JP5373429B2 - Substrate drying apparatus and substrate drying method - Google Patents

Substrate drying apparatus and substrate drying method Download PDF

Info

Publication number
JP5373429B2
JP5373429B2 JP2009041797A JP2009041797A JP5373429B2 JP 5373429 B2 JP5373429 B2 JP 5373429B2 JP 2009041797 A JP2009041797 A JP 2009041797A JP 2009041797 A JP2009041797 A JP 2009041797A JP 5373429 B2 JP5373429 B2 JP 5373429B2
Authority
JP
Japan
Prior art keywords
substrate
drying
nitrogen gas
freezing
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009041797A
Other languages
Japanese (ja)
Other versions
JP2010199261A (en
Inventor
勝彦 宮
Original Assignee
大日本スクリーン製造株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大日本スクリーン製造株式会社 filed Critical 大日本スクリーン製造株式会社
Priority to JP2009041797A priority Critical patent/JP5373429B2/en
Publication of JP2010199261A publication Critical patent/JP2010199261A/en
Application granted granted Critical
Publication of JP5373429B2 publication Critical patent/JP5373429B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a substrate drier and a substrate drying method which are capable of successfully drying a substrate by removing a liquid attached on a substrate surface in an atmosphere at an atmospheric pressure. <P>SOLUTION: Nitrogen gas for freeze dry having a temperature lower than the freezing-point of DIW constructing a freezing film 12 and having a dew-point lower than the temperature of the freezing film 12 is continuously supplied toward the substrate surface Wf. Consequently, the partial pressure of the water vapor in the nitrogen gas for freeze dry is lower than the vapor pressure (sublimation pressure) of the freezing film 12, whereby sublimation dry goes on. In addition, the water vapor component generated by the sublimation is removed from the substrate surface Wf together with the flow of the nitrogen gas for freeze dry, whereby the water vapor component can securely be prevented from returning to the liquid phase and the solid phase and reattaching to the substrate surface Wf. In this manner, a rinse liquid attached on the substrate surface Wf can successfully be removed in an atmosphere at an atmospheric pressure for drying the substrate W. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

この発明は、半導体ウエハ、フォトマスク用ガラス基板、液晶表示用ガラス基板、プラズマ表示用ガラス基板、FED(Field Emission Display)用基板、光ディスク用基板、磁気ディスク用基板、光磁気ディスク用基板などの各種基板(以下、単に「基板」という)を乾燥させる基板乾燥装置および基板乾燥方法に関するものである。   The present invention relates to a semiconductor wafer, a glass substrate for photomask, a glass substrate for liquid crystal display, a glass substrate for plasma display, a substrate for FED (Field Emission Display), an optical disk substrate, a magnetic disk substrate, a magneto-optical disk substrate, etc. The present invention relates to a substrate drying apparatus and a substrate drying method for drying various substrates (hereinafter simply referred to as “substrates”).
半導体装置や液晶表示装置などの電子部品の製造工程では、基板の表面に成膜やエッチングなどの処理を繰り返し施して微細パターンを形成していく工程が含まれる。ここで、微細加工を良好に行うためには基板表面を清浄な状態に保つ必要があり、必要に応じて基板表面に対して洗浄処理が行われる。そして、洗浄処理後に、基板表面に付着しているDIW(deionized Water:脱イオン水)などの液体を除去して基板を乾燥させる必要がある。この乾燥時における重要な課題のひとつが基板表面に形成されているパターンを倒壊させずに基板乾燥を行うことである。この課題を解消する方法として昇華乾燥技術が注目されている。この昇華乾燥技術は、例えば特許文献1や特許文献2に記載されているように、基板表面に付着するDIWなどの液体を処理室内で凍結させた後に、その処理室内を減圧して凍結体を昇華させるものである。   The manufacturing process of an electronic component such as a semiconductor device or a liquid crystal display device includes a step of repeatedly forming a fine pattern by repeatedly performing processes such as film formation and etching on the surface of the substrate. Here, in order to perform fine processing satisfactorily, it is necessary to keep the substrate surface clean, and a cleaning process is performed on the substrate surface as necessary. After the cleaning process, it is necessary to remove the liquid such as DIW (deionized water) adhering to the substrate surface and dry the substrate. One of the important issues during drying is to dry the substrate without collapsing the pattern formed on the substrate surface. Sublimation drying techniques are attracting attention as a method for solving this problem. In this sublimation drying technique, as described in, for example, Patent Document 1 and Patent Document 2, after a liquid such as DIW adhering to the substrate surface is frozen in the processing chamber, the processing chamber is decompressed to freeze the frozen body. It is to sublimate.
特開平4−242930号公報(図2)JP-A-4-242930 (FIG. 2) 特開平4−331956号公報(図1)Japanese Patent Laid-Open No. 4-331958 (FIG. 1)
上記従来技術では、処理室内の減圧処理が必須であり、大気圧状態で基板乾燥を行うことができず、同一装置内で他の基板処理を連続的に行うことができない。例えばDIWなどの純水を用いた基板を洗浄するのに続き、基板洗浄直後のまま基板乾燥を行うことは難しい。また、処理室内を減圧させる必要があるため、処理室の気密性を確保するとともに、処理室内を減圧するための真空ポンプやバルブなどを設ける必要がある。その結果、基板乾燥装置の大型化や高コスト化を招いている。   In the above prior art, the decompression process in the processing chamber is indispensable, the substrate cannot be dried at atmospheric pressure, and other substrate processes cannot be performed continuously in the same apparatus. For example, after cleaning a substrate using pure water such as DIW, it is difficult to dry the substrate immediately after cleaning the substrate. In addition, since it is necessary to reduce the pressure in the processing chamber, it is necessary to ensure airtightness in the processing chamber and to provide a vacuum pump or a valve for reducing the pressure in the processing chamber. As a result, the substrate drying apparatus is increased in size and cost.
この発明は、上記課題に鑑みなされたものであり、基板表面に付着した液体を大気圧雰囲気で除去して基板を良好に乾燥させることができる基板乾燥装置および基板乾燥方法を提供することを目的とする。   The present invention has been made in view of the above problems, and an object of the present invention is to provide a substrate drying apparatus and a substrate drying method capable of satisfactorily drying a substrate by removing liquid adhering to the substrate surface in an atmospheric pressure atmosphere. And
この発明にかかる基板乾燥装置は、上記目的を達成するため、基板表面上の液体を凍結させ、基板表面上に液体の凍結体を形成する凍結手段と、基板表面に向けて液体の凝固点よりも低い温度でかつ凍結体の温度よりも低い露点を有する乾燥用気体を継続して供給して凍結体を昇華乾燥させる昇華乾燥手段と、基板表面と同等以上の大きさの基板表面と対向する面を有する遮断部材と、を備え、乾燥用気体は、基板表面と、基板表面に近接配置された遮断部材との間の空間に供給されることを特徴としている。また、この発明にかかる基板乾燥方法は、上記目的を達成するため、基板表面上の液体を凍結させ、基板表面上に液体の凍結体を形成した後、基板表面と同等以上の大きさの基板表面と対向する面を有するとともに中心部に開口を有する遮断部材を基板表面に近接配置し、開口から基板表面に向けて液体の凝固点よりも低い温度でかつ凍結体の温度よりも低い露点を有する乾燥用気体を継続して供給して凍結体を昇華乾燥させることを特徴としている。 In order to achieve the above object, a substrate drying apparatus according to the present invention freezes a liquid on a substrate surface and forms a frozen body of the liquid on the substrate surface, and a freezing point of the liquid toward the substrate surface. Sublimation drying means for continuously supplying a drying gas having a dew point lower than the temperature of the frozen body to sublimate and dry the frozen body, and a surface facing the substrate surface having a size equal to or larger than the substrate surface The drying gas is supplied to a space between the substrate surface and the blocking member disposed in proximity to the substrate surface . In order to achieve the above object, the substrate drying method according to the present invention freezes the liquid on the substrate surface and forms a frozen body of the liquid on the substrate surface, and then a substrate having a size equal to or larger than the substrate surface. A blocking member having a surface facing the surface and having an opening at the center is disposed close to the substrate surface, and has a dew point that is lower than the freezing point of the liquid and lower than the temperature of the frozen body from the opening toward the substrate surface. The drying gas is continuously supplied to sublimate and dry the frozen body.
このように構成された発明(基板乾燥装置および基板乾燥方法)では、基板表面上の液体が凍結されて凍結体が形成された後に、凍結体が昇華されて基板乾燥が実行されるが、この点で従来技術と共通する。しかしながら、大気圧雰囲気で凍結体を昇華させている点で従来技術と大きく相違する。すなわち本発明では、液体の凝固点よりも低い温度の乾燥用気体が基板表面に供給されて凍結体が液相に戻るのを防止している。また、詳しくは後で説明するが、当該乾燥用気体の露点は凍結体の温度よりも低いため、乾燥用気体中の水蒸気の分圧は凍結体の蒸気圧(昇華圧)よりも低くなり昇華乾燥が発生する。しかも、凍結体の昇華乾燥により凍結膜近傍の乾燥用気体中の水蒸気の分圧は一時的に増加かも知れないが、フレッシュな乾燥用気体が継続して供給されるため、凍結膜近傍での乾燥用気体中の水蒸気の分圧は凍結体の蒸気圧(昇華圧)よりも低い状態に維持され、昇華乾燥が継続して進行していく。しかも、昇華により発生した液体蒸気成分は乾燥用気体の気流に乗って基板表面から取り除かれるため、液体蒸気成分が液相や固相に戻り基板表面に再付着するのを確実に防止することができる。このように大気圧雰囲気で凍結体が液相を経由することなく固相から気相に昇華されるとともに乾燥用気体と一緒に基板表面から除去されて基板が乾燥される。   In the invention thus configured (substrate drying apparatus and substrate drying method), after the liquid on the substrate surface is frozen to form a frozen body, the frozen body is sublimated and substrate drying is performed. In common with the prior art. However, it is greatly different from the prior art in that the frozen body is sublimated in an atmospheric pressure atmosphere. In other words, in the present invention, the drying gas having a temperature lower than the freezing point of the liquid is supplied to the substrate surface to prevent the frozen body from returning to the liquid phase. As will be described in detail later, since the dew point of the drying gas is lower than the temperature of the frozen body, the partial pressure of water vapor in the drying gas is lower than the vapor pressure (sublimation pressure) of the frozen body and sublimates. Drying occurs. Moreover, although the partial pressure of water vapor in the drying gas near the frozen membrane may temporarily increase due to sublimation drying of the frozen body, since fresh drying gas is continuously supplied, The partial pressure of water vapor in the drying gas is maintained lower than the vapor pressure (sublimation pressure) of the frozen body, and sublimation drying continues. Moreover, since the liquid vapor component generated by sublimation is removed from the substrate surface by riding on the air flow of the drying gas, it is possible to reliably prevent the liquid vapor component from returning to the liquid phase or solid phase and reattaching to the substrate surface. it can. In this manner, the frozen body is sublimated from the solid phase to the gas phase without passing through the liquid phase in an atmospheric pressure atmosphere, and is removed from the substrate surface together with the drying gas to be dried.
ここで、液体として例えば純水を用いることができる。また、乾燥用気体として例えば窒素ガスを用いることができ、温度が−60゜Cの窒素ガスを生成し供給してもよい。さらに、昇華乾燥中において、乾燥用気体中の水蒸気の分圧が凍結体の蒸気圧よりも低い状況が維持されることで昇華乾燥が確実に、しかも連続して行われる。   Here, for example, pure water can be used as the liquid. Further, for example, nitrogen gas can be used as the drying gas, and nitrogen gas having a temperature of −60 ° C. may be generated and supplied. Further, during the sublimation drying, the state in which the partial pressure of water vapor in the drying gas is lower than the vapor pressure of the frozen body is maintained, so that the sublimation drying is performed reliably and continuously.
以上のように、本発明によれば、基板表面上の凍結体に対し、当該凍結体を構成する液体の凝固点よりも低い温度でかつ凍結体の温度よりも低い露点を有する乾燥用気体を継続して供給して凍結体を昇華乾燥させているため、基板表面に付着した液体を大気圧雰囲気で除去して基板を良好に乾燥させることができる。   As described above, according to the present invention, the drying gas having a dew point lower than the freezing point of the liquid constituting the frozen body and lower than the temperature of the frozen body is continuously applied to the frozen body on the substrate surface. Since the frozen body is sublimated and dried by supplying the liquid, the liquid adhering to the substrate surface can be removed in an atmospheric pressure atmosphere to dry the substrate satisfactorily.
この発明にかかる基板乾燥装置の第1実施形態を装備した基板処理装置を示す図である。It is a figure which shows the substrate processing apparatus equipped with 1st Embodiment of the substrate drying apparatus concerning this invention. 図1の基板処理装置の制御構成を示すブロック図である。It is a block diagram which shows the control structure of the substrate processing apparatus of FIG. ガス冷却ユニットおよび配管機構を示す図である。It is a figure which shows a gas cooling unit and a piping mechanism. 図1の基板処理装置の動作を模式的に示す図である。It is a figure which shows typically operation | movement of the substrate processing apparatus of FIG. 水、氷の蒸気圧曲線である。It is a vapor pressure curve of water and ice. この発明にかかる基板乾燥装置の第2実施形態を装備した基板処理装置を示す図である。It is a figure which shows the substrate processing apparatus equipped with 2nd Embodiment of the substrate drying apparatus concerning this invention. 図6に示す基板処理装置の動作を模式的に示す図である。It is a figure which shows typically operation | movement of the substrate processing apparatus shown in FIG. この発明にかかる基板乾燥装置の第3実施形態の動作を模式的に示す図である。It is a figure which shows typically operation | movement of 3rd Embodiment of the board | substrate drying apparatus concerning this invention. この発明にかかる基板乾燥装置の第4実施形態の動作を模式的に示す図である。It is a figure which shows typically operation | movement of 4th Embodiment of the board | substrate drying apparatus concerning this invention.
図1はこの発明にかかる基板乾燥装置の第1実施形態を装備した基板処理装置を示す図であり、図2は図1の基板処理装置の制御構成を示すブロック図である。この基板処理装置は半導体ウエハ等の基板Wの表面Wfをリンス処理する枚葉式の基板処理装置であり、当該リンス処理後に昇華乾燥を用いて基板Wを乾燥させる。   FIG. 1 is a diagram showing a substrate processing apparatus equipped with a first embodiment of a substrate drying apparatus according to the present invention, and FIG. 2 is a block diagram showing a control configuration of the substrate processing apparatus of FIG. This substrate processing apparatus is a single-wafer type substrate processing apparatus for rinsing the surface Wf of a substrate W such as a semiconductor wafer, and the substrate W is dried by sublimation drying after the rinsing process.
この基板処理装置は、基板Wに対して洗浄処理を施す処理空間をその内部に有する処理チャンバー1と、装置全体を制御する制御ユニット4とを備えている。この処理チャンバー1内には、スピンチャック2とDIW吐出ノズル3と遮断部材9とが設けられている。スピンチャック2は、基板Wの表面Wfを上方に向けて略水平姿勢に保持した状態で、基板Wを回転させるものである。DIW吐出ノズル3は、スピンチャック2に保持された基板Wの表面Wfに向けてDIWを吐出するものである。遮断部材9は、スピンチャック2の上方に、スピンチャック2に保持された基板Wの表面Wfに対向して配置されている。   The substrate processing apparatus includes a processing chamber 1 having a processing space for performing a cleaning process on the substrate W, and a control unit 4 for controlling the entire apparatus. In the processing chamber 1, a spin chuck 2, a DIW discharge nozzle 3, and a blocking member 9 are provided. The spin chuck 2 rotates the substrate W in a state where the surface Wf of the substrate W is held upward in a substantially horizontal posture. The DIW discharge nozzle 3 discharges DIW toward the surface Wf of the substrate W held by the spin chuck 2. The blocking member 9 is disposed above the spin chuck 2 so as to face the surface Wf of the substrate W held by the spin chuck 2.
上記スピンチャック2の中心軸21の上端部には、円板状のスピンベース23がネジなどの締結部品によって固定されている。この中心軸21はモータを含むチャック回転機構22の回転軸に連結されている。そして、制御ユニット4からの動作指令に応じてチャック回転機構22が駆動されると、中心軸21に固定されたスピンベース23が回転中心A0を中心に回転する。   A disc-shaped spin base 23 is fixed to the upper end portion of the central shaft 21 of the spin chuck 2 by fastening parts such as screws. The central shaft 21 is connected to a rotation shaft of a chuck rotation mechanism 22 including a motor. When the chuck rotating mechanism 22 is driven in accordance with an operation command from the control unit 4, the spin base 23 fixed to the central shaft 21 rotates around the rotation center A0.
スピンベース23の周縁部付近には、基板Wの周縁部を把持するための複数個のチャックピン24が立設されている。チャックピン24は、円形の基板Wを確実に保持するために3個以上設けてあればよく、スピンベース23の周縁部に沿って等角度間隔で配置されている。各チャックピン24のそれぞれは、基板Wの周縁部を下方から支持する基板支持部と、基板支持部に支持された基板Wの外周端面を押圧して基板Wを保持する基板保持部とを備えている。各チャックピン24は、基板保持部が基板Wの外周端面を押圧する押圧状態と、基板保持部が基板Wの外周端面から離れる解放状態との間を切り替え可能に構成されている。   Near the periphery of the spin base 23, a plurality of chuck pins 24 for holding the periphery of the substrate W are provided upright. Three or more chuck pins 24 may be provided to securely hold the circular substrate W, and are arranged at equiangular intervals along the peripheral edge of the spin base 23. Each of the chuck pins 24 includes a substrate support portion that supports the peripheral portion of the substrate W from below, and a substrate holding portion that holds the substrate W by pressing the outer peripheral end surface of the substrate W supported by the substrate support portion. ing. Each chuck pin 24 is configured to be switchable between a pressing state in which the substrate holding portion presses the outer peripheral end surface of the substrate W and a released state in which the substrate holding portion is separated from the outer peripheral end surface of the substrate W.
そして、スピンベース23に対して基板Wが受渡しされる際には、各チャックピン24を解放状態とし、基板Wに対してリンス処理を行う際には、各チャックピン24を押圧状態とする。各チャックピン24を押圧状態とすると、各チャックピン24は基板Wの周縁部を把持して、基板Wがスピンベース23から所定間隔を隔てて略水平姿勢に保持されることとなる。これにより、基板Wは、その表面Wfを上方に向け、裏面Wbを下方に向けた状態で保持される。なお、この実施形態では、基板Wの表面Wfに微細パターンが形成されており、表面Wfがパターン形成面となっている。   Then, when the substrate W is delivered to the spin base 23, each chuck pin 24 is in a released state, and when the rinse process is performed on the substrate W, each chuck pin 24 is in a pressed state. When each chuck pin 24 is in a pressed state, each chuck pin 24 grips the peripheral edge of the substrate W, and the substrate W is held in a substantially horizontal posture at a predetermined interval from the spin base 23. As a result, the substrate W is held with the front surface Wf facing upward and the back surface Wb facing downward. In this embodiment, a fine pattern is formed on the surface Wf of the substrate W, and the surface Wf is a pattern formation surface.
DIW吐出ノズル3をスキャン駆動するための駆動源として、スピンチャック2の周方向外側にノズル駆動用回転モータ31が設けられている。この回転モータ31には回転軸33が接続され、この回転軸33にはアーム35が水平方向に延びるように接続されており、このアーム35の先端に上記DIW吐出ノズル3が取り付けられている。そして、制御ユニット4からの動作指令に応じて回転モータ31が駆動されると、アーム35が回転軸33回りに揺動することとなる。   A nozzle driving rotary motor 31 is provided on the outer side in the circumferential direction of the spin chuck 2 as a driving source for scanning the DIW discharge nozzle 3. A rotary shaft 33 is connected to the rotary motor 31, and an arm 35 is connected to the rotary shaft 33 so as to extend in the horizontal direction, and the DIW discharge nozzle 3 is attached to the tip of the arm 35. When the rotary motor 31 is driven in accordance with an operation command from the control unit 4, the arm 35 swings around the rotary shaft 33.
上記遮断部材9は、中心部に開口を有する円板状に形成されている。遮断部材9の下面は、基板Wの表面Wfと略平行に対向する基板対向面となっており、基板Wの直径と同等以上の大きさに形成されている。遮断部材9は略円筒形状を有する支持軸91の下端部に略水平に取り付けられている。この支持軸91は、水平方向に延びるアーム92により保持されている。また、アーム92には、遮断部材昇降機構94が接続されており、制御ユニット4からの動作指令に応じて、遮断部材9をスピンベース23に近接させたり、逆に離間させる。具体的には、制御ユニット4は、遮断部材昇降機構94の動作を制御して、基板処理装置に対して基板Wを搬入出させる際には、遮断部材9をスピンチャック2の上方の離間位置(図1に示す位置)に上昇させる一方、基板Wに対して後述する凍結処理、乾燥処理および結露防止処理を施す際には、遮断部材9をスピンチャック2に保持された基板Wの表面Wfのごく近傍に設定された対向位置まで下降させる。   The blocking member 9 is formed in a disc shape having an opening at the center. The lower surface of the blocking member 9 is a substrate facing surface that faces the surface Wf of the substrate W substantially in parallel, and is formed to have a size equal to or larger than the diameter of the substrate W. The blocking member 9 is attached substantially horizontally to the lower end portion of the support shaft 91 having a substantially cylindrical shape. The support shaft 91 is held by an arm 92 extending in the horizontal direction. The arm 92 is connected to a blocking member elevating mechanism 94, and the blocking member 9 is brought close to the spin base 23 or separated from the spin base 23 according to an operation command from the control unit 4. Specifically, the control unit 4 controls the operation of the blocking member elevating mechanism 94 to move the blocking member 9 away from the spin chuck 2 when the substrate W is carried in and out of the substrate processing apparatus. While the substrate W is raised (position shown in FIG. 1), the surface Wf of the substrate W held by the spin chuck 2 is used when the substrate W is subjected to a freezing process, a drying process, and a dew condensation prevention process described later. Lower to the opposite position set in the immediate vicinity.
支持軸91は中空になっており、その内部にガス供給管95挿通されるとともに、当該ガス供給管95にガス供給管96が挿通されて、いわゆる二重管構造となっている。そして、ガス供給管96に対して凍結乾燥用の窒素ガス供給部64が接続されている。この凍結乾燥用窒素ガス供給部64は、制御ユニット4からの動作指令に応じてリンス液(DIW)の液膜の凝固点よりも低温であり、しかも後述するようにして形成されるDIWの凍結膜の温度(例えば−20゜C)よりも低い露点を有する凍結乾燥用窒素ガス、例えば−60゜Cの窒素ガスをガス供給管96に供給するものであり、当該凍結乾燥用窒素ガスを得るためにガス冷却ユニット640を有している。   The support shaft 91 is hollow, and the gas supply pipe 95 is inserted into the support shaft 91, and the gas supply pipe 96 is inserted into the gas supply pipe 95 to form a so-called double pipe structure. A nitrogen gas supply unit 64 for lyophilization is connected to the gas supply pipe 96. The freeze-drying nitrogen gas supply unit 64 is at a temperature lower than the freezing point of the liquid film of the rinsing liquid (DIW) in response to an operation command from the control unit 4 and is formed as described later. A freeze-drying nitrogen gas having a dew point lower than the temperature (for example, −20 ° C.), for example, −60 ° C. nitrogen gas is supplied to the gas supply pipe 96 to obtain the freeze-drying nitrogen gas. The gas cooling unit 640 is included.
図3はガス冷却ユニットおよび配管機構を示す図である。ガス冷却ユニット640では、容器641は内部に液体窒素を貯留するタンク構造を有しており、液体窒素温度に耐えうる材料、例えば、ガラス、石英またはHDPE(高密度ポリエチレン:High Density Polyethylene)により形成されている。なお、容器641を断熱容器で覆う二重構造を採用してもよい。この場合、外部容器は、処理チャンバ外部の雰囲気と容器641との間での熱移動を抑制するために、断熱性の高い材料、例えば発泡性樹脂やPVC(ポリ塩化ビニル樹脂:polyvinyl chloride)などにより形成するのが好適である。   FIG. 3 shows a gas cooling unit and a piping mechanism. In the gas cooling unit 640, the container 641 has a tank structure that stores liquid nitrogen therein, and is formed of a material that can withstand the liquid nitrogen temperature, such as glass, quartz, or HDPE (High Density Polyethylene). Has been. In addition, you may employ | adopt the double structure which covers the container 641 with a heat insulation container. In this case, the outer container is made of a highly heat-insulating material such as foamable resin or PVC (polyvinyl chloride) in order to suppress heat transfer between the atmosphere outside the processing chamber and the container 641. It is preferable to form by.
容器641には、液体窒素を取り入れる液体窒素導入口643が設けられている。そして、該導入口643を介して液体窒素供給ユニット(図示省略)から液体窒素が容器641内に導入される。また、容器641内には液面センサ(図示省略)が設けられて、容器内の液体窒素の量を一定に保っている。   The container 641 is provided with a liquid nitrogen inlet 643 for taking in liquid nitrogen. Then, liquid nitrogen is introduced into the container 641 from the liquid nitrogen supply unit (not shown) through the introduction port 643. A liquid level sensor (not shown) is provided in the container 641 to keep the amount of liquid nitrogen in the container constant.
また、容器641の内部には、ステンレス、銅などの金属管で形成されたコイル状の熱交換パイプ647がガス通送路として設けられている。熱交換パイプ647は容器641に貯留された液体窒素に浸漬されており、その内部には窒素ガス供給ユニット(図示省略)から窒素ガスが供給されている。これにより、窒素ガスが液体窒素により冷やされて凍結乾燥用窒素ガスとして出力される。すなわち、この実施形態では、液体窒素を貯留する容器641およびその内部に設けられた熱交換パイプ647が熱交換器を構成している。   In addition, a coil-shaped heat exchange pipe 647 formed of a metal pipe such as stainless steel or copper is provided as a gas delivery path inside the container 641. The heat exchange pipe 647 is immersed in liquid nitrogen stored in the container 641, and nitrogen gas is supplied into the inside from a nitrogen gas supply unit (not shown). As a result, the nitrogen gas is cooled by liquid nitrogen and output as lyophilized nitrogen gas. That is, in this embodiment, the container 641 for storing liquid nitrogen and the heat exchange pipe 647 provided therein constitute a heat exchanger.
上記のよう構成されたガス冷却ユニット640は配管機構7の二重配管71を介してガス供給管96と接続されている。この二重配管71は、図3に示すように、内部に凍結乾燥用窒素ガスを通送する内管711と、断熱性樹脂により形成された外管712とで構成されており、ガス供給管96に到達する前に凍結乾燥用窒素ガスの温度が上昇するのを防止する。より詳しくは、外管712はPFA(テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合樹脂:polymer of tetrafluoroethylene and perfluoroalkylvinylether)製の蛇腹構造を有するフレキシブルキューブ構造を有しており、当該外管712内にPFA製の内管711が遊挿されるとともに、図示を省略するスペーサにより内管711が外管712の中心部に位置して外管712と接触するのを防止している。また、この二重配管71の両開放端のうち冷却ユニット側開放端部はコネクタ73、75およびユニオン74によりガス冷却ユニット640に接続される一方、遮断部材側開放端部がPFA製のレデューシングユニオン76、PTFE(ポリテトラフルオロエチレン:polytetrafluoroethylene)製のスリーブキャップ77、PFA製のコネクタ78、79によりガス供給管96と接続されており、二重配管71の両端部は封止されている。そして、二重配管71の内部、つまり外管712の内部が排気されて減圧され、これによって断熱性が高められている。こうして、ガス冷却ユニット640で冷却された凍結乾燥用窒素ガスの温度上昇を抑制しながら凍結乾燥用窒素ガスをガス供給管96に供給可能となっている。   The gas cooling unit 640 configured as described above is connected to the gas supply pipe 96 via the double pipe 71 of the pipe mechanism 7. As shown in FIG. 3, the double pipe 71 is composed of an inner pipe 711 for passing a freeze-drying nitrogen gas and an outer pipe 712 formed of a heat insulating resin. Before reaching 96, the temperature of the freeze-drying nitrogen gas is prevented from rising. More specifically, the outer tube 712 has a flexible cube structure having a bellows structure made of PFA (tetrafluoroethylene and perfluoroalkylvinylether), and the outer tube 712 has a PFA. The made inner tube 711 is loosely inserted, and a spacer (not shown) prevents the inner tube 711 from being in the center of the outer tube 712 and coming into contact with the outer tube 712. Of the open ends of the double pipe 71, the open end on the cooling unit side is connected to the gas cooling unit 640 by the connectors 73 and 75 and the union 74, while the open end on the blocking member side is made of PFA. It is connected to the gas supply pipe 96 by a single union 76, a PTFE (polytetrafluoroethylene) sleeve cap 77, and PFA connectors 78 and 79, and both ends of the double pipe 71 are sealed. . The inside of the double pipe 71, that is, the inside of the outer pipe 712 is exhausted and depressurized, thereby improving the heat insulation. Thus, the freeze-drying nitrogen gas can be supplied to the gas supply pipe 96 while suppressing the temperature rise of the freeze-drying nitrogen gas cooled by the gas cooling unit 640.
図1に戻って構成説明を続ける。このガス供給管96の下方端部は遮断部材9の開口に延設されるとともに、その先端に凍結乾燥用窒素ガス吐出ノズル97が設けられている。そして、次に説明するように、液膜を凍結する凍結処理および液膜を昇華乾燥する乾燥処理において低温の凍結乾燥用窒素ガスを基板表面Wfに向けて供給する。   Returning to FIG. A lower end portion of the gas supply pipe 96 extends to the opening of the blocking member 9, and a freeze-drying nitrogen gas discharge nozzle 97 is provided at the tip thereof. Then, as described below, low-temperature lyophilization nitrogen gas is supplied toward the substrate surface Wf in the freezing process for freezing the liquid film and the drying process for sublimating and drying the liquid film.
一方、二重管構造を形成するもう一方のガス供給管95は常温窒素ガス供給部65に接続されている。この常温窒素ガス供給部65は、常温の窒素ガスを供給するもので、基板Wに対する乾燥処理後に実行される結露防止処理時に、遮断部材9と基板Wの表面Wfとの間に形成される空間に向けてガス供給管95から常温の窒素ガスを供給する。なお、この実施形態では、常温窒素ガス供給部65から結露防止用ガスとして常温窒素ガスを供給しているが、常温の空気や他の不活性ガスなどを供給するようにしてもよい。また、結露防止用ガスの温度は常温に限定されるものではなく、第2実施形態に示すように加熱したものを用いてもよい。つまり、常温以上の空気や不活性ガス(窒素ガスを含む)を結露防止用ガスとして用いることができる。   On the other hand, the other gas supply pipe 95 forming the double pipe structure is connected to the room temperature nitrogen gas supply section 65. The room temperature nitrogen gas supply unit 65 supplies room temperature nitrogen gas, and is a space formed between the blocking member 9 and the surface Wf of the substrate W during the dew condensation prevention process performed after the drying process on the substrate W. The nitrogen gas at room temperature is supplied from the gas supply pipe 95 toward the head. In this embodiment, the room temperature nitrogen gas is supplied from the room temperature nitrogen gas supply unit 65 as the dew condensation preventing gas. However, room temperature air or other inert gas may be supplied. Further, the temperature of the dew condensation preventing gas is not limited to room temperature, and a heated gas as shown in the second embodiment may be used. That is, air at room temperature or higher or an inert gas (including nitrogen gas) can be used as the dew condensation preventing gas.
次に上記のように構成された基板処理装置の動作について図4および図5を参照しながら説明する。図4は図1の基板処理装置の動作を模式的に示す図である。また、図5は水、氷の蒸気圧曲線である。この装置では、図4(a)に示すように、基板搬入時には、遮断部材9はスピンチャック2の上方の離間位置に退避して基板Wとの干渉を防止しており、基板表面Wfを上方に向けた状態で表面Wfがフッ酸等の薬液処理が施された基板Wが装置内に搬入され、スピンチャック2に保持される。   Next, the operation of the substrate processing apparatus configured as described above will be described with reference to FIGS. FIG. 4 is a diagram schematically showing the operation of the substrate processing apparatus of FIG. FIG. 5 is a vapor pressure curve of water and ice. In this apparatus, as shown in FIG. 4A, when the substrate is carried in, the blocking member 9 is retracted to a separated position above the spin chuck 2 to prevent interference with the substrate W, and the substrate surface Wf is moved upward. The substrate W on which the surface Wf has been treated with a chemical solution such as hydrofluoric acid is loaded into the apparatus and held by the spin chuck 2.
基板搬入が完了すると、DIW吐出ノズル3を基板Wの回転中心AO上方の回転中心位置へ移動させてリンス工程を実行する。このリンス工程では、制御ユニット4はチャック回転機構22を駆動させてスピンチャック2とともに基板Wを例えば300rpmで回転させるとともに、DIW吐出ノズル3からDIWを例えば10秒間だけ基板表面Wfに供給する。基板表面に供給されたDIWには、基板Wの回転に伴う遠心力が作用し、基板Wの径方向外向きに均一に広げられて基板表面Wfに対するリンス処理が実行される。なお、本実施形態ではリンス工程後に凍結乾燥を実行するため、リンス工程では0〜2゜C程度に温度調整されたDIWを用いるのが好ましい。というのも、水膜の温度が比較的高い場合には、水膜を凍結させる前に水膜が蒸発してしまい、パターン倒壊などの不具合が生じてしまうからである。そこで、低温DIWを用いると、基板Wおよび基板表面Wf上の液膜11の温度がDIWの凝固点近傍となり、液膜11が凍結される前に液膜11が蒸発するのを抑制してパターン倒壊のリスクを抑えることができる。また、後述する凍結処理に要する時間を短縮することも可能となる。   When the substrate loading is completed, the DIW discharge nozzle 3 is moved to the rotation center position above the rotation center AO of the substrate W to execute the rinsing process. In this rinsing step, the control unit 4 drives the chuck rotating mechanism 22 to rotate the substrate W together with the spin chuck 2 at 300 rpm, for example, and supplies DIW from the DIW discharge nozzle 3 to the substrate surface Wf for 10 seconds, for example. The DIW supplied to the substrate surface is subjected to a centrifugal force accompanying the rotation of the substrate W, and is uniformly spread outward in the radial direction of the substrate W, so that the rinsing process is performed on the substrate surface Wf. In this embodiment, since lyophilization is performed after the rinsing step, it is preferable to use DIW whose temperature is adjusted to about 0 to 2 ° C. in the rinsing step. This is because when the temperature of the water film is relatively high, the water film evaporates before freezing the water film, resulting in problems such as pattern collapse. Therefore, when the low temperature DIW is used, the temperature of the liquid film 11 on the substrate W and the substrate surface Wf becomes near the freezing point of the DIW, and the pattern collapses by suppressing the liquid film 11 from evaporating before the liquid film 11 is frozen. Risk can be reduced. In addition, the time required for the freezing process described later can be shortened.
リンス工程が完了すると、基板Wを300rpmで回転させたままDIW吐出ノズル3からのDIW供給を停止するとともにDIW吐出ノズル3を基板Wから離間した退避位置(例えば図9に示す位置)に移動させる。基板表面Wf上のDIWの一部は基板W外に振り切られ(振り切り工程)、基板表面Wfの全体に所定の厚みを有する液膜(水膜)11が形成される(図4(b))。なお、この実施形態では、振り切り工程を実施することで液膜の厚みを20μm程度に調整しているが、基板Wの回転数を制御することで液膜11を任意の値に調整することができる。   When the rinsing process is completed, the DIW supply from the DIW discharge nozzle 3 is stopped while the substrate W is rotated at 300 rpm, and the DIW discharge nozzle 3 is moved to a retracted position (for example, the position shown in FIG. 9) separated from the substrate W. . Part of DIW on the substrate surface Wf is shaken off to the outside of the substrate W (swing-off process), and a liquid film (water film) 11 having a predetermined thickness is formed on the entire substrate surface Wf (FIG. 4B). . In this embodiment, the thickness of the liquid film is adjusted to about 20 μm by performing the swing-off step. However, the liquid film 11 can be adjusted to an arbitrary value by controlling the rotation speed of the substrate W. it can.
こうして所望厚みの液膜11が形成されると、基板Wの回転が停止されるとともに、遮断部材9が対向位置まで降下され、基板表面Wfに近接配置される。これにより、基板表面Wfが遮断部材9の基板対向面に近接した状態で覆われ、基板Wの周辺雰囲気から遮断される。続いて凍結処理を実行する。すなわち、ガス冷却ユニット640に窒素ガスを送り込んで、例えば−60゜Cの凍結乾燥用窒素ガスを生成する。そして、当該凍結乾燥用窒素ガスをノズル97から基板表面Wfに供給する。これにより、基板表面Wf全面に凍結乾燥用窒素ガスを供給して液膜11を凍結させて凍結膜12を形成する(図4(c))。   When the liquid film 11 having a desired thickness is formed in this manner, the rotation of the substrate W is stopped, and the blocking member 9 is lowered to the facing position and is disposed close to the substrate surface Wf. As a result, the substrate surface Wf is covered in the state of being close to the substrate facing surface of the blocking member 9 and is blocked from the ambient atmosphere of the substrate W. Subsequently, a freezing process is executed. That is, nitrogen gas is fed into the gas cooling unit 640 to generate, for example, −60 ° C. freeze-dried nitrogen gas. Then, the freeze-drying nitrogen gas is supplied from the nozzle 97 to the substrate surface Wf. As a result, lyophilization nitrogen gas is supplied to the entire surface Wf of the substrate to freeze the liquid film 11 to form the frozen film 12 (FIG. 4C).
凍結膜12の形成後も凍結乾燥用窒素ガスを基板表面Wfに継続して供給し続ける。すると、上記凍結膜12は時間経過とともに昇華していく。これは、冷凍庫内の氷がどんどん小さくなっていく現象と同一である。すなわち、本実施形態ではガス冷却ユニット640により窒素ガスを低下させて凍結乾燥用窒素ガス中の水蒸気が凝結し始める温度、つまり露点を−60゜C程度としており、凍結乾燥用窒素ガス中の水蒸気の分圧は図5に示すように1Pa(7.5×10−3Torr)程度にまで低下している。これに対し、凍結膜12の温度は凍結乾燥用窒素ガスの温度よりも高く、本願発明者が実測したところ−20゜C程度となっている。これは、基板Wの裏面が常温雰囲気に面しており、基板裏面から基板表面Wfへの熱移動により凍結膜12の温度低下が抑制されていることに起因すると考えられる。ただし、基板表面Wfには凍結乾燥用窒素ガスが継続して供給されているため、凍結膜12が液相に変わることはなく、凍結乾燥用窒素ガスの温度Tg(本実施形態では−60゜C)とDIWの凝固点との間の温度Ts(本実施形態では−20゜C)となる。したがって、温度Tsでの凍結膜12の蒸気圧(昇華圧)、例えば−20゜Cで約100Paに対し、凍結乾燥用窒素ガス中の水蒸気の分圧は上記したように1Pa程度と非常に低く、この蒸気圧差を埋めるように昇華蒸発が生じる。しかも本実施形態では、凍結乾燥用窒素ガスは継続して供給されるため、凍結乾燥用窒素ガス中の水蒸気の分圧が凍結膜12の蒸気圧よりも低いという状況が維持されて昇華乾燥が進行していく。しかも、昇華により発生した水蒸気成分は凍結乾燥用窒素ガスの気流に乗って基板表面Wfから取り除かれるため、凍結膜12から昇華して発生した水蒸気成分が液相や固相に戻り基板表面Wfに再付着するのを確実に防止することができる。このように、本実施形態では、大気圧雰囲気で凍結膜12が液相を経由することなく気相に昇華されるとともに凍結乾燥用窒素ガスと一緒に基板表面Wfから除去されて基板Wが乾燥される(図4(d)))。 Even after the formation of the frozen film 12, the nitrogen gas for lyophilization is continuously supplied to the substrate surface Wf. Then, the frozen film 12 sublimes with time. This is the same phenomenon as the ice in the freezer gets smaller and smaller. That is, in this embodiment, the temperature at which the nitrogen gas is lowered by the gas cooling unit 640 and the water vapor in the freeze-drying nitrogen gas begins to condense, that is, the dew point is about −60 ° C. As shown in FIG. 5, the partial pressure is reduced to about 1 Pa (7.5 × 10 −3 Torr). On the other hand, the temperature of the frozen membrane 12 is higher than the temperature of the freeze-drying nitrogen gas, and is about −20 ° C. as measured by the inventor of the present application. This is presumably because the back surface of the substrate W faces a normal temperature atmosphere, and the temperature drop of the frozen film 12 is suppressed by heat transfer from the back surface of the substrate to the substrate surface Wf. However, since the freeze-drying nitrogen gas is continuously supplied to the substrate surface Wf, the frozen film 12 does not change to the liquid phase, and the temperature Tg of the freeze-drying nitrogen gas (in this embodiment, −60 °). C) and the temperature Ts (−20 ° C. in this embodiment) between the freezing point of DIW. Therefore, the vapor pressure (sublimation pressure) of the frozen film 12 at the temperature Ts, for example, about 100 Pa at −20 ° C., the partial pressure of water vapor in the freeze-drying nitrogen gas is as low as about 1 Pa as described above. Sublimation evaporation occurs to fill this vapor pressure difference. Moreover, in this embodiment, since the freeze-drying nitrogen gas is continuously supplied, the situation in which the partial pressure of water vapor in the freeze-drying nitrogen gas is lower than the vapor pressure of the frozen film 12 is maintained, and sublimation drying is performed. Progress. In addition, since the water vapor component generated by sublimation is removed from the substrate surface Wf by riding on the freeze-drying nitrogen gas stream, the water vapor component generated by sublimation from the frozen film 12 returns to the liquid phase or solid phase and returns to the substrate surface Wf. Reattachment can be surely prevented. As described above, in the present embodiment, the frozen film 12 is sublimated into the gas phase without passing through the liquid phase in the atmospheric pressure atmosphere and is removed from the substrate surface Wf together with the freeze-drying nitrogen gas to dry the substrate W. (FIG. 4D)).
基板表面Wfから凍結膜12が完全に除去されて乾燥工程が完了した時点では基板Wの温度はDIWの凝固点以下となっており、低温状態のまま基板Wを搬出すると、基板全面に結露が発生してしまう。そこで、本実施形態では乾燥工程の完了後に結露防止工程を実行している。この結露防止工程では、ガス冷却ユニット640からの凍結乾燥用窒素ガスの供給が停止されるのと入れ替えに常温窒素ガス供給部65からガス供給管95への常温窒素ガスの供給が開始される(図4(e))。このように常温窒素ガスが基板表面Wfに供給されることで基板Wの温度が常温付近まで戻される。このため、基板Wに結露が発生するのを確実に防止することができる。最後に、遮断部材9がスピンチャック2の上方の離間位置に退避した後に、処理チャンバー1から処理済の基板Wが搬出される。   At the time when the frozen film 12 is completely removed from the substrate surface Wf and the drying process is completed, the temperature of the substrate W is below the freezing point of DIW, and if the substrate W is carried out in a low temperature state, dew condensation occurs on the entire surface of the substrate. Resulting in. Therefore, in this embodiment, the condensation prevention process is executed after the drying process is completed. In this dew condensation prevention process, the supply of room temperature nitrogen gas from the room temperature nitrogen gas supply unit 65 to the gas supply pipe 95 is started instead of the supply of the lyophilization nitrogen gas from the gas cooling unit 640 being stopped ( FIG. 4 (e)). In this way, the room temperature nitrogen gas is supplied to the substrate surface Wf, whereby the temperature of the substrate W is returned to near the room temperature. For this reason, it is possible to reliably prevent dew condensation on the substrate W. Finally, after the blocking member 9 is retracted to the separation position above the spin chuck 2, the processed substrate W is unloaded from the processing chamber 1.
以上のように、この実施形態では、凍結膜12を構成するDIWの凝固点よりも低温の凍結乾燥用窒素ガスを基板表面Wfに供給して凍結膜12が液相に戻るのを防止するとともに、凍結乾燥用窒素ガスの露点を凍結膜12の温度よりも低く設定することで凍結乾燥用窒素ガス中の水蒸気の分圧を凍結膜12の蒸気圧(昇華圧)よりも低下させて昇華乾燥を実行している。また、昇華乾燥により凍結乾燥用窒素ガス中の水蒸気の分圧は瞬間的に上昇するかも知れないが、フレッシュな凍結乾燥用窒素ガスを継続して基板表面Wfに供給しているため、凍結膜12を覆う凍結乾燥用窒素ガス中の水蒸気の分圧は常に低くなり、昇華乾燥が進行していく。しかも、昇華により発生した水蒸気成分は凍結乾燥用窒素ガスの気流に乗って基板表面Wfから取り除かれるため、水蒸気成分が液相や固相に戻り基板表面Wfに再付着するのを確実に防止することができる。このように大気圧雰囲気で基板表面Wfに付着したリンス液(DIW)を良好に除去して基板Wを乾燥させることができる。   As described above, in this embodiment, nitrogen gas for lyophilization at a temperature lower than the freezing point of DIW constituting the frozen film 12 is supplied to the substrate surface Wf to prevent the frozen film 12 from returning to the liquid phase. By setting the dew point of the freeze-drying nitrogen gas to be lower than the temperature of the freeze membrane 12, the partial pressure of water vapor in the freeze-drying nitrogen gas is lowered below the vapor pressure (sublimation pressure) of the freeze membrane 12 to perform sublimation drying. Running. In addition, although the partial pressure of water vapor in the freeze-drying nitrogen gas may increase momentarily due to sublimation drying, since the fresh freeze-drying nitrogen gas is continuously supplied to the substrate surface Wf, the frozen film The partial pressure of water vapor in the freeze-drying nitrogen gas covering 12 is always low, and sublimation drying proceeds. In addition, since the water vapor component generated by sublimation is removed from the substrate surface Wf by riding on the lyophilization nitrogen gas stream, the water vapor component can be reliably prevented from returning to the liquid phase or solid phase and reattaching to the substrate surface Wf. be able to. As described above, the rinsing liquid (DIW) attached to the substrate surface Wf in the atmospheric pressure atmosphere can be satisfactorily removed and the substrate W can be dried.
上記のように、本実施形態では、常温窒素ガス供給部65およびガス供給管95が本発明の「基板温調手段」として機能して基板Wに結露が発生するのを防止している。また、凍結乾燥用窒素ガス供給部64、ガス供給管96および凍結乾燥用窒素ガス吐出ノズル97が本発明の「昇華乾燥手段」として機能しており、凍結乾燥用窒素ガスを本発明の「乾燥用気体」を基板表面Wfに供給している。また、凍結乾燥用窒素ガスはリンス処理後に基板表面Wfに対して供給されて液膜を凍結させており、凍結乾燥用窒素ガス供給部64、ガス供給管96および凍結乾燥用窒素ガス吐出ノズル97は本発明の「凍結手段」としても機能している。もちろん、次に説明するように「昇華乾燥手段」と「凍結手段」をそれぞれ分離して設けてもよい。   As described above, in this embodiment, the room temperature nitrogen gas supply unit 65 and the gas supply pipe 95 function as the “substrate temperature adjusting means” of the present invention to prevent dew condensation on the substrate W. Further, the freeze-drying nitrogen gas supply section 64, the gas supply pipe 96, and the freeze-drying nitrogen gas discharge nozzle 97 function as the “sublimation drying means” of the present invention. Gas ”is supplied to the substrate surface Wf. The freeze-drying nitrogen gas is supplied to the substrate surface Wf after the rinsing process to freeze the liquid film. The freeze-drying nitrogen gas supply unit 64, the gas supply pipe 96, and the freeze-drying nitrogen gas discharge nozzle 97 are used. Also functions as the “freezing means” of the present invention. Of course, as described below, “sublimation drying means” and “freezing means” may be provided separately.
図6はこの発明にかかる基板乾燥装置の第2実施形態を装備した基板処理装置を示す図であり、図7は図6に示す基板処理装置の動作を模式的に示す図である。この第2実施形態が第1実施形態と大きく相違する点は以下の点である。まず第1に、窒素ガス供給部64、ガス供給管96および窒素ガス吐出ノズル97が本発明の「昇華乾燥手段」としてのみ機能する一方、基板表面Wf上の液膜を凍結させるために「凍結手段」が追加されている点である。この「凍結手段」は、凍結用窒素ガス供給部(図示省略)と、ガス供給管25と、凍結用窒素ガス吐出ノズル27とで構成されている。すなわち、図6に示すように、スピンチャック2の中心軸21は円筒状の空洞を有する中空になっており、中心軸21の内部には、基板Wの裏面Wbに凍結用窒素ガスを供給するための円筒状のガス供給管25が挿通されている。ガス供給管25は、スピンチャック2に保持された基板Wの下面側である裏面Wbに近接する位置まで延びており、その先端に基板Wの下面の中央部に向けて凍結用窒素ガス供給部から送られてくる凍結用窒素ガス、例えば−20゜Cの窒素ガスを吐出するガス吐出ノズル27が設けられている。このように第2実施形態では、凍結用窒素ガスが本発明の「凍結用気体」に相当しており、DIWの凝固点よりも低く、かつ乾燥用窒素ガス(乾燥用気体)の温度よりも高い凍結用窒素ガスを基板裏面Wfに供給して液膜を凍結させる。したがって、こうして形成される凍結膜12の温度はDIWの凝固点よりも低く、かつ乾燥用窒素ガス(乾燥用気体)の露点よりも高くなる。   FIG. 6 is a view showing a substrate processing apparatus equipped with a second embodiment of the substrate drying apparatus according to the present invention, and FIG. 7 is a view schematically showing the operation of the substrate processing apparatus shown in FIG. The second embodiment is greatly different from the first embodiment in the following points. First, while the nitrogen gas supply unit 64, the gas supply pipe 96, and the nitrogen gas discharge nozzle 97 function only as the “sublimation drying means” of the present invention, the “freezing” “Means” are added. This “freezing means” includes a freezing nitrogen gas supply unit (not shown), a gas supply pipe 25, and a freezing nitrogen gas discharge nozzle 27. That is, as shown in FIG. 6, the central axis 21 of the spin chuck 2 is hollow with a cylindrical cavity, and the freezing nitrogen gas is supplied to the back surface Wb of the substrate W inside the central axis 21. A cylindrical gas supply pipe 25 is inserted therethrough. The gas supply pipe 25 extends to a position close to the back surface Wb, which is the lower surface side of the substrate W held by the spin chuck 2, and has a freezing nitrogen gas supply unit at its tip toward the center of the lower surface of the substrate W. A gas discharge nozzle 27 for discharging a freezing nitrogen gas, for example, a nitrogen gas at −20 ° C., is provided. Thus, in the second embodiment, the freezing nitrogen gas corresponds to the “freezing gas” of the present invention, which is lower than the freezing point of DIW and higher than the temperature of the drying nitrogen gas (drying gas). Nitrogen gas for freezing is supplied to the substrate back surface Wf to freeze the liquid film. Therefore, the temperature of the frozen film 12 thus formed is lower than the freezing point of DIW and higher than the dew point of the drying nitrogen gas (drying gas).
また第2の相違点は加熱窒素ガスを乾燥後の基板Wに供給して基板Wを周辺温度以上に昇温する基板温調手段を設けている点である。この「基板温調手段」は加熱された窒素ガスを供給する加熱窒素ガス供給部(図示省略)を有している。この加熱窒素ガス供給部はスピンチャック2の中心軸21の内壁面とガス供給管25の外壁面との隙間、つまり横断面リング状のガス供給路29に接続されており、ガス供給路29を介して加熱窒素ガスを基板裏面Wbに供給する。これにより基板Wは常温以上の温度に加熱される。   The second difference is that there is provided substrate temperature adjusting means for supplying heated nitrogen gas to the dried substrate W to raise the temperature of the substrate W to the ambient temperature or higher. The “substrate temperature adjusting means” has a heated nitrogen gas supply unit (not shown) for supplying heated nitrogen gas. The heated nitrogen gas supply unit is connected to a gap between the inner wall surface of the central shaft 21 of the spin chuck 2 and the outer wall surface of the gas supply pipe 25, that is, a gas supply path 29 having a ring-shaped cross section. Then, heated nitrogen gas is supplied to the substrate back surface Wb. Thereby, the substrate W is heated to a temperature equal to or higher than room temperature.
なお、その他の構成は図1に示す基板処理装置と基本的に同一であるため、以下の説明では同一符号を付して構成説明を省略する。   Since the other configuration is basically the same as that of the substrate processing apparatus shown in FIG. 1, the same reference numerals are given in the following description and the description of the configuration is omitted.
次に、上記のように構成された第2実施形態の動作について図7を参照しつつ説明する。この第2実施形態においても、第1実施形態と同様にしてリンス工程および振り切り工程が実行される。その後、次の凍結工程、乾燥工程および結露防止工程がそれぞれ実行される。   Next, the operation of the second embodiment configured as described above will be described with reference to FIG. Also in the second embodiment, the rinsing process and the swing-off process are performed in the same manner as in the first embodiment. Thereafter, the next freezing step, drying step, and dew condensation prevention step are performed.
この凍結工程では、図7(a)に示すように、基板Wを回転させるとともに遮断部材9をスピンチャック2の上方の離間位置に退避させたまま、凍結用窒素ガス供給部から凍結用窒素ガス(例えば−20°C)をノズル27から基板裏面Wbに供給する。これにより、基板W全体が冷却されるとともに基板表面Wf上の液膜(水膜)が凍結される。このように基板表面Wf上の液膜に対して直接凍結用窒素ガスを供給することなく凍結処理を行っているため、凍結処理中に液膜が乾燥されるのを確実に防止することができる。また、凍結工程中において極低温の窒素ガスを供給している第1実施形態に比べて基板Wを必要以上に冷却していないため、凍結膜12を形成するためのエネルギー効率を向上させることができる。   In this freezing step, as shown in FIG. 7A, the freezing nitrogen gas is supplied from the freezing nitrogen gas supply unit while the substrate W is rotated and the blocking member 9 is retracted to the separation position above the spin chuck 2. (For example, −20 ° C.) is supplied from the nozzle 27 to the substrate back surface Wb. As a result, the entire substrate W is cooled and the liquid film (water film) on the substrate surface Wf is frozen. Thus, since the freezing process is performed without supplying the freezing nitrogen gas directly to the liquid film on the substrate surface Wf, it is possible to reliably prevent the liquid film from being dried during the freezing process. . In addition, since the substrate W is not cooled more than necessary as compared with the first embodiment in which the cryogenic nitrogen gas is supplied during the freezing process, the energy efficiency for forming the frozen film 12 can be improved. it can.
基板表面Wf上の液膜が凍結されると、基板回転と凍結用窒素ガス供給が停止されるとともに、遮断部材9が対向位置まで降下され、基板表面Wfに近接配置される。これにより、基板表面Wfが遮断部材9の基板対向面に近接した状態で覆われ、基板Wの周辺雰囲気から遮断される。続いて第1実施形態と同様にして乾燥処理を実行する。すなわち、ガス冷却ユニット640に窒素ガスを送り込んで、例えば−60゜Cの乾燥用窒素ガスを生成する。そして、当該乾燥用窒素ガスをノズル97から基板表面Wfに連続的に供給する。これにより、凍結膜12は時間経過とともに昇華していく。(図7(b)))。   When the liquid film on the substrate surface Wf is frozen, the rotation of the substrate and the supply of the nitrogen gas for freezing are stopped, and the blocking member 9 is lowered to the facing position and is placed close to the substrate surface Wf. As a result, the substrate surface Wf is covered in the state of being close to the substrate facing surface of the blocking member 9 and is blocked from the ambient atmosphere of the substrate W. Subsequently, the drying process is executed in the same manner as in the first embodiment. That is, nitrogen gas is fed into the gas cooling unit 640 to generate, for example, −60 ° C. drying nitrogen gas. Then, the drying nitrogen gas is continuously supplied from the nozzle 97 to the substrate surface Wf. As a result, the frozen film 12 sublimes with time. (FIG. 7B)).
乾燥工程が完了すると、ガス冷却ユニット640からの凍結乾燥用窒素ガスの供給が停止されるとともに、常温窒素ガス供給部65からガス供給管95への常温窒素ガスの供給が開始される(図7(c))。また、この第2実施形態では、基板表面Wf側のみならず、基板裏面Wb側にも窒素ガスを供給している。しかも裏面側の窒素ガスは加熱窒素ガス供給部から供給される加熱窒素ガスであるため、基板Wは常温よりも高い温度に加熱される。このため、基板Wに結露が発生するのをより確実に防止することができる。もちろん、基板表面Wf側にも加熱窒素ガスを供給しても良い。最後に、遮断部材9がスピンチャック2の上方の離間位置に退避した後に、処理チャンバー1から処理済の基板Wが搬出される。   When the drying process is completed, supply of the freeze-drying nitrogen gas from the gas cooling unit 640 is stopped, and supply of the room temperature nitrogen gas from the room temperature nitrogen gas supply unit 65 to the gas supply pipe 95 is started (FIG. 7). (C)). In the second embodiment, nitrogen gas is supplied not only to the substrate front surface Wf side but also to the substrate back surface Wb side. Moreover, since the nitrogen gas on the back side is heated nitrogen gas supplied from the heated nitrogen gas supply unit, the substrate W is heated to a temperature higher than room temperature. For this reason, it can prevent more reliably that dew condensation generate | occur | produces on the board | substrate W. FIG. Of course, the heated nitrogen gas may also be supplied to the substrate surface Wf side. Finally, after the blocking member 9 is retracted to the separation position above the spin chuck 2, the processed substrate W is unloaded from the processing chamber 1.
なお、本発明は上記した実施形態に限定されるものではなく、その趣旨を逸脱しない限りにおいて上述したもの以外に種々の変更を行うことが可能である。上記実施形態で採用されたものと異なる構成の「凍結手段」や「基板温調手段」を用いてもよく、例えば図8に示すように加熱冷却機構23aを備えたスピンベース23を用いてもよく、スピンベース23が本発明の「ベース部」に相当し、スピンベース23の上面に直接基板Wを当接させたり、スピンベース23の上面に基板Wを近接配置させた状態で凍結処理や結露防止処理を行ってもよい。   The present invention is not limited to the above-described embodiment, and various modifications other than those described above can be made without departing from the spirit of the present invention. “Freezing means” or “substrate temperature adjusting means” having a configuration different from that employed in the above embodiment may be used. For example, as shown in FIG. 8, a spin base 23 equipped with a heating / cooling mechanism 23a may be used. The spin base 23 corresponds to the “base portion” of the present invention, and the substrate W is brought into direct contact with the upper surface of the spin base 23, or the freezing process is performed with the substrate W placed close to the upper surface of the spin base 23. You may perform a dew condensation prevention process.
図8はこの発明にかかる基板乾燥装置の第3実施形態の動作を模式的に示す図である。この第3実施形態では、第1実施形態と同様にしてリンス工程および振り切り工程が実行される。その後、次の凍結工程、乾燥工程および結露防止工程がそれぞれ実行される。   FIG. 8 is a diagram schematically showing the operation of the third embodiment of the substrate drying apparatus according to the present invention. In the third embodiment, the rinsing process and the swing-off process are performed in the same manner as in the first embodiment. Thereafter, the next freezing step, drying step, and dew condensation prevention step are performed.
この凍結工程では、図8(a)に示すように、基板Wを回転させるとともに遮断部材9をスピンベース23の上方の離間位置に退避させたまま、スピンベース23に内蔵された加熱冷却機構23aの冷却部が作動してスピンベース23をDIWの凝固点よりも低い温度に冷却する(スピンベース23の低温化)。これにより、基板W全体が冷却されるとともに基板表面Wf上の液膜(水膜)が凍結される。   In this freezing step, as shown in FIG. 8A, the heating / cooling mechanism 23a built in the spin base 23 is rotated while the substrate W is rotated and the blocking member 9 is retracted to the separation position above the spin base 23. The cooling portion of the spin base 23 operates to cool the spin base 23 to a temperature lower than the freezing point of DIW (lowering of the spin base 23). As a result, the entire substrate W is cooled and the liquid film (water film) on the substrate surface Wf is frozen.
その後、基板回転が停止されるとともに、遮断部材9が対向位置まで降下され、基板表面Wfに近接配置される。加熱冷却機構23aについてはそのまま作動して基板Wおよび凍結膜12の温度をDIWの凝固点よりも低く、かつ乾燥用窒素ガスの露点よりも高い温度に制御する。そして、第1実施形態と同様にして乾燥処理を実行する。すなわち、ガス冷却ユニット640に窒素ガスを送り込んで、例えば−60゜Cの乾燥用窒素ガスを生成する。そして、当該乾燥用窒素ガスをノズル97から基板表面Wfに連続的に供給する。これにより、凍結膜12は時間経過とともに昇華していく。(図8(b)))。   Thereafter, the rotation of the substrate is stopped, and the blocking member 9 is lowered to the facing position and is disposed close to the substrate surface Wf. The heating / cooling mechanism 23a operates as it is to control the temperature of the substrate W and the frozen film 12 to a temperature lower than the freezing point of DIW and higher than the dew point of the drying nitrogen gas. And a drying process is performed like 1st Embodiment. That is, nitrogen gas is fed into the gas cooling unit 640 to generate, for example, −60 ° C. drying nitrogen gas. Then, the drying nitrogen gas is continuously supplied from the nozzle 97 to the substrate surface Wf. As a result, the frozen film 12 sublimes with time. (FIG. 8B)).
乾燥工程が完了すると、ガス冷却ユニット640からの凍結乾燥用窒素ガスの供給が停止される。また、加熱冷却機構23aの冷却部の停止と入れ替えに加熱部が作動してスピンベース23を加熱して基板Wを常温以上に加熱する。このため、基板Wに結露が発生するのをより確実に防止することができる。最後に、遮断部材9がスピンベース23の上方の離間位置に退避した後に、処理チャンバー1から処理済の基板Wが搬出される。   When the drying process is completed, the supply of the freeze-drying nitrogen gas from the gas cooling unit 640 is stopped. In addition, the heating unit operates to stop and replace the cooling unit of the heating / cooling mechanism 23a to heat the spin base 23 to heat the substrate W to room temperature or higher. For this reason, it can prevent more reliably that dew condensation generate | occur | produces on the board | substrate W. FIG. Finally, after the blocking member 9 is retracted to the separation position above the spin base 23, the processed substrate W is unloaded from the processing chamber 1.
また、上記実施形態では遮断部材9を基板表面Wfに近接配置した状態で乾燥用窒素ガスをノズル97から基板表面Wfに連続的に供給して凍結膜12を乾燥させているが、例えば図9に示すように、乾燥用窒素ガスを吐出するノズル5を回転する基板Wの表面Wfに対してスキャンさせて基板表面Wf全体に乾燥用窒素ガスを供給して凍結膜12を乾燥させてもよい。すなわち、ノズル5をスキャン駆動するためにスピンチャック2の周方向外側に回転モータ51が設けられている。この回転モータ51には回転軸53が接続され、この回転軸53にはアーム55が水平方向に延びるように接続されており、このアーム55の先端に上記乾燥用窒素ガス吐出ノズル5が取り付けられている。そして、制御ユニット4からの動作指令に応じて回転モータ51が駆動されると、アーム55が回転軸53回りに揺動し、基板表面Wfに沿ってノズル5が移動する。   In the above embodiment, the nitrogen film for drying is continuously supplied from the nozzle 97 to the substrate surface Wf in a state where the blocking member 9 is disposed close to the substrate surface Wf to dry the frozen film 12. For example, FIG. As shown in FIG. 5, the frozen film 12 may be dried by causing the nozzle 5 for discharging the drying nitrogen gas to scan the surface Wf of the rotating substrate W and supplying the drying nitrogen gas to the entire substrate surface Wf. . That is, a rotation motor 51 is provided on the outer side in the circumferential direction of the spin chuck 2 in order to scan the nozzle 5. A rotary shaft 53 is connected to the rotary motor 51, and an arm 55 is connected to the rotary shaft 53 so as to extend in the horizontal direction, and the drying nitrogen gas discharge nozzle 5 is attached to the tip of the arm 55. ing. When the rotary motor 51 is driven in accordance with an operation command from the control unit 4, the arm 55 swings around the rotary shaft 53, and the nozzle 5 moves along the substrate surface Wf.
また、上記実施形態では、基板表面Wfに付着したDIWなどの純水を除去して乾燥させているが、乾燥対象はDIWなどに限定されるものではなく、他の液体であっても同様にして除去することができる。また、液膜に限定されるものではなく、液滴であっても同様にして除去することができる。   In the above embodiment, pure water such as DIW attached to the substrate surface Wf is removed and dried. However, the object to be dried is not limited to DIW, and the same applies to other liquids. Can be removed. Further, the liquid film is not limited, and even a droplet can be similarly removed.
さらに、上記実施形態では基板乾燥装置を基板処理装置に組み込み、当該基板乾燥装置によりリンス処理後の基板を乾燥させているが、本発明の適用対象はこれに限定されるものではなく、基板表面に付着する液体を除去して基板を乾燥させる基板乾燥装置全般に適用することができる。また、基板乾燥装置内で前処理工程の薬液処理手段を組み込み、薬液処理から乾燥処理までの一連の処理を装置内で続けて行うように構成する装置にも適用することができる。   Furthermore, in the above embodiment, the substrate drying apparatus is incorporated in the substrate processing apparatus, and the substrate after the rinsing process is dried by the substrate drying apparatus. However, the application target of the present invention is not limited to this, and the substrate surface The present invention can be applied to all substrate drying apparatuses that remove the liquid adhering to the substrate and dry the substrate. Further, the present invention can also be applied to an apparatus configured such that a chemical processing means in a pretreatment process is incorporated in a substrate drying apparatus and a series of processing from chemical processing to drying processing is continuously performed in the apparatus.
この発明は、半導体ウエハ、フォトマスク用ガラス基板、液晶表示用ガラス基板、プラズマ表示用ガラス基板、FED(Field Emission Display)用基板、光ディスク用基板、磁気ディスク用基板、光磁気ディスク用基板などを含む基板全般の表面を乾燥させる基板乾燥装置および基板乾燥方法に適用することができる。   The present invention relates to a semiconductor wafer, a glass substrate for photomask, a glass substrate for liquid crystal display, a glass substrate for plasma display, a substrate for FED (Field Emission Display), a substrate for optical disk, a substrate for magnetic disk, a substrate for magneto-optical disk, etc. The present invention can be applied to a substrate drying apparatus and a substrate drying method for drying the entire surface of the substrate including the substrate.
11…液膜
12…凍結膜
23…スピンベース(ベース部)
23a…加熱冷却機構(凍結手段、基板温調手段)
25…ガス供給管(凍結手段)
27…凍結用窒素ガス吐出ノズル(凍結手段)
64…窒素ガス供給部(昇華乾燥手段、凍結手段)
65…常温窒素ガス供給部(基板温調手段)
95…ガス供給管(基板温調手段)
96…ガス供給管(昇華乾燥手段、凍結手段)
97…窒素ガス吐出ノズル(昇華乾燥手段、凍結手段)
640…ガス冷却ユニット(昇華乾燥手段、凍結手段)
W…基板
Wb…基板裏面
Wf…基板表面
11 ... Liquid film 12 ... Frozen film 23 ... Spin base (base part)
23a ... Heating / cooling mechanism (freezing means, substrate temperature adjusting means)
25 ... Gas supply pipe (freezing means)
27 ... Nitrogen gas discharge nozzle for freezing (freezing means)
64 ... Nitrogen gas supply section (sublimation drying means, freezing means)
65. Room temperature nitrogen gas supply unit (substrate temperature control means)
95 ... Gas supply pipe (substrate temperature control means)
96 ... Gas supply pipe (sublimation drying means, freezing means)
97 ... Nitrogen gas discharge nozzle (sublimation drying means, freezing means)
640 ... Gas cooling unit (sublimation drying means, freezing means)
W ... Substrate Wb ... Substrate back surface Wf ... Substrate surface

Claims (10)

  1. 基板表面上の液体を凍結させ、前記基板表面上に前記液体の凍結体を形成する凍結手段と、
    前記基板表面に向けて前記液体の凝固点よりも低い温度でかつ前記凍結体の温度よりも低い露点を有する乾燥用気体を継続して供給して前記凍結体を昇華乾燥させる昇華乾燥手段と
    前記基板表面と同等以上の大きさの前記基板表面と対向する面を有する遮断部材と、
    を備え
    前記乾燥用気体は、前記基板表面と、前記基板表面に近接配置された前記遮断部材との間の空間に供給されることを特徴とする基板乾燥装置。
    Freezing means for freezing liquid on a substrate surface and forming a frozen body of the liquid on the substrate surface;
    Sublimation drying means for continuously supplying a drying gas having a dew point lower than the freezing point of the liquid toward the substrate surface and lowering the temperature of the frozen body to sublimate and dry the frozen body ;
    A blocking member having a surface facing the substrate surface having a size equal to or larger than the substrate surface;
    Equipped with a,
    The substrate drying apparatus, wherein the drying gas is supplied to a space between the substrate surface and the blocking member disposed in proximity to the substrate surface .
  2. 前記遮断部材は中心部に開口を有し、The blocking member has an opening in the center,
    前記乾燥用気体は、前記開口から前記基板表面の中心付近に供給される請求項1記載の基板乾燥装置。The substrate drying apparatus according to claim 1, wherein the drying gas is supplied to the vicinity of the center of the substrate surface from the opening.
  3. 前記凍結手段は前記液体の凝固点よりも低く、かつ前記乾燥用気体の露点よりも高い温度の前記凍結体を形成する請求項1または2記載の基板乾燥装置。 3. The substrate drying apparatus according to claim 1, wherein the freezing unit forms the frozen body at a temperature lower than a freezing point of the liquid and higher than a dew point of the drying gas.
  4. 前記凍結手段は前記液体の凝固点よりも低く、かつ前記乾燥用気体の露点よりも高い温度の凍結用気体を前記基板に供給して前記液体を凍結させる請求項記載の基板乾燥装置。 4. The substrate drying apparatus according to claim 3, wherein the freezing means supplies a freezing gas having a temperature lower than a freezing point of the liquid and higher than a dew point of the drying gas to the substrate to freeze the liquid.
  5. 前記凍結手段は、前記基板の裏面と当接または近接するベース部と、前記ベース部を前記液体の凝固点よりも低い温度に冷却する冷却部とを有する請求項記載の基板乾燥装置。 4. The substrate drying apparatus according to claim 3 , wherein the freezing means includes a base portion that is in contact with or close to the back surface of the substrate, and a cooling portion that cools the base portion to a temperature lower than a freezing point of the liquid.
  6. 前記凍結体が昇華乾燥された、前記基板を周辺温度以上に昇温する基板温調手段をさらに備える請求項1ないしのいずれか一項に記載の基板乾燥装置。 The substrate drying apparatus according to any one of claims 1 to 5 , further comprising substrate temperature adjusting means for raising the temperature of the frozen body to a temperature higher than an ambient temperature by sublimation drying.
  7. 基板表面上の液体を凍結させ、前記基板表面上に前記液体の凍結体を形成した後、前記基板表面と同等以上の大きさの前記基板表面と対向する面を有するとともに中心部に開口を有する遮断部材を前記基板表面に近接配置し、前記開口から前記基板表面に向けて前記液体の凝固点よりも低い温度でかつ前記凍結体の温度よりも低い露点を有する乾燥用気体を継続して供給して前記凍結体を昇華乾燥させることを特徴とする基板乾燥方法。 After the liquid on the substrate surface is frozen and the frozen body of the liquid is formed on the substrate surface, it has a surface facing the substrate surface that is equal to or larger than the substrate surface and has an opening at the center. A blocking member is disposed close to the substrate surface, and a drying gas having a dew point lower than the freezing point of the liquid and lower than the temperature of the frozen body is continuously supplied from the opening toward the substrate surface. And drying the frozen body by sublimation drying.
  8. 液体は純水であり、乾燥用気体は窒素ガスである請求項記載の基板乾燥方法。 The substrate drying method according to claim 7 , wherein the liquid is pure water and the drying gas is nitrogen gas.
  9. 温度が−60゜Cの窒素ガスを生成し供給する請求項記載の基板乾燥方法。 The substrate drying method according to claim 8 , wherein nitrogen gas having a temperature of −60 ° C. is generated and supplied.
  10. 昇華乾燥では、乾燥用気体中の水蒸気の分圧が前記凍結体の蒸気圧よりも低い状況が維持される請求項記載の基板乾燥方法。 The substrate drying method according to claim 7, wherein the sublimation drying maintains a state in which a partial pressure of water vapor in the drying gas is lower than a vapor pressure of the frozen body.
JP2009041797A 2009-02-25 2009-02-25 Substrate drying apparatus and substrate drying method Active JP5373429B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009041797A JP5373429B2 (en) 2009-02-25 2009-02-25 Substrate drying apparatus and substrate drying method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009041797A JP5373429B2 (en) 2009-02-25 2009-02-25 Substrate drying apparatus and substrate drying method

Publications (2)

Publication Number Publication Date
JP2010199261A JP2010199261A (en) 2010-09-09
JP5373429B2 true JP5373429B2 (en) 2013-12-18

Family

ID=42823699

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009041797A Active JP5373429B2 (en) 2009-02-25 2009-02-25 Substrate drying apparatus and substrate drying method

Country Status (1)

Country Link
JP (1) JP5373429B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5647845B2 (en) 2010-09-29 2015-01-07 株式会社Screenホールディングス Substrate drying apparatus and substrate drying method
JP5945410B2 (en) * 2010-12-13 2016-07-05 Hoya株式会社 Resist developing apparatus and mold manufacturing method
JP5753391B2 (en) * 2011-02-03 2015-07-22 株式会社Screenホールディングス Substrate processing method
JP5681560B2 (en) * 2011-05-17 2015-03-11 東京エレクトロン株式会社 Substrate drying method and substrate processing apparatus
US9673037B2 (en) * 2011-05-31 2017-06-06 Law Research Corporation Substrate freeze dry apparatus and method
JP5859888B2 (en) * 2012-03-26 2016-02-16 株式会社Screenホールディングス Substrate processing apparatus and substrate processing method
JP2013206927A (en) * 2012-03-27 2013-10-07 Dainippon Screen Mfg Co Ltd Substrate drying device
JP2019046942A (en) 2017-08-31 2019-03-22 株式会社Screenホールディングス Substrate drying method and substrate processing apparatus
JP2019046943A (en) 2017-08-31 2019-03-22 株式会社Screenホールディングス Substrate drying method and substrate processing apparatus
JP2019054112A (en) 2017-09-15 2019-04-04 株式会社Screenホールディングス Wafer drying method and wafer drying device
JP2019106428A (en) * 2017-12-11 2019-06-27 株式会社Screenホールディングス Substrate processing method and substrate processing device
JP2019169657A (en) * 2018-03-26 2019-10-03 株式会社Screenホールディングス Substrate processing method and substrate processing apparatus

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04242930A (en) * 1990-12-29 1992-08-31 Tokyo Electron Kyushu Kk Method for drying object to be treated
JPH09260337A (en) * 1996-03-26 1997-10-03 Nikon Corp Thin film structure producing apparatus
JPH11294948A (en) * 1998-04-09 1999-10-29 Nissan Motor Co Ltd Manufacture of minute device
JPH11354486A (en) * 1998-06-09 1999-12-24 Dainippon Screen Mfg Co Ltd Substrate processor and substrate processing method
JP2003161575A (en) * 2001-11-20 2003-06-06 Yoshiji Yamazaki Atmospheric pressure freeze-dryer
JP2007027195A (en) * 2005-07-12 2007-02-01 Sony Corp Cleaning method and cleaning apparatus

Also Published As

Publication number Publication date
JP2010199261A (en) 2010-09-09

Similar Documents

Publication Publication Date Title
JP5373429B2 (en) Substrate drying apparatus and substrate drying method
US10121646B2 (en) Substrate processing apparatus and substrate processing method
JP6022829B2 (en) Substrate drying method and substrate drying apparatus
JP5297959B2 (en) Substrate drying method and substrate drying apparatus
JP6259299B2 (en) Substrate processing method and substrate processing apparatus
JP5647845B2 (en) Substrate drying apparatus and substrate drying method
JP4886544B2 (en) Substrate processing method and substrate processing apparatus
JP2010050143A (en) Substrate processing method, and substrate processing apparatus
JP2013207042A (en) Substrate treatment apparatus and substrate treatment method
JP5315189B2 (en) Substrate processing apparatus and substrate processing method
JP2015133444A (en) Semiconductor manufacturing apparatus and semiconductor device manufacturing method
JP2010080819A (en) Substrate cleaning apparatus and substrate cleaning method
JP2018163992A (en) Substrate processing apparatus and substrate processing method
JP2009200193A (en) Substrate processing apparatus and substrate processing method
JP6738235B2 (en) Substrate processing apparatus and substrate processing method
JP2011066322A (en) Substrate processing apparatus and method for processing substrate
JP5497599B2 (en) Substrate processing apparatus and substrate processing method
JP2013206927A (en) Substrate drying device
JP2019169555A (en) Substrate processing method and substrate processing device
JP5753391B2 (en) Substrate processing method
JP6216274B2 (en) Substrate processing method and substrate processing apparatus
JP6642868B2 (en) Substrate processing method and substrate processing apparatus
WO2020044885A1 (en) Substrate processing method and substrate processing device
WO2019044129A1 (en) Substrate processing device and substrate processing method
JP2019134073A (en) Substrate processing method and substrate processing apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130226

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130403

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130910

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130919

R150 Certificate of patent or registration of utility model

Ref document number: 5373429

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250