の音圧と、煙粒子による音圧比Rの変化量とのバランスを考慮して決定することが望ましい。 Note that if the number of reflections on the reflecting surfaces 7a and 7b is increased with respect to the second ultrasonic wave Sw2, the path length difference between the first ultrasonic wave Sw1 and the second ultrasonic wave Sw2 will increase, so that the monitoring space will Although the amount of change from the initial value R 0 of the sound pressure ratio R S when smoke particles enter the first wave reaches the receiving element 3 by increasing the path length of the propagation path of the second ultrasonic wave Sw 2. The sound pressure of the second ultrasonic wave Sw2 decreases. Therefore, the number of reflections of the second ultrasonic wave Sw2 on the reflection surfaces 7a and 7b is the amount of change in the sound pressure ratio RS due to the sound pressure of the second ultrasonic wave Sw2 received by the wave receiving element 3 and smoke particles. It is desirable to determine the balance.

ここにおいて、各超音波Sw1,Sw2が受波素子3に到達するタイミングには、伝播経路の経路長L,Lの差に応じた時間差Δt0(図6(a)参照)が生じる。この時間差Δt0は、経路長L,Lの差を音速で除することにより求められる。受波素子3において各超音波Sw1,Sw2を区別するためには、受波素子3で各超音波Sw1,Sw2をそれぞれ受波する期間を前記時間差Δt0内に収める必要がある。 Here, a time difference Δt0 (see FIG. 6A) corresponding to the difference between the path lengths L 1 and L 2 of the propagation path is generated at the timing at which each of the ultrasonic waves Sw1 and Sw2 reaches the wave receiving element 3. This time difference Δt0 is obtained by dividing the difference between the path lengths L 1 and L 2 by the speed of sound. In order to distinguish the ultrasonic waves Sw1 and Sw2 in the wave receiving element 3, it is necessary to keep the period during which the ultrasonic waves Sw1 and Sw2 are received by the wave receiving element 3 within the time difference Δt0.

つまり、たとえば音速が340m/sで、音源部1から送波される超音波の周波数が100kHzである場合、超音波は周期10μs、波長3.4mmとなるので、経路長L,Lの差を68mmにすると、超音波の波数が20波を超えれば超音波同士の重なりが生じ、受波素子3で各超音波Sw1,Sw2を区別できなくなる。そこで、経路長L,Lの差と音源部1から1回に送波する超音波の波数とを調整することにより、超音波同士の重なりが生じないようにする。火災感知器を小型化するために経路長L,Lの差を小さくする場合などには、実施形態1で説明したように、発熱体層13への通電に伴う発熱体層13の温度変化により空気に熱衝撃を与えることで超音波を発生する構成であって、残響の少ない単パルス状の超音波を送波可能な音源部1を採用することが有用である。 That is, for example, the sound velocity at 340m / s, when the frequency of the ultrasonic wave transmitted from the sound source unit 1 is 100kHz, ultrasound period 10 [mu] s, since the wavelength 3.4 mm, the path length L 1, L 2 When the difference is set to 68 mm, if the wave number of the ultrasonic wave exceeds 20, the ultrasonic waves overlap each other, and the wave receiving element 3 cannot distinguish the ultrasonic waves Sw1 and Sw2. Therefore, by adjusting the difference between the path lengths L 1 and L 2 and the wave number of the ultrasonic wave transmitted from the sound source unit 1 at one time, the ultrasonic waves do not overlap each other. When reducing the difference between the path lengths L 1 and L 2 in order to reduce the size of the fire detector, the temperature of the heating element layer 13 accompanying the energization of the heating element layer 13 as described in the first embodiment is used. It is useful to employ a sound source unit 1 that is configured to generate an ultrasonic wave by applying a thermal shock to the air by a change and that can transmit a single-pulse ultrasonic wave with little reverberation.

また、本実施形態では、図8に示すように音源部1からの超音波の拡散範囲を狭める一対の拡散防止板6をさらに備えている。各拡散防止板6はそれぞれ平面視矩形状の平板からなり、一対の拡散防止板6は一表面同士を対向させるように略平行に配設される。ここで、一対の拡散防止板6は、前記一表面間に音源部1の高さと略同寸法の間隙を形成し、この間隙に音源部1からの超音波を通すことで当該超音波の拡散範囲を狭めるものであって、当該間隙を通して音源部1からの超音波を伝搬させるように、前記一表面の間に音源部1と受波素子3とを挟みこむ形で配設される。つまり、上述した一対の反射面7a,7bは、拡散防止板6の前記一表面に沿う面内で互いに対向する形で両拡散防止板6の間に形成される。このように拡散防止板6を設けたことにより、音源部1から送波される超音波は、拡散防止板6の前記一表面で囲まれた監視空間を通ることで拡散が抑制され、音源部1と受波素子3との間における超音波の拡散による音圧の低下を抑制することができる。   Further, in the present embodiment, as shown in FIG. 8, a pair of diffusion prevention plates 6 that narrow the diffusion range of the ultrasonic wave from the sound source unit 1 are further provided. Each diffusion prevention plate 6 is formed of a flat plate having a rectangular shape in plan view, and the pair of diffusion prevention plates 6 are arranged substantially in parallel so that one surface faces each other. Here, the pair of diffusion prevention plates 6 forms a gap having the same size as the height of the sound source unit 1 between the one surface, and the ultrasonic wave from the sound source unit 1 is passed through the gap to diffuse the ultrasonic wave. The range is narrowed, and the sound source unit 1 and the wave receiving element 3 are sandwiched between the one surface so as to propagate the ultrasonic wave from the sound source unit 1 through the gap. That is, the pair of reflection surfaces 7 a and 7 b described above are formed between the diffusion prevention plates 6 so as to face each other in a plane along the one surface of the diffusion prevention plate 6. By providing the diffusion preventing plate 6 in this manner, the ultrasonic wave transmitted from the sound source unit 1 is suppressed from being diffused by passing through the monitoring space surrounded by the one surface of the diffusion preventing plate 6, and the sound source unit The decrease in sound pressure due to the diffusion of ultrasonic waves between 1 and the wave receiving element 3 can be suppressed.

さらに、本実施形態では、各反射面7a,7bが反射波を他方の反射面7a,7b上に焦点を結ぶ反射波として反射する形にそれぞれ湾曲した凹曲面(放物面)からなり、音源部1と受波素子3とは、各反射面7a,7b上において、他方の反射面7a,7bに平面波として入射し反射された超音波が焦点を結ぶ位置に配置されている。しかして、音源部1から送波され第1の反射面7aで反射された超音波は、第2の反射面7bで反射されることで受波素子3上に焦点を結ぶ。   Furthermore, in this embodiment, each reflective surface 7a, 7b consists of a concave curved surface (parabolic surface) each curved in a shape that reflects the reflected wave as a reflected wave that focuses on the other reflective surface 7a, 7b. The part 1 and the wave receiving element 3 are disposed on the reflecting surfaces 7a and 7b at positions where the reflected ultrasonic waves incident on the other reflecting surfaces 7a and 7b as a plane wave are focused. Thus, the ultrasonic wave transmitted from the sound source unit 1 and reflected by the first reflecting surface 7a is focused on the wave receiving element 3 by being reflected by the second reflecting surface 7b.

要するに、図9(a)に示すように第2の反射面7b上に配置された音源部1から放射状に広がりながら受波素子3側の第1の反射面7aに到達した超音波は、第1の反射面7aで反射されることによって図9(b)に示すように音源部1側の第2の反射面7bに対する平行波となり、その後、第2の反射面7bで反射されることによって図9(c)に示すように第1の反射面7a上の受波素子3の位置で焦点を結ぶこととなる。そのため、反射面7a,7bでの反射を繰り返しても超音波は拡散しにくく、且つ直線状に伝播する超音波と放射状に伝播する超音波とに関して伝播経路の経路長は同じになり、焦点での位相ずれによる干渉も生じない。   In short, as shown in FIG. 9 (a), the ultrasonic wave that has reached the first reflecting surface 7a on the receiving element 3 side while spreading radially from the sound source unit 1 arranged on the second reflecting surface 7b is By being reflected by the first reflecting surface 7a, it becomes a parallel wave with respect to the second reflecting surface 7b on the sound source unit 1 side as shown in FIG. 9B, and then reflected by the second reflecting surface 7b. As shown in FIG. 9C, the focal point is formed at the position of the wave receiving element 3 on the first reflecting surface 7a. Therefore, even if the reflection on the reflecting surfaces 7a and 7b is repeated, the ultrasonic wave is difficult to diffuse, and the path length of the propagation path is the same for the ultrasonic wave propagating linearly and the ultrasonic wave propagating radially. Interference due to the phase shift of the.

したがって、音源部1と受波素子3との間における超音波の音圧の低下を抑制することができる。その結果、煙濃度の変化量に対する受波素子3の出力の変化量が比較的大きくなり、SN比が向上する。   Accordingly, it is possible to suppress a decrease in the sound pressure of the ultrasonic wave between the sound source unit 1 and the wave receiving element 3. As a result, the change amount of the output of the wave receiving element 3 with respect to the change amount of the smoke density becomes relatively large, and the SN ratio is improved.

さらに詳しく説明すると、仮に反射面7a,7bがなければ、音源部1から送波された超音波は監視空間中で拡散減衰することにより、受波素子3で受波される際には伝播経路の経路長に応じて音圧が減衰する。これに対して、反射面7a,7bで反射される第2の超音波Sw2は、上述したように反射面7a,7bで反射されることにより他方の反射面7a,7b上に集音され、結果的に拡散減衰が抑制されるので、反射面7a,7bで反射されることなく同じ経路長Lを伝播される超音波に比較すると、音圧の減衰量が小さくなる。つまり、受波素子3で受波される前記第2の超音波Sw2の音圧P20は、反射面7a,7bで反射されることなく経路長Lの伝播経路を通して音源部1から受波素子3に伝播される超音波の音圧Pに比べて大きくなり、煙濃度の分解能が向上する。このとき、第2の超音波Sw2の音圧P20は前記音圧Pと音圧増大係数A(>1)との積(A・P)で表すことができる。なお、音圧増大係数は、超音波が反射面7a,7bで反射されることにより拡散減衰が抑制される度合いを表す係数であって、反射面7a,7bの形状や超音波の指向性などによって決まる。 More specifically, if there is no reflection surface 7a, 7b, the ultrasonic wave transmitted from the sound source unit 1 is diffused and attenuated in the monitoring space, so that when it is received by the wave receiving element 3, the propagation path The sound pressure attenuates according to the path length. On the other hand, the second ultrasonic wave Sw2 reflected by the reflecting surfaces 7a and 7b is collected on the other reflecting surfaces 7a and 7b by being reflected by the reflecting surfaces 7a and 7b as described above. since consequently the diffusion attenuation is suppressed, the reflecting surface 7a, as compared with the ultrasonic waves are propagated the same path length L 2 without being reflected by 7b, the attenuation of the sound pressure is reduced. In other words, the sound pressure P 20 of the second ultrasonic Sw2 to be received at the wave receiving element 3, the reflective surface 7a, reception from the sound source unit 1 through the propagation path of the path length L 2 without being reflected by 7b It becomes larger than the sound pressure P 2 of the ultrasonic wave propagated to the element 3, thereby improving the resolution of the smoke density. In this case, the sound pressure P 20 of the second ultrasonic Sw2 can be represented by the product (A · P 2) between the sound pressure P 2 and the sound-pressure increase coefficient A (> 1). The sound pressure increase coefficient is a coefficient representing the degree to which diffusion attenuation is suppressed by reflection of ultrasonic waves by the reflection surfaces 7a and 7b. The shape of the reflection surfaces 7a and 7b, the directivity of the ultrasonic waves, etc. It depends on.

以上説明した構成によれば、単一の音源部1から送波され単一の受波素子3で受波される複数の超音波Sw1,Sw2間の音圧比を算出することができるので、当該複数の超音波Sw1,Sw2が各個別の音源部1から送波され各個別の受波素子3で受波される構成に比べると、音圧比算出手段40で算出される音圧比が複数の音源部1間で生じる特性変化のばらつきの影響や、複数の受波素子3間で生じる特性変化のばらつきの影響を受けることがない分だけ、音圧比の算出精度が向上する。しかも、音源部1から同一タイミングで送波された超音波について音圧比を算出するので、算出される音圧比は音源部1の駆動タイミングによって生じる音圧のばらつきの影響を受けることもない。   According to the configuration described above, the sound pressure ratio between the plurality of ultrasonic waves Sw1 and Sw2 transmitted from the single sound source unit 1 and received by the single receiving element 3 can be calculated. Compared to a configuration in which a plurality of ultrasonic waves Sw1 and Sw2 are transmitted from each individual sound source unit 1 and received by each individual receiving element 3, the sound pressure ratio calculated by the sound pressure ratio calculating means 40 is a plurality of sound sources. The calculation accuracy of the sound pressure ratio is improved by the amount that is not affected by the variation in the characteristic change that occurs between the units 1 or the variation in the characteristic change that occurs between the plurality of receiving elements 3. Moreover, since the sound pressure ratio is calculated for the ultrasonic waves transmitted from the sound source unit 1 at the same timing, the calculated sound pressure ratio is not affected by variations in sound pressure caused by the drive timing of the sound source unit 1.

なお、上述の拡散防止板6を設けない場合においては、各反射面7a,7bをそれぞれ回転放物面とすることで、反射面7a,7bでの反射時における超音波の拡散を抑制する効果を最も高めることができる。   In the case where the above-described diffusion preventing plate 6 is not provided, the effect of suppressing the diffusion of ultrasonic waves during reflection on the reflecting surfaces 7a and 7b is achieved by making the reflecting surfaces 7a and 7b be paraboloids, respectively. Can be enhanced the most.

ところで、本実施形態の火災感知器は、音圧比補正手段45が、音速計測手段47で計測された監視空間の音速に基づいて、当該音速の変化に起因した音圧比算出手段40の出力(音圧比R)の初期値Rからの変動分をキャンセルするように前記音圧比Rを補正する機能を有している。 By the way, in the fire detector of the present embodiment, the sound pressure ratio correction means 45 outputs the sound pressure ratio calculation means 40 based on the sound speed in the monitoring space measured by the sound speed measurement means 47 (sound pressure ratio calculation means 40). The pressure ratio R S ) has a function of correcting the sound pressure ratio R S so as to cancel the fluctuation from the initial value R 0 .

要するに、監視空間における音速が変化すると、監視空間での超音波の指向性が変化し、その結果、第1の超音波Sw1と第2の超音波Sw2との音圧比Rが変動する。さらに詳しく説明すると、たとえば音源部1から正弦波パルス状の超音波が送波される場合、音源部1の真正面の方向に対する角度θを用いて、指向性係数(前記角度θ=0°での音圧を1としたときの音圧の大きさを示す係数)D(θ)は以下の式で表される。なお、0≦θ≦sin−1(λ/4a)のときには数3が適用され、sin−1(λ/4a)≦θ≦π/2aのときに数4が適用される。 In short, when the sound speed in the monitoring space changes, the directivity of the ultrasonic waves in the monitoring space changes, and as a result, the sound pressure ratio RS between the first ultrasonic wave Sw1 and the second ultrasonic wave Sw2 changes. More specifically, for example, when sinusoidal pulsed ultrasonic waves are transmitted from the sound source unit 1, the directivity coefficient (the angle θ = 0 °) is calculated using the angle θ with respect to the direction directly in front of the sound source unit 1. The coefficient (D 1 (θ) indicating the magnitude of the sound pressure when the sound pressure is 1 ) is expressed by the following equation. Note that Formula 3 is applied when 0 ≦ θ ≦ sin −1 (λ / 4a), and Formula 4 is applied when sin −1 (λ / 4a) ≦ θ ≦ π / 2a.

Figure 0005144457
Figure 0005144457

Figure 0005144457
Figure 0005144457

上式中のλは超音波の波長を表しており、aは音源部1のうち媒質としての空気に振動を与える発熱体層13の表面(送波面)の一辺長の1/2の長さを表す(つまり、音源部1の送波面は一辺が2aの正方形状となる)。波長λは、周知のように音速と周期(パルス幅)との積で表されるから、監視空間内での音速が変化すると、波長λが変化して上記指向性係数D(θ)が変化する。 In the above equation, λ represents the wavelength of the ultrasonic wave, and a is a length that is ½ of the length of one side of the surface (sending surface) of the heating element layer 13 that vibrates the air as the medium in the sound source unit 1. (That is, the transmission surface of the sound source unit 1 has a square shape with a side of 2a). As is well known, the wavelength λ is represented by the product of the sound speed and the period (pulse width). Therefore, when the sound speed in the monitoring space changes, the wavelength λ changes and the directivity coefficient D 1 (θ) is changed. Change.

そして、指向性係数D(θ)が変化すれば、前述の音圧増大係数Aが変化し、これに伴い反射面7a,7bで反射された第2の超音波Sw2の音圧P20(=A・P)が変化する。ここで、変化後の音圧増大係数をA’(≠A)とすれば、変化後の第2の超音波Sw2の音圧P20’はP20’=A’・Pで表されることとなるので、第1および第2の超音波Sw1,Sw2の音圧比は、R’(=P20’/P10)=A’・P/P10となり、初期値R(=P20/P10)=A・P/P10から変化する。つまり、指向性係数D(θ)が変化すれば、煙濃度にかかわらず第1および第2の超音波Sw1,Sw2の音圧比Rは変化する。 When the directivity coefficient D 1 (θ) changes, the sound pressure increase coefficient A changes, and the sound pressure P 20 (second ultrasonic wave Sw 2 reflected by the reflecting surfaces 7a and 7b is correspondingly changed. = A · P 2 ) changes. Here, if the sound pressure increase coefficient after the change is A ′ (≠ A), the sound pressure P 20 ′ of the second ultrasonic wave Sw2 after the change is expressed by P 20 ′ = A ′ · P 2. Therefore, the sound pressure ratio between the first and second ultrasonic waves Sw1 and Sw2 is R 0 ′ (= P 20 ′ / P 10 ) = A ′ · P 2 / P 10 , and the initial value R 0 (= P 20 / P 10 ) = A · P 2 / P 10 That is, if the directivity coefficient D 1 (θ) changes, the sound pressure ratio R S of the first and second ultrasonic waves Sw1 and Sw2 changes regardless of the smoke density.

そこで、本実施形態の音圧比補正手段45は、音速の変化に起因した前記音圧比Rの変動分をキャンセルするように、音速の変化に応じて前記音圧比Rを補正する。具体的には、図10に示すように減衰係数推定手段44での推定結果(減衰係数α)だけでなく、音速計測手段47での計測結果(音速)も音圧比補正手段45へ入力し、減衰係数αの変化による音圧低下率Bの変動分が取り除かれ、且つ音速変化に起因した超音波の指向性変化による前記音圧増大係数の変動分(A’−A)が取り除かれるように、音圧比補正手段45での音圧比Rの補正値を決定する。これにより、煙濃度推定手段41では、音速変化に起因した初期値Rからの変動分がキャンセルされた音圧比Rを用いて、監視空間の煙濃度を推定することができるので、煙濃度推定手段41で推定される煙濃度に、音速変化による指向性の変化が影響することはない。 Therefore, the sound pressure ratio correcting means 45 in this embodiment, so as to cancel the fluctuation of the sound pressure ratio R S due to a change in the sound velocity, it corrects the sound pressure ratio R S in accordance with a change in sound velocity. Specifically, as shown in FIG. 10, not only the estimation result (attenuation coefficient α) in the attenuation coefficient estimation means 44 but also the measurement result (sound speed) in the sound speed measurement means 47 is input to the sound pressure ratio correction means 45, The variation of the sound pressure decrease rate B 1 due to the change of the attenuation coefficient α is removed, and the variation (A′−A) of the sound pressure increase coefficient due to the change in the directivity of the ultrasonic wave due to the change of the sound speed is removed. Then, the correction value of the sound pressure ratio R S in the sound pressure ratio correction means 45 is determined. As a result, the smoke density estimation means 41 can estimate the smoke density in the monitoring space using the sound pressure ratio R S in which the variation from the initial value R 0 caused by the change in the sound speed is canceled. A change in directivity due to a change in sound speed does not affect the smoke density estimated by the estimating means 41.

したがって、監視空間の音速変化により超音波の指向性が変化することがあっても、火災判断手段42では、当該指向性変化の影響を受けずに火災発生の有無を判断することで、前記指向性変化に起因した非火災報や失報を低減することができ、火災の有無の判断の確度が向上するという利点がある。   Therefore, even if the directivity of the ultrasonic waves may change due to the change in the sound speed of the monitoring space, the fire determination means 42 determines whether or not the fire has occurred without being affected by the directivity change. There is an advantage that non-fire reports and missed reports due to sex changes can be reduced, and the accuracy of determination of the presence or absence of a fire is improved.

また、音圧比補正手段45においては、周囲環境の変化に起因した減衰係数αの変化と、音速変化に起因した指向性の変化との2つの要素を考慮して音圧比Rを補正することになるので、これら2つの要素を統合した補正に関する重回帰式を用いて補正を行う構成としてもよい。これにより、前記補正を行う際の演算処理にかかる負荷の軽減を図ることができる。なお、前記重回帰式は、気圧が一定と仮定すれば、たとえば、温度と湿度との2次関数で表される。 The sound pressure ratio correction means 45 corrects the sound pressure ratio R S in consideration of two factors: a change in the attenuation coefficient α due to a change in the surrounding environment and a change in directivity due to a change in sound speed. Therefore, the correction may be performed using a multiple regression equation relating to correction in which these two elements are integrated. As a result, it is possible to reduce the load on the calculation processing when performing the correction. Note that the multiple regression equation is expressed by a quadratic function of temperature and humidity, for example, assuming that the atmospheric pressure is constant.

その他の構成および機能は実施形態1と同様である。   Other configurations and functions are the same as those of the first embodiment.

(実施形態3)
本実施形態の火災感知器は、図11に示すように反射面7a,7bの経年劣化や反射面7a,7bの汚れ等による反射面7a,7bの超音波の反射率変化に起因した音圧比変化を補正するための反射率変化補正手段50を具備する点が、実施形態2の火災感知器と相違する。なお、実施形態2と同様の構成要素には同一の符号を付して説明を適宜省略する。
(Embodiment 3)
As shown in FIG. 11, the fire detector according to the present embodiment has a sound pressure ratio caused by a change in ultrasonic reflectance of the reflecting surfaces 7a and 7b due to aging deterioration of the reflecting surfaces 7a and 7b and dirt on the reflecting surfaces 7a and 7b. The difference from the fire detector of the second embodiment is that a reflectance change correction means 50 for correcting the change is provided. In addition, the same code | symbol is attached | subjected to the component similar to Embodiment 2, and description is abbreviate | omitted suitably.

すなわち、火災感知器においては監視空間へ煙が導入される構造とする必要があるため、反射面7a,7bは火災感知器が設置されている室内の雰囲気に晒されることとなり、反射面7a,7bを構成する反射板の体積弾性率が変化したり、反射面7a,7bの表面にたとえば塵埃、油分等の汚れが付着したりする場合がある。このような場合に、反射面7a,7bにおける超音波の反射率が変化し、当該反射率の変化に起因して、音圧比算出手段40で算出される音圧比Rが初期値Rから変化することがある。 That is, since it is necessary for the fire detector to have a structure in which smoke is introduced into the monitoring space, the reflective surfaces 7a and 7b are exposed to the atmosphere in the room where the fire detector is installed. In some cases, the volume elastic modulus of the reflecting plate constituting 7b may change, or dirt such as dust or oil may adhere to the surfaces of the reflecting surfaces 7a and 7b. In such a case, the reflectance of the ultrasonic waves on the reflecting surfaces 7a and 7b changes, and the sound pressure ratio R S calculated by the sound pressure ratio calculating means 40 is changed from the initial value R 0 due to the change in the reflectance. May change.

ここにおいて、煙濃度推定手段41で用いられるのは、音圧比補正手段45にて周辺環境の変化に起因した減衰係数αの変化と音速変化に起因した指向性の変化との2つの要素を考慮して補正された音圧比Rであるが、上述したような反射面7a,7bの反射率の変化は、周辺環境や音速変化に起因するものではなく、したがって、音圧比補正手段45における補正では反射面7a,7bの反射率変化の影響を取り除くことはできない。 Here, the smoke density estimating means 41 uses two factors, the change of the attenuation coefficient α caused by the change of the surrounding environment and the change of directivity caused by the change of the sound speed in the sound pressure ratio correcting means 45. and is a corrected sound pressure ratio R S, the reflecting surface 7a as described above, the change in reflectance of 7b is not due to the surrounding environment and sound velocity change, therefore, the correction of the sound pressure ratio correcting means 45 Then, the influence of the reflectance change of the reflective surfaces 7a and 7b cannot be removed.

そこで、本実施形態では、反射面7a,7bでの超音波の反射率に関する値を推定する反射率変化推定手段51と、反射率変化推定手段51での推定結果に基づいて、反射面7a,7bの反射率変化に起因する音圧比Rの変動分を取り除くように音圧比Rを補正する反射率変化補正手段50とを信号処理部4に有している。反射率変化補正手段50は、音圧比補正手段45の後段に設けられ、音圧比補正手段45で補正後の音圧比をさらに補正してから煙濃度推定手段41に渡すように構成される。 Therefore, in the present embodiment, based on the estimation result of the reflectance change estimating means 51 and the reflectance change estimating means 51 for estimating the value relating to the reflectance of the ultrasonic waves on the reflecting surfaces 7a and 7b, the reflecting surfaces 7a, 7b, The signal processing unit 4 includes a reflectance change correction unit 50 that corrects the sound pressure ratio R S so as to remove the fluctuation of the sound pressure ratio R S caused by the reflectance change 7b. The reflectance change correction unit 50 is provided at the subsequent stage of the sound pressure ratio correction unit 45 and is configured to further correct the corrected sound pressure ratio by the sound pressure ratio correction unit 45 and then pass it to the smoke density estimation unit 41.

以下に、反射率変化推定手段51において反射率に関する値を推定する手段について説明する。   Below, the means for estimating the value relating to the reflectance in the reflectance change estimating means 51 will be described.

反射面7a,7bでの超音波の反射率の初期値をrとし、実際の反射率をr’とすれば、反射率r’の初期値rに対する相対的な変化率はr’/rで表される。反射面7a,7bで1回以上反射されてから受波素子3に到達する超音波の音圧は前記変化率r’/rに応じて変化することとなり、当該音圧の変化はr’/rの反射回数乗にて表される(つまり、反射面7a,7bでの反射回数がn回であれば、(r’/r)で表される)。 If the initial value of the reflectance of the ultrasonic waves at the reflecting surfaces 7a and 7b is r and the actual reflectance is r ', the relative change rate of the reflectance r' with respect to the initial value r is r '/ r. expressed. The sound pressure of the ultrasonic wave that reaches the receiving element 3 after being reflected at least once by the reflecting surfaces 7a and 7b changes according to the rate of change r ′ / r, and the change in the sound pressure is r ′ / It is expressed by r raised to the power of the number of reflections (that is, if the number of reflections on the reflection surfaces 7a and 7b is n, it is expressed by (r ′ / r) n ).

すなわち、たとえば音源部1から送波された後に第1の反射面7aで反射され、さらに第2の反射面7bで反射されることによって受波素子3に伝わる(反射回数が2回の)第2の超音波(反射波)Sw2の音圧P20’は、P20’=P20(r’/r)で表されることとなる。そのため、音源部1から受波素子3に直接伝わる(反射回数が0回の)第1の超音波(直接波)Sw1と、前記第2の超音波Sw2との音圧比は、初期値をR=P20/P10とすると、反射面7a,7bの反射率変化によってR’(=P20’/P10)=P20/P10・(r’/r)=R・(r’/r)となる。つまり、反射面7a,7bでの超音波の反射率が変化すれば、煙濃度にかかわらず第1および第2の超音波Sw1,Sw2の音圧比Rは変化する。 That is, for example, after being transmitted from the sound source unit 1, it is reflected by the first reflecting surface 7 a, and further reflected by the second reflecting surface 7 b and transmitted to the wave receiving element 3 (the number of reflections is two). The sound pressure P 20 ′ of the second ultrasonic wave (reflected wave) Sw 2 is represented by P 20 ′ = P 20 (r ′ / r) 2 . Therefore, the sound pressure ratio between the first ultrasonic wave (direct wave) Sw1 directly transmitted from the sound source unit 1 to the wave receiving element 3 (the number of reflections is 0) and the second ultrasonic wave Sw2 has an initial value R. Assuming that 0 = P 20 / P 10 , R 0 ′ (= P 20 ′ / P 10 ) = P 20 / P 10 · (r ′ / r) 2 = R 0 · (R ′ / r) 2 That is, if the reflectance of the ultrasonic waves at the reflecting surfaces 7a and 7b changes, the sound pressure ratio RS of the first and second ultrasonic waves Sw1 and Sw2 changes regardless of the smoke density.

ここにおいて、音源部1から送波された後に第1の反射面7aで反射され、第2の反射面7bで反射され、さらに、第1の反射面7aで反射され、第2の反射面7bで反射されることによって受波素子3に伝わる(反射回数が4回の)超音波を第3の超音波Sw3とする。このとき、第3の超音波Sw3の音圧P30’は、その初期値をP30としてP30’=P30(r’/r)で表されることとなる。そのため、音源部1から受波素子3に直接伝わる(反射回数が0回の)第1の超音波Sw1と、前記第3の超音波Sw2との音圧比は、初期値をR=P30/P10とすると、反射面7a,7bの反射率変化によってR’(=P30’/P10)=P30/P10・(r’/r)=R・(r’/r)となる。 Here, after being transmitted from the sound source unit 1, it is reflected by the first reflecting surface 7a, reflected by the second reflecting surface 7b, further reflected by the first reflecting surface 7a, and the second reflecting surface 7b. The ultrasonic wave transmitted to the wave receiving element 3 by being reflected at (the number of reflections is 4) is defined as a third ultrasonic wave Sw3. At this time, the sound pressure P 30 ′ of the third ultrasonic wave Sw3 is represented by P 30 ′ = P 30 (r ′ / r) 4 with the initial value being P 30 . Therefore, the sound pressure ratio between the first ultrasonic wave Sw1 directly transmitted from the sound source unit 1 to the wave receiving element 3 (the number of reflections is 0) and the third ultrasonic wave Sw2 has an initial value of R 3 = P 30. / P 10 , R 3 ′ (= P 30 ′ / P 10 ) = P 30 / P 10 · (r ′ / r) 4 = R 3 · (r ′ / r) 4

また、上記説明は、監視空間に煙粒子(あるいはその他の浮遊粒子)の流入がない場合における音圧比の変化から反射率の変化を求めるためのものであるが、実際の火災感知器の動作時には、監視空間に煙粒子等が流入している場合がある。ただ、監視空間に煙粒子等が流入したとしても、実施形態1で説明したように、減光式煙濃度計(減光式煙感知器)での評価での監視空間の煙濃度をC〔%/m〕、煙濃度1〔%/m〕に対する1〔m〕当たりの超音波の減衰率をβ、超音波の伝播経路の経路長をx〔m〕とした場合、受波素子3で受波される超音波の音圧Pは、その初期値をPとしてP≒P(1−βCx)で表される。 In addition, the above explanation is for obtaining a change in reflectance from a change in sound pressure ratio when smoke particles (or other suspended particles) do not flow into the monitoring space, but during actual operation of the fire detector. , Smoke particles may flow into the monitoring space. However, even if smoke particles or the like flow into the monitoring space, as described in the first embodiment, the smoke density in the monitoring space in the evaluation with the light-reducing smoke densitometer (light-reducing smoke detector) is C [ % / M], the attenuation rate of the ultrasonic wave per [m] with respect to the smoke density 1 [% / m] is β, and the path length of the ultrasonic propagation path is x [m], the receiving element 3 The sound pressure P S of the received ultrasonic wave is expressed by P S ≈P 0 (1−βCx), with its initial value being P 0 .

ここに、本実施形態では、第1の反射面7aが音源部1を中心とする球面の一部を形成し、第2の反射面7bが受波素子3を中心とする球面の一部を形成するものとし、音源部1と受波素子3との間の直線距離をLとしたときに、音源部1から受波素子3に伝わる超音波の伝播経路長は、反射回数nを用いて(n+1)・Lで表されるものとする。つまり、反射回数が0回である第1の超音波(直接波)Sw1の伝播経路長ばL、反射回数が2回である第2の超音波(反射波)Sw2の伝播経路長は3L、反射回数が4回である第3の超音波(反射波)Sw3の伝播経路長は5Lで表されることとなる。したがって、上述したR’=P30/P10・(r’/r)と、R’=P30/P10・(r’/r)との2式において、それぞれP≒P(1−βCx)の関係式を代入することにより、煙濃度Cと反射率変化r’/rとをそれぞれ求めることが可能である。 Here, in the present embodiment, the first reflecting surface 7 a forms a part of a spherical surface centered on the sound source unit 1, and the second reflecting surface 7 b forms a part of the spherical surface centered on the wave receiving element 3. When the linear distance between the sound source unit 1 and the wave receiving element 3 is L, the propagation path length of the ultrasonic wave transmitted from the sound source unit 1 to the wave receiving element 3 is determined by using the number of reflections n. It is assumed that (n + 1) · L. That is, if the propagation path length of the first ultrasonic wave (direct wave) Sw1 with 0 reflections is L, the propagation path length of the second ultrasonic wave (reflection wave) Sw2 with 2 reflections is 3L, The propagation path length of the third ultrasonic wave (reflected wave) Sw3 in which the number of reflections is four is represented by 5L. Therefore, in the above two formulas R 0 ′ = P 30 / P 10 · (r ′ / r) 4 and R 3 ′ = P 30 / P 10 · (r ′ / r) 4 , P S ≈ By substituting the relational expression of P 0 (1-βCx), it is possible to obtain the smoke density C and the reflectance change r ′ / r, respectively.

すなわち、反射率変化推定手段51は、上記のように音源部1から受波素子3に直接伝わる直接波(第1の超音波Sw1)と、反射面7a,7bでの反射回数の異なる複数の反射波(第2および第3の超音波Sw2,Sw3)との音圧に基づいて反射面7a,7bにおける超音波の反射率変化r’/rを求めることができるのであって、反射率変化補正手段50では、求まった反射率変化r’/rの分だけ音圧比Rを補正する。このとき、反射面7a,7bの反射率の変化r’/rによる音圧比Rの変動分が取り除かれるように、反射率変化補正手段50での音圧比Rの補正値を決定する。これにより、煙濃度推定手段41では、反射面7a,7bの反射率変化に起因した初期値Rからの変動分がキャンセルされた音圧比Rを用いて、監視空間の煙濃度を推定することができるので、煙濃度推定手段41で推定される煙濃度に、反射面7a,7bの反射率変化が影響することはない。 That is, the reflectance change estimation means 51 has a plurality of different direct waves (first ultrasonic wave Sw1) directly transmitted from the sound source unit 1 to the wave receiving element 3 as described above and the number of reflections on the reflection surfaces 7a and 7b. Based on the sound pressure with the reflected waves (second and third ultrasonic waves Sw2, Sw3), the ultrasonic wave reflectance change r ′ / r on the reflecting surfaces 7a, 7b can be obtained, and the reflectance change The correcting means 50 corrects the sound pressure ratio RS by the amount of the obtained reflectance change r ′ / r. At this time, the correction value of the sound pressure ratio R S in the reflectivity change correction means 50 is determined so that the variation of the sound pressure ratio R S due to the change in reflectance r ′ / r of the reflection surfaces 7a and 7b is removed. As a result, the smoke density estimating means 41 estimates the smoke density in the monitoring space using the sound pressure ratio R S in which the variation from the initial value R 0 due to the reflectance change of the reflecting surfaces 7a and 7b is canceled. Therefore, the change in reflectance of the reflecting surfaces 7a and 7b does not affect the smoke density estimated by the smoke density estimating means 41.

したがって、反射面7a,7bの経年劣化や反射面7a,7bの汚れ等によって反射面7a,7bの反射率が変化することがあっても、火災判断手段42では、当該反射率の変化の影響を受けずに火災発生の有無を判断することで、前記反射率の変化に起因した非火災報や失報を低減することができ、火災の有無の判断の確度が向上するという利点がある。   Therefore, even if the reflectivity of the reflection surfaces 7a and 7b may change due to aging of the reflection surfaces 7a and 7b, contamination of the reflection surfaces 7a and 7b, etc., the fire determination means 42 will be affected by the change in the reflectivity. By determining whether or not a fire has occurred without receiving a non-fire, it is possible to reduce non-fire reports and missed reports due to the change in reflectance, and there is an advantage that the accuracy of determining whether or not there is a fire is improved.

その他の構成および機能は実施形態2と同様である。   Other configurations and functions are the same as those of the second embodiment.

(実施形態4)
本実施形態の火災感知器は、図12に示すように監視空間の気圧を計測する気圧計測手段48を信号処理部4に具備する点が、実施形態1の火災感知器と相違する。なお、実施形態1と同様の構成要素には同一の符号を付して説明を適宜省略する。
(Embodiment 4)
The fire sensor according to the present embodiment is different from the fire sensor according to the first embodiment in that the signal processing unit 4 includes a barometric pressure measuring unit 48 that measures the barometric pressure in the monitoring space as shown in FIG. In addition, the same code | symbol is attached | subjected to the component similar to Embodiment 1, and description is abbreviate | omitted suitably.

気圧計測手段48は、温度計測手段46および音速計測手段47と共にパラメータ取得手段を構成する。減衰係数推定手段44は、温度計測手段46および音速計測手段47の出力から得られる監視空間の温度と湿度、さらに気圧計測手段48から得られる監視空間の気圧をパラメータとして、減衰係数αを推定する。そのため、監視空間の温度および湿度のみから減衰係数αを求める場合に比べて、減衰係数αの算出精度が高くなるという利点がある。   The atmospheric pressure measurement unit 48 constitutes a parameter acquisition unit together with the temperature measurement unit 46 and the sound velocity measurement unit 47. The attenuation coefficient estimation means 44 estimates the attenuation coefficient α using the temperature and humidity of the monitoring space obtained from the outputs of the temperature measurement means 46 and the sound velocity measurement means 47 and the atmospheric pressure of the monitoring space obtained from the atmospheric pressure measurement means 48 as parameters. . Therefore, there is an advantage that the calculation accuracy of the attenuation coefficient α is higher than that when the attenuation coefficient α is obtained only from the temperature and humidity of the monitoring space.

ところで、本実施形態の気圧計測手段48は、いずれかの受波素子3の出力に基づいて前記気圧を計測するものである。ここにおいて、受波素子3は、図13に示すように気圧が一定に維持されている基準圧室39aと監視空間とを隔てる隔壁32’を備えており、この隔壁32’の一部に可動電極33bが配置された構成を有する。隔壁32’は超音波の圧力を監視空間側(図13の上側)から受ける受圧部を形成し、したがって、隔壁32’にて監視空間側から超音波を受けることで固定電極33aと可動電極33bとの距離が変化し、固定電極33aと可動電極33bとの間の静電容量が変化する。なお、図13の例では、シリコン基板31’の一表面側に絶縁膜35’、金属薄膜からなる固定電極33a、隔壁32’を形成する絶縁層39、金属薄膜からなる可動電極33bが積層され、絶縁層39の内部に空洞の基準圧室39aを形成した構成を採用している。   By the way, the atmospheric pressure measuring means 48 of the present embodiment measures the atmospheric pressure based on the output of any of the wave receiving elements 3. Here, as shown in FIG. 13, the wave receiving element 3 includes a partition wall 32 ′ that separates the monitoring space from the reference pressure chamber 39a in which the atmospheric pressure is maintained constant, and is movable to a part of the partition wall 32 ′. The electrode 33b is arranged. The partition wall 32 ′ forms a pressure receiving portion that receives the ultrasonic pressure from the monitoring space side (the upper side in FIG. 13). Therefore, the partition wall 32 ′ receives the ultrasonic wave from the monitoring space side, thereby fixing the fixed electrode 33a and the movable electrode 33b. And the capacitance between the fixed electrode 33a and the movable electrode 33b changes. In the example of FIG. 13, an insulating film 35 ′, a fixed electrode 33a made of a metal thin film, an insulating layer 39 forming a partition wall 32 ′, and a movable electrode 33b made of a metal thin film are laminated on one surface side of the silicon substrate 31 ′. A configuration in which a hollow reference pressure chamber 39a is formed inside the insulating layer 39 is employed.

この受波素子3においては、固定電極33aおよび可動電極33bに設けたパッド33c,33c間に直流バイアス電圧が印加され、両パッド33c,33c間に超音波の音圧に応じて生じる微小な電圧変化が出力として取り出されるが、当該電圧変化に含まれる直流成分は、基準圧室39aと監視空間との気圧の差に相当する。そこで、気圧計測手段48は、上述した電圧変化の直流成分に基づいて、監視空間の気圧を計測するように構成される。   In the wave receiving element 3, a DC bias voltage is applied between the pads 33c and 33c provided on the fixed electrode 33a and the movable electrode 33b, and a minute voltage generated according to the sound pressure of the ultrasonic wave between the pads 33c and 33c. Although the change is taken out as an output, the DC component included in the voltage change corresponds to the difference in atmospheric pressure between the reference pressure chamber 39a and the monitoring space. Therefore, the atmospheric pressure measurement unit 48 is configured to measure the atmospheric pressure in the monitoring space based on the DC component of the voltage change described above.

この構成によれば、受波素子3の出力である固定電極33aと可動電極33bとの間の静電容量の変化を用いて監視空間の気圧を計測しているから、気圧を計測するための圧力センサ等を新たに設ける必要がない。したがって、火災感知器の部品点数の削減を図ることができる。   According to this configuration, since the atmospheric pressure in the monitoring space is measured using the change in capacitance between the fixed electrode 33a and the movable electrode 33b, which is the output of the wave receiving element 3, the pressure for measuring the atmospheric pressure is measured. There is no need to newly provide a pressure sensor or the like. Therefore, the number of parts of the fire detector can be reduced.

なお、その他の構成および機能は実施形態1と同様である。   Other configurations and functions are the same as those in the first embodiment.

(実施形態5)
本実施形態の火災感知器は、図14に示すように監視空間に浮遊している粒子の種別を推定する粒子種別推定手段49を信号処理部4に具備する点が、実施形態1の火災感知器と相違する。なお、実施形態1と同様の構成要素には同一の符号を付して説明を適宜省略する。
(Embodiment 5)
As shown in FIG. 14, the fire detector according to the present embodiment is provided with a particle type estimating means 49 for estimating the type of particles floating in the monitoring space. It is different from the vessel. In addition, the same code | symbol is attached | subjected to the component similar to Embodiment 1, and description is abbreviate | omitted suitably.

ところで、本願発明者らは、音源部1と受波素子3との間の監視空間の浮遊粒子の種別に応じて図15に示すように音源部1の出力周波数と音圧比の単位変化率との関係が異なるという知見を得た。ここで、監視空間に浮遊粒子が存在しない状態で各受波素子3a,3bにて受波される超音波間の音圧比(以下、初期音圧比という)をR、減光式煙濃度計(減光式煙感知器)での評価でs〔%/m〕となる濃度の浮遊粒子が監視空間に存在する状態で各受波素子3a,3bにて受波される超音波間の音圧比をRとしたときに、(R−R)/Rで表される値を音圧比の変化率と定義し、特にs=1のときの前記変化率を単位変化率と定義する。ここにおいて、初期音圧比Rと音圧比Rとは、監視空間における浮遊粒子の有無を除いては同一の条件で算出されるものとする。図15中の「イ」は浮遊粒子が黒煙の煙粒子である場合の出力周波数と音圧比の単位変化率との関係を示す近似曲線(黒丸が測定データ)、「ロ」は浮遊粒子が白煙の煙粒子である場合の出力周波数と音圧比の単位変化率との関係を示す近似曲線(黒四角が測定データ)、「ハ」は浮遊粒子が湯気の粒子である場合の出力周波数と音圧比の単位変化率との関係を示す近似曲線(黒三角が測定データ)であり、ここに示す単位変化率は、音源部1aおよび受波素子3a間の超音波の伝播経路の経路長Lと音源部1bおよび受波素子3b間の超音波の伝播経路の経路長Lとの差(L−L)を30cmに設定したときの各出力周波数ごとのデータである。また、図15における右端の各データは、出力周波数が82kHzのときのデータであり、出力周波数が82kHzのときのデータを1として各出力周波数の単位変化率を規格化した結果を図16に示す。要するに、図16は、横軸が出力周波数、縦軸が相対的単位変化率となっている。また、白煙の煙粒子のサイズは800nm程度、黒煙の煙粒子のサイズは200nm程度、湯気の粒子のサイズは数μm〜20μm程度である。 By the way, the inventors of the present application show the unit change rate of the output frequency and the sound pressure ratio of the sound source unit 1 as shown in FIG. 15 according to the type of suspended particles in the monitoring space between the sound source unit 1 and the wave receiving element 3. I got the knowledge that the relationship is different. Here, the sound pressure ratio (hereinafter referred to as the initial sound pressure ratio) between the ultrasonic waves received by each of the receiving elements 3a and 3b in a state where no suspended particles exist in the monitoring space is R 0 , a dimming smoke densitometer. Sound between ultrasonic waves received by each of the receiving elements 3a and 3b in a state where suspended particles having a concentration of s [% / m] are present in the monitoring space, as evaluated by the (dimming smoke detector). When the pressure ratio is R S , the value represented by (R 0 −R S ) / R 0 is defined as the rate of change of the sound pressure ratio, and in particular, the rate of change when s = 1 is defined as the unit rate of change. To do. Here, the initial sound pressure ratio R 0 and the sound pressure ratio R S are calculated under the same conditions except for the presence or absence of suspended particles in the monitoring space. “I” in FIG. 15 is an approximate curve (the black circle is measured data) showing the relationship between the output frequency and the unit change rate of the sound pressure ratio when the suspended particles are black smoke particles, and “B” is the suspended particles. Approximate curve (black square is measured data) showing the relationship between the output frequency and the unit change rate of the sound pressure ratio when white smoke particles are used. “C” is the output frequency when the floating particles are steam particles. It is an approximate curve (black triangle is measurement data) showing the relationship with the unit change rate of the sound pressure ratio, and the unit change rate shown here is the path length L of the propagation path of the ultrasonic wave between the sound source unit 1a and the receiving element 3a. 1 and data for each output frequency when the difference (L 2 −L 1 ) between the path length L 2 of the ultrasonic wave propagation path between the sound source unit 1 b and the wave receiving element 3 b is set to 30 cm. Each data at the right end in FIG. 15 is data when the output frequency is 82 kHz, and FIG. 16 shows the result of normalizing the unit change rate of each output frequency with the data when the output frequency is 82 kHz as 1. . In short, in FIG. 16, the horizontal axis represents the output frequency, and the vertical axis represents the relative unit change rate. The size of white smoke particles is about 800 nm, the size of black smoke particles is about 200 nm, and the size of steam particles is about several μm to 20 μm.

上述の知見に基づいて、本実施形態では、制御部2が、音源部1から周波数の異なる複数種の超音波が順次送波されるように音源部1を制御するようにし、信号処理部4は、少なくとも各出力周波数ごとの初期音圧比R、上記監視空間に存在する浮遊粒子の種別および浮遊粒子濃度に応じた音源部1の出力周波数と音圧比の相対的単位変化率との関係データ(上述の図16より抽出されるデータ)、煙粒子に関して特定周波数(たとえば、82kHz)における音圧比の単位変化率(上述の図15より抽出されるデータ)を記憶手段43に記憶するとともに、音源部1から送波された各周波数の超音波ごとに音圧比算出手段40の出力(各受波素子3a,3bにて受波される超音波間の音圧比R)と記憶手段43に記憶されている関係データとを用いて上記監視空間に浮遊している粒子の種別を推定する粒子種別推定手段49を有するようにしてある。 Based on the above knowledge, in the present embodiment, the control unit 2 controls the sound source unit 1 so that plural types of ultrasonic waves having different frequencies are sequentially transmitted from the sound source unit 1, and the signal processing unit 4. Is the relational data between the output frequency of the sound source unit 1 and the relative unit change rate of the sound pressure ratio according to the initial sound pressure ratio R 0 for each output frequency, the type of suspended particles present in the monitoring space, and the suspended particle concentration (Data extracted from the above-mentioned FIG. 16), the unit change rate (data extracted from the above-mentioned FIG. 15) of the sound pressure ratio at a specific frequency (for example, 82 kHz) with respect to smoke particles is stored in the storage means 43, and the sound source The output of the sound pressure ratio calculation means 40 (the sound pressure ratio R S between the ultrasonic waves received by the wave receiving elements 3 a and 3 b) and the storage means 43 for each ultrasonic wave transmitted from the unit 1. Relationship Particle type estimation means 49 for estimating the type of particles floating in the monitoring space using the data is provided.

ここに、本実施形態では実施形態1と同様、音圧比算出手段40の後段に音圧比補正手段45を設け、音圧比算出手段40で算出された音圧比Rを音圧比補正手段45で補正してから粒子種別推定手段49に渡すようにしてある。これにより、粒子種別推定手段49では、減衰係数αの変化に起因した初期値Rからの変動分がキャンセルされた音圧比Rを用いて、監視空間の浮遊粒子の種別を推定することができるので、粒子種別推定手段49での推定結果に、減衰係数αの変化が影響することはない。煙濃度推定手段41は、粒子種別推定手段49にて推定された粒子が煙粒子のときに、特定周波数(たとえば、82kHz)の超音波に対する音圧比算出手段40の出力の初期音圧比Rからの変化量に基づいて上記監視空間の煙濃度を推定する。煙濃度推定手段41で用いられる音圧比Rもまた、音圧比補正手段45にて減衰係数αの変化に起因した初期値Rからの変動分がキャンセルされた補正後の音圧比Rである。 Here, in this embodiment, as in the first embodiment, a sound pressure ratio correction unit 45 is provided after the sound pressure ratio calculation unit 40, and the sound pressure ratio R S calculated by the sound pressure ratio calculation unit 40 is corrected by the sound pressure ratio correction unit 45. Then, it is passed to the particle type estimation means 49. As a result, the particle type estimation means 49 can estimate the type of suspended particles in the monitoring space using the sound pressure ratio R S from which the variation from the initial value R 0 caused by the change in the attenuation coefficient α is cancelled. Therefore, the change of the attenuation coefficient α does not affect the estimation result of the particle type estimation unit 49. When the particle estimated by the particle type estimation unit 49 is a smoke particle, the smoke concentration estimation unit 41 determines the output from the initial sound pressure ratio R 0 of the sound pressure ratio calculation unit 40 with respect to ultrasonic waves of a specific frequency (for example, 82 kHz). The smoke density in the monitoring space is estimated on the basis of the amount of change. The sound pressure ratio R S used in the smoke density estimation means 41 is also the corrected sound pressure ratio R S in which the fluctuation from the initial value R 0 caused by the change in the attenuation coefficient α is canceled by the sound pressure ratio correction means 45. is there.

以下に、本実施形態の火災感知器の動作例を図17のフローチャートを参照して説明する。まず、音源部1から複数種の超音波を順次送波させ、各種の超音波に関して、各受波素子3a,3bにて受波される超音波間の音圧比Rを音圧比算出手段40で算出する(ステップS11)。粒子種別推定手段49は、各出力周波数ごとに算出された音圧比Rの初期音圧比Rからの変化率を求め(ステップS12)、出力周波数が82kHzでの音圧比の変化率に対する20kHzでの音圧比の変化率の比を算出する(ステップS13)。記憶手段43には、音源部1の出力周波数と音圧比の相対的単位変化率との上記関係データとして、出力周波数が82kHzでの相対的単位変化率に対する20kHzでの相対的単位変化率の比(図16の場合、白煙が0、黒煙が0.2、湯気が0.5となる)が記憶されており、粒子種別推定手段49は、算出した変化率の比を記憶手段43に記憶されている関係データと比較し、関係データの中で変化率の比が最も近い種別の粒子を監視空間に浮遊している粒子と推定する(ステップS14)。ここで、推定された粒子が煙粒子であれば煙濃度推定手段41での処理に移行する(ステップS15)。ここにおいて、白煙の場合には図18に示すように減光式煙濃度計で計測される煙濃度と音圧比の変化率との関係は直線で示すことのできるデータであり、他の粒子においても同様であるから、煙濃度推定手段41は、推定された粒子種別について特定周波数(たとえば、82kHz)の超音波に対する音圧比の変化率に関し記憶手段43内の単位変化率に対する比を算出し、その比の値がyの場合に監視空間の煙濃度が減光式煙濃度計での評価における煙濃度y〔%/m〕に相当すると推定する(ステップS16)。火災判断手段42は、ステップS16で推定された煙濃度と所定の閾値(たとえば、減光式煙濃度計での評価で10%/mとなる煙濃度)とを比較し、推定された煙濃度が上記閾値未満の場合には「火災無し」と判断する一方で、上記閾値以上の場合には「火災有り」と判断して火災感知信号を制御部2へ出力する。 Below, the operation example of the fire detector of this embodiment is demonstrated with reference to the flowchart of FIG. First, a plurality of types of ultrasonic waves are sequentially transmitted from the sound source unit 1, and the sound pressure ratio calculation means 40 calculates the sound pressure ratio R S between the ultrasonic waves received by the wave receiving elements 3 a and 3 b for various types of ultrasonic waves. (Step S11). The particle type estimation means 49 obtains the rate of change of the sound pressure ratio R S calculated for each output frequency from the initial sound pressure ratio R 0 (step S12), and at 20 kHz relative to the rate of change of the sound pressure ratio when the output frequency is 82 kHz. The ratio of the change rate of the sound pressure ratio is calculated (step S13). In the storage means 43, as the relation data between the output frequency of the sound source unit 1 and the relative unit change rate of the sound pressure ratio, the ratio of the relative unit change rate at 20 kHz to the relative unit change rate at the output frequency of 82 kHz. (In the case of FIG. 16, white smoke is 0, black smoke is 0.2, and steam is 0.5), and the particle type estimation means 49 stores the calculated change rate ratio in the storage means 43. Compared with the stored relational data, the type of particles having the closest ratio of change rate among the relational data is estimated as particles floating in the monitoring space (step S14). Here, if the estimated particles are smoke particles, the process moves to the smoke concentration estimation means 41 (step S15). In this case, in the case of white smoke, as shown in FIG. 18, the relationship between the smoke density measured by the dimming smoke densitometer and the rate of change of the sound pressure ratio is data that can be shown by a straight line, and other particles Therefore, the smoke concentration estimating means 41 calculates the ratio of the estimated change of the sound pressure ratio with respect to the ultrasonic wave of a specific frequency (for example, 82 kHz) to the unit change rate in the storage means 43 for the estimated particle type. When the value of the ratio is y, it is estimated that the smoke density in the monitoring space corresponds to the smoke density y [% / m] in the evaluation with the dimming smoke densitometer (step S16). The fire determination means 42 compares the smoke density estimated in step S16 with a predetermined threshold (for example, a smoke density that is 10% / m in the evaluation with the dimming smoke densitometer), and the estimated smoke density. Is less than the threshold value, it is determined that there is no fire. On the other hand, if it is greater than the threshold value, it is determined that there is a fire, and a fire detection signal is output to the control unit 2.

上述の例では、粒子種別推定手段49は出力周波数が82kHzのときの音圧比の変化率と20kHzのときの音圧比の変化率とを用いているが、これらの出力周波数の組み合わせに限定するものではなく、異なる組み合わせの出力周波数を用いてもよい。さらに、より多くの出力周波数に対する音圧比の変化率を用いてもよく、その場合は粒子種別の推定の確度を向上させることができる。また、本実施形態では、煙濃度推定手段41が特定周波数として1周波数を対象としているが、特定周波数として複数の周波数を対象とし、各特定周波数ごとに推定した煙濃度の平均値を求めるようにしてもよく、この場合、煙濃度の推定の確度が向上する。なお、信号処理部4は、マイクロコンピュータにより構成されており、粒子種別推定手段49は上記マイクロコンピュータに適宜のプログラムを搭載することにより実現されている。   In the above example, the particle type estimation means 49 uses the rate of change of the sound pressure ratio when the output frequency is 82 kHz and the rate of change of the sound pressure ratio when the output frequency is 20 kHz, but the combination is limited to these output frequencies. Instead, different combinations of output frequencies may be used. Furthermore, the rate of change of the sound pressure ratio with respect to more output frequencies may be used, and in that case, the accuracy of estimation of the particle type can be improved. In the present embodiment, the smoke density estimation means 41 targets one frequency as the specific frequency, but targets a plurality of frequencies as the specific frequency, and calculates the average value of the smoke density estimated for each specific frequency. In this case, the accuracy of smoke density estimation is improved. The signal processing unit 4 is constituted by a microcomputer, and the particle type estimation means 49 is realized by mounting an appropriate program on the microcomputer.

本実施形態では、各音源部1a,1bとして実施形態1にて説明した音波発生素子をそれぞれ用いており、上述の制御部2は、各音源部1a,1bへ与える駆動入力波形の周波数を順次変化させることにより、各音源部1a,1bから周波数の異なる複数種の超音波を順次送波させる。ここにおいて、制御部2は、音源部1から送波させる超音波の周波数を所定の周波数範囲(たとえば、20kHz〜82kHz)の下限周波数(たとえば、20kHz)から上限周波数(たとえば、82kHz)まで変化させる。なお、本実施形態では、音源部1から周波数の異なる4種類の超音波が順次送波されるように制御部2が音源部1を制御するように構成してあるが、音源部1から送波させる超音波の周波数は4種類に限らず複数種類であればよく、たとえば、2種類とすれば、3種類以上の超音波を順次送波させる場合に比べて、制御部2および信号処理部4の負担を軽減できるとともに制御部2および信号処理部4の簡略化を図れる。本実施形態では、上述のように各音源部1a,1bとして実施形態1にて説明した音波発生素子をそれぞれ用いることで、順次送波する超音波をそれぞれ周波数の異なる超音波とすることができるので、各音源部1a,1bとして共振周波数の異なる複数の圧電素子をそれぞれ用いて各圧電素子から連続波の超音波を送波させる場合に比べて低コスト化を図れる。   In the present embodiment, the sound wave generating elements described in the first embodiment are used as the sound source units 1a and 1b, respectively, and the control unit 2 described above sequentially applies the frequencies of the drive input waveforms to be given to the sound source units 1a and 1b. By changing, a plurality of types of ultrasonic waves having different frequencies are sequentially transmitted from the sound source units 1a and 1b. Here, the control unit 2 changes the frequency of the ultrasonic wave transmitted from the sound source unit 1 from a lower limit frequency (for example, 20 kHz) to an upper limit frequency (for example, 82 kHz) in a predetermined frequency range (for example, 20 kHz to 82 kHz). . In the present embodiment, the control unit 2 is configured to control the sound source unit 1 so that four types of ultrasonic waves having different frequencies are sequentially transmitted from the sound source unit 1. The frequency of the ultrasonic wave to be waved is not limited to four types, but may be a plurality of types. For example, if two types are used, the control unit 2 and the signal processing unit are compared with the case of sequentially transmitting three or more types of ultrasonic waves. 4 can be reduced, and the control unit 2 and the signal processing unit 4 can be simplified. In the present embodiment, as described above, the sound wave generation elements described in the first embodiment are used as the sound source units 1a and 1b, respectively, so that the ultrasonic waves that are sequentially transmitted can be ultrasonic waves having different frequencies. Therefore, the cost can be reduced as compared with the case where a plurality of piezoelectric elements having different resonance frequencies are used as the sound source units 1a and 1b, respectively, and a continuous wave ultrasonic wave is transmitted from each piezoelectric element.

なお、本実施形態では、音源部1の出力周波数と音圧比の相対的単位変化率との関係データを記憶手段43に記憶した例を示したが、そもそも監視空間に存在する浮遊粒子の種別に応じて音源部1の出力周波数ごとに変化するのは音圧比Rの初期音圧比Rからの変化量(R−R)であるから、記憶手段43に記憶する上記関係データは、音源部1の出力周波数と音圧比Rの初期音圧比Rからの変化量との関係を示すデータであればよく、上述の相対的単位変化率に代えて、たとえば、音圧比Rの初期音圧比Rからの変化量や、音圧比Rの初期音圧比Rからの変化量を初期音圧比Rで除した変化率、あるいは単位変化率を採用した関係データを記憶手段43に記憶するようにしてもよい。 In the present embodiment, the example in which the relationship data between the output frequency of the sound source unit 1 and the relative unit change rate of the sound pressure ratio is stored in the storage unit 43 has been shown. Accordingly, since it is the amount of change (R 0 −R S ) of the sound pressure ratio R S from the initial sound pressure ratio R 0 that changes for each output frequency of the sound source unit 1, the relational data stored in the storage means 43 is: Any data indicating the relationship between the output frequency of the sound source unit 1 and the amount of change of the sound pressure ratio R S from the initial sound pressure ratio R 0 may be used. For example, instead of the above-mentioned relative unit change rate, the sound pressure ratio R S the amount of change from the initial sound pressure ratio R 0 and the sound pressure ratio R S of the initial sound pressure ratio R 0 of the amount of change from dividing by initial sound pressure ratio R 0 rate of change, or stores relationship data employing the unit change ratio means 43 You may make it memorize.

以上説明した本実施形態の火災感知器では、粒子種別推定手段49において、音源部1から送波された各周波数の超音波ごとの音圧比と記憶手段43に記憶されている関係データとを用いて上記監視空間に浮遊している粒子の種別を推定し、粒子種別推定手段49にて推定された粒子が煙粒子のときに、煙濃度推定手段41において、特定周波数の超音波に対する音圧比の初期音圧比からの変化量に基づいて上記監視空間の煙濃度を推定し、火災判断手段42において、煙濃度推定手段41にて推定された煙濃度と所定の閾値とを比較して火災の有無を判断するので、粒子種別推定手段49において上記監視空間に浮遊している粒子の種別を推定することで煙粒子と湯気とを識別可能となり、散乱光式煙感知器および減光式煙感知器に比べて湯気に起因した非火災報を低減することが可能となって、台所や浴室での使用にも適する。また、粒子種別推定手段49において白煙の煙粒子と黒煙の煙粒子とを識別可能となるから、火災の性状の識別に役立てることも可能となる。また、火災感知器を設置している室内の掃除や天井裏の電気工事などの際に浮遊する粉塵と煙粒子との識別も可能になるから、粉塵などに起因した非火災報を低減することも可能となる。   In the fire detector of the present embodiment described above, the particle type estimation unit 49 uses the sound pressure ratio for each ultrasonic wave transmitted from the sound source unit 1 and the relationship data stored in the storage unit 43. The type of particles floating in the monitoring space is estimated, and when the particle estimated by the particle type estimation unit 49 is smoke particles, the smoke concentration estimation unit 41 determines the sound pressure ratio with respect to ultrasonic waves of a specific frequency. The smoke density in the monitoring space is estimated based on the amount of change from the initial sound pressure ratio, and the fire determination means 42 compares the smoke density estimated by the smoke density estimation means 41 with a predetermined threshold value to determine whether there is a fire. Therefore, it is possible to discriminate between smoke particles and steam by estimating the type of particles floating in the monitoring space in the particle type estimating means 49, and the scattered light type smoke detector and the reduced light type smoke detector. Compared to It is possible to reduce the non-fire report due care, also suitable for use in the kitchen or bathroom. Further, since the white smoke particles and the black smoke particles can be discriminated by the particle type estimating means 49, it is also possible to use for identifying the nature of the fire. In addition, it is possible to distinguish between dust and smoke particles floating when cleaning the room where the fire detector is installed or for electrical work behind the ceiling, so reduce non-fire reports caused by dust. Is also possible.

ところで、本実施形態では各音源部1a,1bをそれぞれ単一の音波発生素子により構成し、制御部2が各音源部1a,1bへ与える駆動入力波形の周波数を順次変化させることにより、各音源部1a,1bから周波数の異なる複数種の超音波を順次送波させるようにしているが、互いに出力周波数の異なる複数の音波発生素子で各音源部1a,1bをそれぞれ構成してもよい。この場合には、各音波発生素子として圧電素子のように機械的振動により超音波を発生する素子を用い、各音波発生素子をそれぞれの共振周波数で駆動することにより、音源部1から送波される超音波の音圧を高めてSN比の向上に寄与することができる。また、各音波発生素子を順次駆動して複数種の超音波を順次送波させるだけでなく、複数の音波発生素子を一斉に駆動して複数種の超音波を同時に送波させることも可能になる。   By the way, in this embodiment, each sound source part 1a, 1b is comprised by the single sound wave generation element, respectively, and each sound source part is changed by changing the frequency of the drive input waveform which the control part 2 gives to each sound source part 1a, 1b. Although plural types of ultrasonic waves having different frequencies are sequentially transmitted from the units 1a and 1b, the sound source units 1a and 1b may be configured by a plurality of sound wave generating elements having different output frequencies. In this case, an element that generates ultrasonic waves by mechanical vibration, such as a piezoelectric element, is used as each sound wave generating element, and each sound wave generating element is driven at the respective resonance frequency to be transmitted from the sound source unit 1. It is possible to increase the sound pressure of the ultrasonic wave and contribute to the improvement of the SN ratio. In addition to sequentially driving each sound wave generating element to send multiple types of ultrasonic waves, it is also possible to simultaneously drive multiple sound wave generating elements to send multiple types of ultrasonic waves simultaneously Become.

また、各受波素子3a,3bにおいても各種の超音波に対してそれぞれ個別の受波素子を設けるようにしてもよく、この場合には、各受波素子として共振特性のQ値が比較的大きな圧電素子などを用い、各受波素子をそれぞれの共振周波数の超音波の受波に用いることにより、受波素子の感度を向上させることができる。さらに、各音源部1a,1bを構成する複数の音波発生素子を一斉に駆動して各音源部1a,1bからそれぞれ複数種の超音波を同時に送波させれば、複数種の超音波について音圧比の変化量を同時に検出することができ、監視空間の経時的変化(たとえば浮遊粒子の濃度変化)の影響を受けることなく複数種の超音波について音圧比の変化量を検出して、浮遊粒子の種別や煙濃度を精度よく推定することができる。また、音源部1を構成する音波発生素子を受波素子3に兼用することも考えられ、この場合、音波発生素子から送波される超音波を当該音波発生素子に向けて反射する反射面が必要であるものの、素子数の低減による低コスト化を図ることができる。   In addition, each of the receiving elements 3a and 3b may be provided with an individual receiving element for each type of ultrasonic wave. In this case, the Q value of the resonance characteristics of each receiving element is relatively low. The sensitivity of the receiving element can be improved by using a large piezoelectric element or the like and using each receiving element for receiving ultrasonic waves of the respective resonance frequencies. Furthermore, if a plurality of sound wave generating elements constituting each sound source unit 1a, 1b are driven at the same time and a plurality of types of ultrasonic waves are simultaneously transmitted from each sound source unit 1a, 1b, sound is generated for the plurality of types of ultrasonic waves. The amount of change in pressure ratio can be detected simultaneously, and the amount of change in sound pressure ratio can be detected for multiple types of ultrasonic waves without being affected by changes in the monitoring space over time (for example, changes in the concentration of suspended particles). Type and smoke density can be accurately estimated. It is also conceivable that the sound wave generating element constituting the sound source unit 1 is also used as the wave receiving element 3. In this case, there is a reflection surface that reflects the ultrasonic wave transmitted from the sound wave generating element toward the sound wave generating element. Although necessary, the cost can be reduced by reducing the number of elements.

なお、その他の構成および機能は実施形態1と同様であり、実施形態2の構成と組み合わせることで音源部1と受波素子3とを各1個ずつとしてもよい。   Other configurations and functions are the same as those of the first embodiment, and the sound source unit 1 and the receiving element 3 may be provided one by one in combination with the configuration of the second embodiment.

ところで、上記各実施形態では、音源部1と制御部2と受波素子3と信号処理部4とを1枚の回路基板5に設けて図示しない器体内に収納してあるが、音源部1と制御部2とを備えた音源側ユニットと、受波素子3と信号処理部4とを備えた受波側ユニットとを別体として互いに対向配置する分離型の火災感知器を構成するようにしてもよい。また、音源部1は上述の図2に示した構成の音波発生素子に限らず、たとえば、アルミニウム製の薄板を発熱体部として当該発熱体部への通電に伴う発熱体部の急激な温度変化による熱衝撃によって音波を発生させるものでもよい。   By the way, in each of the above embodiments, the sound source unit 1, the control unit 2, the wave receiving element 3, and the signal processing unit 4 are provided on one circuit board 5 and housed in a container (not shown). And a sound source side unit including the control unit 2 and a wave receiving side unit including the wave receiving element 3 and the signal processing unit 4 are configured separately to constitute a separate fire detector. May be. Further, the sound source unit 1 is not limited to the sound wave generating element having the configuration shown in FIG. 2 described above. For example, a rapid temperature change of the heat generating unit accompanying energization of the heat generating unit with a thin aluminum plate as the heat generating unit. A sound wave may be generated by a thermal shock due to.

また、上記各実施形態において、制御部2が、音源部1から防虫効果のある周波数の超音波を送波させるようにすれば、上記監視空間に虫が侵入するのを防止することができ、虫に起因した非火災報を低減できる。ここで、制御部2は、煙濃度を推定するために音源部1から送波させる周波数の超音波とは別に、防虫効果のある周波数の超音波を定期的に送波させるようにしてもよいし、煙濃度を推定するために音源部1から送波する超音波の周波数を防虫効果のある周波数に設定するようにしてもよい。   Moreover, in each said embodiment, if the control part 2 is made to transmit the ultrasonic wave of the frequency which has an insect-proof effect from the sound source part 1, it can prevent that an insect penetrate | invades in the said monitoring space, Non-fire reports caused by insects can be reduced. Here, the control unit 2 may periodically transmit ultrasonic waves having a frequency having an insect-proofing effect separately from the ultrasonic waves having a frequency transmitted from the sound source unit 1 in order to estimate the smoke density. In order to estimate the smoke concentration, the frequency of the ultrasonic wave transmitted from the sound source unit 1 may be set to a frequency having an insect-proof effect.

本発明の実施形態1の構成を示す概略ブロック図である。It is a schematic block diagram which shows the structure of Embodiment 1 of this invention. 同上に用いる音波発生素子を示す概略断面図である。It is a schematic sectional drawing which shows the sound wave generation element used for the same as the above. 同上に用いる受波素子を示し、(a)は一部破断した概略斜面図、(b)は概略断面図である。The wave receiving element used for the above is shown, (a) is a partially broken schematic perspective view, and (b) is a schematic sectional view. 同上の動作を示す概略図である。It is the schematic which shows operation | movement same as the above. 同上の他の構成を示す概略ブロック図である。It is a schematic block diagram which shows the other structure same as the above. 同上の動作を示す波形図である。It is a wave form diagram which shows operation | movement same as the above. 同上の要部の構成を示す概略図である。It is the schematic which shows the structure of the principal part same as the above. 同上の要部を示す概略斜視図である。It is a schematic perspective view which shows the principal part same as the above. 同上の動作を示す概略図である。It is the schematic which shows operation | movement same as the above. 本発明の実施形態2の構成を示す概略ブロック図である。It is a schematic block diagram which shows the structure of Embodiment 2 of this invention. 本発明の実施形態3の構成を示す概略ブロック図である。It is a schematic block diagram which shows the structure of Embodiment 3 of this invention. 本発明の実施形態4の構成を示す概略ブロック図である。It is a schematic block diagram which shows the structure of Embodiment 4 of this invention. 同上に用いる受波素子の構成を示す概略断面図である。It is a schematic sectional drawing which shows the structure of the receiving element used for the same as the above. 本発明の実施形態5の構成を示す概略ブロック図である。It is a schematic block diagram which shows the structure of Embodiment 5 of this invention. 同上の音源部の出力周波数と音圧比の単位変化率との関係を示す説明図である。It is explanatory drawing which shows the relationship between the output frequency of a sound source part same as the above, and the unit change rate of sound pressure ratio. 同上の音源部の出力周波数と相対的単位変化率との関係を示す説明図である。It is explanatory drawing which shows the relationship between the output frequency of a sound source part same as the above, and a relative unit change rate. 同上の動作例を示すフローチャートである。It is a flowchart which shows the operation example same as the above. 同上の煙濃度と特定周波数の音圧比の変化率との関係を示す説明図である。It is explanatory drawing which shows the relationship between smoke density same as the above and the change rate of the sound pressure ratio of a specific frequency. 従来例の要部を示し、(a)は概略下面図、(b)は概略側面図である。The principal part of a prior art example is shown, (a) is a schematic bottom view, (b) is a schematic side view.

符号の説明Explanation of symbols

1 音源部
2 制御部
3 受波素子
4 信号処理部
7a,7b 反射面
40 音圧比算出手段
42 火災判断手段
44 減衰係数推定手段
45 音圧比補正手段
46 温度計測手段
47 音速計測手段
50 反射率変化補正手段
51 反射率変化推定手段
,L 経路長
10,P20,P1S,P2S 音圧
音圧比の初期値
音圧比
Sw1,Sw2 超音波
DESCRIPTION OF SYMBOLS 1 Sound source part 2 Control part 3 Reception element 4 Signal processing part 7a, 7b Reflecting surface 40 Sound pressure ratio calculation means 42 Fire judgment means 44 Attenuation coefficient estimation means 45 Sound pressure ratio correction means 46 Temperature measurement means 47 Sound speed measurement means 50 Reflectivity change 50 Correction means 51 Reflectivity change estimation means L 1 , L 2 path lengths P 10 , P 20 , P 1S , P 2S sound pressure R 0 initial value of sound pressure ratio R S sound pressure ratio Sw1, Sw2 Ultrasound

Claims (7)

音波を送波可能な音源部と、音源部を制御する制御部と、音源部から送波された音波の音圧を検出する受波素子と、受波素子の出力に基づいて火災の有無を判断する信号処理部とを備え、信号処理部は、音源部と受波素子との間の監視空間のうち経路長の異なる伝播経路を通して音源部から受波素子にそれぞれ伝播された複数の音波間の音圧比を算出する音圧比算出手段と、音圧比算出手段で算出される音圧比に基づいて監視空間の煙濃度を推定し、当該煙濃度と所定の閾値とを比較して火災の有無を判断する火災判断手段と、煙がない状態での前記監視空間における音波の吸収減衰の減衰係数を推定する減衰係数推定手段と、減衰係数推定手段で推定される減衰係数に基づき、当該減衰係数の変化に起因する前記音圧比の変動分を取り除くように前記音圧比を補正する音圧比補正手段とを有することを特徴とする火災感知器。   A sound source unit capable of transmitting sound waves, a control unit for controlling the sound source unit, a receiving element for detecting the sound pressure of the sound waves transmitted from the sound source unit, and whether there is a fire based on the output of the receiving element A signal processing unit for determining, and the signal processing unit includes a plurality of sound waves propagated from the sound source unit to the receiving device through propagation paths having different path lengths in the monitoring space between the sound source unit and the receiving device. The sound pressure ratio calculating means for calculating the sound pressure ratio of the sound, and estimating the smoke concentration in the monitoring space based on the sound pressure ratio calculated by the sound pressure ratio calculating means, comparing the smoke concentration with a predetermined threshold value to determine whether there is a fire. Based on the attenuation coefficient estimated by the attenuation coefficient estimation means, the attenuation coefficient estimation means for estimating the attenuation coefficient of the sound wave absorption attenuation in the monitoring space in the absence of smoke, and the attenuation coefficient estimation means, Remove fluctuations in the sound pressure ratio due to changes Fire detector and having a sound pressure ratio correcting means for correcting the pressure ratio urchin the sound. 前記信号処理部は、前記監視空間における温度と湿度と気圧との少なくとも1つをパラメータとして計測するパラメータ取得手段を具備し、前記減衰係数推定手段は、前記パラメータを用いて前記減衰係数を推定することを特徴とする請求項1記載の火災感知器。   The signal processing unit includes parameter acquisition means for measuring at least one of temperature, humidity, and atmospheric pressure in the monitoring space as a parameter, and the attenuation coefficient estimation means estimates the attenuation coefficient using the parameter. The fire detector according to claim 1. 前記パラメータ取得手段は、前記監視空間の温度を計測する温度計測手段と、前記監視空間の音速を求める音速計測手段とを有し、前記減衰係数推定手段は、温度計測手段で計測される温度と、当該温度および音速計測手段で求められる音速から算出される湿度とを前記パラメータとして用いることを特徴とする請求項2に記載の火災感知器。   The parameter acquisition means includes a temperature measurement means for measuring the temperature of the monitoring space, and a sound speed measurement means for obtaining a sound speed of the monitoring space, and the attenuation coefficient estimation means includes a temperature measured by the temperature measurement means, The fire detector according to claim 2, wherein the temperature and the humidity calculated from the sound speed obtained by the sound speed measuring means are used as the parameter. 前記音源部から送波された音波の進行方向において互いに対向するように配置されそれぞれ音波を反射する一対の反射面が設けられており、前記音源部および前記受波素子は各反射面上にそれぞれ配置され、各反射面は、前記音源部からの音波を集音する形に湾曲した凹曲面からなり、前記音圧比算出手段は、前記音源部から前記受波素子に直接伝播される音波と反射面で反射されて前記受波素子に伝播される音波との間の音圧比を算出し、前記信号処理部は、前記監視空間における音速を求める音速計測手段を有し、前記音圧比補正手段は、音速計測手段で得られた音速に基づき、当該音速の変化に起因する前記音圧比の変動分を取り除くように前記音圧比を補正することを特徴とする請求項1ないし請求項3のいずれか1項に記載の火災感知器。   A pair of reflecting surfaces are provided so as to oppose each other in the traveling direction of the sound wave transmitted from the sound source unit, and each of the sound source unit and the receiving element is provided on each reflecting surface. Each reflecting surface is formed of a concave curved surface that is curved to collect sound waves from the sound source unit, and the sound pressure ratio calculating means reflects and reflects the sound waves directly propagated from the sound source unit to the receiving element. The sound pressure ratio between the sound wave reflected by the surface and propagated to the receiving element is calculated, and the signal processing unit includes sound speed measuring means for obtaining the sound speed in the monitoring space, and the sound pressure ratio correcting means is 4. The sound pressure ratio according to claim 1, wherein the sound pressure ratio is corrected based on the sound speed obtained by the sound speed measuring means so as to remove the fluctuation of the sound pressure ratio caused by the change in the sound speed. Fire described in item 1 Intellectual instrument. 前記音速計測手段は、前記音圧比算出手段において前記音圧比の算出対象となる複数の音波に関する前記伝播経路の経路長の差を、前記複数の音波がそれぞれ前記音源部から前記受波素子に伝播されるのに要した時間差で除することにより前記音速を算出することを特徴とする請求項3または請求項4に記載の火災感知器。   The sound speed measuring means transmits a difference in path lengths of the propagation paths for a plurality of sound waves to be calculated for the sound pressure ratio in the sound pressure ratio calculating means, and the sound waves propagate from the sound source unit to the wave receiving element. The fire detector according to claim 3 or 4, wherein the sound speed is calculated by dividing by a time difference required to be performed. 前記受波素子は、互いに対向配置された固定電極および可動電極と、気圧が一定に維持されている基準圧室と前記監視空間とを隔てる隔壁を有し、可動電極が前記隔壁の一部に配設され、隔壁が監視空間側から音波を受けることで可動電極と固定電極との距離が変化し可動電極と固定電極との間の静電容量が変化する静電容量型受波素子からなり、前記パラメータ取得手段は、前記静電容量の変化に基づいて前記監視空間の気圧を計測する気圧計測手段を具備することを特徴とする請求項2または請求項3に記載の火災感知器。   The wave receiving element includes a fixed electrode and a movable electrode that are arranged to face each other, a partition wall that separates the monitoring space from a reference pressure chamber in which air pressure is maintained constant, and the movable electrode is part of the partition wall It is composed of a capacitive receiving element in which the distance between the movable electrode and the fixed electrode changes when the partition wall receives sound waves from the monitoring space side, and the capacitance between the movable electrode and the fixed electrode changes. 4. The fire detector according to claim 2, wherein the parameter acquisition unit includes an atmospheric pressure measurement unit that measures an atmospheric pressure of the monitoring space based on a change in the capacitance. 前記音源部から送波された音波の進行方向において互いに対向するように配置されそれぞれ音波を反射する一対の反射面が設けられており、前記音源部および前記受波素子は各反射面上にそれぞれ配置され、前記音圧比算出手段は、前記音源部から前記受波素子に直接伝播される音波である直接波と反射面で反射されて前記受波素子に伝播される音波である反射波との間の音圧比を算出し、前記信号処理部は、前記直接波と反射面での反射回数の異なる複数の前記反射波との音圧に基づいて反射面における音波の反射率に関する値を推定する反射率変化推定手段と、反射率変化推定手段で推定される値に基づき、前記反射率の変化に起因する前記音圧比の変動分を取り除くように前記音圧比を補正する反射率変化補正手段とを有することを特徴とする請求項1ないし請求項6のいずれか1項に記載の火災感知器。
A pair of reflecting surfaces are provided so as to oppose each other in the traveling direction of the sound wave transmitted from the sound source unit, and each of the sound source unit and the receiving element is provided on each reflecting surface. The sound pressure ratio calculating means is arranged between a direct wave that is a sound wave directly propagated from the sound source unit to the wave receiving element and a reflected wave that is a sound wave reflected by a reflecting surface and propagated to the wave receiving element. And the signal processing unit estimates a value related to the reflectance of the sound wave on the reflection surface based on the sound pressure between the direct wave and the plurality of reflection waves having different numbers of reflections on the reflection surface. A reflectance change estimating means; and a reflectance change correcting means for correcting the sound pressure ratio so as to remove a variation in the sound pressure ratio caused by the change in reflectance based on a value estimated by the reflectance change estimating means. Special features Fire detector according to any one of claims 1 to 6,.
JP2008263109A 2007-10-26 2008-10-09 Fire detector Expired - Fee Related JP5144457B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2008263109A JP5144457B2 (en) 2008-06-25 2008-10-09 Fire detector
PCT/JP2008/069002 WO2009054359A1 (en) 2007-10-26 2008-10-21 Fire alarm system
CN2008801134078A CN101836244B (en) 2007-10-26 2008-10-21 Fire alarm system
US12/682,300 US8519854B2 (en) 2007-10-26 2008-10-21 Fire alarm system
EP08841498A EP2214146B8 (en) 2007-10-26 2008-10-21 Fire alarm system

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008166265 2008-06-25
JP2008166265 2008-06-25
JP2008263109A JP5144457B2 (en) 2008-06-25 2008-10-09 Fire detector

Publications (2)

Publication Number Publication Date
JP2010033534A JP2010033534A (en) 2010-02-12
JP5144457B2 true JP5144457B2 (en) 2013-02-13

Family

ID=41737875

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008263109A Expired - Fee Related JP5144457B2 (en) 2007-10-26 2008-10-09 Fire detector

Country Status (1)

Country Link
JP (1) JP5144457B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5438596B2 (en) * 2010-05-24 2014-03-12 パナソニック株式会社 Fire detector
JP5796205B2 (en) * 2011-01-25 2015-10-21 パナソニックIpマネジメント株式会社 Humidity sensor
JP6073646B2 (en) 2012-10-29 2017-02-01 株式会社デンソー Correction value setting device and distance detection device
CN110867044B (en) * 2018-08-27 2022-08-12 浙江大华技术股份有限公司 Fire detection method and equipment
JP2023072290A (en) * 2021-11-12 2023-05-24 日清紡ホールディングス株式会社 Gas concentration measurement device

Also Published As

Publication number Publication date
JP2010033534A (en) 2010-02-12

Similar Documents

Publication Publication Date Title
JP5166991B2 (en) Airborne particle measurement system
US8253578B2 (en) Smoke sensor of the sound wave type including a smoke density estimation unit
US8519854B2 (en) Fire alarm system
JP5144457B2 (en) Fire detector
JP2007024688A (en) Human body abnormality detection sensor, and information system using the same
JP4862533B2 (en) Airborne particle measurement system
JP2007000121A (en) Apparatus for threatening small animal
JP4894723B2 (en) Fire detector
JP4893397B2 (en) Fire detector
JP5049209B2 (en) Fire detector
JP5438596B2 (en) Fire detector
JP4894722B2 (en) Fire detector
TW201721128A (en) Noise canceling detector
JP4950709B2 (en) Fire detector
JP4816524B2 (en) Fire detector
JP5166827B2 (en) Airborne particle measurement system
JP4826631B2 (en) Sonic smoke detector
JP4950842B2 (en) Airborne particle measurement system
JP4894724B2 (en) Fire detector
JP4816525B2 (en) Fire detector
JP4816526B2 (en) Fire detector
JP5438595B2 (en) Fire detector
JP4678252B2 (en) Security system
JP2012185737A (en) Fire sensor
JP2008180516A (en) Flow measuring system, its program, ultrasonic flowmeter, and flow measuring method

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100715

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110519

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20120112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121030

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121122

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151130

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees