JP5380022B2 - Organic inorganic composite composition - Google Patents
Organic inorganic composite composition Download PDFInfo
- Publication number
- JP5380022B2 JP5380022B2 JP2008230565A JP2008230565A JP5380022B2 JP 5380022 B2 JP5380022 B2 JP 5380022B2 JP 2008230565 A JP2008230565 A JP 2008230565A JP 2008230565 A JP2008230565 A JP 2008230565A JP 5380022 B2 JP5380022 B2 JP 5380022B2
- Authority
- JP
- Japan
- Prior art keywords
- organic
- inorganic composite
- composite composition
- carbon
- organic polymer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Compositions Of Macromolecular Compounds (AREA)
Description
本発明は導電性、熱伝導性、又は電磁波吸収特性に特徴を有する有機無機複合組成物及びその製造方法に関する。 The present invention relates to an organic-inorganic composite composition characterized by conductivity, thermal conductivity, or electromagnetic wave absorption characteristics, and a method for producing the same.
近年、樹脂材料に無機系の充填材を混合することにより、樹脂の持つ可撓性や易成形性を活かしつつ、樹脂材料が不得意とする導電性、熱伝導性や電磁波吸収特性を付与した有機無機複合材料の検討が盛んになってきている。 In recent years, by mixing inorganic fillers with resin materials, the resin materials have poor conductivity, heat conductivity, and electromagnetic wave absorption characteristics while taking advantage of the flexibility and easy moldability of resins. Studies on organic-inorganic composite materials have become active.
この場合、無機充填材の持つ特性を活かして熱伝導性や導電性を向上させるためには、一般的に無機充填材の混合比率を増大させる必要がある。しかしその場合は本来樹脂の持つ可撓性や易成形性などが損なわれ、それら特性の両立が難しいという問題があった。 In this case, in order to improve the thermal conductivity and conductivity by utilizing the characteristics of the inorganic filler, it is generally necessary to increase the mixing ratio of the inorganic filler. In that case, however, the flexibility and easy moldability inherent in the resin are impaired, and there is a problem that it is difficult to achieve both of these characteristics.
それに対して、熱伝導性や導電性を有効発現させるには、無機充填材によるパーコレーションを発現させ、熱伝導パスあるいは導電パスを形成させることが有効であることから、無機充填材を配向させる試みが為されている(特許文献1)。しかしそのためには製造装置に特別な工夫が必要であり、設備コストが上がってしまう上、生産性にも制限が出るという問題があった。
本発明の目的は、上記に鑑み、無機充填材の持つ熱伝導性または導電性を有効に発現させることができる導電性または熱伝導性に優れた樹脂組成物を提供することである。 In view of the above, an object of the present invention is to provide a resin composition excellent in conductivity or thermal conductivity that can effectively develop the thermal conductivity or conductivity of an inorganic filler.
本発明は、上記の課題を解決するために、以下の手段を採用する。
(1)無機充填材と架橋点を有する有機高分子材料を成分とし、有機高分子材料成分中の架橋点間距離が無機充填材の平均短径の0.08倍以上1.7倍以下であることを特徴とする有機無機複合組成物
(2)有機高分子材料がシリコーン系材料又はアクリル系材料であることを特徴とする前記(1)に記載の有機無機複合組成物。
(3)無機充填材が炭素材料であることを特徴とする前記(1)又は前記(2)に記載の有機無機複合組成物。
(4)炭素材料が炭素繊維及び/又はカーボンブラックであることを特徴とする前記(1)〜(3)に記載の有機無機複合組成物。
(5)無機充填材が、アスペクト比2以上であることを特徴とする前記(1)〜(4)に記載の有機無機複合組成物。
(6)無機充填材の体積割合が2〜25体積%であることを特徴とする前記(1)〜(5)に記載の有機無機複合組成物
(7)有機高分子材料の架橋終了後に、有機溶媒で有機高分子材料を膨潤させることを特徴とする前記(1)〜(6)に記載の有機無機複合組成物の製造方法。
(8)前記(1)〜(6)に記載の有機無機複合組成物を用いた導電性材料。
(9)前記(1)〜(6)に記載の有機無機複合組成物を用いた熱伝導性材料。
(10)前記(1)〜(6)に記載の有機無機複合組成物を用いた電磁波吸収材料。
The present invention employs the following means in order to solve the above problems.
(1) An organic polymer material having an inorganic filler and a crosslinking point as a component, and the distance between crosslinking points in the organic polymer material component is 0.08 times or more and 1.7 times or less of the average minor axis of the inorganic filler. The organic-inorganic composite composition according to (1), wherein the organic-inorganic composite composition (2) is a silicone material or an acrylic material.
(3) The organic-inorganic composite composition as described in (1) or (2) above, wherein the inorganic filler is a carbon material.
(4) The organic-inorganic composite composition as described in (1) to (3) above, wherein the carbon material is carbon fiber and / or carbon black.
(5) The organic-inorganic composite composition as described in (1) to (4) above, wherein the inorganic filler has an aspect ratio of 2 or more.
(6) The organic / inorganic composite composition according to (1) to (5) above, wherein the volume fraction of the inorganic filler is 2 to 25% by volume, after the crosslinking of the organic polymer material is completed, The method for producing an organic-inorganic composite composition as described in (1) to (6) above, wherein the organic polymer material is swollen with an organic solvent.
(8) The electroconductive material using the organic inorganic composite composition as described in said (1)-(6).
(9) The heat conductive material using the organic inorganic composite composition as described in said (1)-(6).
(10) An electromagnetic wave absorbing material using the organic-inorganic composite composition according to (1) to (6).
本発明の有機無機複合組成物は、無機充填材の有する熱伝導性や導電性などの特性を少ない充填量で有効に発現させることができるため、樹脂の持つ軽量性や可撓性も保持することができ、熱伝導性材料や導電性材料、電磁波吸収材料などに適している。 The organic-inorganic composite composition of the present invention can effectively develop the characteristics such as thermal conductivity and conductivity of the inorganic filler with a small amount of filling, and thus retains the lightness and flexibility of the resin. It is suitable for heat conductive materials, conductive materials, electromagnetic wave absorbing materials and the like.
以下、本発明を詳細に説明する。尚、本発明で混合物等の配合比を表す単位は、特に断らない限り体積基準で表す。
本発明に用いられる架橋点を有する有機高分子材料は特に限定されるものではないが、柔軟性や耐熱性の点からシリコーン系材料が特に好ましい。また、低分子量シロキサンが問題視されるような用途については、アクリル系材料が好ましい。
シリコーン系材料としては、付加反応型シリコーンゲルや縮合反応型シリコーンゲル、シリコーンゴム、シリコーンレジンなど、任意のものを用いることができる。また必要に応じてそれらを組み合わせて使用することも可能である。その具体例としては、シリコーンゲルとしては例えばXE14−B8530、TSE3062(モメンティブパフォーマンスマテリアルズ社製)等、またシリコーンゴムとしてはSRH32(モメンティブパフォーマンスマテリアルズ社製)、KE1204(信越化学社製)等、シリコーンレジンとしてはKR242A、KR300(信越化学社製)が挙げられる。
アクリル系材料としては、市販のアクリル酸エステル系重合体やメタクリル酸エステル重合体、また一部エチレンなどとの共重合体なども用いられる。また必要に応じてそれらを組み合わせて使用することも可能である。アクリル酸エステル系重合体としてはAR31、AR53L(日本ゼオン社製)等、メタクリル酸エステル重合体としてはスミペックス(住友化学社製)など、またエチレンとの共重合体としてはデンカERゴム(電気化学工業社製)等が挙げられる。また、有機高分子材料の硬化剤として、RD−1、SH1107(東レダウコーニング社製)、L−45E(日本ポリウレタン工業社製)等を用いることができる。架橋点間の距離は、上記各有機高分子材料と硬化剤を適宜組み合わせることで調整できる。
Hereinafter, the present invention will be described in detail. In the present invention, the unit representing the blending ratio of the mixture or the like is represented on a volume basis unless otherwise specified.
The organic polymer material having a crosslinking point used in the present invention is not particularly limited, but a silicone material is particularly preferable from the viewpoint of flexibility and heat resistance. For applications where low molecular weight siloxane is considered a problem, acrylic materials are preferred.
As the silicone material, any materials such as addition reaction type silicone gel, condensation reaction type silicone gel, silicone rubber, and silicone resin can be used. Moreover, it is also possible to use them in combination as required. Specific examples thereof include, for example, XE14-B8530, TSE3062 (manufactured by Momentive Performance Materials) as silicone gel, and SRH32 (manufactured by Momentive Performance Materials), KE1204 (manufactured by Shin-Etsu Chemical Co., Ltd.), etc. as silicone rubber. Examples of the silicone resin include KR242A and KR300 (manufactured by Shin-Etsu Chemical Co., Ltd.).
As the acrylic material, a commercially available acrylic ester polymer, methacrylic ester polymer, a copolymer with a part of ethylene, or the like is also used. Moreover, it is also possible to use them in combination as required. AR31, AR53L (manufactured by Nippon Zeon Co., Ltd.) as acrylic ester polymers, Sumipex (manufactured by Sumitomo Chemical Co., Ltd.) as methacrylic ester polymers, Denka ER rubber (electrochemical) as a copolymer with ethylene Manufactured by Kogyo Co., Ltd.). Moreover, RD-1, SH1107 (made by Toray Dow Corning), L-45E (made by Nippon Polyurethane Industry Co., Ltd.), etc. can be used as a hardening | curing agent of an organic polymer material. The distance between the crosslinking points can be adjusted by appropriately combining the organic polymer materials and the curing agent.
本発明に用いられる架橋点を有する有機高分子材料の架橋点間距離は、充填されている無機材料の平均短径の0.08倍以上かつ1.7倍以下が好ましく、更に好ましくは0.1倍以上かつ同等以下である。上記範囲とすることで、架橋反応時に形成される網目によって無機充填材が配列し、無機充填材の持つ特性を有効に発現させることができる。架橋点間距離が平均短径より小さいとき、また逆に平均短径の1.5倍より大きい場合は、網目形成による効果が小さくなる。 The distance between cross-linking points of the organic polymer material having cross-linking points used in the present invention is preferably 0.08 times or more and 1.7 times or less the average minor axis of the filled inorganic material, more preferably 0.8. 1 time or more and equivalent or less. By setting it as the said range, an inorganic filler can be arranged with the network formed at the time of a crosslinking reaction, and the characteristic which an inorganic filler has can be expressed effectively. When the distance between cross-linking points is smaller than the average minor axis, and conversely larger than 1.5 times the average minor axis, the effect of forming the network is reduced.
本発明に用いられる無機充填材は、特にアスペクト比が2以上の形状異方性の大きい材料の場合、網目形成時の無機充填材の配列効果が大きく、無機充填材の有する熱伝導性、導電性などが有効に発現される。特に、無機充填材として炭素繊維やカーボンブラック等の炭素系材料を用いた場合には、特に軽量性を維持しつつ高特性が得られる。無機充填材としては、デンカボロンナイトライド、デンカブラック、デンカアルセン(共に電気化学工業社製)、VGCF(昭和電工社製)、T4(三菱マテリアル社製)、PC−30(伊藤黒鉛社製)等が挙げられる。これらのうちデンカブラックは、粒子そのもののアスペクト比は小さいものの、各粒子が一次元に連結した数珠繋ぎ構造をとりやすく、そのため高アスペクト比の無機充填材と同様な効果を示す。 In particular, the inorganic filler used in the present invention has a large alignment effect of the inorganic filler during the formation of the mesh, particularly when the aspect ratio is 2 or more and has a large shape anisotropy. Sex is effectively expressed. In particular, when a carbon-based material such as carbon fiber or carbon black is used as the inorganic filler, particularly high characteristics can be obtained while maintaining light weight. As inorganic fillers, Denkaboron nitride, Denka black, Denka Arsene (both manufactured by Denki Kagaku Kogyo), VGCF (manufactured by Showa Denko), T4 (manufactured by Mitsubishi Materials), PC-30 (manufactured by Ito Graphite) Etc. Among these, DENKA BLACK has a small aspect ratio of the particles themselves, but tends to have a daisy chain structure in which each particle is connected in one dimension, and thus exhibits the same effect as a high aspect ratio inorganic filler.
本発明の有機無機複合組成物は、無機充填材の比率が2〜25体積%であることが好ましい。2体積%に満たない場合は無機充填材が少なすぎてその配列効果が得られにくくなり、また25体積%を超える場合は無機充填材による特性は発現されるが、充填量が多くなりすぎるため有機材料の持つ易成形性などの特性が得られにくくなる。 In the organic-inorganic composite composition of the present invention, the ratio of the inorganic filler is preferably 2 to 25% by volume. When the amount is less than 2% by volume, the amount of inorganic filler is too small to obtain the alignment effect. When the amount exceeds 25% by volume, the characteristics of the inorganic filler are exhibited, but the amount of filling is too large. Properties such as easy moldability of organic materials are difficult to obtain.
本発明における架橋点間距離<R2>1/2は、まず有機高分子材料成分の平坦弾性率Geqを測定し、その値から式(1)を用いて架橋点間分子量Mcを求めた。架橋点間分子量Mcから架橋点間の重合度nを算出し、式(2)を用いて架橋点間距離を算出した。
Mc=ρRT/Geq (1)
<R2>1/2=(C∞nb2)1/2 (2)
ここでρは密度、bは単分子長さ、C∞は屈曲性の尺度を表す定数であり、各種樹脂材料によって異なる値を示す。例えばシリコーン系では6.8、PMMAでは8.2である。(Polym.Eng.Sci., 30, 753, Table2(1990)参照)
For the distance between cross-linking points <R 2 > 1/2 in the present invention, first, the flat elastic modulus Geq of the organic polymer material component was measured, and the molecular weight Mc between the cross-linking points was determined from the value using Equation (1). The degree of polymerization n between the crosslinking points was calculated from the molecular weight Mc between the crosslinking points, and the distance between the crosslinking points was calculated using Equation (2).
Mc = ρRT / Geq (1)
<R 2 > 1/2 = (C ∞ nb 2 ) 1/2 (2)
Here, ρ is the density, b is the length of a single molecule, C ∞ is a constant representing a measure of flexibility, and shows a different value depending on various resin materials. For example, it is 6.8 for silicone and 8.2 for PMMA. (See Polym. Eng. Sci., 30, 753, Table 2 (1990)).
本発明で用いられる無機充填材の平均短径は、SEM観察から求めた。測定方法としては、100個以上の粒子が存在しているSEM観察像を撮影し、その写真から直に短径を測定し、平均短径を算出した。ちなみに複数の粒子からなる二次粒子については、二次粒子を構成する一次粒子についての短径を適用した。 The average minor axis of the inorganic filler used in the present invention was determined from SEM observation. As a measuring method, an SEM observation image in which 100 or more particles were present was taken, the minor axis was measured directly from the photograph, and the average minor axis was calculated. Incidentally, for the secondary particles composed of a plurality of particles, the minor diameter of the primary particles constituting the secondary particles was applied.
本発明の有機無機複合組成物は、有機高分子材料の架橋終了後に、有機溶媒で有機高分子材料を膨潤させることにより、無機充填材の特性をさらに有効に発現させることができる。その理由については明確ではないが、網目の弱い部分に有機溶媒が入り込むことにより、無機充填材の可動性が向上し、それによって無機充填材の配列がすすみ、パーコレーションの状態に近づいていくと考えられる。
有機溶媒としては、ヘキサン、トルエン、キシレン、などが挙げられる。
The organic-inorganic composite composition of the present invention can exhibit the characteristics of the inorganic filler more effectively by swelling the organic polymer material with an organic solvent after completion of the crosslinking of the organic polymer material. The reason for this is not clear, but the organic solvent enters the weak part of the mesh, which improves the mobility of the inorganic filler, thereby promoting the arrangement of the inorganic filler and approaching the state of percolation. It is done.
Examples of the organic solvent include hexane, toluene, xylene, and the like.
任意成分として、各種樹脂改質剤、可塑剤、老化防止剤、カップリング剤等を用いることができる。例えばカップリング剤としては、KBE903(信越化学社製)などが挙げることができる。 As optional components, various resin modifiers, plasticizers, anti-aging agents, coupling agents and the like can be used. For example, KBE903 (made by Shin-Etsu Chemical Co., Ltd.) etc. can be mentioned as a coupling agent.
本発明では、上記した原材料成分を加圧ニーダー、オープンニーダー、プラネタリーミキサーなどの混練機を用いて無機粉末と均一に混合することができる。こうして得られた混合物を、例えば、押出成型、カレンダー成型、ロール成型、プレス成形によりシート状の樹脂組成物に成型することができる。またこの際、溶剤などを同時に混合して塗料化し、塗工後乾燥させることでもシート化が可能である。 In the present invention, the raw material components described above can be uniformly mixed with the inorganic powder using a kneader such as a pressure kneader, an open kneader, or a planetary mixer. The mixture thus obtained can be molded into a sheet-like resin composition by, for example, extrusion molding, calendar molding, roll molding, or press molding. At this time, a sheet can also be formed by simultaneously mixing a solvent or the like to form a paint, and drying after coating.
以下、本発明の実施例を挙げて説明するが、本発明はこれらの実施例に限定されるものではない。
(実施例1〜11、比較例1〜2)
ヘキサンを溶媒として、シリコーンゴム(KE1950:信越化学製)またはアクリルゴム(AR53L;日本ゼオン製)と炭素繊維(VGCF:昭和電工製)、アセチレンブラック(電気化学製)、黒鉛(AGB−5S,SG−BH8:伊藤黒鉛製)を表1及び表2の割合で添加し、50℃でヘキサンを揮発させながら超音波分散させた。その後、硬化剤(RD−1:東レダウコーニング製、L−45E:日本ポリウレタン工業製)を表1及び表2の割合で添加し、50℃、2MPaで圧縮成型させた。得られたフィルムの一部をヘキサン中に24時間浸漬させた後、25℃真空中で24時間乾燥後、電気抵抗率を測定した。電気抵抗率については三菱化学社製ハイレスタ及びロレスタを用いて、JIS K 7194に準拠した手法で測定し、また電磁波吸収特性についてはマイクロストリップライン法を用い、アンリツ社製ネットワークアナライザー372470を用いてIEC62333−2の伝送減衰率評価方法に準拠した手法で反射電磁波S11及び透過電磁波S21を測定し、入射電磁波に対するS11及びS21以外の部分を吸収量とした。その結果を表1及び表2に示す。一方で架橋点間距離については、炭素繊維を入れない状態であとは同様に形成したフィルムの弾性率を測定し、上述の式(1)(2)から算出した。なお、有機無機複合組成物中の無機充填材の体積%を表1及び表2に示す。また、表3に使用した炭素材料の平均短径とアスペクト比を示す。
Examples of the present invention will be described below, but the present invention is not limited to these examples.
(Examples 1-11, Comparative Examples 1-2)
Silicone rubber (KE1950: manufactured by Shin-Etsu Chemical) or acrylic rubber (AR53L; manufactured by Nippon Zeon) and carbon fiber (VGCF: manufactured by Showa Denko), acetylene black (electrochemical), graphite (AGB-5S, SG) using hexane as a solvent -BH8: made by Ito Graphite) was added at a ratio shown in Tables 1 and 2, and ultrasonic dispersion was performed while volatilizing hexane at 50 ° C. Thereafter, a curing agent (RD-1: manufactured by Toray Dow Corning Co., Ltd., L-45E: manufactured by Nippon Polyurethane Industry Co., Ltd.) was added at a ratio shown in Tables 1 and 2 and compression molded at 50 ° C. and 2 MPa. A part of the obtained film was immersed in hexane for 24 hours and then dried in a vacuum at 25 ° C. for 24 hours, and then the electrical resistivity was measured. The electrical resistivity was measured by a method based on JIS K 7194 using a Hiresta and Loresta manufactured by Mitsubishi Chemical Corporation, and the electromagnetic wave absorption characteristics were measured using a microstrip line method and IEC62333 using a network analyzer 372470 manufactured by Anritsu Corporation. The reflected electromagnetic wave S11 and the transmitted electromagnetic wave S21 were measured by a method based on the transmission attenuation rate evaluation method of -2, and the portion other than S11 and S21 with respect to the incident electromagnetic wave was taken as the amount of absorption. The results are shown in Tables 1 and 2. On the other hand, about the distance between bridge | crosslinking points, the elasticity modulus of the film formed similarly to the state which does not put carbon fiber was measured, and it computed from the above-mentioned Formula (1) (2). In addition, Table 1 and Table 2 show the volume% of the inorganic filler in the organic-inorganic composite composition. Table 3 shows the average minor axis and aspect ratio of the carbon material used.
表1及び表2から、有機高分子材料の架橋点間距離を無機充填材の平均短径の0.08倍から1.7倍の範囲にすることで、有機無機複合組成物としての電気抵抗率が低く、導電性が優れていることがわかる。また、電磁波吸収特性にも優れていることがわかる。 From Tables 1 and 2, the electrical resistance as the organic-inorganic composite composition is obtained by setting the distance between the crosslinking points of the organic polymer material to a range of 0.08 times to 1.7 times the average minor axis of the inorganic filler. It can be seen that the rate is low and the conductivity is excellent. Moreover, it turns out that it is excellent also in the electromagnetic wave absorption characteristic.
本発明の樹脂組成物は、導電性組成物として、あるいは電子部品の放熱材料の他、あらゆる発熱物に対してその熱を他へ伝達する材料として幅ひろく使用できる。
The resin composition of the present invention can be widely used as a conductive composition or as a material for transmitting heat to any heat generating material in addition to a heat dissipating material for electronic parts.
Claims (7)
Electromagnetic wave absorbing material using the organic-inorganic hybrid composition according to claim 1-3.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008230565A JP5380022B2 (en) | 2007-09-19 | 2008-09-09 | Organic inorganic composite composition |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007242476 | 2007-09-19 | ||
JP2007242476 | 2007-09-19 | ||
JP2008230565A JP5380022B2 (en) | 2007-09-19 | 2008-09-09 | Organic inorganic composite composition |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2009091557A JP2009091557A (en) | 2009-04-30 |
JP5380022B2 true JP5380022B2 (en) | 2014-01-08 |
Family
ID=40663856
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008230565A Active JP5380022B2 (en) | 2007-09-19 | 2008-09-09 | Organic inorganic composite composition |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5380022B2 (en) |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3299914B2 (en) * | 1997-06-25 | 2002-07-08 | 住友ゴム工業株式会社 | Conductive elastic rubber member |
JP4365067B2 (en) * | 2002-05-14 | 2009-11-18 | 東レ・ダウコーニング株式会社 | Curable silicone composition for forming composite soft magnetic material and composite soft magnetic material |
JP2006290917A (en) * | 2005-04-05 | 2006-10-26 | Mitsui Chemicals Inc | Rubber composition and its use |
JP4912607B2 (en) * | 2005-04-05 | 2012-04-11 | 三井化学株式会社 | Crosslinkable polymer composition and use thereof |
JP5154748B2 (en) * | 2005-10-21 | 2013-02-27 | 三井化学株式会社 | Processing method for continuous organic peroxide crosslinked rubber molded body and crosslinked rubber molded body |
-
2008
- 2008-09-09 JP JP2008230565A patent/JP5380022B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2009091557A (en) | 2009-04-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Bhawal et al. | Mechanically robust conductive carbon clusters confined ethylene methyl acrylate–based flexible composites for superior shielding effectiveness | |
CN103717679B (en) | Resin composition with high dielectric insulation properties | |
Wu et al. | Injection molded segregated carbon nanotube/polypropylene composite for efficient electromagnetic interference shielding | |
TWI574913B (en) | The method of granulating insulating fins and boron nitride | |
TW201430027A (en) | Curable organopolysiloxane composition for transducers and applications of such curable silicone composition for transducers | |
CN104592950A (en) | High-thermal conductivity graphite alkenyl polymer heat conducting film and preparation method thereof | |
TW201434984A (en) | Curable organopolysiloxane composition for transducers and applications of such curable silicone composition for transducers | |
TW201431966A (en) | Transducers and production method thereof | |
Duan et al. | Flexible and conductive PP/EPDM/Ni coated glass fiber composite for efficient electromagnetic interference shielding | |
JP2010001402A (en) | High thermal conductivity resin molded article | |
KR20210087026A (en) | Boron nitride nanomaterial, and resin composition | |
Wu et al. | Structure-function integrated poly (aryl ether ketone)-grafted MWCNTs/poly (ether ether ketone) composites with low percolation threshold of both conductivity and electromagnetic shielding | |
KR100570249B1 (en) | Silicone Rubber Sheet for Heat-Resistant, Thermal-Conductive Thermocompression | |
JP6390290B2 (en) | Conductive fluororesin composition, process for producing the same, and molded article | |
WO2021221038A1 (en) | Method for producing dispersion, paste, and kneaded powder | |
CN110418821B (en) | Polysiloxane composite material and method for producing same | |
JP2017082125A (en) | Conductive resin composition, wiring, wiring board and electronic device | |
Choi et al. | Effect of carbon fiber content on thermal and electrical conductivity, EMI shielding efficiency, and radiation energy of CMC/PVA composite papers with carbon fibers | |
TW201431967A (en) | Production method of curable organopolysiloxane composition for transducers | |
JP2007186544A (en) | Electroconductive silicone rubber composition | |
CN103756333A (en) | Tough high-modulus silicon resin composition and preparation method thereof | |
Wang et al. | Flexible poly (ether-block-amide)/carbon nanotube composites for electromagnetic interference shielding | |
Wang et al. | A green cross-link strategy to rubber composites using water as a crosslinking agent | |
JP5380022B2 (en) | Organic inorganic composite composition | |
TW201431925A (en) | Curable organopolysiloxane composition for transducers and applications of such curable silicone composition for transducers |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20110512 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120607 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120911 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20121112 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130903 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130930 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 5380022 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |