JP4893397B2 - Fire detector - Google Patents

Fire detector Download PDF

Info

Publication number
JP4893397B2
JP4893397B2 JP2007069087A JP2007069087A JP4893397B2 JP 4893397 B2 JP4893397 B2 JP 4893397B2 JP 2007069087 A JP2007069087 A JP 2007069087A JP 2007069087 A JP2007069087 A JP 2007069087A JP 4893397 B2 JP4893397 B2 JP 4893397B2
Authority
JP
Japan
Prior art keywords
sound source
source unit
receiving element
smoke
sound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007069087A
Other languages
Japanese (ja)
Other versions
JP2007328763A (en
Inventor
祥文 渡部
由明 本多
富三 寺澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Electric Works Co Ltd
Original Assignee
Panasonic Corp
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Works Ltd filed Critical Panasonic Corp
Priority to JP2007069087A priority Critical patent/JP4893397B2/en
Priority to US12/300,332 priority patent/US8253578B2/en
Priority to PCT/JP2007/059313 priority patent/WO2007132671A1/en
Priority to CN2007800172608A priority patent/CN101449304B/en
Priority to EP07742748A priority patent/EP2034462A4/en
Priority to TW096116448A priority patent/TWI332643B/en
Publication of JP2007328763A publication Critical patent/JP2007328763A/en
Application granted granted Critical
Publication of JP4893397B2 publication Critical patent/JP4893397B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/021Gases
    • G01N2291/0217Smoke, combustion gases
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/02809Concentration of a compound, e.g. measured by a surface mass change
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/02818Density, viscosity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/02881Temperature
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/042Wave modes
    • G01N2291/0421Longitudinal waves

Description

本発明は、火災感知器に関するものである。   The present invention relates to a fire detector.

従来から、火災時などに発生する煙を感知する火災感知器として、散乱光式煙感知器(例えば、特許文献1参照)や、減光式煙感知器(例えば、特許文献2参照)が知られている。ここにおいて、散乱光式煙感知器は、発光ダイオード素子よりなる投光素子から監視空間に照射された光の煙粒子による散乱光をフォトダイオードよりなる受光素子で受光するように構成されたものであり、監視空間に煙粒子が存在すれば散乱光が生じることによって受光素子での受光量が増大するから、受光素子での受光量の増加量に基づいて煙粒子の存否を検知できる。一方、減光式煙感知器は、投光素子から照射された光を受光素子により直接受光するように構成されたものであり、投光素子と受光素子との間の監視空間に煙粒子が存在すれば受光素子の受光量が減少するから、受光素子での受光量の減光量に基づいて煙粒子の存否を検知できる。
特開2001−34862号公報 特開昭61−33595号公報
Conventionally, as a fire detector for detecting smoke generated at the time of a fire or the like, a scattered light type smoke detector (for example, see Patent Document 1) and a dimming type smoke detector (for example, see Patent Document 2) are known. It has been. Here, the scattered light type smoke detector is configured to receive light scattered by smoke particles of light irradiated to the monitoring space from a light projecting element made of a light emitting diode element by a light receiving element made of a photodiode. In addition, if smoke particles are present in the monitoring space, the amount of light received by the light receiving element is increased due to the generation of scattered light, so the presence or absence of smoke particles can be detected based on the amount of increase in the amount of light received by the light receiving element. On the other hand, the dimming smoke detector is configured so that light emitted from the light projecting element is directly received by the light receiving element, and smoke particles are present in the monitoring space between the light projecting element and the light receiving element. If it is present, the amount of light received by the light receiving element is reduced, and therefore the presence or absence of smoke particles can be detected based on the amount of light received by the light receiving element.
JP 2001-34862 A JP 61-33595 A

ところで、散乱光式煙感知器は、迷光対策としてラビリンス体を設ける必要があるので、空気の流れが少ない場合には、火災発生時に監視空間へ煙粒子が侵入するまでの時間が長くなり、応答性に問題があった。また、減光式煙感知器においては、火災が発生していないにもかかわらずバックグランド光の影響で発報してしまう(非火災報が発生してしまう)ことがあるという問題があった。また、分離型の減光式煙感知器は、投光素子と受光素子との光軸を高精度に軸合わせする必要があり、施工に手間がかかるという問題があった。   By the way, the scattered light type smoke detector needs to be equipped with a labyrinth body as a countermeasure against stray light, so when there is little air flow, the time until smoke particles enter the monitoring space in the event of a fire increases, and the response There was a problem with sex. In addition, there is a problem that the dimming smoke detector may generate a report due to the influence of background light (a non-fire report will be generated) even though no fire has occurred. . In addition, the separate-type dimming smoke detector needs to align the optical axes of the light projecting element and the light receiving element with high accuracy, and there is a problem that it takes a lot of work.

また、散乱光式煙感知器や減光式煙感知器では、監視空間に煙ではなく湯気が侵入した場合に、非火災報が発生してしまうことがあり、台所や浴室での使用には適していなかった。   In addition, non-fire reports may occur when scattered light type smoke detectors or dimming type smoke detectors enter the surveillance space, and steam may enter the monitor space. It was not suitable.

本発明は上記事由に鑑みて為されたものであり、その目的は、応答性に優れ且つ非火災報を低減可能な火災感知器を提供することにある。   This invention is made | formed in view of the said reason, The objective is to provide the fire detector which is excellent in responsiveness and can reduce a non-fire report.

請求項1の発明は、超音波を送波可能な音源部と、音源部を制御する制御部と、音源部から送波された超音波の音圧を検出する受波素子と、受波素子の出力に基づいて火災の有無を判断する信号処理部とを備え、信号処理部は、受波素子の出力の基準値からの減衰量に基づいて音源部と受波素子との間の監視空間の煙濃度を推定する煙濃度推定手段と、煙濃度推定手段にて推定された煙濃度と所定の閾値とを比較して火災の有無を判断する煙式判断手段とを有し、前記音源部は周波数の異なる複数種の超音波を送波可能であって、前記信号処理部は、前記監視空間に存在する浮遊粒子の種別および煙濃度に応じた前記音源部の出力周波数と前記受波素子の出力の基準値からの減衰量との関係データを記憶した記憶手段と、前記音源部から送波された各周波数の超音波ごとの前記受波素子の出力と記憶手段に記憶されている関係データとを用いて前記監視空間に浮遊している粒子の種別を推定する粒子種別推定手段とを有し、前記煙濃度推定手段は、粒子種別推定手段にて推定された粒子が煙粒子のときに特定周波数の超音波に対する前記受波素子の出力の基準値からの減衰量に基づいて前記監視空間の煙濃度を推定することを特徴とする。 The invention of claim 1 includes a sound source unit capable of transmitting ultrasonic waves, a control unit for controlling the sound source unit, a wave receiving element for detecting the sound pressure of the ultrasonic wave transmitted from the sound source unit, and a wave receiving element A signal processing unit for determining the presence or absence of a fire based on the output of the signal, the signal processing unit is a monitoring space between the sound source unit and the receiving element based on the attenuation from the reference value of the output of the receiving element a smoke density estimation unit that estimates a smoke density, by comparing the estimated smoke density with a predetermined threshold value at a smoke density estimation unit have a smoke type determination means for determining presence or absence of fire, the sound source unit Is capable of transmitting a plurality of types of ultrasonic waves having different frequencies, and the signal processing unit is configured to output the output frequency of the sound source unit and the receiving element according to the type of suspended particles present in the monitoring space and the smoke concentration. Storage means for storing relational data with the attenuation amount from the reference value of the output of the Particle type estimation means for estimating the type of particles floating in the monitoring space using the output of the receiving element for each ultrasonic wave of each frequency and the relational data stored in the storage means. The smoke concentration estimating means is configured to monitor the monitoring space based on an attenuation amount from a reference value of an output of the receiving element with respect to an ultrasonic wave having a specific frequency when the particle estimated by the particle type estimating means is a smoke particle. It is characterized by estimating the smoke density .

この発明によれば、音源部から送波された超音波の音圧を検出する受波素子の出力に基づいて火災の有無を判断する信号処理部を備え、信号処理部では、煙濃度推定手段において、受波素子の出力の基準値からの減衰量に基づいて音源部と受波素子との間の監視空間の煙濃度を推定し、煙式判断手段において、煙濃度推定手段にて推定された煙濃度と所定の閾値とを比較して火災の有無を判断するので、散乱光式煙感知器や減光式煙感知器のような光電式煙感知器で問題となるバックグランド光の影響をなくすことができ、散乱光式煙感知器に必要なラビリンス体を不要とすることができて火災発生時に監視空間へ煙粒子が拡散しやすくなるから、散乱光式煙感知器に比べて応答性を向上でき、また、減光式煙感知器に比べて非火災報の低減が可能になる。   According to this invention, the signal processing unit that determines the presence or absence of a fire based on the output of the wave receiving element that detects the sound pressure of the ultrasonic wave transmitted from the sound source unit is provided. The smoke density in the monitoring space between the sound source unit and the wave receiving element is estimated based on the attenuation amount from the reference value of the output of the wave receiving element, and is estimated by the smoke density estimating means in the smoke type judging means. The background smoke, which is a problem with photoelectric smoke detectors such as scattered light smoke detectors and dimming smoke detectors, is judged by comparing the smoke concentration with a predetermined threshold. This makes it possible to eliminate the labyrinth required for the scattered light type smoke detector and makes it easier for smoke particles to diffuse into the surveillance space in the event of a fire. And can reduce non-fire alarms compared to a light-reducing smoke detector Possible to become.

また、この発明によれば、前記信号処理部では、粒子種別推定手段において、前記音源部から送波された各周波数の超音波ごとの受波素子の出力と記憶手段に記憶されている関係データとを用いて前記監視空間に浮遊している粒子の種別を推定し、粒子種別推定手段にて推定された粒子が煙粒子のときに、煙濃度推定手段において、特定周波数の超音波に対する前記受波素子の出力の基準値からの減衰量に基づいて監視空間の煙濃度を推定するので、粒子種別識別手段において監視空間に浮遊している粒子の種別を推定することで、例えば煙粒子と湯気とを識別可能となるから、散乱光式煙感知器および減光式煙感知器に比べて非火災報を低減することが可能となる。 Further, according to the present invention, in the signal processing unit, in the particle category estimation unit, the output storage means to the stored relationship data of wave receiving devices of each ultrasound of each frequency that is transmitting from the tone generator Is used to estimate the type of particles floating in the monitoring space, and when the particle estimated by the particle type estimation unit is a smoke particle, the smoke concentration estimation unit receives the ultrasonic wave having a specific frequency. Since the smoke concentration in the monitoring space is estimated based on the attenuation amount from the reference value of the output of the wave element, the particle type identifying means estimates the type of particles floating in the monitoring space, for example, smoke particles and steam. Therefore, it is possible to reduce non-fire information as compared with the scattered light smoke detector and the dimming smoke detector.

請求項の発明は、請求項の発明において、前記記憶手段は、前記関係データとして前記音源部の出力周波数と前記受波素子の出力の基準値からの減衰量を基準値で除した減衰率との関係データを記憶していることを特徴とする。 According to a second aspect of the present invention, in the first aspect of the present invention, the storage means is an attenuation obtained by dividing an attenuation amount from the reference value of the output frequency of the sound source unit and the output of the receiving element by the reference value as the relation data. It stores the relationship data with the rate.

この発明によれば、前記音源部の出力周波数に応じて前記受波素子の出力の基準値が変動する場合でも、前記音源部の出力周波数と基準値の変動の影響が除去された減衰率との関係データを用いることにより、基準値の変動の影響を受けずに前記監視空間に浮遊している粒子の種別を推定することができる。   According to the present invention, even when the reference value of the output of the receiving element varies according to the output frequency of the sound source unit, the attenuation rate from which the influence of the variation of the output frequency of the sound source unit and the reference value is removed, and By using the relationship data, it is possible to estimate the type of particles floating in the monitoring space without being affected by the fluctuation of the reference value.

請求項の発明は、請求項または請求項の発明において、前記音源部は前記複数種の超音波を送波可能な単一の音波発生素子からなり、前記制御部は音波発生素子から複数種の超音波が順次送波されるように前記音源部を制御することを特徴とする。 According to a third aspect of the present invention, in the first or second aspect of the invention, the sound source unit includes a single sound wave generating element capable of transmitting the plurality of types of ultrasonic waves, and the control unit includes a sound wave generating element. The sound source unit is controlled so that a plurality of types of ultrasonic waves are sequentially transmitted.

この発明によれば、各種の超音波を送波可能な音波発生素子を複数備える場合に比べて、前記音源部の小型化、低コスト化が可能となる。   According to the present invention, it is possible to reduce the size and cost of the sound source unit as compared with a case where a plurality of sound wave generating elements capable of transmitting various kinds of ultrasonic waves are provided.

請求項の発明は、請求項または請求項の発明において、前記音源部は互いに異なる周波数の超音波を送波可能な複数の音波発生素子からなることを特徴とする。 According to a fourth aspect of the present invention, in the first or second aspect of the present invention, the sound source section includes a plurality of sound wave generating elements capable of transmitting ultrasonic waves having different frequencies.

この発明によれば、各音波発生素子として圧電素子のように機械的振動により超音波を発生する素子を用い、各音波発生素子をそれぞれの共振周波数で駆動することにより、前記音源部から送波される超音波の音圧を高めることができる。   According to the present invention, an element that generates ultrasonic waves by mechanical vibration, such as a piezoelectric element, is used as each sound wave generating element, and each sound wave generating element is driven at the respective resonance frequency to transmit a wave from the sound source unit. The sound pressure of the ultrasonic waves that are generated can be increased.

請求項の発明は、請求項ないし請求項の発明において、前記制御部は、前記音源部から周波数の異なる2種類の超音波を送波させることを特徴とする。 According to a fifth aspect of the invention, in the first to fourth aspects of the invention, the control unit transmits two types of ultrasonic waves having different frequencies from the sound source unit.

この発明によれば、3種類以上の超音波を送波させる場合に比べて、前記制御部および前記信号処理部の負担を軽減できるとともに前記制御部および前記信号処理部の簡略化を図れる。   According to the present invention, it is possible to reduce the burden on the control unit and the signal processing unit and to simplify the control unit and the signal processing unit as compared with the case of transmitting three or more types of ultrasonic waves.

請求項の発明は、請求項ないし請求項の発明において、前記制御部は、前記音源部から送波させる超音波の周波数を所定の周波数範囲の下限周波数から上限周波数まで変化させることを特徴とする。 According to a sixth aspect of the present invention, in the first to fourth aspects of the invention, the control unit changes the frequency of the ultrasonic wave transmitted from the sound source unit from a lower limit frequency to an upper limit frequency within a predetermined frequency range. Features.

この発明によれば、前記粒子種別推定手段での粒子の種別の推定精度を高めることが可能となる。   According to the present invention, it is possible to improve the estimation accuracy of the particle type in the particle type estimation means.

請求項の発明は、請求項ないし請求項の発明において、前記信号処理部は、定期的に、所定周波数の超音波に対する前記受波素子の出力に基づいて前記制御部による前記音源部の制御条件と前記受波素子の出力の信号処理条件との少なくとも一方を変更することを特徴とする。 According to a seventh aspect of the present invention, in the first to sixth aspects of the present invention, the signal processing unit periodically generates the sound source unit by the control unit based on an output of the receiving element with respect to an ultrasonic wave having a predetermined frequency. At least one of the control condition and the signal processing condition of the output of the receiving element is changed.

この発明によれば、前記音源部の出力変動や前記受波素子の感度変動を定期的にキャンセルすることが可能となり、長期的な信頼性が高くなる。
請求項8の発明は、請求項1ないし請求項7の発明において、前記制御部は、前記音源部から防虫効果のある周波数の超音波を送波させること特徴とする。
この発明によれば、前記監視空間に虫が侵入するのを防止することができ、虫に起因した非火災報を低減できる。
請求項9の発明は、請求項1ないし請求項8の発明において、前記受波素子の周辺に前記音源部以外から前記受波素子へ超音波が入射するのを阻止する遮音壁が設けられてなることを特徴とする。
この発明によれば、前記音源部以外で発生した超音波が前記受波素子に入射するのを遮音壁によって阻止することができ、非火災報を低減できる。
請求項10の発明は、請求項1ないし請求項9の発明において、前記音源部と前記受波素子とが一表面側に実装されたベース部材を備え、ベース部材の前記一表面には、前記音源部から送波された超音波の反射を防止する吸音層が設けられてなることを特徴とする。
この発明によれば、前記音源部から送波された超音波がベース部材で反射して前記受波素子に入射するのを防止することができ、反射波の干渉を防止することができる。
According to this invention, it becomes possible to periodically cancel the output fluctuation of the sound source section and the sensitivity fluctuation of the receiving element, and the long-term reliability is improved.
The invention of claim 8 is characterized in that, in the inventions of claims 1 to 7, the control unit transmits ultrasonic waves having a frequency having an insect-proof effect from the sound source unit.
According to the present invention, insects can be prevented from entering the monitoring space, and non-fire reports resulting from insects can be reduced.
According to a ninth aspect of the present invention, in the first to eighth aspects of the present invention, a sound insulation wall is provided around the receiving element to prevent ultrasonic waves from entering the receiving element from other than the sound source section. It is characterized by that.
According to this invention, it is possible to prevent the ultrasonic waves generated from other than the sound source unit from entering the wave receiving element by the sound insulation wall, and to reduce non-fire information.
The invention of claim 10 is the invention of claims 1 to 9, further comprising a base member on which the sound source section and the receiving element are mounted on one surface side, and the one surface of the base member includes the base member A sound absorbing layer is provided to prevent reflection of ultrasonic waves transmitted from the sound source unit.
According to the present invention, it is possible to prevent the ultrasonic wave transmitted from the sound source unit from being reflected by the base member and entering the receiving element, and to prevent interference of the reflected wave.

請求項11の発明は、超音波を送波可能な音源部と、音源部を制御する制御部と、音源部から送波された超音波の音圧を検出する受波素子と、受波素子の出力に基づいて火災の有無を判断する信号処理部とを備え、信号処理部は、受波素子の出力の基準値からの減衰量に基づいて音源部と受波素子との間の監視空間の煙濃度を推定する煙濃度推定手段と、煙濃度推定手段にて推定された煙濃度と所定の閾値とを比較して火災の有無を判断する煙式判断手段とを有し、前記音源部は、発熱体部への通電に伴う発熱体部の温度変化により空気に熱衝撃を与えることで超音波を発生するものであることを特徴とする。 The invention of claim 11 is a sound source unit capable of transmitting an ultrasonic wave, a control unit for controlling the sound source unit, a wave receiving element for detecting the sound pressure of the ultrasonic wave transmitted from the sound source unit, and a wave receiving element A signal processing unit for determining the presence or absence of a fire based on the output of the signal, the signal processing unit is a monitoring space between the sound source unit and the receiving element based on the attenuation from the reference value of the output of the receiving element A smoke density estimation means for estimating the smoke density of the smoke, and a smoke type judgment means for judging the presence or absence of a fire by comparing the smoke density estimated by the smoke density estimation means with a predetermined threshold, Is characterized in that an ultrasonic wave is generated by applying a thermal shock to the air due to a temperature change of the heat generating element accompanying energization of the heat generating element.

この発明によれば、音源部から送波された超音波の音圧を検出する受波素子の出力に基づいて火災の有無を判断する信号処理部を備え、信号処理部では、煙濃度推定手段において、受波素子の出力の基準値からの減衰量に基づいて音源部と受波素子との間の監視空間の煙濃度を推定し、煙式判断手段において、煙濃度推定手段にて推定された煙濃度と所定の閾値とを比較して火災の有無を判断するので、散乱光式煙感知器や減光式煙感知器のような光電式煙感知器で問題となるバックグランド光の影響をなくすことができ、散乱光式煙感知器に必要なラビリンス体を不要とすることができて火災発生時に監視空間へ煙粒子が拡散しやすくなるから、散乱光式煙感知器に比べて応答性を向上でき、また、減光式煙感知器に比べて非火災報の低減が可能になる。さらに、前記音源部は平坦な周波数特性を有しており、発生させる超音波の周波数を広範囲にわたって変化させることができる。また、前記音源部から残響の少ない単パルス状の超音波を送波させることも可能となる。 According to this invention, the signal processing unit that determines the presence or absence of a fire based on the output of the wave receiving element that detects the sound pressure of the ultrasonic wave transmitted from the sound source unit is provided. The smoke density in the monitoring space between the sound source unit and the wave receiving element is estimated based on the attenuation amount from the reference value of the output of the wave receiving element, and is estimated by the smoke density estimating means in the smoke type judging means. The background smoke, which is a problem with photoelectric smoke detectors such as scattered light smoke detectors and dimming smoke detectors, is judged by comparing the smoke concentration with a predetermined threshold. This makes it possible to eliminate the labyrinth required for the scattered light type smoke detector and makes it easier for smoke particles to diffuse into the surveillance space in the event of a fire. And can reduce non-fire alarms compared to a light-reducing smoke detector Possible to become. Furthermore, the sound source section has a flat frequency characteristic, and the frequency of the generated ultrasonic wave can be changed over a wide range. It is also possible to transmit single-pulse ultrasonic waves with little reverberation from the sound source unit.

請求項12の発明は、請求項11の発明において、前記音源部は、ベース基板の一表面側に前記発熱体部が形成されるとともに、ベース基板の前記一表面側で前記発熱体部とベース基板との間に設けられて前記発熱体部とベース基板とを熱絶縁する多孔質層からなる熱絶縁層を有してなることを特徴とする。 According to a twelfth aspect of the present invention, in the invention of the eleventh aspect , the sound source section includes the heat generating section formed on the one surface side of the base substrate, and the heat generating section and the base on the one surface side of the base substrate. It is characterized by having a thermal insulation layer comprising a porous layer provided between the substrate and thermally insulating the heating element and the base substrate.

この発明によれば、熱絶縁層が多孔質層からなるので、熱絶縁層が非多孔質層からなる場合に比べて、熱絶縁層の断熱性が向上して超音波発生効率が高くなり、低消費電力化を図れる。   According to this invention, since the heat insulation layer is composed of a porous layer, compared with the case where the heat insulation layer is composed of a non-porous layer, the heat insulation property of the heat insulation layer is improved and the ultrasonic wave generation efficiency is increased, Low power consumption can be achieved.

請求項13の発明は、請求項11または請求項12の発明において、前記制御部は、前記音源部から超音波として単パルス状の超音波を送波させることを特徴とする。 A thirteenth aspect of the invention is characterized in that, in the invention of the eleventh or twelfth aspect , the control unit transmits a single-pulse ultrasonic wave as an ultrasonic wave from the sound source unit.

この発明によれば、前記受波素子が反射波による干渉を受けにくくなり、前記煙濃度推定手段にて推定される煙濃度の精度を高めることが可能となる。   According to the present invention, the wave receiving element is less susceptible to interference due to reflected waves, and the accuracy of the smoke density estimated by the smoke density estimating means can be increased.

請求項14の発明は、超音波を送波可能な音源部と、音源部を制御する制御部と、音源部から送波された超音波の音圧を検出する受波素子と、受波素子の出力に基づいて火災の有無を判断する信号処理部とを備え、信号処理部は、受波素子の出力の基準値からの減衰量に基づいて音源部と受波素子との間の監視空間の煙濃度を推定する煙濃度推定手段と、煙濃度推定手段にて推定された煙濃度と所定の閾値とを比較して火災の有無を判断する煙式判断手段とを有し、前記制御部は、前記音源部から防虫効果のある周波数の超音波を送波させること特徴とする。 The invention according to claim 14 is a sound source unit capable of transmitting an ultrasonic wave, a control unit for controlling the sound source unit, a wave receiving element for detecting a sound pressure of the ultrasonic wave transmitted from the sound source unit, and a wave receiving element A signal processing unit for determining the presence or absence of a fire based on the output of the signal, the signal processing unit is a monitoring space between the sound source unit and the receiving element based on the attenuation from the reference value of the output of the receiving element A smoke density estimation means for estimating the smoke density of the smoke, and a smoke type judgment means for judging the presence or absence of a fire by comparing the smoke density estimated by the smoke density estimation means with a predetermined threshold, the control unit Is characterized by transmitting ultrasonic waves having an insect-proofing frequency from the sound source section.

この発明によれば、音源部から送波された超音波の音圧を検出する受波素子の出力に基づいて火災の有無を判断する信号処理部を備え、信号処理部では、煙濃度推定手段において、受波素子の出力の基準値からの減衰量に基づいて音源部と受波素子との間の監視空間の煙濃度を推定し、煙式判断手段において、煙濃度推定手段にて推定された煙濃度と所定の閾値とを比較して火災の有無を判断するので、散乱光式煙感知器や減光式煙感知器のような光電式煙感知器で問題となるバックグランド光の影響をなくすことができ、散乱光式煙感知器に必要なラビリンス体を不要とすることができて火災発生時に監視空間へ煙粒子が拡散しやすくなるから、散乱光式煙感知器に比べて応答性を向上でき、また、減光式煙感知器に比べて非火災報の低減が可能になる。さらに、前記監視空間に虫が侵入するのを防止することができ、虫に起因した非火災報を低減できる。 According to this invention, the signal processing unit that determines the presence or absence of a fire based on the output of the wave receiving element that detects the sound pressure of the ultrasonic wave transmitted from the sound source unit is provided. The smoke density in the monitoring space between the sound source unit and the wave receiving element is estimated based on the attenuation amount from the reference value of the output of the wave receiving element, and is estimated by the smoke density estimating means in the smoke type judging means. The background smoke, which is a problem with photoelectric smoke detectors such as scattered light smoke detectors and dimming smoke detectors, is judged by comparing the smoke concentration with a predetermined threshold. This makes it possible to eliminate the labyrinth required for the scattered light type smoke detector and makes it easier for smoke particles to diffuse into the surveillance space in the event of a fire. And can reduce non-fire alarms compared to a light-reducing smoke detector Possible to become. In addition, insects can be prevented from entering the monitoring space, and non-fire reports caused by insects can be reduced.

請求項15の発明は、超音波を送波可能な音源部と、音源部を制御する制御部と、音源部から送波された超音波の音圧を検出する受波素子と、受波素子の出力に基づいて火災の有無を判断する信号処理部とを備え、信号処理部は、受波素子の出力の基準値からの減衰量に基づいて音源部と受波素子との間の監視空間の煙濃度を推定する煙濃度推定手段と、煙濃度推定手段にて推定された煙濃度と所定の閾値とを比較して火災の有無を判断する煙式判断手段とを有し、前記受波素子の周辺に前記音源部以外から前記受波素子へ超音波が入射するのを阻止する遮音壁が設けられてなることを特徴とする。 The invention of claim 15 includes a sound source unit capable of transmitting ultrasonic waves, a control unit for controlling the sound source unit, a wave receiving element for detecting the sound pressure of the ultrasonic wave transmitted from the sound source unit, and a wave receiving element A signal processing unit for determining the presence or absence of a fire based on the output of the signal, the signal processing unit is a monitoring space between the sound source unit and the receiving element based on the attenuation from the reference value of the output of the receiving element Smoke density estimation means for estimating the smoke density of the smoke, and smoke type judgment means for judging the presence or absence of a fire by comparing the smoke density estimated by the smoke density estimation means with a predetermined threshold, A sound insulation wall is provided around the element to prevent ultrasonic waves from entering the wave receiving element from other than the sound source section.

この発明によれば、音源部から送波された超音波の音圧を検出する受波素子の出力に基づいて火災の有無を判断する信号処理部を備え、信号処理部では、煙濃度推定手段において、受波素子の出力の基準値からの減衰量に基づいて音源部と受波素子との間の監視空間の煙濃度を推定し、煙式判断手段において、煙濃度推定手段にて推定された煙濃度と所定の閾値とを比較して火災の有無を判断するので、散乱光式煙感知器や減光式煙感知器のような光電式煙感知器で問題となるバックグランド光の影響をなくすことができ、散乱光式煙感知器に必要なラビリンス体を不要とすることができて火災発生時に監視空間へ煙粒子が拡散しやすくなるから、散乱光式煙感知器に比べて応答性を向上でき、また、減光式煙感知器に比べて非火災報の低減が可能になる。さらに、前記音源部以外で発生した超音波が前記受波素子に入射するのを遮音壁によって阻止することができ、非火災報を低減できる。
請求項16の発明は、超音波を送波可能な音源部と、音源部を制御する制御部と、音源部から送波された超音波の音圧を検出する受波素子と、受波素子の出力に基づいて火災の有無を判断する信号処理部とを備え、信号処理部は、受波素子の出力の基準値からの減衰量に基づいて音源部と受波素子との間の監視空間の煙濃度を推定する煙濃度推定手段と、煙濃度推定手段にて推定された煙濃度と所定の閾値とを比較して火災の有無を判断する煙式判断手段とを有し、前記音源部と前記受波素子とが一表面側に実装されたベース部材を備え、ベース部材の前記一表面には、前記音源部から送波された超音波の反射を防止する吸音層が設けられてなることを特徴とする。
この発明によれば、音源部から送波された超音波の音圧を検出する受波素子の出力に基づいて火災の有無を判断する信号処理部を備え、信号処理部では、煙濃度推定手段において、受波素子の出力の基準値からの減衰量に基づいて音源部と受波素子との間の監視空間の煙濃度を推定し、煙式判断手段において、煙濃度推定手段にて推定された煙濃度と所定の閾値とを比較して火災の有無を判断するので、散乱光式煙感知器や減光式煙感知器のような光電式煙感知器で問題となるバックグランド光の影響をなくすことができ、散乱光式煙感知器に必要なラビリンス体を不要とすることができて火災発生時に監視空間へ煙粒子が拡散しやすくなるから、散乱光式煙感知器に比べて応答性を向上でき、また、減光式煙感知器に比べて非火災報の低減が可能になる。さらに、前記音源部から送波された超音波がベース部材で反射して前記受波素子に入射するのを防止することができ、反射波の干渉を防止することができる。
請求項17の発明は、請求項1ないし請求項16の発明において、前記制御部は、前記信号処理部にて火災有りと判断されたときに前記音源部から可聴域の音波からなる警報音を発生させることを特徴とする。
この発明によれば、前記音源部から警報音を発生させることができるので、警報音を出力するスピーカなどを別途に設ける必要がなく、小型化および低コスト化が可能となる。
According to this invention, the signal processing unit that determines the presence or absence of a fire based on the output of the wave receiving element that detects the sound pressure of the ultrasonic wave transmitted from the sound source unit is provided. The smoke density in the monitoring space between the sound source unit and the wave receiving element is estimated based on the attenuation amount from the reference value of the output of the wave receiving element, and is estimated by the smoke density estimating means in the smoke type judging means. The background smoke, which is a problem with photoelectric smoke detectors such as scattered light smoke detectors and dimming smoke detectors, is judged by comparing the smoke concentration with a predetermined threshold. This makes it possible to eliminate the labyrinth required for the scattered light type smoke detector and makes it easier for smoke particles to diffuse into the surveillance space in the event of a fire. And can reduce non-fire alarms compared to a light-reducing smoke detector Possible to become. Furthermore, the sound insulation wall can prevent the ultrasonic waves generated from other than the sound source unit from entering the wave receiving element, thereby reducing non-fire reports.
According to a sixteenth aspect of the present invention, there is provided a sound source unit capable of transmitting an ultrasonic wave, a control unit for controlling the sound source unit, a wave receiving element for detecting the sound pressure of the ultrasonic wave transmitted from the sound source unit, and the wave receiving element A signal processing unit for determining the presence or absence of a fire based on the output of the signal, the signal processing unit is a monitoring space between the sound source unit and the receiving element based on the attenuation from the reference value of the output of the receiving element A smoke density estimation means for estimating the smoke density of the smoke, and a smoke type judgment means for judging the presence or absence of a fire by comparing the smoke density estimated by the smoke density estimation means with a predetermined threshold, And the wave receiving element are mounted on one surface side, and a sound absorbing layer is provided on the one surface of the base member to prevent reflection of ultrasonic waves transmitted from the sound source unit. It is characterized by that.
According to this invention, the signal processing unit that determines the presence or absence of a fire based on the output of the wave receiving element that detects the sound pressure of the ultrasonic wave transmitted from the sound source unit is provided. The smoke density in the monitoring space between the sound source unit and the wave receiving element is estimated based on the attenuation amount from the reference value of the output of the wave receiving element, and is estimated by the smoke density estimating means in the smoke type judging means. The background smoke, which is a problem with photoelectric smoke detectors such as scattered light smoke detectors and dimming smoke detectors, is judged by comparing the smoke concentration with a predetermined threshold. This makes it possible to eliminate the labyrinth required for the scattered light type smoke detector and makes it easier for smoke particles to diffuse into the surveillance space in the event of a fire. And can reduce non-fire alarms compared to a light-reducing smoke detector Possible to become. Furthermore, it is possible to prevent the ultrasonic wave transmitted from the sound source unit from being reflected by the base member and entering the wave receiving element, and interference of the reflected wave can be prevented.
According to a seventeenth aspect of the present invention, in the first to sixteenth aspects of the invention, when the control unit determines that there is a fire in the signal processing unit, the control unit generates an alarm sound including an audible sound wave from the sound source unit. It is characterized by generating.
According to the present invention, since an alarm sound can be generated from the sound source unit, it is not necessary to separately provide a speaker or the like for outputting the alarm sound, and it is possible to reduce the size and cost.

請求項18の発明は、請求項1ないし請求項17の発明において、前記信号処理部は、前記音源部が超音波を送波してから当該超音波が前記受波素子に受波されるまでの時間差に基づいて音速を求める音速検出手段と、音速検出手段で求めた音速に基づいて前記監視空間の温度を推定する温度推定手段と、温度推定手段で推定された温度と規定温度とを比較して火災の有無を判断する熱式判断手段とを有することを特徴とする。 According to an eighteenth aspect of the present invention, in the first to seventeenth aspects of the invention, the signal processing unit is configured to receive the ultrasonic wave from the sound source unit until the ultrasonic wave is received by the wave receiving element. The sound speed detecting means for obtaining the sound speed based on the time difference between the temperature, the temperature estimating means for estimating the temperature of the monitoring space based on the sound speed obtained by the sound speed detecting means, and the temperature estimated by the temperature estimating means and the specified temperature are compared. And a thermal type judgment means for judging the presence or absence of a fire.

この発明によれば、前記信号処理部では、音速検出手段において、前記音源部が超音波を送波してから当該超音波が前記受波素子に受波されるまでの時間差に基づいて音速を求め、温度推定手段において、音速検出手段で求めた音速に基づいて前記監視空間の温度を推定し、熱式判断手段において、温度推定手段で推定された温度と規定温度とを比較して火災の有無を判断するので、別途に温度検出素子を用いることなく火災発生時の温度上昇によっても火災を感知することが可能となり、火災をより確実に感知することが可能になる。   According to this invention, in the signal processing unit, in the sound speed detection means, the sound speed is detected based on a time difference from when the sound source unit transmits an ultrasonic wave until the ultrasonic wave is received by the receiving element. In the temperature estimation means, the temperature of the monitoring space is estimated based on the sound speed obtained by the sound speed detection means, and in the thermal judgment means, the temperature estimated by the temperature estimation means is compared with the specified temperature. Since the presence / absence is determined, it is possible to detect the fire even when the temperature rises at the time of the fire without using a separate temperature detecting element, and it becomes possible to detect the fire more reliably.

上記発明では、散乱光式煙感知器に比べて応答性を向上でき、また、減光式煙感知器に比べて非火災報の低減が可能になるという効果がある。 In the above invention, the response can be improved as compared with the scattered light type smoke detector, and the non-fire report can be reduced as compared with the reduced light type smoke detector.

また、散乱光式煙感知器および減光式煙感知器に比べて非火災報を低減することが可能となるという効果がある。 In addition, the non-fire report can be reduced as compared with the scattered light smoke detector and the dimming smoke detector.

(実施形態1)
本実施形態の火災感知器は、図1に示すように、超音波を送波可能な音源部1と、音源部1を制御する制御部2と、音源部1から送波された超音波の音圧を検出する受波素子3と、受波素子3の出力に基づいて火災の有無を判断する信号処理部4とを備えている。ここにおいて、音源部1と受波素子3とは、図2に示すように、円板状のプリント基板からなる回路基板5の一表面側において互いに離間して対向配置されており、回路基板5に制御部2および信号処理部4が設けられている。ここで、受波素子3の周辺には、音源部1以外で発生した超音波が受波素子3に入射するのを阻止する遮音板からなる遮音壁6が設けられている。また、回路基板5の上記一表面には、音源部1から送波された超音波の反射を防止する吸音層(図示せず)が設けられているので、音源部1から送波された超音波が回路基板5で反射して受波素子3に入射するのを防止することができて、反射波の干渉を防止することができ、特に、音源部1から送波させる超音波として連続波を用いる場合に有効である。なお、本実施形態では、回路基板5が、音源部1と受波素子3とが一表面側に実装されたベース部材を構成している。
(Embodiment 1)
As shown in FIG. 1, the fire detector according to the present embodiment includes a sound source unit 1 that can transmit ultrasonic waves, a control unit 2 that controls the sound source unit 1, and an ultrasonic wave transmitted from the sound source unit 1. A wave receiving element 3 that detects sound pressure and a signal processing unit 4 that determines the presence or absence of a fire based on the output of the wave receiving element 3 are provided. Here, as shown in FIG. 2, the sound source unit 1 and the wave receiving element 3 are disposed so as to face each other on the one surface side of the circuit board 5 made of a disk-shaped printed board. A control unit 2 and a signal processing unit 4 are provided. Here, in the vicinity of the wave receiving element 3, a sound insulating wall 6 made of a sound insulating plate for preventing the ultrasonic waves generated outside the sound source unit 1 from entering the wave receiving element 3 is provided. In addition, a sound absorbing layer (not shown) for preventing the reflection of the ultrasonic wave transmitted from the sound source unit 1 is provided on the one surface of the circuit board 5, so that the super wave transmitted from the sound source unit 1 is provided. A sound wave can be prevented from being reflected by the circuit board 5 and incident on the wave receiving element 3, and interference of the reflected wave can be prevented. In particular, a continuous wave is transmitted as an ultrasonic wave transmitted from the sound source unit 1. It is effective when using. In the present embodiment, the circuit board 5 constitutes a base member on which the sound source unit 1 and the wave receiving element 3 are mounted on one surface side.

本実施形態では、音源部1として、後述のように空気に熱衝撃を与えることで超音波を発生させる音波発生素子を用いることで、圧電素子に比べて残響時間が短い超音波を送波するようにし、かつ、受波素子3として共振特性のQ値が圧電素子に比べて十分に小さく受波信号に含まれる残響成分の発生期間が短い静電容量型のマイクロホンを用いている。   In the present embodiment, a sound wave generating element that generates an ultrasonic wave by applying a thermal shock to air as described later is used as the sound source unit 1 to transmit an ultrasonic wave having a reverberation time shorter than that of a piezoelectric element. In addition, a capacitive microphone is used as the wave receiving element 3 in which the Q value of the resonance characteristics is sufficiently smaller than that of the piezoelectric element and the generation period of the reverberation component included in the received wave signal is short.

ここにおいて、音源部1は、図3に示すように、単結晶のp形のシリコン基板からなるベース基板11の一表面(図3における上面)側に多孔質シリコン層からなる熱絶縁層(断熱層)12が形成され、熱絶縁層12の表面側に発熱体部として金属薄膜からなる発熱体層13が形成され、ベース基板11の上記一表面側に発熱体層13と電気的に接続された一対のパッド14,14が形成されている。なお、ベース基板11の平面形状は長方形状であって、熱絶縁層12、発熱体層13それぞれの平面形状も長方形状に形成してある。また、ベース基板11の上記一表面側において熱絶縁層12が形成されていない部分の表面にはシリコン酸化膜からなる絶縁膜(図示せず)が形成されている。   Here, as shown in FIG. 3, the sound source unit 1 includes a heat insulating layer (heat insulation) made of a porous silicon layer on one surface (upper surface in FIG. 3) side of a base substrate 11 made of a single crystal p-type silicon substrate. Layer) 12 is formed, and a heating element layer 13 made of a metal thin film is formed on the surface side of the heat insulating layer 12 as a heating element portion, and is electrically connected to the heating element layer 13 on the one surface side of the base substrate 11. A pair of pads 14 and 14 are formed. The planar shape of the base substrate 11 is a rectangular shape, and the planar shapes of the heat insulating layer 12 and the heating element layer 13 are also formed in a rectangular shape. An insulating film (not shown) made of a silicon oxide film is formed on the surface of the base substrate 11 where the thermal insulating layer 12 is not formed on the one surface side.

上述の音源部1では、発熱体層13の両端のパッド14,14間に通電して発熱体層13に急激な温度変化を生じさせると、発熱体層13に接触している空気(媒質)に急激な温度変化(熱衝撃)が生じる(つまり、発熱体層13に接触している空気に熱衝撃が与えられる)。したがって、発熱体層13に接触している空気は、発熱体層13の温度上昇時には膨張し発熱体層13の温度下降時には収縮するから、発熱体層13への通電を適宜に制御することによって空気中を伝搬する超音波を発生させることができる。要するに、音源部1を構成する音波発生素子は、発熱体層13への通電に伴う発熱体層13の急激な温度変化を媒質の膨張収縮に変換することにより媒質を伝搬する超音波を発生するので、圧電素子のように機械的振動により超音波を発生する場合に比べて、残響の少ない単パルス状の超音波を送波させることができる。   In the above-described sound source unit 1, when current is passed between the pads 14 and 14 at both ends of the heating element layer 13 to cause a sudden temperature change in the heating element layer 13, the air (medium) that is in contact with the heating element layer 13. A sudden temperature change (thermal shock) occurs (that is, a thermal shock is applied to the air in contact with the heating element layer 13). Accordingly, the air in contact with the heating element layer 13 expands when the temperature of the heating element layer 13 rises and contracts when the temperature of the heating element layer 13 decreases. Therefore, by appropriately controlling energization to the heating element layer 13 Ultrasonic waves that propagate in the air can be generated. In short, the sound wave generating element constituting the sound source unit 1 generates an ultrasonic wave propagating through the medium by converting a rapid temperature change of the heat generating body layer 13 accompanying energization to the heat generating body layer 13 into expansion and contraction of the medium. Therefore, it is possible to transmit single-pulse ultrasonic waves with less reverberation compared to the case where ultrasonic waves are generated by mechanical vibration like a piezoelectric element.

上述の音源部1は、ベース基板11としてp形のシリコン基板を用いており、熱絶縁層12を多孔度が略60〜略70%の多孔質シリコン層からなる多孔質層により構成しているので、ベース基板11として用いるシリコン基板の一部をフッ化水素水溶液とエタノールとの混合液からなる電解液中で陽極酸化処理することにより熱絶縁層12となる多孔質シリコン層を形成することができる(ここで、陽極酸化処理により形成された多孔質シリコン層は、結晶粒径がナノメータオーダの微結晶シリコンからなるナノ結晶シリコンを多数含んでいる)。多孔質シリコン層は、多孔度が高くなるにつれて熱伝導率および熱容量が小さくなるので、熱絶縁層12の熱伝導度および熱容量をベース基板11の熱伝導度および熱容量に比べて小さくし、熱絶縁層12の熱伝導度と熱容量との積をベース基板11の熱伝導度と熱容量との積に比べて十分に小さくすることにより、発熱体層13の温度変化を空気に効率よく伝達することができ発熱体層13と空気との間で効率的な熱交換が起こり、かつ、ベース基板11が熱絶縁層12からの熱を効率良く受け取って熱絶縁層12の熱を逃がすことができて発熱体層13からの熱が熱絶縁層12に蓄積されるのを防止することができる。なお、熱伝導率が148W/(m・K)、熱容量が1.63×10J/(m・K)の単結晶のシリコン基板を陽極酸化して形成される多孔度が60%の多孔質シリコン層は、熱伝導率が1W/(m・K)、熱容量が0.7×10J/(m・K)であることが知られている。本実施形態では、熱絶縁層12を多孔度が略70%の多孔質シリコン層により構成してあり、熱絶縁層12の熱伝導率が0.12W/(m・K)、熱容量が0.5×10J/(m・K)となっている。 In the sound source unit 1 described above, a p-type silicon substrate is used as the base substrate 11, and the heat insulating layer 12 is formed of a porous layer made of a porous silicon layer having a porosity of about 60 to about 70%. Therefore, a porous silicon layer serving as the thermal insulating layer 12 can be formed by anodizing a part of the silicon substrate used as the base substrate 11 in an electrolytic solution composed of a mixed solution of hydrogen fluoride and ethanol. (Here, the porous silicon layer formed by the anodic oxidation treatment contains a large number of nanocrystalline silicon composed of microcrystalline silicon having a crystal grain size on the order of nanometers). Since the porous silicon layer has a lower thermal conductivity and heat capacity as the porosity becomes higher, the thermal conductivity and heat capacity of the heat insulating layer 12 are made smaller than the heat conductivity and heat capacity of the base substrate 11, and heat insulation is performed. By making the product of the thermal conductivity and the thermal capacity of the layer 12 sufficiently smaller than the product of the thermal conductivity and the thermal capacity of the base substrate 11, the temperature change of the heating element layer 13 can be efficiently transmitted to the air. The heat generating body layer 13 and the air can efficiently exchange heat, and the base substrate 11 can efficiently receive the heat from the heat insulating layer 12 and release the heat of the heat insulating layer 12 to generate heat. It is possible to prevent heat from the body layer 13 from being accumulated in the heat insulating layer 12. Note that the porosity formed by anodizing a single crystal silicon substrate having a thermal conductivity of 148 W / (m · K) and a heat capacity of 1.63 × 10 6 J / (m 3 · K) is 60%. The porous silicon layer is known to have a thermal conductivity of 1 W / (m · K) and a heat capacity of 0.7 × 10 6 J / (m 3 · K). In this embodiment, the heat insulating layer 12 is composed of a porous silicon layer having a porosity of approximately 70%, the heat conductivity of the heat insulating layer 12 is 0.12 W / (m · K), and the heat capacity is 0.00. It is 5 × 10 6 J / (m 3 · K).

発熱体層13は、高融点金属の一種であるタングステンにより形成してあるが、発熱体層13の材料はタングステンに限らず、例えば、タンタル、モリブデン、イリジウム、アルミニウムなどを採用してもよい。また、上述の音源部1では、ベース基板11の厚さを300〜700μm、熱絶縁層12の厚さを1〜10μm、発熱体層13の厚さを20〜100nm、各パッド14の厚さを0.5μmとしてあるが、これらの厚さは一例であって特に限定するものではない。また、ベース基板11の材料としてSiを採用しているが、ベース基板11の材料はSiに限らず、例えば、Ge,SiC,GaP,GaAs,InPなどの陽極酸化処理による多孔質化が可能な他の半導体材料でもよく、いずれの場合にも、ベース基板11の一部を多孔質化することで形成した多孔質層を熱絶縁層12とすることができる。   The heating element layer 13 is formed of tungsten, which is a kind of refractory metal, but the material of the heating element layer 13 is not limited to tungsten, and for example, tantalum, molybdenum, iridium, aluminum, or the like may be employed. In the sound source unit 1 described above, the thickness of the base substrate 11 is 300 to 700 μm, the thickness of the heat insulating layer 12 is 1 to 10 μm, the thickness of the heating element layer 13 is 20 to 100 nm, and the thickness of each pad 14. However, these thicknesses are only examples and are not particularly limited. Further, Si is adopted as the material of the base substrate 11, but the material of the base substrate 11 is not limited to Si, and, for example, it can be made porous by anodizing treatment such as Ge, SiC, GaP, GaAs, InP or the like. Other semiconductor materials may be used, and in any case, a porous layer formed by making a part of the base substrate 11 porous can be used as the heat insulating layer 12.

上述のように音源部1は、一対のパッド14,14を介した発熱体層13への通電に伴う発熱体層13の温度変化に伴って超音波を発生するものであり、発熱体層13へ与える駆動電圧波形あるいは駆動電流波形からなる駆動入力波形を例えば周波数がf1の正弦波波形とした場合、理想的には、発熱体層13で生じる温度振動の周波数が駆動入力波形の周波数f1の2倍の周波数f2となり、駆動入力波形f1の略2倍の周波数の超音波を発生させることができる。すなわち、上述の音源部1は、平坦な周波数特性を有しており、発生させる超音波の周波数を広範囲にわたって変化させることができる。また、上述の音源部1では、例えば正弦波波形の半周期の孤立波を駆動入力波形として一対のパッド14,14間へ与えることによって、残響の少ない略1周期の単パルス状の超音波を発生させることができる。このような単パルス状の超音波を用いることにより、反射による干渉が起こりにくくなるので、上記吸音層を不要にすることもできる。また、音源部1は、熱絶縁層12が多孔質層により構成されているので、熱絶縁層12が非多孔質層(例えば、SiO膜など)からなる場合に比べて、熱絶縁層12の断熱性が向上して超音波発生効率が高くなり、低消費電力化を図れる。 As described above, the sound source unit 1 generates ultrasonic waves in accordance with the temperature change of the heating element layer 13 due to energization of the heating element layer 13 via the pair of pads 14 and 14. When the drive input waveform consisting of the drive voltage waveform or the drive current waveform applied to is a sine wave waveform having a frequency f1, for example, the frequency of the temperature oscillation generated in the heating element layer 13 is ideally the frequency f1 of the drive input waveform. The frequency f2 is doubled, and an ultrasonic wave having a frequency approximately twice that of the drive input waveform f1 can be generated. That is, the above-described sound source unit 1 has a flat frequency characteristic and can change the frequency of the generated ultrasonic wave over a wide range. In the sound source unit 1 described above, for example, a half-cycle isolated wave having a sine wave waveform is applied between the pair of pads 14 and 14 as a drive input waveform, so that a single-pulse ultrasonic wave with almost one cycle with little reverberation is generated. Can be generated. By using such single-pulse ultrasonic waves, interference due to reflection is less likely to occur, so that the sound absorbing layer can be made unnecessary. Further, in the sound source unit 1, since the heat insulating layer 12 is formed of a porous layer, the heat insulating layer 12 is compared with a case where the heat insulating layer 12 is formed of a non-porous layer (for example, a SiO 2 film). As a result, the heat generation efficiency is improved, the efficiency of ultrasonic generation is increased, and the power consumption can be reduced.

音源部1を制御する制御部2は、図示していないが、音源部1に駆動入力波形を与えて音源部1を駆動する駆動回路と、当該駆動回路を制御するマイクロコンピュータからなる制御回路とで構成されている。   Although not shown, the control unit 2 that controls the sound source unit 1 gives a drive input waveform to the sound source unit 1 to drive the sound source unit 1, and a control circuit that includes a microcomputer that controls the drive circuit; It consists of

また、上述の受波素子3を構成する静電容量型のマイクロホンは、図4に示すように、シリコン基板に厚み方向に貫通する窓孔31aを設けることで形成された矩形枠状のフレーム31と、フレーム31の一表面側においてフレーム31の対向する2つの辺に跨る形で配置されるカンチレバー型の受圧部32とを備えている。ここにおいて、フレーム31の一表面側には熱酸化膜35と熱酸化膜35を覆うシリコン酸化膜36とシリコン酸化膜36を覆うシリコン窒化膜37とが形成されており、受圧部32の一端部がシリコン窒化膜37を介してフレーム31に支持され、他端部が上記シリコン基板の厚み方向においてシリコン窒化膜37に対向している。また、シリコン窒化膜37における受圧部32の他端部との対向面に金属薄膜(例えば、クロム膜など)からなる固定電極33aが形成され、受圧部32の他端部におけるシリコン窒化膜37との対向面とは反対側に金属薄膜(例えば、クロム膜など)からなる可動電極33bが形成されている。なお、フレーム31の他表面にはシリコン窒化膜38が形成されている。また、受圧部32は、上記各シリコン窒化膜37,38とは別工程で形成されるシリコン窒化膜により構成されている。   Further, as shown in FIG. 4, the capacitance type microphone constituting the wave receiving element 3 has a rectangular frame-shaped frame 31 formed by providing a window hole 31a penetrating in the thickness direction in the silicon substrate. And a cantilever-type pressure receiving portion 32 disposed on one surface side of the frame 31 so as to straddle two opposing sides of the frame 31. Here, a thermal oxide film 35, a silicon oxide film 36 covering the thermal oxide film 35, and a silicon nitride film 37 covering the silicon oxide film 36 are formed on one surface side of the frame 31, and one end of the pressure receiving portion 32. Is supported by the frame 31 via the silicon nitride film 37, and the other end faces the silicon nitride film 37 in the thickness direction of the silicon substrate. Further, a fixed electrode 33 a made of a metal thin film (for example, a chromium film) is formed on a surface of the silicon nitride film 37 facing the other end of the pressure receiving portion 32, and the silicon nitride film 37 at the other end of the pressure receiving portion 32 is formed. A movable electrode 33b made of a metal thin film (for example, a chromium film) is formed on the opposite side of the opposite surface. A silicon nitride film 38 is formed on the other surface of the frame 31. The pressure receiving portion 32 is constituted by a silicon nitride film formed in a separate process from the silicon nitride films 37 and 38 described above.

図4に示した構成の静電容量型のマイクロホンからなる受波素子3では、固定電極33aと可動電極33bとを電極とするコンデンサが形成されるから、受圧部32が疎密波の圧力を受けることにより固定電極33aと可動電極33bとの間の距離が変化し、固定電極33aと可動電極33bとの間の静電容量が変化する。したがって、固定電極33aおよび可動電極33bに設けたパッド(図示せず)間に直流バイアス電圧を印加しておけば、パッドの間には超音波の音圧に応じて微小な電圧変化が生じるから、超音波の音圧を電気信号に変換することができる。   In the wave receiving element 3 composed of a capacitive microphone having the configuration shown in FIG. 4, a capacitor having the fixed electrode 33a and the movable electrode 33b as electrodes is formed, so that the pressure receiving portion 32 receives the pressure of the dense wave. As a result, the distance between the fixed electrode 33a and the movable electrode 33b changes, and the capacitance between the fixed electrode 33a and the movable electrode 33b changes. Therefore, if a DC bias voltage is applied between pads (not shown) provided on the fixed electrode 33a and the movable electrode 33b, a minute voltage change occurs between the pads according to the sound pressure of the ultrasonic waves. The sound pressure of ultrasonic waves can be converted into an electric signal.

ところで、信号処理部4は、受波素子3の出力の基準値からの減衰量に基づいて音源部1と受波素子3との間の監視空間の煙濃度を推定する煙濃度推定手段41と、煙濃度推定手段41にて推定された煙濃度と所定の閾値とを比較して火災の有無を判断する煙式判断手段42と、音源部1が超音波を送波してから当該超音波が受波素子3に受波されるまでの時間差に基づいて音速を求める音速検出手段43と、音速検出手段43で求めた音速に基づいて上記監視空間の温度を推定する温度推定手段44と、温度推定手段44で推定された温度と規定温度とを比較して火災の有無を判断する熱式判断手段45とを有している。信号処理部4は、マイクロコンピュータにより構成されており、上記各手段41〜45は、上記マイクロコンピュータに適宜のプログラムを搭載することにより実現されている。また、信号処理部4は、受波素子3の出力信号をアナログ−ディジタル変換するA/D変換器などが設けられている。   By the way, the signal processing unit 4 includes a smoke density estimation unit 41 that estimates the smoke density in the monitoring space between the sound source unit 1 and the wave receiving element 3 based on the attenuation amount from the reference value of the output of the wave receiving element 3. The smoke type estimation means 42 for comparing the smoke density estimated by the smoke density estimation means 41 with a predetermined threshold value to determine the presence or absence of a fire, and the sound source unit 1 transmits the ultrasonic wave, and then the ultrasonic wave A sound speed detecting means 43 for obtaining the sound speed based on the time difference until the wave receiving element 3 receives the wave, a temperature estimating means 44 for estimating the temperature of the monitoring space based on the sound speed obtained by the sound speed detecting means 43, Thermal type determination means 45 that compares the temperature estimated by the temperature estimation means 44 with a specified temperature to determine the presence or absence of a fire is provided. The signal processing unit 4 is configured by a microcomputer, and each of the means 41 to 45 is realized by mounting an appropriate program on the microcomputer. The signal processing unit 4 is provided with an A / D converter for analog-digital conversion of the output signal of the wave receiving element 3.

煙濃度推定手段41は、音源部1からの超音波の音圧を検出する受波素子3の出力の基準値からの減衰量に基づいて煙濃度を推定するものであるが、音源部1から送波される超音波の周波数が一定であれば、上記減衰量は上記監視空間の煙濃度に略比例して増加するので、あらかじめ測定した煙濃度と減衰量との関係データに基づいて煙濃度と減衰量との関係式を求めて記憶しておけば、上記関係式を用いて減衰量から煙濃度を推定することができる。また、煙式判断手段42は、煙濃度推定手段41にて推定された煙濃度が上記閾値未満の場合には「火災無し」と判断する一方で、上記閾値以上の場合には「火災有り」と判断して火災感知信号を制御部2へ出力する。ここで、制御部2は、煙式判断手段42からの火災感知信号を受信すると、音源部1から可聴域の音波からなる警報音が発生するように音源部1への駆動入力波形を制御する。したがって、音源部1から警報音を発生させることができるので、警報音を出力するスピーカなどを別途に設ける必要がなく、火災感知器全体の小型化および低コスト化が可能となる。   The smoke density estimation means 41 estimates the smoke density based on the attenuation amount from the reference value of the output of the wave receiving element 3 that detects the sound pressure of the ultrasonic wave from the sound source unit 1. If the frequency of the transmitted ultrasonic wave is constant, the amount of attenuation increases approximately in proportion to the smoke concentration in the monitoring space, so the smoke concentration is based on the relationship data between the smoke concentration and attenuation measured in advance. If the relational expression between and the amount of attenuation is obtained and stored, the smoke density can be estimated from the amount of attenuation using the relational expression. The smoke type determination means 42 determines “no fire” when the smoke concentration estimated by the smoke concentration estimation means 41 is less than the above threshold value, while “no fire” when it exceeds the threshold value. And the fire detection signal is output to the control unit 2. Here, when the control unit 2 receives the fire detection signal from the smoke type determination means 42, the control unit 2 controls the drive input waveform to the sound source unit 1 so that an alarm sound including an audible sound wave is generated from the sound source unit 1. . Therefore, since the alarm sound can be generated from the sound source unit 1, it is not necessary to separately provide a speaker for outputting the alarm sound, and the entire fire detector can be reduced in size and cost.

また、音速検出手段43は、音源部1と受波素子3との間の距離と上記時間差とを用いて音速を求める。また、温度推定手段44は、周知の大気中の音速と絶対温度との関係式を利用して音速から上記監視空間の温度を推定する。また、熱式判断手段45は、温度推定手段44にて推定された温度が上記規定温度未満の場合には「火災無し」と判断する一方で、上記規定温度以上の場合には「火災有り」と判断して火災感知信号を制御部2へ出力する。ここで、制御部2は、熱式判断手段45からの火災感知信号を受信した場合にも、音源部1から可聴域の音波からなる警報音が発生するように音源部1への駆動入力波形を制御する。   The sound speed detection means 43 obtains the sound speed using the distance between the sound source unit 1 and the wave receiving element 3 and the time difference. Moreover, the temperature estimation means 44 estimates the temperature of the said monitoring space from a sound speed using the well-known relational expression of the sound speed in air and absolute temperature. The thermal determination means 45 determines “no fire” if the temperature estimated by the temperature estimation means 44 is lower than the specified temperature, while “fire” if the temperature is higher than the specified temperature. And the fire detection signal is output to the control unit 2. Here, even when the control unit 2 receives the fire detection signal from the thermal determination unit 45, the drive input waveform to the sound source unit 1 is generated so that an alarm sound including an audible sound wave is generated from the sound source unit 1. To control.

なお、本実施形態では、煙式判断手段42や熱式判断手段45から出力される火災感知信号を制御部2へ出力するようにしているが、制御部2に限らず、例えば、外部の通報装置へ出力するようにしてもよい。   In the present embodiment, the fire detection signal output from the smoke determination unit 42 or the thermal determination unit 45 is output to the control unit 2, but is not limited to the control unit 2. You may make it output to an apparatus.

以上説明した本実施形態の火災感知器では、煙濃度推定手段41において、受波素子3の出力の基準値からの減衰量に基づいて音源部1と受波素子3との間の監視空間の煙濃度を推定し、煙式判断手段42において、煙濃度推定手段41にて推定された煙濃度と所定の閾値とを比較して火災の有無を判断するので、散乱光式煙感知器や減光式煙感知器のような光電式煙感知器で問題となるバックグランド光の影響をなくすことができ、散乱光式煙感知器に必要なラビリンス体を不要とすることができて火災発生時に監視空間へ煙粒子が拡散しやすくなるから、散乱光式煙感知器に比べて応答性を向上でき、また、減光式煙感知器に比べて非火災報の低減が可能になる。さらに、本実施形態の火災感知器では、音速検出手段43において、音源部1が超音波を送波してから当該超音波が受波素子3に受波されるまでの時間差に基づいて音速を求め、温度推定手段44において、音速検出手段43で求めた音速に基づいて上記監視空間の温度を推定し、熱式判断手段45において、温度推定手段44で推定された温度と規定温度とを比較して火災の有無を判断するので、別途に温度検出素子を用いることなく火災発生時の温度上昇によっても火災を感知することが可能となり、火災をより確実に感知することが可能になる。   In the fire detector according to the present embodiment described above, the smoke density estimation means 41 determines the monitoring space between the sound source unit 1 and the wave receiving element 3 based on the attenuation amount from the reference value of the output of the wave receiving element 3. The smoke density is estimated, and the smoke type judging means 42 compares the smoke density estimated by the smoke density estimating means 41 with a predetermined threshold value to judge the presence or absence of a fire. In the event of a fire, it is possible to eliminate the influence of background light, which is a problem with photoelectric smoke detectors such as light smoke detectors, and to eliminate the need for labyrinth bodies required for scattered light smoke detectors. Since smoke particles easily diffuse into the monitoring space, the response can be improved as compared with the scattered light type smoke detector, and the non-fire report can be reduced as compared with the reduced light type smoke detector. Furthermore, in the fire detector according to the present embodiment, the sound speed detection means 43 determines the sound speed based on the time difference from when the sound source unit 1 transmits an ultrasonic wave until the ultrasonic wave is received by the wave receiving element 3. The temperature estimation means 44 estimates the temperature of the monitoring space based on the sound speed obtained by the sound speed detection means 43, and the thermal type judgment means 45 compares the temperature estimated by the temperature estimation means 44 with the specified temperature. Therefore, it is possible to detect the fire even when the temperature rises at the time of the fire without using a separate temperature detecting element, and to detect the fire more reliably.

(実施形態2)
図5に示す本実施形態の火災感知器の基本構成は実施形態1と略同じであり、制御部2および信号処理部4の構成が相違する。なお、実施形態1と同様の構成要素には同一の符号を付して説明を適宜省略する。
(Embodiment 2)
The basic configuration of the fire detector of the present embodiment shown in FIG. 5 is substantially the same as that of the first embodiment, and the configurations of the control unit 2 and the signal processing unit 4 are different. In addition, the same code | symbol is attached | subjected to the component similar to Embodiment 1, and description is abbreviate | omitted suitably.

ところで、本願発明者らは、音源部1と受波素子3との間の監視空間の浮遊粒子の種別に応じて図6に示すように音源部1の出力周波数と音圧の単位減衰率との関係が異なるという知見を得た。ここで、監視空間に浮遊粒子が存在しない状態で受波素子3にて受波される音圧(以下、基準音圧という)をI、減光式煙濃度計(減光式煙感知器)での評価でx%/mとなる濃度の浮遊粒子が監視空間に存在する状態で受波素子3にて受波される音圧をIとしたときに、(I−I)/Iで表される値を音圧の減衰率と定義し、特にx=1のときの減衰率を単位減衰率と定義する。ここにおいて、基準音圧Iと音圧Iとは、監視空間における浮遊粒子の有無を除いては同一の条件で検出されるものとする。図6中の「イ」は浮遊粒子が黒煙の煙粒子である場合の出力周波数と音圧の単位減衰率との関係を示す近似曲線(黒丸が測定データ)、「ロ」は浮遊粒子が白煙の煙粒子である場合の出力周波数と音圧の単位減衰率との関係を示す近似曲線(黒四角が測定データ)、「ハ」は浮遊粒子が湯気の粒子である場合の出力周波数と音圧の単位減衰率との関係を示す近似曲線(黒三角が測定データ)であり、ここに示す単位減衰率は、音源部1と受波素子3との間の距離を30cmに設定したときの各出力周波数ごとのデータである。また、図6における右端の各データは、出力周波数が82kHzのときのデータであり、出力周波数が82kHzのときのデータを1として各出力周波数の単位減衰率を規格化した結果を図7に示す。要するに、図7は、横軸が出力周波数、縦軸が相対的単位減衰率となっている。また、白煙の煙粒子のサイズは800nm程度、黒煙の煙粒子のサイズは200nm程度、湯気の粒子のサイズは数μm〜20μm程度である。 By the way, the inventors of the present application, as shown in FIG. 6, according to the type of suspended particles in the monitoring space between the sound source unit 1 and the wave receiving element 3, I got the knowledge that the relationship is different. Here, the sound pressure (hereinafter referred to as a reference sound pressure) received by the wave receiving element 3 in the absence of suspended particles in the monitoring space is defined as I 0 , a dimming smoke densitometer (a dimming smoke detector). (I 0 −I x ), where I x is the sound pressure received by the wave receiving element 3 in a state where suspended particles having a concentration of x% / m exist in the monitoring space. The value represented by / I 0 is defined as the sound pressure attenuation rate, and in particular, the attenuation rate when x = 1 is defined as the unit attenuation rate. Here, it is assumed that the reference sound pressure I 0 and the sound pressure I x are detected under the same conditions except for the presence or absence of suspended particles in the monitoring space. “I” in FIG. 6 is an approximate curve showing the relationship between the output frequency and the unit attenuation rate of sound pressure when the suspended particles are black smoke particles (black circles are measured data), and “B” is the suspended particles. Approximate curve showing the relationship between the output frequency of white smoke particles and the unit attenuation rate of sound pressure (black square is measured data), “C” is the output frequency when the floating particles are steam particles It is an approximate curve (black triangle is measurement data) showing the relationship with the unit attenuation rate of sound pressure, and the unit attenuation rate shown here is when the distance between the sound source unit 1 and the receiving element 3 is set to 30 cm. The data for each output frequency. Each data at the right end in FIG. 6 is data when the output frequency is 82 kHz, and FIG. 7 shows the result of normalizing the unit attenuation rate of each output frequency with the data when the output frequency is 82 kHz as 1. . In short, in FIG. 7, the horizontal axis represents the output frequency, and the vertical axis represents the relative unit attenuation rate. The size of white smoke particles is about 800 nm, the size of black smoke particles is about 200 nm, and the size of steam particles is about several μm to 20 μm.

上述の知見に基づいて、本実施形態では、制御部2が、音源部1から周波数の異なる複数種の超音波が順次送波されるように音源部1を制御するようにし、信号処理部4は、少なくとも受波素子3の基準出力(基準音圧に対する受波素子3の出力)、上記監視空間に存在する浮遊粒子の種別および浮遊粒子濃度に応じた音源部1の出力周波数と受波素子3の出力の相対的単位減衰率との関係データ(上述の図7より抽出されるデータ)、煙粒子に関して特定周波数(例えば、82kHz)における単位減衰率(上述の図6より抽出されるデータ)を記憶した記憶手段48と、音源部1から送波された各周波数の超音波ごとの受波素子3の出力と記憶手段48に記憶されている関係データとを用いて上記監視空間に浮遊している粒子の種別を推定する粒子種別推定手段46と、粒子種別推定手段46にて推定された粒子が煙粒子のときに特定周波数(例えば、82kHz)の超音波に対する受波素子3の出力の基準値からの減衰量に基づいて上記監視空間の煙濃度を推定する煙濃度推定手段47と、煙濃度推定手段47にて推定された煙濃度と所定の閾値とを比較して火災の有無を判断する煙式判断手段42とを有するようにしてある。   Based on the above knowledge, in the present embodiment, the control unit 2 controls the sound source unit 1 so that plural types of ultrasonic waves having different frequencies are sequentially transmitted from the sound source unit 1, and the signal processing unit 4. Is at least the reference output of the wave receiving element 3 (the output of the wave receiving element 3 with respect to the reference sound pressure), the output frequency of the sound source unit 1 and the wave receiving element corresponding to the type of floating particles present in the monitoring space and the concentration of floating particles 3 relative data of the relative unit attenuation rate of output (data extracted from FIG. 7 described above), unit attenuation rate at a specific frequency (for example, 82 kHz) with respect to smoke particles (data extracted from FIG. 6 described above) Is stored in the monitoring space using the storage means 48 storing the signal, the output of the wave receiving element 3 for each ultrasonic wave transmitted from the sound source unit 1 and the relational data stored in the storage means 48. The type of particles The particle type estimation means 46 for performing the measurement, and when the particles estimated by the particle type estimation means 46 are smoke particles, the attenuation from the reference value of the output of the wave receiving element 3 with respect to the ultrasonic wave of a specific frequency (for example, 82 kHz) Based on the smoke density estimation means 47 for estimating the smoke density of the monitoring space based on the above, the smoke type judgment means 42 for judging the presence or absence of a fire by comparing the smoke density estimated by the smoke density estimation means 47 with a predetermined threshold value. And so on.

以下に、本実施形態の火災感知器の動作例を図8のフローチャートを参照して説明する。まず、音源部1から複数種の超音波を順次送波させ各超音波に対する受波素子3の出力を信号処理部4で計測する(ステップS11)。粒子種別推定手段46は、各出力周波数ごとに受波素子3の出力と記憶手段48に記憶されている基準出力とから音圧の減衰率を求め(ステップS12)、出力周波数が82kHzでの音圧の減衰率に対する20kHzでの音圧の減衰率の比を算出する(ステップS13)。記憶手段48には、音源部1の出力周波数と受波素子3の出力の相対的単位減衰率との上記関係データとして、出力周波数が82kHzでの相対的単位減衰率に対する20kHzでの相対的単位減衰率の比(図7の場合、白煙が0、黒煙が0.2、湯気が0.5となる)が記憶されており、粒子種別推定手段46は、算出した減衰率の比を記憶手段48に記憶されている関係データと比較し、関係データの中で減衰率の比が最も近い種別の粒子を監視空間に浮遊している粒子と推定する(ステップS14)。ここで、推定された粒子が煙粒子であれば煙濃度推定手段47での処理に移行する(ステップS15)。ここにおいて、白煙の場合には図9に示すように減光式煙濃度計で計測される煙濃度と音圧の減衰率との関係は直線で示すことのできるデータであり、他の粒子においても同様であるから、煙濃度推定手段47は、推定された粒子種別について特定周波数(例えば、82kHz)の超音波に対する受波素子3の出力の減衰率の記憶手段48に記憶されている単位減衰率に対する比を算出し、その比の値がyの場合に監視空間の煙濃度が減光式煙濃度計での評価における煙濃度y%/mに相当すると推定する(ステップS16)。煙式判断手段42は、ステップS16で推定された煙濃度と所定の閾値(例えば、減光式煙濃度計での評価で10%/mとなる煙濃度)とを比較し、推定された煙濃度が上記閾値未満の場合には「火災無し」と判断する一方で、上記閾値以上の場合には「火災有り」と判断して火災感知信号を制御部2へ出力する。   Below, the operation example of the fire detector of this embodiment is demonstrated with reference to the flowchart of FIG. First, a plurality of types of ultrasonic waves are sequentially transmitted from the sound source unit 1, and the output of the wave receiving element 3 for each ultrasonic wave is measured by the signal processing unit 4 (step S11). The particle type estimation means 46 obtains the sound pressure attenuation rate from the output of the wave receiving element 3 and the reference output stored in the storage means 48 for each output frequency (step S12), and the sound at the output frequency of 82 kHz. The ratio of the sound pressure attenuation rate at 20 kHz to the pressure attenuation rate is calculated (step S13). In the storage means 48, as the above relational data between the output frequency of the sound source unit 1 and the relative unit attenuation rate of the output of the wave receiving element 3, the relative unit at 20 kHz with respect to the relative unit attenuation rate at the output frequency of 82 kHz is stored. A ratio of attenuation rates (in the case of FIG. 7, white smoke is 0, black smoke is 0.2, steam is 0.5) is stored, and the particle type estimation means 46 calculates the calculated attenuation rate ratio. Compared with the relational data stored in the storage means 48, the type of particle having the closest ratio of the attenuation rate in the relational data is estimated as the particle floating in the monitoring space (step S14). Here, if the estimated particles are smoke particles, the process proceeds to the processing in the smoke concentration estimating means 47 (step S15). Here, in the case of white smoke, as shown in FIG. 9, the relationship between the smoke density measured by the dimming smoke densitometer and the sound pressure attenuation rate is data that can be represented by a straight line, and other particles Therefore, the smoke density estimation means 47 is a unit stored in the storage means 48 of the attenuation factor of the output of the wave receiving element 3 with respect to ultrasonic waves of a specific frequency (for example, 82 kHz) for the estimated particle type. A ratio with respect to the attenuation rate is calculated, and when the value of the ratio is y, it is estimated that the smoke density in the monitoring space corresponds to the smoke density y% / m in the evaluation with the dimming smoke densitometer (step S16). The smoke type determination means 42 compares the smoke density estimated in step S16 with a predetermined threshold (for example, a smoke density that is 10% / m as evaluated by a dimming smoke densitometer) to estimate the smoke. When the concentration is less than the above threshold, it is determined that “no fire”, while when it is equal to or greater than the above threshold, it is determined that “fire exists” and a fire detection signal is output to the control unit 2.

上述の例では、粒子種別推定手段46は出力周波数が82kHzのときの減衰率と20kHzのときの減衰率とを用いているが、これらの出力周波数の組み合わせに限定するものではなく、異なる組み合わせの出力周波数を用いてもよい。さらに、より多くの出力周波数に対する減衰率を用いてもよく、その場合は粒子種別の推定の確度を向上させることができる。また、本実施形態では、煙濃度推定手段47が特定周波数として1周波数を対象としているが、特定周波数として複数の周波数を対象とし、各特定周波数ごとに推定した煙濃度の平均値を求めるようにしてもよく、この場合、煙濃度の推定の確度が向上する。なお、信号処理部4は、マイクロコンピュータにより構成されており、粒子種別推定手段46、煙濃度推定手段47、煙式判断手段42は、上記マイクロコンピュータに適宜のプログラムを搭載することにより実現されている。また、信号処理部4は、受波素子3の出力信号をアナログ−ディジタル変換するA/D変換器などが設けられている。   In the above example, the particle type estimation means 46 uses the attenuation rate when the output frequency is 82 kHz and the attenuation rate when the output frequency is 20 kHz. However, the present invention is not limited to the combination of these output frequencies, and different combinations are possible. An output frequency may be used. Furthermore, attenuation rates for more output frequencies may be used, and in that case, the accuracy of estimation of the particle type can be improved. In this embodiment, the smoke density estimation means 47 targets one frequency as the specific frequency, but targets a plurality of frequencies as the specific frequency, and obtains an average value of the smoke density estimated for each specific frequency. In this case, the accuracy of smoke density estimation is improved. The signal processing unit 4 is constituted by a microcomputer, and the particle type estimation means 46, the smoke concentration estimation means 47, and the smoke type determination means 42 are realized by mounting an appropriate program on the microcomputer. Yes. The signal processing unit 4 is provided with an A / D converter for analog-digital conversion of the output signal of the wave receiving element 3.

本実施形態では、音源部1として実施形態1にて説明した音波発生素子を1つ用いており、上述の制御部2は、音源部1へ与える駆動入力波形の周波数を順次変化させることにより、音源部1から周波数の異なる複数種の超音波を順次送波させる。ここにおいて、制御部2は、音源部1から送波させる超音波の周波数を所定の周波数範囲(例えば、20kHz〜82kHz)の下限周波数(例えば、20kHz)から上限周波数(例えば、82kHz)まで変化させる。なお、本実施形態では、音源部1から周波数の異なる4種類の超音波が順次送波されるように制御部2が音源部1を制御するように構成してあるが、音源部1から送波させる超音波の周波数は4種類に限らず複数種類であればよく、例えば、2種類とすれば、3種類以上の超音波を順次送波させる場合に比べて、制御部2および信号処理部4の負担を軽減できるとともに制御部2および信号処理部4の簡略化を図れる。また、本実施形態では、上述のように音源部1として実施形態1にて説明した音波発生素子を用いており、単パルス状の超音波を送波することができるので、順次送波する超音波をそれぞれ周波数の異なる単パルス状の超音波とすれば、音源部1として共振周波数の異なる複数の圧電素子を用いて各圧電素子から連続波の超音波を送波させる場合に比べて、低コスト化および低消費電力化を図れる。しかも、1つの音波発生素子で複数種の超音波を送波できるので、各種の超音波を送波可能な音波発生素子を複数備える場合に比べて音源部1の小型化、低コスト化が可能となる。   In the present embodiment, one sound wave generating element described in the first embodiment is used as the sound source unit 1, and the above-described control unit 2 sequentially changes the frequency of the drive input waveform applied to the sound source unit 1. A plurality of types of ultrasonic waves having different frequencies are sequentially transmitted from the sound source unit 1. Here, the control unit 2 changes the frequency of the ultrasonic wave transmitted from the sound source unit 1 from the lower limit frequency (for example, 20 kHz) to the upper limit frequency (for example, 82 kHz) in a predetermined frequency range (for example, 20 kHz to 82 kHz). . In the present embodiment, the control unit 2 is configured to control the sound source unit 1 so that four types of ultrasonic waves having different frequencies are sequentially transmitted from the sound source unit 1. The frequency of the ultrasonic wave to be waved is not limited to four types and may be a plurality of types. For example, if two types are used, the control unit 2 and the signal processing unit are compared with the case where three or more types of ultrasonic waves are sequentially transmitted. 4 can be reduced, and the control unit 2 and the signal processing unit 4 can be simplified. Further, in the present embodiment, as described above, the sound wave generating element described in the first embodiment is used as the sound source unit 1 and can transmit a single-pulse ultrasonic wave. If the sound wave is a single-pulse ultrasonic wave having a different frequency, a plurality of piezoelectric elements having different resonance frequencies are used as the sound source unit 1 and the ultrasonic wave of the continuous wave is transmitted from each piezoelectric element. Cost and power consumption can be reduced. In addition, since a plurality of types of ultrasonic waves can be transmitted by a single sound wave generating element, the sound source unit 1 can be reduced in size and cost compared to the case where a plurality of sound wave generating elements capable of transmitting various types of ultrasonic waves are provided. It becomes.

なお、本実施形態では、音源部1の出力周波数と受波素子3の出力の相対的単位減衰率との関係データを記憶手段48に記憶した例を示したが、そもそも監視空間に存在する浮遊粒子の種別に応じて音源部1の出力周波数ごとに変化するのは受波素子3の出力の基準値からの減衰量(I−I)であるから、記憶手段48に記憶する上記関係データは、音源部1の出力周波数と受波素子3の出力の基準値からの減衰量との関係を示すデータであればよく、上述の相対的単位減衰率に代えて、たとえば、受波素子3の出力の基準値からの減衰量や、受波素子3の出力の基準値からの減衰量を基準値(I)で除しただけの減衰率、あるいは単位減衰率を採用した関係データを記憶手段48に記憶するようにしてもよい。 In the present embodiment, the example in which the relationship data between the output frequency of the sound source unit 1 and the relative unit attenuation rate of the output of the receiving element 3 is stored in the storage unit 48 has been shown. Since the amount of attenuation (I 0 −I x ) from the reference value of the output of the wave receiving element 3 changes for each output frequency of the sound source unit 1 according to the type of particle, the above relationship stored in the storage means 48 The data may be data indicating the relationship between the output frequency of the sound source unit 1 and the attenuation amount from the reference value of the output of the wave receiving element 3. Instead of the above relative unit attenuation rate, for example, the wave receiving element Attenuation amount from the reference value of the output of 3 or the attenuation value obtained by dividing the attenuation amount from the reference value of the output of the receiving element 3 by the reference value (I 0 ), or related data adopting the unit attenuation rate You may make it memorize | store in the memory | storage means 48. FIG.

以上説明した本実施形態の火災感知器では、粒子種別推定手段46において、音源部1から送波された各周波数の超音波ごとの受波素子3の出力と記憶手段48に記憶されている関係データとを用いて上記監視空間に浮遊している粒子の種別を推定し、粒子種別推定手段46にて推定された粒子が煙粒子のときに、煙濃度推定手段47において、特定周波数の超音波に対する受波素子3の出力の基準値からの減衰量に基づいて上記監視空間の煙濃度を推定し、煙式判断手段42において、煙濃度推定手段47にて推定された煙濃度と所定の閾値とを比較して火災の有無を判断するので、散乱光式煙感知器や減光式煙感知器のような光電式煙感知器で問題となるバックグランド光の影響をなくすことができ、散乱光式煙感知器に必要なラビリンス体を不要とすることができて散乱光式煙感知器に比べて応答性を向上でき、また、減光式煙感知器に比べて非火災報の低減が可能になる。しかも、粒子種別推定手段46において上記監視空間に浮遊している粒子の種別を推定することで煙粒子と湯気とを識別可能となるから、散乱光式煙感知器および減光式煙感知器に比べて湯気に起因した非火災報を低減することが可能となり、台所や浴室での使用にも適する。また、粒子種別推定手段46において白煙の煙粒子と黒煙の煙粒子とを識別可能となるから、火災の性状の識別に役立てることも可能となる。また、火災感知器を設置している室内の掃除や天井裏の電気工事などの際に浮遊する粉塵と煙粒子との識別も可能になるから、粉塵などに起因した非火災報を低減することも可能となる。   In the fire detector of the present embodiment described above, in the particle type estimation unit 46, the relationship between the output of the receiving element 3 for each ultrasonic wave transmitted from the sound source unit 1 and the storage unit 48 is stored. The type of particles floating in the monitoring space is estimated using the data, and when the particle estimated by the particle type estimation unit 46 is a smoke particle, the smoke density estimation unit 47 uses the ultrasonic wave of a specific frequency. The smoke density in the monitoring space is estimated based on the attenuation amount from the reference value of the output of the wave receiving element 3 with respect to the smoke density, and the smoke type estimating means 42 uses the smoke density estimated by the smoke density estimating means 47 and a predetermined threshold value. To determine the presence or absence of a fire, so it is possible to eliminate the influence of background light, which is a problem with photoelectric smoke detectors such as scattered light smoke detectors and dimming smoke detectors. Labyrin required for optical smoke detectors Body and can improve the response in comparison with the light scattering type smoke sensor and can be eliminated, also the reduction of non-fire report is made possible as compared with the dimming smoke sensor. Moreover, since the particle type estimation means 46 can identify the smoke particles and steam by estimating the type of particles floating in the monitoring space, the scattered light type smoke detector and the dimming type smoke detector can be used. In comparison, non-fire reports due to steam can be reduced, making it suitable for use in kitchens and bathrooms. Further, since the white smoke particles and the black smoke particles can be discriminated by the particle type estimation means 46, it is also possible to use it for identifying the nature of the fire. In addition, it is possible to distinguish between dust and smoke particles floating when cleaning the room where the fire detector is installed or for electrical work behind the ceiling, so reduce non-fire reports caused by dust. Is also possible.

ところで、本実施形態では音源部1を単一の音波発生素子により構成し、制御部2が音源部1へ与える駆動入力波形の周波数を順次変化させることにより、音源部1から周波数の異なる複数種の超音波を順次送波させるようにしているが、図10に示すように互いに出力周波数の異なる複数の音波発生素子1aで音源部1を構成してもよい。この場合には、各音波発生素子1aとして圧電素子のように機械的振動により超音波を発生する素子を用い、各音波発生素子1aをそれぞれの共振周波数で駆動することにより、音源部1から送波される超音波の音圧を高めることができる。音源部1からの超音波の音圧が高くなると、受波素子3で受波される超音波の音圧の変動範囲が広くなり、結果的に、煙濃度の変化量に対する受波素子3の出力の変化量が大きくなってSN比が向上するという利点がある。さらに、図10の例では各音波発生素子1aにそれぞれ対応付けた複数の受波素子3を設け、各受波素子3が各々に対応する各音波発生素子1aからの超音波を受波するように構成されている。したがって、各受波素子3として共振特性のQ値が比較的大きな圧電素子などを用い、各受波素子3をそれぞれの共振周波数の超音波の受波に用いることにより、受波素子3の感度を向上させることができ、SN比の向上に寄与することができる。この場合、各音波発生素子1aを順次駆動して複数種の超音波を順次送波させるだけでなく、複数の音波発生素子1aを一斉に駆動して複数種の超音波を同時に送波させることも可能になる。複数種の超音波を同時に送波させれば、複数種の超音波の音圧の減衰量を同時に検出することで、監視空間の経時的変化(例えば浮遊粒子の濃度変化)の影響を受けることなく同一条件で複数種の超音波について音圧の減衰量を検出することができるので、浮遊粒子の種別や煙濃度を精度よく推定することができる。   By the way, in this embodiment, the sound source unit 1 is constituted by a single sound wave generating element, and the control unit 2 sequentially changes the frequency of the drive input waveform applied to the sound source unit 1, so that a plurality of types having different frequencies from the sound source unit 1 can be obtained. However, the sound source unit 1 may be composed of a plurality of sound wave generating elements 1a having different output frequencies as shown in FIG. In this case, an element that generates ultrasonic waves by mechanical vibration, such as a piezoelectric element, is used as each sound wave generating element 1a, and each sound wave generating element 1a is driven at the respective resonance frequency to be transmitted from the sound source unit 1. The sound pressure of the ultrasonic wave that is waved can be increased. When the sound pressure of the ultrasonic wave from the sound source unit 1 is increased, the fluctuation range of the sound pressure of the ultrasonic wave received by the wave receiving element 3 is widened. There is an advantage that the amount of change in output increases and the SN ratio improves. Further, in the example of FIG. 10, a plurality of wave receiving elements 3 respectively associated with each sound wave generating element 1a are provided, and each wave receiving element 3 receives an ultrasonic wave from each sound wave generating element 1a corresponding thereto. It is configured. Therefore, the sensitivity of the wave receiving element 3 is obtained by using a piezoelectric element or the like having a relatively large Q value of the resonance characteristics as each wave receiving element 3 and using each wave receiving element 3 for receiving an ultrasonic wave of each resonance frequency. And can contribute to the improvement of the SN ratio. In this case, not only the respective sound wave generating elements 1a are sequentially driven to sequentially transmit plural kinds of ultrasonic waves, but also the plural sound wave generating elements 1a are simultaneously driven to simultaneously transmit plural kinds of ultrasonic waves. Is also possible. If multiple types of ultrasonic waves are transmitted simultaneously, the amount of attenuation of the sound pressure of multiple types of ultrasonic waves is detected at the same time, thereby being affected by changes over time in the monitoring space (for example, changes in the concentration of suspended particles). Since the attenuation of sound pressure can be detected for a plurality of types of ultrasonic waves under the same conditions, the type of suspended particles and the smoke concentration can be accurately estimated.

また、図11に示すように複数の音波発生素子1aからなる音源部1に対して単一の受波素子3を設け、各音波発生素子1aを順次駆動して複数種の超音波を順次送波させ、これら複数種の超音波を単一の受波素子3で順次受波するようにしてもよい。この場合、受波素子3として例えば実施形態1にて説明した静電容量型のマイクロホンのように共振特性のQ値が小さい素子を用いることが望ましい。図11の例では、複数の受波素子3を設ける場合に比べて、受波素子3の低コスト化、火災感知器の小型化を図ることができる。   Further, as shown in FIG. 11, a single wave receiving element 3 is provided for the sound source unit 1 including a plurality of sound wave generating elements 1a, and each sound wave generating element 1a is sequentially driven to sequentially transmit a plurality of types of ultrasonic waves. The plurality of types of ultrasonic waves may be sequentially received by the single receiving element 3. In this case, it is desirable to use, as the wave receiving element 3, an element having a small Q value of the resonance characteristics, such as the capacitive microphone described in the first embodiment. In the example of FIG. 11, the cost of the wave receiving element 3 and the size of the fire detector can be reduced as compared with the case where a plurality of wave receiving elements 3 are provided.

さらにまた、たとえば圧電型超音波センサなどの超音波の送波と受波との両方に使用可能な音波発生素子1aを用い、図12に示すように音波発生素子1aを制御部2だけでなく信号処理部4にも接続することで、音波発生素子1aを受波素子3に兼用することも考えられる。図12の例では音源部1を複数の音波発生素子1aで構成しており、各音波発生素子1aから送波される超音波を当該音波発生素子1aに向けて反射する反射壁7を音源部1と対向配置することにより、各音波発生素子1aで自身の送波した超音波の反射波をそれぞれ受波できるようにしてある。ここにおいて、音波発生素子1aから送波された超音波は反射壁7と音波発生素子1aとの間を往復し、受波素子3として機能する音波発生素子1aで受波されることになるので、音波発生素子1aと反射壁7との間の空間が監視空間となる。この場合、音波発生素子1aから送波される超音波を当該音波発生素子1aに向けて反射する反射壁7が必要であるものの、素子数の低減による低コスト化を図ることができる。   Furthermore, for example, a sound wave generating element 1a that can be used for both transmission and reception of ultrasonic waves, such as a piezoelectric ultrasonic sensor, is used, and as shown in FIG. It is also conceivable that the sound wave generating element 1 a is also used as the wave receiving element 3 by connecting to the signal processing unit 4. In the example of FIG. 12, the sound source unit 1 is composed of a plurality of sound wave generating elements 1a, and the reflection wall 7 that reflects the ultrasonic wave transmitted from each sound wave generating element 1a toward the sound wave generating element 1a is used as the sound source unit. 1 so that each of the sound wave generating elements 1a can receive the reflected wave of the ultrasonic wave transmitted by itself. Here, the ultrasonic wave transmitted from the sound wave generating element 1 a reciprocates between the reflection wall 7 and the sound wave generating element 1 a and is received by the sound wave generating element 1 a functioning as the wave receiving element 3. The space between the sound wave generating element 1a and the reflecting wall 7 becomes a monitoring space. In this case, although the reflection wall 7 for reflecting the ultrasonic wave transmitted from the sound wave generating element 1a toward the sound wave generating element 1a is required, the cost can be reduced by reducing the number of elements.

また、図13に示すように音源部1として実施形態1にて説明した単一の音波発生素子1aを用い、制御部2が音源部1へ与える駆動入力波形の周波数を順次変化させることにより、音源部1から周波数の異なる複数種の超音波を順次送波させる一方で、受波素子3を複数備えるようにしてもよい。この場合、各受波素子3はそれぞれ異なる周波数の超音波の受波に用いられる。したがって、各受波素子3として共振特性のQ値が比較的大きな圧電素子などを用い、各受波素子3をそれぞれの共振周波数の超音波の受波に用いることにより、受波素子3の感度を向上させることができ、SN比の向上に寄与することができる。なお、複数種の超音波を1つの受波素子3で受波する構成では、周波数ごとに受波素子3の感度が異なっていると各種の超音波ごとにSN比のばらつきを生じるが、上述のように各種の超音波の受波を個別の受波素子3で行う構成では、各受波素子3の感度を揃えておくことにより各種の超音波ごとのSN比のばらつきを抑制することができる。   Further, as shown in FIG. 13, by using the single sound wave generating element 1a described in the first embodiment as the sound source unit 1, and sequentially changing the frequency of the drive input waveform given to the sound source unit 1 by the control unit 2, While a plurality of types of ultrasonic waves having different frequencies are sequentially transmitted from the sound source unit 1, a plurality of wave receiving elements 3 may be provided. In this case, each receiving element 3 is used for receiving ultrasonic waves having different frequencies. Therefore, the sensitivity of the wave receiving element 3 is obtained by using a piezoelectric element or the like having a relatively large Q value of the resonance characteristics as each wave receiving element 3 and using each wave receiving element 3 for receiving an ultrasonic wave of each resonance frequency. And can contribute to the improvement of the SN ratio. In the configuration in which a plurality of types of ultrasonic waves are received by one receiving element 3, if the sensitivity of the receiving element 3 differs for each frequency, the SN ratio varies for each type of ultrasonic wave. In the configuration in which the reception of various ultrasonic waves is performed by the individual wave receiving elements 3 as described above, by varying the sensitivity of the wave receiving elements 3, it is possible to suppress variation in the SN ratio for each type of ultrasonic wave. it can.

ところで、信号処理部4は、定期的に、所定周波数(例えば、上述の特定周波数と同じ82kHz)の超音波に対する受波素子3の出力に基づいて、音源部1の出力変動や受波素子3の感度変動がキャンセルされるように制御部2による音源部1の制御条件と受波素子3の出力の信号処理条件との少なくとも一方を変更するようにすれば、音源部1の出力変動や受波素子3の感度変動を定期的にキャンセルすることが可能となり、長期的な信頼性が高くなる。   By the way, the signal processing unit 4 periodically changes the output of the sound source unit 1 and the wave receiving element 3 based on the output of the wave receiving element 3 with respect to an ultrasonic wave having a predetermined frequency (for example, 82 kHz which is the same as the specific frequency described above). If at least one of the control condition of the sound source unit 1 by the control unit 2 and the signal processing condition of the output of the wave receiving element 3 is changed so that the sensitivity fluctuation of the sound source unit 1 is canceled, Sensitivity fluctuations of the wave element 3 can be periodically canceled, and long-term reliability is improved.

なお、本実施形態の火災感知器においても、図1に示した実施形態1と同様、信号処理部4に、音速検出手段43、温度推定手段44、熱式判断手段45を設けてもよい。   In the fire detector of the present embodiment, the sound speed detection means 43, the temperature estimation means 44, and the thermal determination means 45 may be provided in the signal processing unit 4 as in the first embodiment shown in FIG.

ところで、上記各実施形態では、音源部1と制御部2と受波素子3と信号処理部4とを1枚の回路基板5に設けて図示しない器体内に収納してあるが、音源部1と制御部2とを備えた音源部側ユニットと、受波素子3と信号処理部4とを備えた受波側ユニットとを別体として互いに対向配置する分離型の火災感知器を構成するようにしてもよい。また、音源部1は上述の図3に示した構成の音波発生素子に限らず、例えば、アルミニウム製の薄板を発熱体部として当該発熱体部への通電に伴う発熱体部の急激な温度変化による熱衝撃によって音波を発生させるものでもよい。   By the way, in each of the above embodiments, the sound source unit 1, the control unit 2, the wave receiving element 3, and the signal processing unit 4 are provided on one circuit board 5 and housed in a container (not shown). And a sound source unit provided with the control unit 2 and a receiving unit provided with the receiving element 3 and the signal processing unit 4 as separate bodies to constitute a separate type fire detector. It may be. Further, the sound source unit 1 is not limited to the sound wave generating element having the configuration shown in FIG. 3 described above. For example, a rapid temperature change of the heat generating unit accompanying energization of the heat generating unit with a thin aluminum plate as the heat generating unit. A sound wave may be generated by a thermal shock due to.

また、上記各実施形態において、制御部2が、音源部1から防虫効果のある周波数の超音波を送波させるようにすれば、上記監視空間に虫が侵入するのを防止することができ、虫に起因した非火災報を低減できる。ここで、制御部2は、煙濃度を推定するために音源部1から送波させる周波数の超音波とは別に、防虫効果のある周波数の超音波を定期的に送波させるようにしてもよいし、煙濃度を推定するために音源部1から送波する超音波の周波数を防虫効果のある周波数に設定するようにしてもよい。   Moreover, in each said embodiment, if the control part 2 is made to transmit the ultrasonic wave of the frequency which has an insect-proof effect from the sound source part 1, it can prevent that an insect penetrate | invades in the said monitoring space, Non-fire reports caused by insects can be reduced. Here, the control unit 2 may periodically transmit ultrasonic waves having a frequency having an insect-proofing effect separately from the ultrasonic waves having a frequency transmitted from the sound source unit 1 in order to estimate the smoke density. In order to estimate the smoke concentration, the frequency of the ultrasonic wave transmitted from the sound source unit 1 may be set to a frequency having an insect-proof effect.

実施形態1の火災感知器のブロック図である。It is a block diagram of the fire detector of Embodiment 1. 同上における火災感知器の要部を示し、(a)は概略下面図、(b)は概略側面図である。The principal part of the fire detector in the same as above is shown, (a) is a schematic bottom view, (b) is a schematic side view. 同上における音源部を構成する音波発生素子の概略断面図である。It is a schematic sectional drawing of the sound wave generation element which comprises the sound source part in the same as the above. 同上における受波素子を示し、(a)は一部破断した概略斜視図、(b)は概略断面図である。The wave receiving element in the same as above is shown, (a) is a schematic perspective view partly broken, and (b) is a schematic cross-sectional view. 実施形態2の火災感知器のブロック図である。It is a block diagram of the fire detector of Embodiment 2. 同上における音源部の出力周波数と音圧の単位減衰率との関係図である。It is a related figure of the output frequency of a sound source part in the same as above, and the unit attenuation rate of sound pressure. 同上における音源部の出力周波数と相対的単位減衰率との関係図である。It is a related figure of the output frequency of a sound source part in the same as above, and a relative unit attenuation factor. 同上の動作例を示すフローチャートである。It is a flowchart which shows the operation example same as the above. 同上における煙濃度と特定周波数の超音波の減衰率との関係図である。It is a related figure between the smoke density | concentration in the same as the above, and the attenuation factor of the ultrasonic wave of a specific frequency. 同上の他の例を示すブロック図である。It is a block diagram which shows the other example same as the above. 同上のさらに他の例を示すブロック図である。It is a block diagram which shows another example same as the above. 同上のさらに他の例を示すブロック図である。It is a block diagram which shows another example same as the above. 同上のさらに他の例を示すブロック図である。It is a block diagram which shows another example same as the above.

符号の説明Explanation of symbols

1 音源部
1a 音波発生素子
2 制御部
3 受波素子
4 信号処理部
5 回路基板(ベース部材)
6 遮音壁
11 ベース基板
12 熱絶縁層
13 発熱体層(発熱体部)
14 パッド
41 煙濃度推定手段
42 煙式判断手段
43 音速検出手段
44 温度推定手段
45 熱式判断手段
46 粒子種別推定手段
47 煙濃度推定手段
48 記憶手段
DESCRIPTION OF SYMBOLS 1 Sound source part 1a Sound wave generation element 2 Control part 3 Receiving element 4 Signal processing part 5 Circuit board (base member)
6 Sound insulation wall 11 Base substrate 12 Thermal insulation layer 13 Heating element layer (heating element part)
DESCRIPTION OF SYMBOLS 14 Pad 41 Smoke density estimation means 42 Smoke type judgment means 43 Sonic speed detection means 44 Temperature estimation means 45 Thermal type judgment means 46 Particle type estimation means 47 Smoke density estimation means 48 Storage means

Claims (18)

超音波を送波可能な音源部と、音源部を制御する制御部と、音源部から送波された超音波の音圧を検出する受波素子と、受波素子の出力に基づいて火災の有無を判断する信号処理部とを備え、信号処理部は、受波素子の出力の基準値からの減衰量に基づいて音源部と受波素子との間の監視空間の煙濃度を推定する煙濃度推定手段と、煙濃度推定手段にて推定された煙濃度と所定の閾値とを比較して火災の有無を判断する煙式判断手段とを有し、
前記音源部は周波数の異なる複数種の超音波を送波可能であって、前記信号処理部は、前記監視空間に存在する浮遊粒子の種別および煙濃度に応じた前記音源部の出力周波数と前記受波素子の出力の基準値からの減衰量との関係データを記憶した記憶手段と、前記音源部から送波された各周波数の超音波ごとの前記受波素子の出力と記憶手段に記憶されている関係データとを用いて前記監視空間に浮遊している粒子の種別を推定する粒子種別推定手段とを有し、前記煙濃度推定手段は、粒子種別推定手段にて推定された粒子が煙粒子のときに特定周波数の超音波に対する前記受波素子の出力の基準値からの減衰量に基づいて前記監視空間の煙濃度を推定することを特徴とする火災感知器。
A sound source unit capable of transmitting ultrasonic waves, a control unit for controlling the sound source unit, a receiving element for detecting the sound pressure of the ultrasonic wave transmitted from the sound source unit, and a fire based on the output of the receiving element A signal processing unit for determining the presence or absence of smoke, and the signal processing unit is configured to estimate smoke concentration in a monitoring space between the sound source unit and the wave receiving element based on an attenuation amount from a reference value of the output of the wave receiving element. a concentration estimating unit, and a smoke type determination means for comparing the estimated smoke density with a predetermined threshold value at a smoke density estimation unit determines the presence or absence of fire possess,
The sound source unit can transmit a plurality of types of ultrasonic waves having different frequencies, and the signal processing unit is configured to output the output frequency of the sound source unit according to the type of suspended particles present in the monitoring space and the smoke concentration, and the Stored in the storage means for storing the relationship data with the attenuation amount from the reference value of the output of the receiving element, and the output of the receiving element for each ultrasonic wave transmitted from the sound source unit and stored in the storing means Particle type estimation means for estimating the type of particles floating in the monitoring space using the relationship data, and the smoke concentration estimation means is configured such that the particles estimated by the particle type estimation means are smoked. A fire detector for estimating a smoke concentration in the monitoring space based on an attenuation amount from a reference value of an output of the receiving element with respect to an ultrasonic wave of a specific frequency in the case of particles .
前記記憶手段は、前記関係データとして前記音源部の出力周波数と前記受波素子の出力の基準値からの減衰量を基準値で除した減衰率との関係データを記憶していることを特徴とする請求項1記載の火災感知器。 The storage means stores, as the relationship data, relationship data between an output frequency of the sound source unit and an attenuation rate obtained by dividing an attenuation amount from a reference value of the output of the receiving element by a reference value. The fire detector according to claim 1. 前記音源部は前記複数種の超音波を送波可能な単一の音波発生素子からなり、前記制御部は音波発生素子から複数種の超音波が順次送波されるように前記音源部を制御することを特徴とする請求項1または請求項2記載の火災感知器。 The sound source unit includes a single sound wave generating element capable of transmitting the plurality of types of ultrasonic waves, and the control unit controls the sound source unit so that the plurality of types of ultrasonic waves are sequentially transmitted from the sound wave generating elements. claim 1 or fire detector according to claim 2, characterized in that. 前記音源部は互いに異なる周波数の超音波を送波可能な複数の音波発生素子からなることを特徴とする請求項または請求項記載の火災感知器。 The sound source unit fire detector according to claim 1 or claim 2, wherein the consisting of mutually different frequencies of the plurality of sound-wave generating element capable transmit ultrasonic waves. 前記制御部は、前記音源部から周波数の異なる2種類の超音波を送波させることを特徴とする請求項1ないし請求項4のいずれか1項に記載の火災感知器。 The control unit may fire detector according to any one of claims 1 to 4, characterized in that to transmit two different ultrasonic frequencies from the sound source unit. 前記制御部は、前記音源部から送波させる超音波の周波数を所定の周波数範囲の下限周波数から上限周波数まで変化させることを特徴とする請求項ないし請求項のいずれか1項に記載の火災感知器。 The said control part changes the frequency of the ultrasonic wave transmitted from the said sound source part from the lower limit frequency of a predetermined frequency range to an upper limit frequency, The one of Claim 1 thru | or 4 characterized by the above-mentioned. Fire detector. 前記信号処理部は、定期的に、所定周波数の超音波に対する前記受波素子の出力に基づいて前記制御部による前記音源部の制御条件と前記受波素子の出力の信号処理条件との少なくとも一方を変更することを特徴とする請求項ないし請求項のいずれか1項に記載の火災感知器。 The signal processing unit periodically has at least one of a control condition of the sound source unit by the control unit and a signal processing condition of the output of the receiving element based on an output of the receiving element with respect to an ultrasonic wave of a predetermined frequency fire detector according to any one of claims 1 to 6, characterized in that to change the. 前記制御部は、前記音源部から防虫効果のある周波数の超音波を送波させること特徴とする請求項ないし請求項7のいずれか1項に記載の火災感知器。 The control unit may fire detector according to any one of claims 1 to 7 and this with features for transmitting ultrasonic waves of frequencies of insect repellent from the sound source unit. 前記受波素子の周辺に前記音源部以外から前記受波素子へ超音波が入射するのを阻止する遮音壁が設けられてなることを特徴とする請求項1ないし請求項8のいずれか1項に記載の火災感知器。 9. The sound insulation wall according to claim 1 , wherein a sound insulation wall is provided around the wave receiving element to prevent ultrasonic waves from entering the wave receiving element from other than the sound source unit . 10. The fire detector described. 前記音源部と前記受波素子とが一表面側に実装されたベース部材を備え、ベース部材の前記一表面には、前記音源部から送波された超音波の反射を防止する吸音層が設けられてなることを特徴とする請求項1ないし請求項9のいずれか1項に記載の火災感知器。 The sound source unit and the wave receiving element are provided with a base member mounted on one surface side, and a sound absorbing layer for preventing reflection of ultrasonic waves transmitted from the sound source unit is provided on the one surface of the base member. It is claims 1, characterized by comprising to a fire detector according to any one of claims 9. 超音波を送波可能な音源部と、音源部を制御する制御部と、音源部から送波された超音波の音圧を検出する受波素子と、受波素子の出力に基づいて火災の有無を判断する信号処理部とを備え、信号処理部は、受波素子の出力の基準値からの減衰量に基づいて音源部と受波素子との間の監視空間の煙濃度を推定する煙濃度推定手段と、煙濃度推定手段にて推定された煙濃度と所定の閾値とを比較して火災の有無を判断する煙式判断手段とを有し、
前記音源部は、発熱体部への通電に伴う発熱体部の温度変化により空気に熱衝撃を与えることで超音波を発生するものであることを特徴とする火災感知器。
A sound source unit capable of transmitting ultrasonic waves, a control unit for controlling the sound source unit, a receiving element for detecting the sound pressure of the ultrasonic wave transmitted from the sound source unit, and a fire based on the output of the receiving element A signal processing unit for determining the presence or absence of smoke, and the signal processing unit is configured to estimate smoke concentration in a monitoring space between the sound source unit and the wave receiving element based on an attenuation amount from a reference value of the output of the wave receiving element. A smoke estimator that compares the smoke concentration estimated by the smoke estimator with a predetermined threshold to determine the presence or absence of a fire;
The sound source unit, fire detectors you characterized in that to generate ultrasonic waves by applying thermal shock to the air by the temperature change of the heating element due to the energization of the heating element.
前記音源部は、ベース基板の一表面側に前記発熱体部が形成されるとともに、ベース基板の前記一表面側で前記発熱体部とベース基板との間に設けられて前記発熱体部とベース基板とを熱絶縁する多孔質層からなる熱絶縁層を有してなることを特徴とする請求項11記載の火災感知器。 The sound source unit is formed between the heat generating unit and the base substrate on the one surface side of the base substrate, and the heat generating unit and the base are formed on the one surface side of the base substrate. 12. The fire detector according to claim 11 , further comprising a thermal insulation layer comprising a porous layer that thermally insulates the substrate . 前記制御部は、前記音源部から超音波として単パルス状の超音波を送波させることを特徴とする請求項11または請求項12記載の火災感知器。 The fire detector according to claim 11 or 12 , wherein the control unit transmits single-pulse ultrasonic waves as ultrasonic waves from the sound source unit. 超音波を送波可能な音源部と、音源部を制御する制御部と、音源部から送波された超音波の音圧を検出する受波素子と、受波素子の出力に基づいて火災の有無を判断する信号処理部とを備え、信号処理部は、受波素子の出力の基準値からの減衰量に基づいて音源部と受波素子との間の監視空間の煙濃度を推定する煙濃度推定手段と、煙濃度推定手段にて推定された煙濃度と所定の閾値とを比較して火災の有無を判断する煙式判断手段とを有し、
前記制御部は、前記音源部から防虫効果のある周波数の超音波を送波させること特徴とする火災感知器。
A sound source unit capable of transmitting ultrasonic waves, a control unit for controlling the sound source unit, a receiving element for detecting the sound pressure of the ultrasonic wave transmitted from the sound source unit, and a fire based on the output of the receiving element A signal processing unit for determining the presence or absence of smoke, and the signal processing unit is configured to estimate smoke concentration in a monitoring space between the sound source unit and the wave receiving element based on an attenuation amount from a reference value of the output of the wave receiving element. A smoke estimator that compares the smoke concentration estimated by the smoke estimator with a predetermined threshold to determine the presence or absence of a fire;
Wherein, fire detectors shall be the this and features for transmitting ultrasonic waves of frequencies of insect repellent from the sound source unit.
超音波を送波可能な音源部と、音源部を制御する制御部と、音源部から送波された超音波の音圧を検出する受波素子と、受波素子の出力に基づいて火災の有無を判断する信号処理部とを備え、信号処理部は、受波素子の出力の基準値からの減衰量に基づいて音源部と受波素子との間の監視空間の煙濃度を推定する煙濃度推定手段と、煙濃度推定手段にて推定された煙濃度と所定の閾値とを比較して火災の有無を判断する煙式判断手段とを有し、
前記受波素子の周辺に前記音源部以外から前記受波素子へ超音波が入射するのを阻止する遮音壁が設けられてなることを特徴とする火災感知器。
A sound source unit capable of transmitting ultrasonic waves, a control unit for controlling the sound source unit, a receiving element for detecting the sound pressure of the ultrasonic wave transmitted from the sound source unit, and a fire based on the output of the receiving element A signal processing unit for determining the presence or absence of smoke, and the signal processing unit is configured to estimate smoke concentration in a monitoring space between the sound source unit and the wave receiving element based on an attenuation amount from a reference value of the output of the wave receiving element. A smoke estimator that compares the smoke concentration estimated by the smoke estimator with a predetermined threshold to determine the presence or absence of a fire;
Fire detector you wherein sound insulating wall that is provided with ultrasound to the wave-receiving element from outside the sound source portion to the peripheral is prevented from entering the wave receiving devices.
超音波を送波可能な音源部と、音源部を制御する制御部と、音源部から送波された超音波の音圧を検出する受波素子と、受波素子の出力に基づいて火災の有無を判断する信号処理部とを備え、信号処理部は、受波素子の出力の基準値からの減衰量に基づいて音源部と受波素子との間の監視空間の煙濃度を推定する煙濃度推定手段と、煙濃度推定手段にて推定された煙濃度と所定の閾値とを比較して火災の有無を判断する煙式判断手段とを有し、
前記音源部と前記受波素子とが一表面側に実装されたベース部材を備え、ベース部材の前記一表面には、前記音源部から送波された超音波の反射を防止する吸音層が設けられてなることを特徴とする火災感知器。
A sound source unit capable of transmitting ultrasonic waves, a control unit for controlling the sound source unit, a receiving element for detecting the sound pressure of the ultrasonic wave transmitted from the sound source unit, and a fire based on the output of the receiving element A signal processing unit for determining the presence or absence of smoke, and the signal processing unit is configured to estimate smoke concentration in a monitoring space between the sound source unit and the wave receiving element based on an attenuation amount from a reference value of the output of the wave receiving element. A smoke estimator that compares the smoke concentration estimated by the smoke estimator with a predetermined threshold to determine the presence or absence of a fire;
The sound source unit and the wave receiving element are provided with a base member mounted on one surface side, and a sound absorbing layer for preventing reflection of ultrasonic waves transmitted from the sound source unit is provided on the one surface of the base member. are fire sensors you characterized by comprising.
前記制御部は、前記信号処理部にて火災有りと判断されたときに前記音源部から可聴域の音波からなる警報音を発生させることを特徴とする請求項1ないし請求項16のいずれか1項に記載の火災感知器。17. The control unit according to claim 1, wherein the control unit generates an alarm sound including an audible sound wave from the sound source unit when the signal processing unit determines that there is a fire. Fire detector according to item. 前記信号処理部は、前記音源部が超音波を送波してから当該超音波が前記受波素子に受波されるまでの時間差に基づいて音速を求める音速検出手段と、音速検出手段で求めた音速に基づいて前記監視空間の温度を推定する温度推定手段と、温度推定手段で推定された温度と規定温度とを比較して火災の有無を判断する熱式判断手段とを有することを特徴とする請求項1ないし請求項17のいずれか1項に記載の火災感知器。The signal processing unit is obtained by a sound speed detecting unit that obtains a sound speed based on a time difference from when the sound source unit transmits an ultrasonic wave until the ultrasonic wave is received by the receiving element, and a sound speed detecting unit. Temperature estimation means for estimating the temperature of the monitoring space based on the sound speed, and thermal type determination means for comparing the temperature estimated by the temperature estimation means and the specified temperature to determine the presence or absence of a fire. The fire detector according to any one of claims 1 to 17.
JP2007069087A 2006-05-12 2007-03-16 Fire detector Expired - Fee Related JP4893397B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2007069087A JP4893397B2 (en) 2006-05-12 2007-03-16 Fire detector
US12/300,332 US8253578B2 (en) 2006-05-12 2007-05-01 Smoke sensor of the sound wave type including a smoke density estimation unit
PCT/JP2007/059313 WO2007132671A1 (en) 2006-05-12 2007-05-01 Smoke sensor of acoustic wave type
CN2007800172608A CN101449304B (en) 2006-05-12 2007-05-01 Smoke sensor of acoustic wave type
EP07742748A EP2034462A4 (en) 2006-05-12 2007-05-01 Smoke sensor of acoustic wave type
TW096116448A TWI332643B (en) 2006-05-12 2007-05-09 Sound wave type smoke detector

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006134289 2006-05-12
JP2006134289 2006-05-12
JP2007069087A JP4893397B2 (en) 2006-05-12 2007-03-16 Fire detector

Publications (2)

Publication Number Publication Date
JP2007328763A JP2007328763A (en) 2007-12-20
JP4893397B2 true JP4893397B2 (en) 2012-03-07

Family

ID=38929153

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007069087A Expired - Fee Related JP4893397B2 (en) 2006-05-12 2007-03-16 Fire detector

Country Status (1)

Country Link
JP (1) JP4893397B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4894724B2 (en) * 2007-03-16 2012-03-14 パナソニック電工株式会社 Fire detector
JP4894723B2 (en) * 2007-10-26 2012-03-14 パナソニック電工株式会社 Fire detector
JP4894722B2 (en) * 2007-10-26 2012-03-14 パナソニック電工株式会社 Fire detector

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4964398A (en) * 1972-10-20 1974-06-21
JP4396333B2 (en) * 2004-03-11 2010-01-13 パナソニック株式会社 Disaster prevention alarm device

Also Published As

Publication number Publication date
JP2007328763A (en) 2007-12-20

Similar Documents

Publication Publication Date Title
WO2007132671A1 (en) Smoke sensor of acoustic wave type
JP5166991B2 (en) Airborne particle measurement system
EP2214146B1 (en) Fire alarm system
JP5144457B2 (en) Fire detector
JP2007024688A (en) Human body abnormality detection sensor, and information system using the same
JP4893397B2 (en) Fire detector
JP4894723B2 (en) Fire detector
JP2007000121A (en) Apparatus for threatening small animal
JP4936199B2 (en) Moving body position detection system
JP2008032442A (en) System for measuring floating particles
JP4950709B2 (en) Fire detector
JP4894722B2 (en) Fire detector
JP4816524B2 (en) Fire detector
JP5049209B2 (en) Fire detector
JP4894724B2 (en) Fire detector
JP4826631B2 (en) Sonic smoke detector
JP4816525B2 (en) Fire detector
JP4816526B2 (en) Fire detector
JP4950842B2 (en) Airborne particle measurement system
JP5166827B2 (en) Airborne particle measurement system
JP5438595B2 (en) Fire detector
JP5438596B2 (en) Fire detector
JP4678252B2 (en) Security system
JP2008197878A (en) Monitoring system, terminal apparatus, control method, and program for it
JP2008180516A (en) Flow measuring system, its program, ultrasonic flowmeter, and flow measuring method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090924

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20101005

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110906

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111122

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111205

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150106

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees