JP5374829B2 - Gasification method for carbonaceous raw materials - Google Patents

Gasification method for carbonaceous raw materials Download PDF

Info

Publication number
JP5374829B2
JP5374829B2 JP2007119578A JP2007119578A JP5374829B2 JP 5374829 B2 JP5374829 B2 JP 5374829B2 JP 2007119578 A JP2007119578 A JP 2007119578A JP 2007119578 A JP2007119578 A JP 2007119578A JP 5374829 B2 JP5374829 B2 JP 5374829B2
Authority
JP
Japan
Prior art keywords
gas
furnace
slag tap
gasification
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007119578A
Other languages
Japanese (ja)
Other versions
JP2008274124A (en
Inventor
広行 小水流
茂 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Priority to JP2007119578A priority Critical patent/JP5374829B2/en
Publication of JP2008274124A publication Critical patent/JP2008274124A/en
Application granted granted Critical
Publication of JP5374829B2 publication Critical patent/JP5374829B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Processing Of Solid Wastes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To stably discharge ash as molten slag to stabilize the properties of reformed gases at that time in the method of gasifying a carbonaceous raw material with oxygen or the like to reform other gases by the heat of the gasified gas. <P>SOLUTION: The method of gasifying a carbonaceous raw material comprises using an oven for gasifying a carbonaceous raw material having a gasification chamber and a slag tap lower space therein and a reforming oven for reforming tar of a tar-containing gas to gases, installed at the latter stage of the gasification oven, and partially oxidizing and gasifying the carbonaceous raw material in the gasification oven to discharge the ash present in the carbonaceous raw material as molten slag into the slag tap lower space, furthermore measuring the pressure difference between the gasification chamber and the slag tap lower space to withdraw the gas within the space from the slag tap lower space when the molten slag adheres to the slag tap to increase the measured value of the pressure difference and, simultaneously, adjusting the amount of the tar-containing gas to be taken into the reforming oven in accordance with the amount of the gas withdrawn. <P>COPYRIGHT: (C)2009,JPO&amp;INPIT

Description

本発明は、炭素質原料を酸素含有ガスを用いてガス化し、ガス化ガスの熱を用いてタールを含むガスを改質するプロセスにおける、炭素質原料中の灰分を溶融スラグとして安定して排出する方法に関する。   The present invention stably discharges ash in a carbonaceous raw material as molten slag in a process of gasifying a carbonaceous raw material using an oxygen-containing gas and reforming a gas containing tar using the heat of the gasification gas. On how to do.

タール等を含むガスを改質して燃料ガスを得る方法として、炭素質原料を空気や酸素でガス化し、発生したガス化ガスの熱を用いる方法がある。   As a method of obtaining a fuel gas by reforming a gas containing tar or the like, there is a method of gasifying a carbonaceous raw material with air or oxygen and using the heat of the generated gasification gas.

炭化炉を用いて木材やプラスチック等の炭素質原料を炭化し、炭化炉から発生した炭化物は金属類を除いた後にガス化炉でガス化し、ガス化炉から発生したガス化ガスを用いて炭化炉から発生したガスを改質することで、炭素質原料から燃料ガスを得る方法が特許文献1に示されている。   Carbonization of carbonaceous raw materials such as wood and plastics using a carbonization furnace, and carbides generated from the carbonization furnace are gasified in a gasification furnace after removing metals and carbonized using gasification gas generated from the gasification furnace Patent Document 1 discloses a method of obtaining a fuel gas from a carbonaceous raw material by reforming a gas generated from a furnace.

特許文献1に示されたプロセスでは、ガス化炉において炭素質原料に含有される灰分を溶融スラグとして排出することで、灰分の減容および無害化を可能としている。   In the process shown in Patent Document 1, the ash content contained in the carbonaceous raw material is discharged as molten slag in the gasification furnace, thereby enabling the volume reduction and detoxification of the ash content.

ガス化炉から溶融スラグを安定して排出する方法に関して、特許文献2ではガス化炉からガスの一部を常時スラグ排出孔(スラグタップ)から抜き出してスラグタップを加熱し安定排出を行う方法が示されている。また、特許文献3では、スラグタップ下空間の温度を測定し、温度の低下時にスラグタップ下空間のガスを抜き出すことでスラグの安定排出を行う方法が示されている。   Regarding a method for stably discharging molten slag from a gasification furnace, Patent Document 2 discloses a method in which a part of gas is constantly extracted from a gasification furnace from a slag discharge hole (slag tap) and the slag tap is heated to perform stable discharge. It is shown. Patent Document 3 discloses a method for stably discharging slag by measuring the temperature of the space under the slag tap and extracting the gas in the space under the slag tap when the temperature decreases.

特開2002−200001号公報Japanese Patent Laid-Open No. 2002-200001 特開平11−294749号公報Japanese Patent Laid-Open No. 11-294749 特開平6−184562号公報JP-A-6-184562

特許文献1において提案されているプロセスは種々多様な炭素含有の廃棄物を効率よく燃料ガスに変換するプロセスである。   The process proposed in Patent Document 1 is a process for efficiently converting various carbon-containing wastes into fuel gas.

特許文献1では、ガス化炉において炭素質原料に含まれる灰分を溶融スラグとして排出する必要があるが、ガス化炉の底部に設けられたスラグタップからの溶融スラグを排出する際に溶融スラグがスラグタップ周辺に付着、固化し排出されないトラブルが起きることがあった。   In Patent Document 1, it is necessary to discharge the ash contained in the carbonaceous raw material as molten slag in the gasification furnace, but when the molten slag is discharged from the slag tap provided at the bottom of the gasification furnace, There was a case where troubles occurred that did not adhere to the slag tap and solidified.

また、特許文献2においては、スラグタップからの溶融スラグ排出を安定して行うためにスラグタップからガスの一部を抜き出しているが、この方法ではガス化炉上部のガス化ガス出口から排出されるガス量が減少し、特許文献1におけるようなガス化ガスの熱を用いてガスの改質を行うプロセスでは発熱量が変化するという問題がある。   In Patent Document 2, a part of the gas is extracted from the slag tap in order to stably discharge the molten slag from the slag tap. In this method, the gas is discharged from the gasification gas outlet at the upper part of the gasification furnace. In the process of reforming the gas using the heat of the gasification gas as in Patent Document 1, there is a problem that the calorific value changes.

特許文献3においては、スラグタップ下部空間の温度を検知して温度低下時にガスを抜き出すことを行っているが、通常スラグタップ下部では燃料燃焼バーナー(スラグタップバーナー)でスラグタップを加熱するため、温度変化が検知しにくく溶融スラグ状況を把握しにくいという問題があり、さらにこの方法を特許文献1におけるプロセスに適用した場合に、ガス化炉上部のガス化ガス出口から排出されるガス量が変化し、後段のガス改質の反応条件が変化し、その結果として生成ガスの発熱量が変化するという問題がある。   In Patent Document 3, the temperature of the lower space of the slag tap is detected and gas is extracted when the temperature is lowered. However, in order to heat the slag tap with a fuel combustion burner (slag tap burner) at the lower portion of the slag tap, There is a problem that it is difficult to detect a temperature change and it is difficult to grasp the state of molten slag, and when this method is applied to the process in Patent Document 1, the amount of gas discharged from the gasification gas outlet at the top of the gasification furnace changes. However, there is a problem that the reaction conditions for the gas reforming in the subsequent stage change, and as a result, the heat generation amount of the product gas changes.

本発明の目的は、炭素質原料をガス化しそのガス化ガスの熱を用いてガス改質等を行うプロセスにおいて、ガス化炉からのスラグ排出を安定させ、安定した性状の生成ガスを得ることにある。   It is an object of the present invention to stabilize slag discharge from a gasification furnace and obtain a stable product gas in a process of gasifying a carbonaceous raw material and performing gas reforming using the heat of the gasification gas. It is in.

かかる問題を解決するため、本発明の要旨とするところは、以下の通りである。
(1)炉内にスラグタップを挟んで上方のガス化室及び下方のスラグタップ下部空間を有し、炭素質原料をガス化してガス化ガスを発生するガス化炉と、前記ガス化炉の後段に設置され、前記ガス化ガス及びタールを含むガスと、酸素含有ガスとを取り込んでタールをガスに改質して改質ガスとする改質炉とを用いた炭素質原料のガス化方法であって、前記ガス化炉において、前記炭素質原料を、酸素含有ガスにより部分酸化してガス化ガスを生成すると共に、前記炭素質原料に含まれる灰分を溶融して溶融スラグとして前記スラグタップから前記スラグタップ下部空間へ排出し、且つ、前記スラグタップ下部空間にはスラグタップ保熱用バーナーが設置されて前記スラグタップを燃焼ガスで加熱し、更に、前記ガス化室と前記スラグタップ下部空間との差圧を測定し、前記スラグタップに前記溶融スラグが付着して前記差圧の測定値が上昇した際に、前記スラグタップ下部空間から当該空間内のガスを抜き出すと共に、前記空間内のガスの抜き出しの前後で、前記改質炉内の温度及び前記改質ガスの発熱量を一定に保つように、前記改質炉へ取り込まれる前記酸素含有ガスの量及び前記改質炉へ取り込まれる前記タールを含むガスの量を調整することを特徴とする。
(2)炉内にスラグタップを挟んで上方のガス化室及び下方のスラグタップ下部空間を有し、1の炭素質原料及び炭化物をガス化してガス化ガスを発生するガス化炉と、前記ガス化炉の後段に設置され、前記ガス化ガス及びタールを含むガスと、酸素含有ガスとを取り込んでタールをガスに改質して改質ガスとする改質炉と、2の炭素質原料を炭化して、前記炭化物及び前記タールを含むガスを生成する炭化炉とを用いた炭素質原料のガス化方法であって、前記炭化炉において、加熱ガスにより前記2の炭素質原料を炭化して前記炭化物及び前記タールを含むガスを生成し、前記ガス化炉において、前記1の炭素質原料及び前記炭化物を、酸素含有ガスにより部分酸化してタールを含むガス化ガスを生成すると共に、前記1の炭素質原料及び前記炭化物に含まれる灰分を溶融して溶融スラグとして前記スラグタップから前記スラグタップ下部空間へ排出し、且つ、前記スラグタップ下部空間にはスラグタップ保熱用バーナーが設置されて前記スラグタップを燃焼ガスで加熱し、更に、前記ガス化室と前記スラグタップ下部空間との差圧を測定し、前記スラグタップに前記溶融スラグが付着して前記差圧の測定値が上昇した際に、前記スラグタップ下部空間から当該空間内のガスを抜き出すと共に、前記空間内のガスの抜き出しの前後で、前記改質炉内の温度及び前記改質ガスの発熱量を一定に保つように、前記改質炉へ取り込まれる前記酸素含有ガスの量及び前記炭化炉へ送られる前記2の炭素質原料の量を調整することを特徴とする炭素質原料のガス化方法。
(3)前記1の炭素質原料が下水汚泥、硬質プラスチック原料、木質バイオマス原料の少なくともいずれかで、前記2の炭素質原料が一般ゴミ、軟質プラスチック原料の少なくともいずれかであることを特徴とする(2)記載の炭素質原料のガス化方法
In order to solve this problem, the gist of the present invention is as follows.
(1) A gasification furnace having an upper gasification chamber and a lower slag tap lower space sandwiching a slag tap in the furnace, gasifying a carbonaceous raw material to generate gasified gas, and the gasification furnace is installed in the rear stage, a gas containing the gasification gas and tar, reformer and method gasification of carbonaceous feedstock with which to modify the tar gas capture and oxygen-containing gas and reformed gas In the gasification furnace, the carbonaceous raw material is partially oxidized with an oxygen-containing gas to generate a gasified gas, and the slag tap is melted as slag by melting the ash contained in the carbonaceous raw material. and discharged to the slag tap lower space from, and, wherein the slag tap lower space is installed slag tap heat retaining burner heating the slag tap by the combustion gases, further, the slag tap and the gasification chamber The differential pressure between the parts space is measured, when the measured value of the differential pressure the molten slag adheres to the slag tap is increased, the extracted gas of the space from the slag tap lower space, said space Before and after the extraction of the gas inside, the amount of the oxygen-containing gas taken into the reforming furnace and the reforming furnace so as to keep the temperature inside the reforming furnace and the calorific value of the reforming gas constant . The amount of the gas containing the tar to be taken in is adjusted.
(2) a gasification furnace having an upper gasification chamber and a lower slag tap lower space with a slag tap in the furnace, and gasifying one carbonaceous raw material and carbide to generate gasified gas; disposed downstream of the gasifier, a gas containing the gasification gas and tar, a reforming furnace for a reformed gas by reforming a tar gas capture and oxygen-containing gas, the second carbonaceous feedstock And carbonizing a carbonaceous raw material using a carbonization furnace that generates a gas containing the carbide and the tar, wherein the second carbonaceous raw material is carbonized with a heating gas in the carbonization furnace. A gas containing the carbide and the tar, and in the gasification furnace, the one carbonaceous raw material and the carbide are partially oxidized with an oxygen-containing gas to generate a gasified gas containing the tar, and 1 carbonaceous raw material and To melt the ash included in the serial carbides discharged from the slag tap as molten slag into the slag tap lower space, and, combusting the slag tap above the slag tap lower space is installed slag tap heat keeping burner Heating with gas, and further measuring the differential pressure between the gasification chamber and the lower space of the slag tap, and when the molten slag adheres to the slag tap and the measured value of the differential pressure rises, The reforming furnace is configured to extract the gas in the space from the tap lower space and to keep the temperature in the reforming furnace and the heat generation amount of the reformed gas constant before and after the extraction of the gas in the space. the amount and the gasification method of the carbonaceous feedstock, which comprises adjusting the amount of carbonaceous material in the two sent to carbonizing furnace of the oxygen-containing gas to be incorporated into.
(3) The first carbonaceous material is at least one of sewage sludge, hard plastic raw material, and woody biomass raw material, and the second carbonaceous raw material is at least one of general garbage and soft plastic raw material. (2) The gasification method of the carbonaceous raw material as described .

本発明における炭素質原料とは、バイオマスやプラスチック、一般廃棄物ゴミ等を指し、具体的には、農業系バイオマス(麦わら、サトウキビ、米糠、草木等)、林業系バイオマス(製紙廃棄物、製材廃材、除間伐材等)、畜産系バイオマス(家畜廃棄物)、水産系バイオマス(水産加工残滓)、廃棄物系バイオマス(生ゴミ、RDF:ゴミ固形化燃料:Refuse Derived Fuel、庭木、建設廃材、下水汚泥)、硬質プラスチック、軟質プラスチック、シュレッダーダスト等を指す。特に木材に関しては、製材廃材、建設廃材、木製電柱、木製枕木等、一度乾燥工程を経た、比較的水分が少ない(3〜20質量%)ものを指し、草木、除間伐材に代表される生木類と区別される。また、一般ゴミとは産廃指定19種類以外のゴミのことで、自治体単位で収集する家庭ゴミや事業者から出る紙類を多く含む事業系ゴミのことである。ただし、本発明は炭素質のエネルギー転換に関するものであるため、炭素質をほとんど含まないもの、すなわち分別された金属、ガラス類等は対象とはしない。また、広義の炭素質原料としては石炭等の炭素含有の燃料を含み、本特許方法におけるガス化炉の補助燃料として使用することもあり得る。   The carbonaceous raw material in the present invention refers to biomass, plastic, general waste garbage, etc., specifically, agricultural biomass (straw, sugarcane, rice bran, vegetation, etc.), forestry biomass (paper waste, lumber waste) , Thinned wood, etc.), livestock biomass (livestock waste), aquaculture biomass (fishery processing residue), waste biomass (raw garbage, RDF: solid waste fuel: Refuse Derived Fuel, garden trees, construction waste, sewage Sludge), hard plastic, soft plastic, shredder dust, etc. For wood in particular, sawn lumber, construction waste, wooden utility poles, wooden sleepers, etc., which have undergone a drying process once (3-20% by mass) and are represented by plants and thinned wood Differentiated from trees. General garbage is garbage other than the 19 types designated as industrial waste, and is business garbage that contains a lot of household waste collected by local governments and papers from businesses. However, since the present invention relates to carbonaceous energy conversion, those that contain almost no carbonaceous matter, that is, fractionated metals, glasses, etc. are not covered. Further, the carbonaceous raw material in a broad sense includes a carbon-containing fuel such as coal, and may be used as an auxiliary fuel for a gasification furnace in the present patent method.

本発明により、炭素質原料に含まれる灰分を溶融スラグとして排出するガス化炉からの溶融スラグを安定して排出させ、生成ガスの性状を安定させることが可能となる。   According to the present invention, it is possible to stably discharge molten slag from a gasification furnace that discharges ash contained in a carbonaceous raw material as molten slag, and to stabilize the properties of the product gas.

図1に、本発明の第1の実施形態として、気流層で炭素質原料をガス化し、炭素質原料に含まれる灰分を溶融スラグとして排出・回収するプロセスであって、ガス化ガスを熱源としてタール等を含むガスを改質するプロセスのプロセスフローを示す。   FIG. 1 shows a first embodiment of the present invention in which a carbonaceous raw material is gasified in an airflow layer, and ash contained in the carbonaceous raw material is discharged and recovered as molten slag, using the gasified gas as a heat source. The process flow of the process which modifies | reforms the gas containing tar etc. is shown.

設備は、ガス化炉1とガス化炉1の上部に設けられた改質炉2により構成される。炭素質原料15はガス化炉1に供給され、空気、酸素富化空気、又は酸素等の酸素含有ガス29により部分燃焼されガス化される。ガス化とは炭素質原料に含まれる炭素や水素をCOや水素ガスとするものである。ガス化には通常1000℃以上の高温が必要であり、炭素質原料15に含まれる灰分はガス化炉1で溶融スラグ31となる。溶融スラグ31はスラグタップ12を通ってガス化炉1からスラグタップ下部空間8に排出され、水槽9で急冷され、水砕される。   The facility includes a gasification furnace 1 and a reforming furnace 2 provided on the upper part of the gasification furnace 1. The carbonaceous raw material 15 is supplied to the gasification furnace 1 and is partially combusted and gasified by an oxygen-containing gas 29 such as air, oxygen-enriched air, or oxygen. Gasification is a process in which carbon or hydrogen contained in a carbonaceous raw material is converted into CO or hydrogen gas. Gasification usually requires a high temperature of 1000 ° C. or higher, and the ash contained in the carbonaceous raw material 15 becomes molten slag 31 in the gasification furnace 1. The molten slag 31 is discharged from the gasification furnace 1 to the slag tap lower space 8 through the slag tap 12, rapidly cooled in the water tank 9, and crushed.

ガス化ガス30はガス化炉1の上部から改質炉2に送られ、改質炉2でタールを含む改質炉送付ガス26と混合され、改質が行われる。ここで、改質炉送付ガス26はミスト状あるいは蒸気状のタールを含むガスで、コークス炉等の石炭やシャフト炉やロータリーキルンによるバイオマス等の熱分解によって発生するガスを指す。本発明における改質とは、改質炉送付ガス26に含まれるタールや炭化水素成分を分解し、軽質な炭化水素ガスやCO、水素に転換する事を言う。改質反応は900から1100℃程度で行われるが、ガス化ガス30の持ち込み熱量だけで反応温度まで改質炉2内の温度が上がらない場合には、酸素含有ガス28を改質炉2に投入し、改質炉送付ガス26の一部を燃焼させることで改質炉2の温度を維持する。   The gasification gas 30 is sent from the upper part of the gasification furnace 1 to the reforming furnace 2 and is mixed with the reforming furnace sending gas 26 containing tar in the reforming furnace 2 for reforming. Here, the reforming furnace delivery gas 26 is a gas containing mist-like or steam-like tar, and refers to a gas generated by thermal decomposition of coal such as a coke oven, biomass such as a shaft furnace or a rotary kiln. The reforming in the present invention means that tar and hydrocarbon components contained in the reforming furnace delivery gas 26 are decomposed and converted to light hydrocarbon gas, CO, and hydrogen. The reforming reaction is performed at about 900 to 1100 ° C. If the temperature in the reforming furnace 2 does not rise to the reaction temperature only by the amount of heat brought in by the gasification gas 30, the oxygen-containing gas 28 is transferred to the reforming furnace 2. The temperature of the reforming furnace 2 is maintained by charging and burning a part of the reforming furnace delivery gas 26.

改質炉から出たガスはガス精製装置7を出た後に燃料ガス34として使用可能である。ガス化炉1から排出される溶融スラグ31によってスラグタップ12が閉塞され、操業上のトラブルとなることがある。その場合には、閉塞を差圧計10によって検知し、スラグタップ下部空間8のガスを排出することでスラグタップ下部空間8の圧力を低下しガス化炉1からガスをスラグタップ下部空間に送ることでスラグ排出を円滑に行うことが可能となる。   The gas exiting the reforming furnace can be used as the fuel gas 34 after exiting the gas purifier 7. The slag tap 12 may be blocked by the molten slag 31 discharged from the gasification furnace 1, which may cause operational troubles. In that case, the blockage is detected by the differential pressure gauge 10 and the gas in the slag tap lower space 8 is discharged to lower the pressure in the slag tap lower space 8 and send the gas from the gasification furnace 1 to the slag tap lower space. Thus, slag can be discharged smoothly.

しかしながら、ガス化炉1内のガスをスラグタップ12から抜き出すと改質炉2に送られるガス量が減少し、発熱量やガス組成等の改質ガス33の性状が変化するため、改質炉2に送られるガス量を流量調節弁36により減少させることで改質ガス33の性状を一定に保つ。   However, if the gas in the gasification furnace 1 is extracted from the slag tap 12, the amount of gas sent to the reforming furnace 2 decreases, and the properties of the reforming gas 33 such as the calorific value and gas composition change, so the reforming furnace The property of the reformed gas 33 is kept constant by reducing the amount of gas sent to 2 by the flow rate control valve 36.

図2に、本発明の第2の実施形態として、炭素質原料を炭化炉で熱分解し、熱分解ガスを改質して燃料ガスを製造する場合のプロセスフローを示す。プロセスは主に、ガス化炉1、改質炉2、炭化炉3で構成される。   FIG. 2 shows a process flow in the case of producing a fuel gas by pyrolyzing a carbonaceous raw material in a carbonization furnace and reforming the pyrolysis gas as a second embodiment of the present invention. The process mainly includes a gasification furnace 1, a reforming furnace 2, and a carbonization furnace 3.

炭素質原料21は原料投入装置4により炭化炉3に、また、炭素質原料15はガス化炉1に投入される。炭化炉3には微粉砕が困難な一般ゴミ等の原料を、ガス化炉1には搬送可能な程度に微粉砕が容易な下水汚泥や硬質プラスチック等の原料を投入する。炭素質原料21は炭化炉3で加熱ガス16により加熱され金属等の異物を含む炭化物22となり、異物を含む炭化物22は破砕・分離器5により異物23と炭化物24に分けられる。炭化炉3の炉頂からは炉頂ガス25が排出される。炉頂ガス25には、多量のダストおよびタール分が含まれており、そのままでは燃料ガスとして使用することはできない。加熱ガス16は炭化炉3内での加熱源となる高温ガスで、LNG等の燃料ガスにより、またはプロセスで発生したガスを燃焼することで得られる。   The carbonaceous raw material 21 is charged into the carbonization furnace 3 by the raw material charging device 4, and the carbonaceous raw material 15 is charged into the gasification furnace 1. The carbonization furnace 3 is charged with raw materials such as general garbage that are difficult to pulverize, and the gasification furnace 1 is charged with raw materials such as sewage sludge and hard plastic that are easily pulverized to such an extent that they can be conveyed. The carbonaceous raw material 21 is heated by the heating gas 16 in the carbonization furnace 3 to become a carbide 22 containing foreign matters such as metals. The carbide 22 containing foreign matters is divided into a foreign matter 23 and a carbide 24 by the crushing / separator 5. The top gas 25 is discharged from the top of the carbonization furnace 3. The furnace top gas 25 contains a large amount of dust and tar, and cannot be used as fuel gas as it is. The heated gas 16 is a high-temperature gas serving as a heating source in the carbonization furnace 3, and is obtained by burning a gas generated by a fuel gas such as LNG or the process.

炉頂ガス25は固気分離器6によりダスト27が分離され、改質炉送付ガス26は改質炉に導入される。ダスト27は破砕・分離器5からの炭化物24と混合されてガス化炉1に送られる。ガス化炉1では炭素質原料15およびダスト27、炭化物24が酸素含有ガス29によってガス化されガス化ガス30は改質炉2に導入されて改質炉内での改質炉送付ガス26の改質反応熱源となる。   The dust 27 is separated from the furnace top gas 25 by the solid gas separator 6, and the reforming furnace delivery gas 26 is introduced into the reforming furnace. The dust 27 is mixed with the carbide 24 from the crushing / separator 5 and sent to the gasification furnace 1. In the gasification furnace 1, the carbonaceous raw material 15, the dust 27, and the carbide 24 are gasified by the oxygen-containing gas 29, and the gasification gas 30 is introduced into the reforming furnace 2 so that the reforming furnace sending gas 26 in the reforming furnace A heat source for reforming reaction.

改質炉2ではガス26を高温のガス化ガス30と混合して改質炉送付ガス26に含まれるタール分を改質させる。改質反応は900から1100℃程度で行われるが、ガス化ガス30の持ち込み熱量だけで反応温度まで改質炉2内の温度が上がらない場合には、酸素含有ガス28を改質炉2に投入し、ガス26の一部を燃焼させることで改質炉2の温度を維持する。   In the reforming furnace 2, the gas 26 is mixed with the high temperature gasification gas 30 to reform the tar content contained in the reforming furnace delivery gas 26. The reforming reaction is performed at about 900 to 1100 ° C. If the temperature in the reforming furnace 2 does not rise to the reaction temperature only by the amount of heat brought in by the gasification gas 30, the oxygen-containing gas 28 is transferred to the reforming furnace 2. The temperature of the reforming furnace 2 is maintained by charging and burning a part of the gas 26.

改質炉2を出た改質ガス33はガス精製装置7によりダスト等が除去され燃料ガス34となる。   The reformed gas 33 exiting the reforming furnace 2 is subjected to removal of dust and the like by the gas purification device 7 to become a fuel gas 34.

一方、ガス化炉1に投入される炭素質原料15、ダスト27,炭化物24に含まれる灰分はガス化炉1で溶融スラグ31としてスラグタップ12からスラグタップ下部空間8を通って水槽9に落下し、水砕スラグ32として排出される。   On the other hand, the ash contained in the carbonaceous raw material 15, dust 27, and carbide 24 put into the gasification furnace 1 falls as molten slag 31 from the slag tap 12 to the water tank 9 through the slag tap lower space 8 in the gasification furnace 1. Then, it is discharged as granulated slag 32.

溶融スラグ31のスラグタップ12からの排出が順調に行われるようにスラグタップ保熱用バーナー13により燃料および酸素または空気14を投入してスラグタップ12を加熱するが、スラグタップ12に溶融スラグ31が付着した場合には、スラグタップ下部空間8からガスを抜き出しガス化炉1からスラグタップ12を通じてスラグタップ下部空間8へのガス流れを作ることでスラグタップ31の加熱を行うことでスラグタップ保熱用バーナー13から投入する燃料を最小限にすることが可能となる。   The slag tap 12 is heated by injecting fuel and oxygen or air 14 by the slag tap heat retention burner 13 so that the molten slag 31 is smoothly discharged from the slag tap 12. When the slag tap 31 is heated, the slag tap 31 is heated by extracting gas from the slag tap lower space 8 and creating a gas flow from the gasification furnace 1 to the slag tap lower space 8 through the slag tap 12. It is possible to minimize the amount of fuel input from the heat burner 13.

スラグタップ12のスラグ付着はガス化炉1とスラグタップ下部空間8との差圧を差圧計10で測定し、差圧発生時には流量調節弁11によりスラグタップ下部空間8からガス35を抜き出す。差圧は、スラグタップに付着の無い通常の運転では、ガス化炉1に比べてスラグタップ下部空間8の圧力が若干高くなる。スラグタップ下部空間8の圧力はスラグタップ保熱用バーナー13での燃焼量にもよるが、通常ガス化炉1での圧力より0.1kPa程度高い程度である。通常ガス化室の圧力は、大気圧から数MPa程度である。   In the slag adhesion of the slag tap 12, the differential pressure between the gasification furnace 1 and the slag tap lower space 8 is measured by the differential pressure gauge 10, and when the differential pressure is generated, the gas 35 is extracted from the slag tap lower space 8 by the flow control valve 11. As for the differential pressure, the pressure in the slag tap lower space 8 is slightly higher than that in the gasification furnace 1 in a normal operation in which the slag tap is not attached. Although the pressure in the slag tap lower space 8 depends on the amount of combustion in the slag tap heat retaining burner 13, it is usually about 0.1 kPa higher than the pressure in the gasifier 1. Usually, the pressure in the gasification chamber is from atmospheric pressure to several MPa.

スラグタップに付着が発生すると、スラグタップでの圧力損失が増加するため、スラグタップ下空間8に投入しているスラグタップ保熱用バーナー13の燃焼ガスが抜けにくくなり、スラグタップ下部空間8の圧力が増加する。   When adhesion occurs on the slag tap, the pressure loss at the slag tap increases, so that the combustion gas of the slag tap heat retaining burner 13 put in the slag tap lower space 8 becomes difficult to escape, and the slag tap lower space 8 Pressure increases.

スラグタップ下部空間8とガス化室37との差圧(=スラグタップ下部空間圧力−ガス化室圧力)が連続的に上昇した時点で閉塞発生と考えられ、流調弁11を開き、スラグタップ下部空間8からガス35を抜き出す。   When the differential pressure between the slag tap lower space 8 and the gasification chamber 37 (= slag tap lower space pressure-gasification chamber pressure) rises continuously, it is considered that clogging occurs, the flow control valve 11 is opened, and the slag tap is opened. The gas 35 is extracted from the lower space 8.

図3に差圧変化の例を示す。図3中、横軸時間Aまでは正常な操業を行っていたが、A以降は差圧が上昇し始め閉塞発生が分かり、差圧が0.5kPaとなった時間Bでスラグタップ下部空間8からガスを抜き出すことでガス化室37のガスをスラグタップ下部空間8に抜き出し、スラグタップ12の閉塞を解消した。抜き出すガス35の量が増加すると、ガス化炉1から改質炉2に導入されるガス化ガス30の量が減少し、改質炉2内の熱量が減少し、酸素含有ガス28の量を増加させる必要が生じる。酸素含有ガス28の量が変化すると改質炉2内の燃焼量が変化し、改質ガス33、燃料ガス34の発熱量が変動する。尚、図3におけるスラグタップ閉塞開始前後の差圧変化は、実施形態1においても同様なパターンを観察することができる。   FIG. 3 shows an example of the differential pressure change. In FIG. 3, normal operation was performed until the time A on the horizontal axis, but after A, the differential pressure began to increase and the occurrence of blockage was found, and at time B when the differential pressure reached 0.5 kPa, the slag tap lower space 8 The gas in the gasification chamber 37 was extracted into the slag tap lower space 8 by extracting the gas from the slag tap 12 to eliminate the blockage of the slag tap 12. When the amount of the extracted gas 35 increases, the amount of the gasification gas 30 introduced from the gasification furnace 1 to the reforming furnace 2 decreases, the amount of heat in the reforming furnace 2 decreases, and the amount of the oxygen-containing gas 28 decreases. There is a need to increase it. When the amount of the oxygen-containing gas 28 is changed, the amount of combustion in the reforming furnace 2 is changed, and the heat generation amounts of the reformed gas 33 and the fuel gas 34 are changed. In addition, the same pattern can be observed in the first embodiment as to the differential pressure change before and after the start of slag tap closure in FIG.

それを防ぐためにスラグタップ下部空間8からの抜き出しガス35の量に応じて炭化炉3に送られる炭素質原料21の投入量を減少させることで、改質ガス33および燃料ガス34の発熱量を一定に保つことが可能となる。つまり、ガス化炉1でのガス発生量に対するスラグタップ下部空間8からの抜き出しガス35の量の比率と、同じ比率になるように炭化炉3に送られる炭素質原料21の投入量を減らせば良い。スラグタップ下部空間8より抜き出すガス量は、ガス化炉1での生成ガス量の約30%程度で十分である。   In order to prevent this, the calorific values of the reformed gas 33 and the fuel gas 34 are reduced by reducing the input amount of the carbonaceous raw material 21 sent to the carbonization furnace 3 in accordance with the amount of the extracted gas 35 from the slag tap lower space 8. It can be kept constant. That is, if the amount of the carbonaceous raw material 21 fed to the carbonization furnace 3 is reduced so as to be the same ratio as the ratio of the amount of the gas 35 extracted from the slag tap lower space 8 to the gas generation amount in the gasification furnace 1. good. About 30% of the amount of gas produced in the gasifier 1 is sufficient as the amount of gas extracted from the slag tap lower space 8.

その後、水砕スラグ32の排出量を確認し、ガス化炉1に送られる炭化物23および炭素質原料15中の灰分含有量に見合う水砕スラグ32の排出量とほぼ同等になった時点でスラグタップ下部空間8からのガス抜き出しを停止し、同時に炭化炉3に送られる炭素質原料21の供給量を元に戻す。   Thereafter, the discharge amount of the granulated slag 32 is confirmed, and when the discharge amount of the granulated slag 32 commensurate with the ash content in the carbide 23 and the carbonaceous raw material 15 sent to the gasifier 1 is almost equal to the slag. The gas extraction from the tap lower space 8 is stopped, and at the same time, the supply amount of the carbonaceous raw material 21 sent to the carbonization furnace 3 is restored.

本発明におけるガス化炉1は気流層方式であればよく、ガス化炉1に投入される炭化物等に含まれる灰分を溶融スラグとして連続排出するものであればどのようなものでも良い。また、炭化炉3についてはシャフト炉、ロータリーキルンなどの原料を連続投入するタイプの炉が炭化炉から発生するガス量を増減させることが可能な点で好ましい。改質炉2については、ガス化炉1および炭化炉3からのガスを混合し、一部を燃焼させることが可能な構造であればよい。   The gasification furnace 1 in the present invention may be of an airflow layer type, and may be anything as long as the ash contained in the carbide or the like charged into the gasification furnace 1 is continuously discharged as molten slag. As for the carbonization furnace 3, a furnace of a type in which raw materials such as a shaft furnace and a rotary kiln are continuously charged is preferable because the amount of gas generated from the carbonization furnace can be increased or decreased. The reforming furnace 2 may have any structure as long as the gas from the gasification furnace 1 and the carbonization furnace 3 can be mixed and partly combusted.

また、差圧によるスラグタップ閉塞の検知又は閉塞開始の判断は、上述のように、閉塞していないときの差圧レベルから差圧が連続して上昇していくときの変化から判断することや、閉塞していないときの差圧変動の最大値を超えたとき若しくは最大値より大きい所定値を超えたときに閉塞開始と判断することや、事前実験により閉塞が開始した際の差圧値を確認しておき、当該差圧値により閉塞開始を判断する等で、検知または判断すれば良い。   In addition, as described above, the detection of the slag tap blockage or the start of the blockage due to the differential pressure can be determined from the change when the differential pressure continuously increases from the differential pressure level when the blockage is not closed. When it exceeds the maximum value of the differential pressure fluctuation when not closed or exceeds a predetermined value greater than the maximum value, it is determined that the blocking starts, or the differential pressure value when the blocking is started by a prior experiment It may be detected or determined by confirming and determining the start of occlusion based on the differential pressure value.

また、ガス化炉1に投入される炭素質原料15としては、気流層ガス化のために気流搬送が可能な数mm以下に比較的破砕が容易な下水汚泥、硬質プラスチック原料、木質バイオマス原料のうち一種類以上で、炭化炉3に投入される炭素質原料21は数mm以下への破砕が困難な一般ゴミ、軟質プラスチック原料とすることでプロセスの安定操業が可能となる。   Moreover, as the carbonaceous raw material 15 thrown into the gasification furnace 1, sewage sludge, hard plastic raw material, and woody biomass raw material that are relatively easy to be crushed to a few millimeters or less capable of airflow transportation for gasification layer gasification. By using one kind or more of the carbonaceous raw material 21 to be charged into the carbonization furnace 3 as a general waste or a soft plastic raw material that is difficult to be crushed to a few millimeters or less, stable operation of the process becomes possible.

(実施例1)
図1と同様の設備構成で、木質チップをガス化炉で酸素を用いてガス化し、改質炉で石炭を部分燃焼させて発生させたタールおよび炭化水素ガスを含むガスを改質した実施例を以下に示す。
Example 1
An embodiment in which wood chips are gasified using oxygen in a gasification furnace and the gas containing tar and hydrocarbon gas generated by partial combustion of coal in the reforming furnace is reformed with the same equipment configuration as in FIG. Is shown below.

ガス化炉に粒径1mm以下の木質チップを300kg/h、酸素を230Nm3/h投入し、1300℃でガス化ガス670Nm3/hを発生させ、改質炉ではタールおよび炭化水素ガスを含むガス(タール含有量34g/Nm3の石炭熱分解ガスを使用)1400Nm3/hを導入し、ガス化ガスと混合し、さらに酸素120Nm3/hによりガスの一部を燃焼させて温度を1100℃にしてガスの改質を行った。改質炉の温度は改質炉に投入する酸素量を温度が一定になるように自動調整した。ガス化炉下部ではスラグタップ保熱用バーナーでメタンガス10Nm3/hを酸素20Nm3/hを用いて燃焼させた。その結果、改質炉に投入されたガス中に含まれていた34g/Nm3のタール分は1g/Nm3まで減少し、改質ガス量は2200Nm3/h、発熱量は1740kcal/Nm3であった。スラグタップの差圧(ガス化炉とスラグタップ下部空間の差圧)は、約0.1kPaで操業を行っていたが、スラグタップに付着物が発生しスラグタップ下部空間の圧力が上昇、同差圧が0.5kPaまで上昇したところでスラグタップ下部空間からガスを200Nm3/h抜きだした。同ガスを抜き出すと同時に改質炉に導入していたタールおよび炭化水素ガスを含むガスを980Nm3/hに減少させたところ、改質炉に投入される酸素は85Nm3/hに減少し、改質ガスの熱量は1730kcal/Nm3とほとんど変化無かった。 The gasification furnace is charged with 300kg / h of wood chips with a particle size of 1mm or less and 230Nm 3 / h of oxygen to generate gas of 670Nm 3 / h at 1300 ° C. The reforming furnace contains tar and hydrocarbon gas. 1400 Nm 3 / h of gas (using coal pyrolysis gas with tar content of 34 g / Nm 3 ) is introduced, mixed with gasification gas, and part of the gas is burned with 120 Nm 3 / h of oxygen, resulting in a temperature of 1100 The gas was reformed at a temperature of 0 ° C. The temperature of the reforming furnace was automatically adjusted so that the amount of oxygen charged into the reforming furnace was constant. The gasification furnace bottom is burned with oxygen 20 Nm 3 / h of methane gas 10 Nm 3 / h slag tap heat keeping burner. As a result, the tar content of 34g / Nm 3 contained in gas that is introduced into the reforming furnace was reduced to 1 g / Nm 3, the reformed gas amount is 2200 nm 3 / h, the heating value is 1740kcal / Nm 3 Met. The differential pressure of the slag tap (differential pressure between the gasifier and the slag tap lower space) was operated at about 0.1 kPa, but deposits were generated on the slag tap and the pressure in the lower slag tap space increased. When the pressure rose to 0.5 kPa, 200 Nm 3 / h of gas was extracted from the lower space of the slag tap. When the gas containing tar and hydrocarbon gas introduced into the reforming furnace was reduced to 980 Nm 3 / h at the same time that the gas was extracted, the oxygen charged into the reforming furnace was reduced to 85 Nm 3 / h, The calorific value of the reformed gas was almost unchanged at 1730 kcal / Nm 3 .

(比較例1)
実施例1と同様の操業を行い、スラグタップ下部空間のガスを抜き出した際に改質炉に投入されていたタールおよび炭化水素ガスを含むガスの量を変化させなかった場合の例を以下に示す。
ガス化炉に粒径1mm以下の木質チップを300kg/h、酸素を230Nm3/h投入し、1300℃でガス化ガス670Nm3/hを発生させ、改質炉ではタールおよび炭化水素ガスを含むガス1400Nm3/hを導入し、ガス化ガスと混合し、さらに酸素120Nm3/hによりガスの一部を燃焼させて温度を1100℃にしてガスの改質を行った。改質炉の温度は改質炉に投入する酸素量を温度が一定になるように自動調整した。ガス化炉下部ではスラグタップ保熱用バーナーでメタンガス10Nm3/hを酸素20Nm3/hを用いて燃焼させた。その結果、改質炉に投入されたガス中に含まれていた34g/Nm3のタール分は1g/Nm3まで減少し、改質ガス量は2200Nm3/h、発熱量は1740kcal/Nm3であった。スラグタップの差圧(ガス化炉とスラグタップ下部空間の差圧)は、約0.1kPaで操業を行っていたが、スラグタップに付着物が発生しスラグタップ下部空間の圧力が上昇、同差圧が0.5kPaまで上昇したところでスラグタップ下部空間からガスを200Nm3/h抜きだした。同ガスを抜き出すと、改質炉に導入されていたガス化ガスの量が減少し、改質炉の温度が低下するために改質炉の酸素量が160Nm3/hに増加して改質炉温度を1100℃に維持した。その結果、改質ガスの発熱量は1520kcal/Nm3に低下した。
(Comparative Example 1)
An example in which the same operation as in Example 1 was performed and the amount of gas containing tar and hydrocarbon gas that had been put into the reforming furnace when the gas in the lower space of the slag tap was extracted was not changed. Show.
The gasification furnace is charged with 300kg / h of wood chips with a particle size of 1mm or less and 230Nm 3 / h of oxygen to generate gas of 670Nm 3 / h at 1300 ° C. The reforming furnace contains tar and hydrocarbon gas. Gas 1400 Nm 3 / h was introduced, mixed with the gasified gas, and a part of the gas was burned with oxygen 120 Nm 3 / h to raise the temperature to 1100 ° C. to reform the gas. The temperature of the reforming furnace was automatically adjusted so that the amount of oxygen charged into the reforming furnace was constant. The gasification furnace bottom is burned with oxygen 20 Nm 3 / h of methane gas 10 Nm 3 / h slag tap heat keeping burner. As a result, the tar content of 34g / Nm 3 contained in gas that is introduced into the reforming furnace was reduced to 1 g / Nm 3, the reformed gas amount is 2200 nm 3 / h, the heating value is 1740kcal / Nm 3 Met. The differential pressure of the slag tap (differential pressure between the gasifier and the slag tap lower space) was operated at about 0.1 kPa, but deposits were generated on the slag tap and the pressure in the lower slag tap space increased. When the pressure rose to 0.5 kPa, 200 Nm 3 / h of gas was extracted from the lower space of the slag tap. When the same gas is extracted, the amount of gasification gas introduced into the reforming furnace decreases and the temperature of the reforming furnace decreases, so the oxygen content of the reforming furnace increases to 160 Nm 3 / h and reforming occurs. The furnace temperature was maintained at 1100 ° C. As a result, the calorific value of the reformed gas decreased to 1520 kcal / Nm 3 .

(実施例2)
図2と同様の設備構成で、炭化炉に一般ゴミおよび廃木材を、ガス化炉に炭化炉から発生する炭化物および粒径1mm以下の木質チップを投入した場合の実施例を以下に示す。
炭化炉には一般ゴミ400kg/h、廃木材400kg/hを投入し、炭化炉下部からはLPG60Nm3/hを空気500Nm3/hで燃焼させた1200℃のガス800Nm3/hを投入した。炭化炉の上部からは、400℃、47kg/hのタールを含むガスが約1400Nm3/h発生し、改質炉に導入された。ガス化炉では炭化炉から発生した炭化物150kg/hおよび1mm以下に粉砕した木質チップを100kg/hを酸素80Nm3/hでガス化した。ガス化炉から改質炉へ導入されたガス化ガス量は420Nm3/h改質炉では、炭化炉からのガスとガス化ガスが導入され、改質炉内温度が1100℃になるように酸素を自動投入したところ酸素量は160Nm3/hとなり、改質ガスは2100Nm3/h発生し、発熱量は1540kcal/Nm3となった。スラグタップ下部空間ではスラグタップ保熱用バーナーでメタンガス10Nm3/hを酸素20Nm3/hで燃焼させた。スラグタップ差圧は、約0.1kPaで操業を行っていたが、スラグタップに付着物が発生しスラグタップ下部空間の圧力が上昇、同差圧が0.5kPaまで上昇したところでスラグタップ下部空間からガスを120Nm3/h抜き出し、炭化炉へ投入される一般ゴミおよび廃木材の量を各400kg/hから280kg/hに減少させた。炭化炉から改質炉に送られるガス量は950Nm3/hに減少し、改質炉から出る改質ガスの発熱量は1530kcal/Nm3とほとんど変化なかった。
(Example 2)
An example in which general garbage and waste wood are introduced into the carbonization furnace and carbide generated from the carbonization furnace and wood chips having a particle diameter of 1 mm or less are introduced into the gasification furnace with the same equipment configuration as FIG.
General waste 400 kg / h in the carbonization furnace, the waste timber 400 kg / h was charged, from carbonization furnace bottom was charged gas 800 Nm 3 / h of 1200 ° C. which a LPG60Nm 3 / h burned in air 500 Nm 3 / h. From the upper part of the carbonization furnace, about 1400 Nm 3 / h of gas containing 400 ° C. and 47 kg / h of tar was generated and introduced into the reforming furnace. In the gasification furnace, 150 kg / h of carbides generated from the carbonization furnace and 100 kg / h of wood chips ground to 1 mm or less were gasified with oxygen of 80 Nm 3 / h. The amount of gasification gas introduced from the gasification furnace to the reforming furnace is 420 Nm 3 / h In the reforming furnace, the gas from the carbonization furnace and the gasification gas are introduced so that the temperature in the reforming furnace becomes 1100 ° C. oxygen was automatically charged oxygen 160 Nm 3 / h, and the reformed gas is 2100 nm 3 / h occurs, the heating value became 1540kcal / Nm 3. The slag tap lower space to burn the methane gas 10 Nm 3 / h oxygen 20 Nm 3 / h slag tap heat keeping burner. The slag tap differential pressure was operated at about 0.1 kPa, but deposits were generated on the slag tap, the pressure in the slag tap lower space increased, and when the differential pressure rose to 0.5 kPa, The gas was extracted at 120 Nm 3 / h, and the amount of general waste and waste wood charged into the carbonization furnace was reduced from 400 kg / h to 280 kg / h. The amount of gas sent from the carbonization furnace to the reforming furnace decreased to 950 Nm 3 / h, and the calorific value of the reformed gas exiting the reforming furnace was almost unchanged at 1530 kcal / Nm 3 .

(比較例2)
実施例2と同様の操業を行い、スラグタップ下部空間のガスを抜き出した際に改質炉に投入されていたタールおよび炭化水素ガスを含むガスの量を変化させなかった場合の例を以下に示す。
(Comparative Example 2)
An example in which the same operation as in Example 2 was performed and the amount of gas containing tar and hydrocarbon gas that had been put into the reforming furnace when the gas in the lower space of the slag tap was extracted was not changed. Show.

炭化炉には一般ゴミ400kg/h、廃木材400kg/hを投入し、炭化炉下部からはLPG60Nm3/hを空気500Nm3/hで燃焼させた1200℃のガス800Nm3/hを投入した。炭化炉の上部からは、400℃、47kg/hのタールを含むガスが約1400Nm3/h発生し、改質炉に導入された。ガス化炉では炭化炉から発生した炭化物150kg/hおよび1mm以下に破砕した木質チップ100kg/hを酸素80Nm3/hでガス化した。ガス化炉から改質炉へ導入されたガス化ガス量は420Nm3/h改質炉では、炭化炉からのガスとガス化ガスが導入され、改質炉内温度が1100℃になるように酸素を自動投入したところ酸素量は160Nm3/hとなり、改質ガスは2100Nm3/h発生し、発熱量は1540kcal/Nm3となった。スラグタップ下部空間ではスラグタップ保熱用バーナーでメタンガス10Nm3/hを酸素20Nm3/hで燃焼させた。スラグタップ差圧は、約0.1kPaで操業を行っていたが、スラグタップに付着物が発生しスラグタップ下部空間の圧力が上昇、同差圧が0.5kPaまで上昇したところでスラグタップ下部空間からガスを120Nm3/h抜き出した。ガス化炉から改質炉へ導入されるガス量が420Nm3/hから300Nm3/hに減少し、改質炉の温度を維持するために酸素が160Nm3/hから220Nm3/hに増加、改質ガスの発熱量は1540kcal/Nm3から1250kcal/Nm3に減少した。 General waste 400 kg / h in the carbonization furnace, the waste timber 400 kg / h was charged, from carbonization furnace bottom was charged gas 800 Nm 3 / h of 1200 ° C. which a LPG60Nm 3 / h burned in air 500 Nm 3 / h. From the upper part of the carbonization furnace, about 1400 Nm 3 / h of gas containing 400 ° C. and 47 kg / h of tar was generated and introduced into the reforming furnace. In the gasification furnace, 150 kg / h of carbide generated from the carbonization furnace and 100 kg / h of wood chips crushed to 1 mm or less were gasified with oxygen of 80 Nm 3 / h. The amount of gasification gas introduced from the gasification furnace to the reforming furnace is 420 Nm 3 / h In the reforming furnace, the gas from the carbonization furnace and the gasification gas are introduced so that the temperature in the reforming furnace becomes 1100 ° C. oxygen was automatically charged oxygen 160 Nm 3 / h, and the reformed gas is 2100 nm 3 / h occurs, the heating value became 1540kcal / Nm 3. The slag tap lower space to burn the methane gas 10 Nm 3 / h oxygen 20 Nm 3 / h slag tap heat keeping burner. The slag tap differential pressure was operated at about 0.1 kPa, but deposits were generated on the slag tap, the pressure in the slag tap lower space increased, and when the differential pressure rose to 0.5 kPa, The gas was extracted at 120 Nm 3 / h. Amount of gas introduced from the gasification furnace to the reformer furnace is reduced from 420 nm 3 / h to 300 Nm 3 / h, oxygen in order to maintain the temperature of the reformer is increased from 160 Nm 3 / h to 220 nM 3 / h The calorific value of the reformed gas decreased from 1540 kcal / Nm 3 to 1250 kcal / Nm 3 .

本発明の第1の実施形態を示すガス化炉と改質炉を用いたプロセスフローの例である。It is an example of the process flow using the gasification furnace and reforming furnace which show the 1st Embodiment of this invention. 本発明の第2の実施形態を示す炭化炉、ガス化炉と改質炉を用いたプロセスフローの例である。It is an example of the process flow using the carbonization furnace, gasification furnace, and reforming furnace which show the 2nd Embodiment of this invention. スラグタップ閉塞発生前後での差圧変化を示す説明図である。It is explanatory drawing which shows the differential pressure | voltage change before and after slag tap obstruction | occlusion generation | occurrence | production.

符号の説明Explanation of symbols

1 ガス化炉
2 改質炉
3 炭化炉
4 原料投入装置
5 破砕・分離機
6 固気分離器
7 ガス精製装置
8 スラグタップ下部空間
9 水槽
10 差圧計
11 流量調節弁
12 スラグタップ
13 スラグタップ保熱用バーナー
14 燃料および酸素または空気
15 炭素質原料
16 加熱ガス
21 炭素質原料
22 異物を含む炭化物
23 異物
24 炭化物
25 炉頂ガス
26 改質炉送付ガス
27 ダスト
28 酸素含有ガス
29 酸素含有ガス
30 ガス化ガス
31 溶融スラグ
32 水砕スラグ
33 改質ガス
34 燃料ガス
35 抜き出しガス
36 流量調節弁
37 ガス化室
DESCRIPTION OF SYMBOLS 1 Gasification furnace 2 Reforming furnace 3 Carbonization furnace 4 Raw material input apparatus 5 Crushing / separation machine 6 Solid-gas separator 7 Gas purification apparatus 8 Slag tap lower space 9 Water tank 10 Differential pressure gauge 11 Flow control valve 12 Slag tap 13 Slag tap maintenance Burner for heat 14 Fuel and oxygen or air 15 Carbonaceous raw material 16 Heated gas 21 Carbonaceous raw material 22 Carbide containing foreign matter 23 Foreign matter 24 Carbide 25 Furnace top gas 26 Reforming furnace delivery gas 27 Dust 28 Oxygen containing gas 29 Oxygen containing gas 30 Gasified gas 31 Molten slag 32 Granulated slag 33 Reformed gas 34 Fuel gas 35 Extracted gas 36 Flow control valve 37 Gasification chamber

Claims (3)

炉内にスラグタップを挟んで上方のガス化室及び下方のスラグタップ下部空間を有し、炭素質原料をガス化してガス化ガスを発生するガス化炉と、前記ガス化炉の後段に設置され、前記ガス化ガス及びタールを含むガスと、酸素含有ガスとを取り込んでタールをガスに改質して改質ガスとする改質炉とを用いた炭素質原料のガス化方法であって、
前記ガス化炉において、前記炭素質原料を、酸素含有ガスにより部分酸化してガス化ガスを生成すると共に、前記炭素質原料に含まれる灰分を溶融して溶融スラグとして前記スラグタップから前記スラグタップ下部空間へ排出し、且つ、前記スラグタップ下部空間にはスラグタップ保熱用バーナーが設置されて前記スラグタップを燃焼ガスで加熱し、更に、前記ガス化室と前記スラグタップ下部空間との差圧を測定し、前記スラグタップに前記溶融スラグが付着して前記差圧の測定値が上昇した際に、前記スラグタップ下部空間から当該空間内のガスを抜き出すと共に、
前記空間内のガスの抜き出しの前後で、前記改質炉内の温度及び前記改質ガスの発熱量を一定に保つように、前記改質炉へ取り込まれる前記酸素含有ガスの量及び前記改質炉へ取り込まれる前記タールを含むガスの量を調整することを特徴とする炭素質原料のガス化方法。
A gasification furnace having an upper gasification chamber and a lower slag tap lower space with a slag tap sandwiched in the furnace, gasifying the carbonaceous raw material to generate gasified gas, and installed after the gasification furnace is, a gas containing the gasification gas and tar, a reformer and gasification methods carbonaceous feedstock with which to modify the tar gas capture and oxygen-containing gas and reformed gas ,
In the gasification furnace, the carbonaceous raw material is partially oxidized with an oxygen-containing gas to generate a gasified gas, and the ash contained in the carbonaceous raw material is melted to form molten slag from the slag tap to the slag tap. A slag tap heat retention burner is installed in the lower space of the slag tap to heat the slag tap with combustion gas, and further, the difference between the gasification chamber and the lower space of the slag tap When measuring the pressure, when the molten slag adheres to the slag tap and the measured value of the differential pressure rises, withdrawing the gas in the space from the lower space of the slag tap,
The amount of the oxygen-containing gas taken into the reforming furnace and the reforming so as to keep the temperature in the reforming furnace and the calorific value of the reforming gas constant before and after extracting the gas in the space. A method for gasifying a carbonaceous raw material, comprising adjusting an amount of the gas containing the tar taken into a furnace.
炉内にスラグタップを挟んで上方のガス化室及び下方のスラグタップ下部空間を有し、1の炭素質原料及び炭化物をガス化してガス化ガスを発生するガス化炉と、前記ガス化炉の後段に設置され、前記ガス化ガス及びタールを含むガスと、酸素含有ガスとを取り込んでタールをガスに改質して改質ガスとする改質炉と、2の炭素質原料を炭化して、前記炭化物及び前記タールを含むガスを生成する炭化炉とを用いた炭素質原料のガス化方法であって、
前記炭化炉において、加熱ガスにより前記2の炭素質原料を炭化して前記炭化物及び前記タールを含むガスを生成し、前記ガス化炉において、前記1の炭素質原料及び前記炭化物を、酸素含有ガスにより部分酸化してタールを含むガス化ガスを生成すると共に、前記1の炭素質原料及び前記炭化物に含まれる灰分を溶融して溶融スラグとして前記スラグタップから前記スラグタップ下部空間へ排出し、且つ、前記スラグタップ下部空間にはスラグタップ保熱用バーナーが設置されて前記スラグタップを燃焼ガスで加熱し、更に、前記ガス化室と前記スラグタップ下部空間との差圧を測定し、前記スラグタップに前記溶融スラグが付着して前記差圧の測定値が上昇した際に、前記スラグタップ下部空間から当該空間内のガスを抜き出すと共に、
前記空間内のガスの抜き出しの前後で、前記改質炉内の温度及び前記改質ガスの発熱量を一定に保つように、前記改質炉へ取り込まれる前記酸素含有ガスの量及び前記炭化炉へ送られる前記2の炭素質原料の量を調整することを特徴とする炭素質原料のガス化方法。
A gasification furnace having an upper gasification chamber and a lower slag tap lower space with a slag tap in the furnace and generating gasification gas by gasifying one carbonaceous raw material and carbide, and the gasification furnace is installed in the subsequent stage, a gas containing the gasification gas and tar, a reforming furnace for a reformed gas by reforming a tar gas capture and oxygen-containing gas, the second carbonaceous feedstock is carbonized A carbonaceous raw material gasification method using a carbonization furnace that generates a gas containing the carbide and the tar,
In the carbonization furnace, the second carbonaceous raw material is carbonized with a heating gas to generate a gas containing the carbide and the tar. In the gasification furnace, the first carbonaceous raw material and the carbide are converted into an oxygen-containing gas. A gasified gas containing tar by partial oxidation by the above, and ash contained in the carbonaceous raw material 1 and the carbide is melted and discharged as molten slag from the slag tap to the slag tap lower space, and A slag tap heat-retaining burner is installed in the lower space of the slag tap to heat the slag tap with combustion gas, and further measure the differential pressure between the gasification chamber and the lower space of the slag tap, When the molten slag adheres to the tap and the measured value of the differential pressure rises, the gas in the space is extracted from the lower space of the slag tap,
The amount of the oxygen-containing gas introduced into the reforming furnace and the carbonization furnace so that the temperature in the reforming furnace and the heat generation amount of the reforming gas are kept constant before and after the gas is extracted from the space. gasification method of the carbonaceous material, characterized in that adjusting the amount of carbonaceous material of the two to be sent to.
前記1の炭素質原料が下水汚泥、硬質プラスチック原料、木質バイオマス原料の少なくともいずれかで、前記2の炭素質原料が一般ゴミ、軟質プラスチック原料の少なくともいずれかであることを特徴とする請求項2記載の炭素質原料のガス化方法。   3. The carbonaceous raw material 1 is at least one of sewage sludge, hard plastic raw material, and woody biomass raw material, and the carbonaceous raw material 2 is at least one of general garbage and soft plastic raw material. The gasification method of the carbonaceous raw material as described.
JP2007119578A 2007-04-27 2007-04-27 Gasification method for carbonaceous raw materials Expired - Fee Related JP5374829B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007119578A JP5374829B2 (en) 2007-04-27 2007-04-27 Gasification method for carbonaceous raw materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007119578A JP5374829B2 (en) 2007-04-27 2007-04-27 Gasification method for carbonaceous raw materials

Publications (2)

Publication Number Publication Date
JP2008274124A JP2008274124A (en) 2008-11-13
JP5374829B2 true JP5374829B2 (en) 2013-12-25

Family

ID=40052518

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007119578A Expired - Fee Related JP5374829B2 (en) 2007-04-27 2007-04-27 Gasification method for carbonaceous raw materials

Country Status (1)

Country Link
JP (1) JP5374829B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5829887A (en) * 1981-08-14 1983-02-22 Hitachi Ltd Coal gasifier
JPS60161151U (en) * 1984-04-02 1985-10-26 バブコツク日立株式会社 Coal spouted bed gasifier
JP2942083B2 (en) * 1992-12-17 1999-08-30 新日本製鐵株式会社 Slag discharge structure of coal gasifier
JP3600329B2 (en) * 1995-11-01 2004-12-15 三菱重工業株式会社 Slag discharger
JP3964043B2 (en) * 1998-04-13 2007-08-22 新日本製鐵株式会社 Waste disposal method
JPH11294749A (en) * 1998-04-17 1999-10-29 Mitsubishi Heavy Ind Ltd Slag discharge method of swirling melting furnace and swirling melting furnace

Also Published As

Publication number Publication date
JP2008274124A (en) 2008-11-13

Similar Documents

Publication Publication Date Title
US20100156104A1 (en) Thermal Reduction Gasification Process for Generating Hydrogen and Electricity
JP4377824B2 (en) Waste melting treatment method using biomass
NO315125B1 (en) Process for the production of combustion gas from organic substances
CN109906264A (en) Method for converting carbonaceous material to producing low-tar synthesis gas body
JPWO2012161203A1 (en) Waste melting treatment method and coal coke usage reduction method for waste melting furnace
JP4855539B2 (en) Biomass utilization apparatus using pulverized coal combustion boiler and biomass utilization method using the same
JP4731988B2 (en) Gasification method and apparatus for carbonaceous resources
JP4191636B2 (en) Waste melting treatment method using bulk biomass
JP5374829B2 (en) Gasification method for carbonaceous raw materials
JP5020779B2 (en) Carbonaceous raw material gasification apparatus and gasification method
JP2004217868A (en) Coal thermal hydrocracking process
JP2006124496A (en) Device and method for thermally co-decomposing coal with biomass
JP2010222544A (en) Method for operating fluidized bed gasification furnace, and fluidized bed gasification furnace
JP3914474B2 (en) Gasification method and apparatus for carbonaceous resources
JP2007238782A (en) Method for pyrolyzing carbonaceous raw material
CN111471489A (en) Method and device for preparing synthesis gas from carbon-containing solid waste
RU2680135C1 (en) Device and method of plasma gasification of a carbon-containing material and unit for generation of thermal/electric energy in which the device is used
JP4589226B2 (en) Method for producing fuel carbide and fuel gas
JP6168287B2 (en) Waste melting treatment method
JP4811597B2 (en) Simultaneous treatment of combustible waste and low calorific value waste
JP4993460B2 (en) Method for thermal decomposition of carbonaceous raw materials
JP4767701B2 (en) Manufacturing method of pulverized coal for blowing blast furnace tuyere
JP2004075852A (en) Method for gasifying carbonaceous resource and apparatus therefor
CA3172343C (en) Waste processing system
JP2008169354A (en) Process and apparatus for thermal hydrocracking of coal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090915

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120904

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121102

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130827

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130909

R151 Written notification of patent or utility model registration

Ref document number: 5374829

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees