JP5372364B2 - Tripod type constant velocity universal joint - Google Patents

Tripod type constant velocity universal joint Download PDF

Info

Publication number
JP5372364B2
JP5372364B2 JP2007322072A JP2007322072A JP5372364B2 JP 5372364 B2 JP5372364 B2 JP 5372364B2 JP 2007322072 A JP2007322072 A JP 2007322072A JP 2007322072 A JP2007322072 A JP 2007322072A JP 5372364 B2 JP5372364 B2 JP 5372364B2
Authority
JP
Japan
Prior art keywords
leg shaft
roller
groove portion
concave groove
constant velocity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007322072A
Other languages
Japanese (ja)
Other versions
JP2009144803A (en
Inventor
卓 板垣
裕志 村上
達朗 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp filed Critical NTN Corp
Priority to JP2007322072A priority Critical patent/JP5372364B2/en
Priority to PCT/JP2008/070678 priority patent/WO2009075158A1/en
Publication of JP2009144803A publication Critical patent/JP2009144803A/en
Application granted granted Critical
Publication of JP5372364B2 publication Critical patent/JP5372364B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D3/00Yielding couplings, i.e. with means permitting movement between the connected parts during the drive
    • F16D3/16Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts
    • F16D3/20Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members
    • F16D3/202Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members one coupling part having radially projecting pins, e.g. tripod joints
    • F16D3/205Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members one coupling part having radially projecting pins, e.g. tripod joints the pins extending radially outwardly from the coupling part
    • F16D3/2055Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members one coupling part having radially projecting pins, e.g. tripod joints the pins extending radially outwardly from the coupling part having three pins, i.e. true tripod joints

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

A tripod type constant velocity universal joint has an outer ring (10) having three axially extending track grooves (12) formed on the inner peripheral surface of the outer ring with each track groove (12) having axially extending roller guide surfaces (14) arranged on both sides of the track groove (12) of the outer ring (10), a tripod member (20) having three radially projecting leg shafts (24), rollers (30) rotatably supported by the leg shafts (24) of the tripod member (20), rollably inserted in the track grooves (12), and guided along the roller guide surfaces (14), and needle-like rollers (40) arranged between each leg shaft (24) and each roller (30). Each leg shaft (24) has a circumferential groove (23) formed on the outer peripheral surface of the leg shaft and receiving needle-like rollers (40), and the groove (23) has a bottom surface (23a) functioning as the rolling surface for the needle-like rollers (40). Each groove (23) has an inner flange (25) formed at the radial base end of the groove and also has an outer flange (27) formed at the radial head end of the groove. Flange surfaces (25a, 27a) formed between the bottom surface (23a) of the groove (23) and the inner and outer flanges (25, 27) are tapered, and the angle of the tapering defined as the angle of opening of the groove (23) relative to the bottom surface (23a) is set greater than 90 degrees and not greater than 140 degrees.

Description

本発明は、例えば自動車、航空機、船舶や各種産業機械などの動力伝達系において使用され、例えば4WD車やFR車などで使用されるドライブシャフトやプロペラシャフト等に組み込まれて駆動側と従動側の二軸間で軸方向変位および角度変位を許容する摺動式等速自在継手の一種であるトリポード型等速自在継手に関する。   The present invention is used in power transmission systems such as automobiles, airplanes, ships, and various industrial machines, and is incorporated in drive shafts and propeller shafts used in, for example, 4WD vehicles and FR vehicles. The present invention relates to a tripod type constant velocity universal joint which is a kind of sliding type constant velocity universal joint that allows axial displacement and angular displacement between two axes.

例えば、自動車のエンジンから車輪に回転力を等速で伝達する手段として使用される等速自在継手の一つにトリポード型等速自在継手がある(例えば、特許文献1参照)。このトリポード型等速自在継手は、駆動側と従動側の二軸を連結してその二軸が作動角をとっても等速で回転トルクを伝達し、しかも、軸方向の相対変位をも許容することができる構造を備えている。   For example, there is a tripod type constant velocity universal joint as one of constant velocity universal joints used as means for transmitting rotational force from an automobile engine to wheels at a constant speed (see, for example, Patent Document 1). This tripod type constant velocity universal joint connects two shafts on the drive side and the driven side, transmits rotational torque at a constant speed even if the two shafts take an operating angle, and also allows relative displacement in the axial direction. It has a structure that can

図7および図8は特許文献1に開示されたトリポード型等速自在継手の構造を示す。なお、図7は継手の軸線に対する横断面を示し、図8は継手の軸線に対する縦断面を示す。   7 and 8 show the structure of the tripod type constant velocity universal joint disclosed in Patent Document 1. FIG. FIG. 7 shows a transverse section with respect to the axis of the joint, and FIG. 8 shows a longitudinal section with respect to the axis of the joint.

同図に示すトリポード型等速自在継手は、外側継手部材である外輪110と内側継手部材であるトリポード部材120と転動体であるローラ130とで主要部が構成されている。連結すべき駆動側と従動側の二軸の一方の軸(駆動軸)が外輪110の底部から一体的に延び、他方の軸(図示せず)がトリポード部材120と結合される。   The tripod type constant velocity universal joint shown in the figure is composed of an outer ring 110 as an outer joint member, a tripod member 120 as an inner joint member, and a roller 130 as a rolling element. One shaft (drive shaft) of the drive side and the driven side to be connected extends integrally from the bottom of the outer ring 110, and the other shaft (not shown) is coupled to the tripod member 120.

外輪110は一端が開口した有底筒状で、その内周に軸方向に延びる三本のトラック溝112が円周方向等間隔に形成されている。トリポード部材120は円筒状のボス部122から半径方向外方に突出した三本の脚軸124を有し、これら脚軸124が外輪110のトラック溝112に挿入され、そのトラック溝112と係合してトルク伝達を行う。脚軸124には針状ころ140を介してローラ130が回転自在に外嵌され、このローラ130がトラック溝112の互いに対向する一対のローラ案内面114に沿って転動することで連結二軸間の角度変位と軸方向変位を円滑にする。   The outer ring 110 has a bottomed cylindrical shape with one end opened, and three track grooves 112 extending in the axial direction are formed at equal intervals in the circumferential direction on the inner circumference thereof. The tripod member 120 has three leg shafts 124 projecting radially outward from the cylindrical boss portion 122, and these leg shafts 124 are inserted into the track grooves 112 of the outer ring 110 and engaged with the track grooves 112. Torque transmission. A roller 130 is rotatably fitted on the leg shaft 124 via a needle roller 140, and the roller 130 rolls along a pair of roller guide surfaces 114 facing each other in the track groove 112, thereby connecting two shafts. Smooth the angular displacement and axial displacement between.

図9は図7の部分拡大図で、脚軸124、針状ころ140およびローラ130を示す。脚軸124の外周面は針状ころ140の内側転動面を構成し、ローラ130の内周面は針状ころ140の外側転動面を構成している。複数の針状ころ140は、脚軸124の外周面とローラ130の内周面との間に総ころ状態で配設されている。   FIG. 9 is a partially enlarged view of FIG. 7 and shows the leg shaft 124, the needle rollers 140, and the rollers 130. The outer circumferential surface of the leg shaft 124 constitutes the inner rolling surface of the needle roller 140, and the inner circumferential surface of the roller 130 constitutes the outer rolling surface of the needle roller 140. The plurality of needle rollers 140 are disposed between the outer peripheral surface of the leg shaft 124 and the inner peripheral surface of the roller 130 in a full roller state.

これら針状ころ140は、脚軸124の付け根部に外嵌されたインナワッシャ150と半径方向内方で接すると共に、脚軸124の先端部に外嵌されたアウタワッシャ160と半径方向外方で接している。このアウタワッシャ160は、脚軸124の先端部に形成された環状溝126にサークリップ等の止め輪170を嵌合させることにより抜け止めされ、この止め輪170により、針状ころ140の半径方向移動が規制されている。
特許第3615987号公報
These needle rollers 140 are in contact with the inner washer 150 fitted to the base of the leg shaft 124 inward in the radial direction, and are radially outward with the outer washer 160 fitted in the tip of the leg shaft 124. It touches. The outer washer 160 is prevented from coming off by fitting a retaining ring 170 such as a circlip into an annular groove 126 formed at the tip of the leg shaft 124, and the retaining ring 170 causes the needle roller 140 to move in the radial direction. Movement is restricted.
Japanese Patent No. 3615987

ところで、前述の特許文献1に開示されたトリポード型等速自在継手では、作動角をとった状態で継手の回転に伴いローラ130に対してトリポード部材120の脚軸124が相対的に半径方向移動するため、そのローラ130と脚軸124との間に介在する針状ころ140を半径方向に位置規制する必要がある。   By the way, in the tripod type constant velocity universal joint disclosed in the above-mentioned Patent Document 1, the leg shaft 124 of the tripod member 120 moves in the radial direction relative to the roller 130 with the rotation of the joint with the operating angle taken. Therefore, it is necessary to regulate the position of the needle roller 140 interposed between the roller 130 and the leg shaft 124 in the radial direction.

そのため、前述したように、脚軸124の先端部に嵌合された止め輪170とアウタワッシャ160により針状ころ140を抜け止めすることでもって、その針状ころ140が飛び出して脱落することを防止するようにしている。   Therefore, as described above, the needle roller 140 is popped out and dropped by preventing the needle roller 140 from coming off by the retaining ring 170 fitted to the tip end portion of the leg shaft 124 and the outer washer 160. I try to prevent it.

しかしながら、この止め輪170およびアウタワッシャ160による抜け止め構造では、針状ころ140およびローラ130等の構成部品の他に、止め輪170およびアウタワッシャ160の付属部品を必要とすることから、部品点数の増加を招くことになり、製品のコストアップとなる。   However, in this retaining structure using the retaining ring 170 and the outer washer 160, in addition to the components such as the needle roller 140 and the roller 130, additional parts for the retaining ring 170 and the outer washer 160 are required. Increase the cost of the product.

また、脚軸124とローラ130との間に針状ころ140を組み付ける際に、アウタワッシャ160を脚軸124の先端部に外嵌し、脚軸124の環状溝126に止め輪170を嵌合させる針状ころ140の抜け止め作業が必要で、組み付け作業性を向上させることが困難であった。   Further, when the needle roller 140 is assembled between the leg shaft 124 and the roller 130, the outer washer 160 is externally fitted to the distal end portion of the leg shaft 124, and the retaining ring 170 is fitted to the annular groove 126 of the leg shaft 124. It is necessary to prevent the needle rollers 140 to be detached, and it is difficult to improve the assembling workability.

そこで、本発明は前述した問題点に鑑みて提案されたもので、その目的とするところは、部品点数の削減化を図り、組み付け作業性の向上を図り得るトリポード型等速自在継手を提供することにある。   Therefore, the present invention has been proposed in view of the above-described problems, and an object of the present invention is to provide a tripod type constant velocity universal joint capable of reducing the number of parts and improving assembly workability. There is.

前述の目的を達成するための技術的手段として、本発明に係るトリポード型等速自在継手は、内周面に軸方向に延びる三本のトラック溝が形成され、各トラック溝の両側でそれぞれ軸方向に延びるローラ案内面を有する外側継手部材と、半径方向に突出した三本の脚軸を有するトリポード部材と、トリポード部材の脚軸に回転自在に支持されると共に外側継手部材のトラック溝に転動自在に挿入されてローラ案内面に沿って案内されるローラと、脚軸とローラとの間に配設された複数の針状ころとを備え、脚軸の外周面に、針状ころを収容して底面が針状ころの転動面となる凹溝部を周方向に形成し、凹溝部の半径方向基端側に内側鍔部を設けると共に半径方向先端側に外側鍔部を設け、内側鍔部および外側鍔部と凹溝部の底面との間に形成された鍔面をテーパ状とし、そのテーパ角度を凹溝部の底面からの開き角で90°より大きく、かつ、140°以下とし、脚軸の凹溝部の半径方向寸法を、針状ころの一方の端部と内側鍔部のテーパ面との接触点との隙間と針状ころの他方の端部と外側鍔部のテーパ面との接触点との隙間の合計が、継手の常用作動角において脚軸が外側継手部材の半径方向に移動する際の最大移動量よりも大きくなるように設定したことを特徴とする。 As a technical means for achieving the above-mentioned object, the tripod type constant velocity universal joint according to the present invention is formed with three track grooves extending in the axial direction on the inner peripheral surface, and shafts on both sides of each track groove. The outer joint member having a roller guide surface extending in the direction, the tripod member having three leg shafts projecting in the radial direction, and rotatably supported by the leg shaft of the tripod member and being transferred to the track groove of the outer joint member. A roller that is movably inserted and guided along the roller guide surface; and a plurality of needle rollers disposed between the leg shaft and the roller, and the needle rollers are provided on the outer peripheral surface of the leg shaft. A concave groove portion is formed in the circumferential direction that is accommodated and the bottom surface becomes the rolling surface of the needle roller, and an inner flange portion is provided on the radially proximal end side of the concave groove portion and an outer flange portion is provided on the radially distal end side. Formed between the heel and outer ridges and the bottom of the groove The rib face is tapered which is greater than 90 ° with opening angle of the taper angle from the bottom surface of the recessed groove portion, and 140 ° or less, the radial dimension of the recessed groove portion of the trunnion, one needle roller The sum of the gap between the contact point between the end of the inner flange and the tapered surface of the inner flange and the contact point between the other end of the needle roller and the tapered surface of the outer flange is the normal operating angle of the joint. The leg shaft is set to be larger than the maximum movement amount when moving in the radial direction of the outer joint member .

本発明では、脚軸の外周面に、針状ころを収容して底面が針状ころの転動面となる凹溝部を周方向に形成し、その凹溝部の半径方向基端側に内側鍔部を設けると共に半径方向先端側に外側鍔部を設けたことにより、従来のような止め輪やアウタワッシャを必要とすることなく、凹溝部内に収容された針状ころを内側鍔部と外側鍔部とで半径方向に位置規制することができる。   In the present invention, on the outer peripheral surface of the leg shaft, a concave groove portion is formed in the circumferential direction in which the needle roller is accommodated and the bottom surface becomes the rolling surface of the needle roller, and the inner flange is formed on the radial base end side of the concave groove portion. By providing the outer flange on the distal end side in the radial direction, the needle rollers housed in the concave groove can be removed from the inner flange and the outer without requiring a retaining ring and an outer washer as in the prior art. The position can be restricted in the radial direction with the collar.

このようにして、部品点数の削減化と組み付け作業性の向上が図れて、継手が作動角をとった状態で脚軸がローラに対して相対的に半径方向移動しても、脚軸の半径方向先端側に設けられた外側鍔部により針状ころが凹溝部から飛び出して脱落することを防止でき、脚軸の外周面とローラの内周面との間で針状ころの安定した転動が可能となる。なお、この場合においても、内側鍔部は、針状ころの半径方向内方への位置規制手段としての機能を発揮する。   In this way, the number of parts can be reduced and the assembly workability can be improved. Even if the leg shaft moves in the radial direction relative to the roller in a state where the joint has an operating angle, the radius of the leg shaft can be reduced. The needle roller can be prevented from jumping out of the groove and falling off by the outer flange provided on the tip side in the direction, and the needle roller can stably roll between the outer peripheral surface of the leg shaft and the inner peripheral surface of the roller. Is possible. Even in this case, the inner flange functions as a means for restricting the position of the needle rollers inward in the radial direction.

また、内側鍔部および外側鍔部と凹溝部の底面との間に形成された鍔面をテーパ状とし、そのテーパ角度を凹溝部の底面からの開き角で90°より大きく、かつ、140°以下としたことにより、鍔面が凹溝部の底面と直交方向に延びる形態と比較した場合、内側鍔部と外側鍔部との間で針状ころが半径方向に移動するに際して、その針状ころの端部の内側鍔部のテーパ状鍔面あるいは外側鍔部のテーパ状鍔面との接触面積が小さくなり、且つ、凹溝部の底面から内側鍔部あるいは外側鍔部と針状ころとの接触点までの距離が小さくなる。これにより、針状ころが脚軸円周方向に沿って転動する際に生じる針状ころを転動方向に倒そうとする力が小さくなるため、針状ころを円滑に転動させることができる。
Further, the flange surface formed between the inner flange portion and the outer flange portion and the bottom surface of the groove portion is tapered, and the taper angle is larger than 90 ° by an opening angle from the bottom surface of the groove portion, and 140 °. When compared with a configuration in which the flange surface extends in a direction orthogonal to the bottom surface of the concave groove portion, the needle roller moves when the needle roller moves in the radial direction between the inner flange portion and the outer flange portion. The contact area between the inner collar part of the inner collar part and the tapered collar surface of the outer collar part becomes smaller, and the contact between the inner collar part or outer collar part and the needle roller from the bottom surface of the concave groove part. The distance to the point is reduced. As a result, since the force to fall the needle rollers in the rolling direction is reduced when the needle rollers roll along the circumferential direction of the leg shaft, the needle rollers can be smoothly rolled. it can.

なお、このテーパ角度が凹溝部の底面からの開き角で90°以下であると、凹溝部の底面から内側鍔部あるいは外側鍔部と針状ころとの接触点までの距離が大きくなり、針状ころの円滑な転動が妨げられる。逆に、テーパ角度が凹溝部の底面からの開き角で140°より大きくなると、針状ころの保持能力が小さくなる。従って、テーパ角度を凹溝部の底面からの開き角で90°より大きく、かつ、140°以下に規定したことは、針状ころを凹溝部内に確実に保持し、かつ、針状ころが脚軸円周方向に対して円滑に転動するという点で有効である。
さらに、脚軸の凹溝部の半径方向寸法を、針状ころの両端部と内側鍔部および外側鍔部との間に存在する合計隙間が、継手の常用作動角において脚軸が外側継手部材の半径方向に移動する際の最大移動量よりも大きくなるように設定したことにより、針状ころが半径方向に移動可能な量は、継手の常用作動角において脚軸が半径方向に移動する際の最大移動量よりも大きくなることから、針状ころの端部が内側鍔部あるいは外側鍔部と接触する回数を低減でき、その結果、針状ころの回転挙動が安定するので、この等速自在継手を搭載した自動車のNVH(Noise Vibration Harshness)性能の向上に寄与する。
When the taper angle is 90 ° or less from the bottom surface of the groove portion, the distance from the bottom surface of the groove portion to the contact point between the inner flange portion or the outer flange portion and the needle roller is increased. Smooth rolling of the roller is prevented. On the other hand, when the taper angle is larger than 140 ° as the opening angle from the bottom surface of the groove portion, the holding ability of the needle rollers is reduced. Therefore, the taper angle is defined to be larger than 90 ° and 140 ° or less in terms of the opening angle from the bottom surface of the concave groove portion, so that the needle roller is securely held in the concave groove portion and the needle roller is legged. This is effective in that it rolls smoothly in the axial direction of the shaft.
Further, the radial dimension of the concave groove portion of the leg shaft is determined so that the total gap existing between the both end portions of the needle rollers and the inner flange portion and the outer flange portion is the leg shaft of the outer joint member at the normal operating angle of the joint. By setting it to be larger than the maximum movement amount when moving in the radial direction, the amount that the needle roller can move in the radial direction is the same as that when the leg shaft moves in the radial direction at the normal operating angle of the joint. Since it becomes larger than the maximum travel distance, the number of times the end of the needle roller contacts the inner collar part or the outer collar part can be reduced. As a result, the rotational behavior of the needle roller is stabilized, so this constant speed is freely adjustable. This contributes to the improvement of NVH (Noise Vibration Harshness) performance of automobiles equipped with joints.

本発明において、脚軸の凹溝部の少なくとも底面を焼入れ鋼切削加工あるいは総形研削加工により形成することが望ましい。脚軸の凹溝部の底面は、針状ころの転動面となることから、その底面を焼入れ鋼切削加工あるいは総形研削加工により形成すれば、その凹溝部の底面を高精度に形成することができ、針状ころの良好な転動面を確保できる。   In the present invention, it is desirable that at least the bottom surface of the concave groove portion of the leg shaft is formed by quenching steel cutting or total shape grinding. Since the bottom surface of the concave groove part of the leg shaft becomes the rolling surface of the needle roller, if the bottom surface is formed by quenching steel cutting or general grinding, the bottom surface of the concave groove part should be formed with high accuracy. And a good rolling surface of the needle roller can be secured.

本発明において、脚軸は、凹溝部を除いて鍛造肌であることが望ましい。ここで、トリポード部材の脚軸は鍛造により製作され、その脚軸で寸法精度が要求されるのは凹溝部であり、この凹溝部を除く部位はそれほど高い寸法精度が要求されない。そのため、脚軸の凹溝部を除いた部位の表面を鍛造肌のままにすれば、硬化処理などの加工を施す必要がないことから、製造コストの低減化が図れる。   In the present invention, it is desirable that the leg shaft has a forged skin except for the groove portion. Here, the leg shaft of the tripod member is manufactured by forging, and it is a concave groove portion that requires dimensional accuracy with the leg shaft, and a portion other than the concave groove portion does not require so high dimensional accuracy. Therefore, if the surface of the portion excluding the concave groove portion of the leg shaft is left as the forged skin, it is not necessary to perform a process such as a curing process, so that the manufacturing cost can be reduced.

本発明において、脚軸は、少なくとも凹溝部および内側鍔部を含む部位に表面硬化層を形成した構造が望ましい。ここで、「少なくとも凹溝部および内側鍔部を含む部位」とは、凹溝部および内側鍔部を必要最小限として、脚軸における凹溝部および内側鍔部以外の部位も含むことを意味する。この凹溝部に表面硬化層を形成すれば、凹溝部での針状ころとの転動疲労強度を向上させることができる。また、内側鍔部に表面硬化層を形成すれば、脚軸に負荷される曲げ応力に対する強度を確保できる。   In the present invention, the leg shaft preferably has a structure in which a hardened surface layer is formed at a site including at least the recessed groove portion and the inner flange portion. Here, “a part including at least the concave groove part and the inner collar part” means that the concave groove part and the inner collar part are included as necessary, and a part other than the concave groove part and the inner collar part in the leg shaft is also included. If a hardened surface layer is formed in the concave groove, the rolling fatigue strength with the needle roller in the concave groove can be improved. In addition, if a hardened surface layer is formed on the inner flange, it is possible to ensure strength against bending stress applied to the leg shaft.

本発明において、継手の常用作動角が大きい場合(例えば、6°より大きい場合)には、脚軸の凹溝部の半径方向中心位置を外側継手部材のローラ案内面の半径方向中心位置よりも半径方向外方へオフセットさせた構造が望ましい。一方、継手の常用作動角が小さい場合(例えば、6°以下の場合)には、脚軸の凹溝部の半径方向中心位置と外側継手部材のローラ案内面の半径方向中心位置とを一致させた構造が望ましい。   In the present invention, when the common operating angle of the joint is large (for example, larger than 6 °), the radial center position of the concave groove portion of the leg shaft has a radius that is larger than the radial center position of the roller guide surface of the outer joint member. A structure offset in the outward direction is desirable. On the other hand, when the common operating angle of the joint is small (for example, 6 ° or less), the radial center position of the concave groove portion of the leg shaft is made to coincide with the radial center position of the roller guide surface of the outer joint member. A structure is desirable.

これは以下の理由に基づく。継手が作動角をとった状態で継手の回転に伴ってローラに対して脚軸が相対的に半径方向に移動する。この時、脚軸の移動量は、半径方向外方への移動量よりも半径方向内方への移動量の方が大きく、その半径方向内方への移動量は作動角に比例して大きくなる。   This is based on the following reason. In a state where the joint takes an operating angle, the leg shaft moves in the radial direction relative to the roller as the joint rotates. At this time, the movement amount of the leg shaft is greater in the movement amount in the radial direction than in the radial direction, and the movement amount in the radial direction is larger in proportion to the operating angle. Become.

従って、継手の常用作動角が大きい場合には、脚軸の半径方向内方への移動量が大きいことから、脚軸の凹溝部の半径方向中心位置を外側継手部材のローラ案内面の半径方向中心位置よりも半径方向外方へオフセットさせることが好ましい。また、継手の常用作動角が小さい場合には、脚軸の凹溝部の偏摩耗を防止する目的から、脚軸の凹溝部の半径方向中心位置と外側継手部材のローラ案内面の半径方向中心位置とを一致させることが好ましい。   Therefore, when the common operating angle of the joint is large, the movement amount of the leg shaft inward in the radial direction is large. Therefore, the radial center position of the concave groove portion of the leg shaft is set in the radial direction of the roller guide surface of the outer joint member. It is preferable to offset outward in the radial direction from the center position. Also, when the common operating angle of the joint is small, the radial center position of the concave groove portion of the leg shaft and the radial center position of the roller guide surface of the outer joint member are used to prevent uneven wear of the concave groove portion of the leg shaft. Is preferably matched.

本発明によれば、脚軸の外周面に、針状ころを収容して底面が針状ころの転動面となる凹溝部を周方向に形成し、その凹溝部の半径方向基端側に内側鍔部を設けると共に半径方向先端側に外側鍔部を設けたことにより、従来のような止め輪やアウタワッシャを必要とすることなく、凹溝部内に収容された針状ころを内側鍔部と外側鍔部とで半径方向に位置規制することができる。   According to the present invention, on the outer peripheral surface of the leg shaft, the concave groove portion that accommodates the needle roller and the bottom surface becomes the rolling surface of the needle roller is formed in the circumferential direction, and the radial groove proximal end side of the concave groove portion is formed. By providing the inner flange and the outer flange on the distal end side in the radial direction, the needle roller accommodated in the concave groove can be moved into the inner flange without the need for a retaining ring or an outer washer. The position can be regulated in the radial direction by the outer flange portion.

このようにして、部品点数の削減化と組み付け作業性の向上が図れて、継手が作動角をとった状態で脚軸がローラに対して相対的に半径方向移動しても、脚軸の半径方向先端側に設けられた外側鍔部により針状ころが凹溝部から飛び出して脱落することを防止でき、脚軸の外周面とローラの内周面との間で針状ころの安定した転動が可能となる。   In this way, the number of parts can be reduced and the assembly workability can be improved. Even if the leg shaft moves in the radial direction relative to the roller in a state where the joint has an operating angle, the radius of the leg shaft can be reduced. The needle roller can be prevented from jumping out of the groove and falling off by the outer flange provided on the tip side in the direction, and the needle roller can stably roll between the outer peripheral surface of the leg shaft and the inner peripheral surface of the roller. Is possible.

その結果、部品点数の削減化と組み付け作業性の向上と共に、安定した作動性を確保したトリポード型等速自在継手を提供できる。   As a result, it is possible to provide a tripod type constant velocity universal joint that secures stable operability while reducing the number of parts and improving assembly workability.

図1および図2は本発明に係るトリポード型等速自在継手の実施形態を示す。なお、図1は継手の軸線に対する横断面を示し、図2は継手の軸線に対する縦断面を示す。この実施形態のトリポード型等速自在継手は、外側継手部材である外輪10と、内側継手部材であるトリポード部材20と転動体であるローラ30とで主要部が構成されている。   1 and 2 show an embodiment of a tripod type constant velocity universal joint according to the present invention. 1 shows a transverse section with respect to the axis of the joint, and FIG. 2 shows a longitudinal section with respect to the axis of the joint. The tripod type constant velocity universal joint according to this embodiment includes an outer ring 10 that is an outer joint member, a tripod member 20 that is an inner joint member, and a roller 30 that is a rolling element.

外輪10は、一端が開口した有底筒状でその底部中央から回転軸(例えば駆動軸)が一体的に延びている。外輪10の内周面には、軸方向に延びる三本のトラック溝12が円周方向等間隔に形成される。各トラック溝12は、その両側に互いに対向する一対のローラ案内面14を有する。ローラ案内面14は円弧状断面を有し、外輪10の軸線方向に直線状に延びる。なお、外輪10の外周面は、軽量化のため、トラック溝12間と対応する部位が減肉されて凹所18が軸方向に形成されている。   The outer ring 10 has a bottomed cylindrical shape with one end opened, and a rotating shaft (for example, a driving shaft) integrally extends from the center of the bottom. Three track grooves 12 extending in the axial direction are formed on the inner peripheral surface of the outer ring 10 at equal intervals in the circumferential direction. Each track groove 12 has a pair of roller guide surfaces 14 facing each other on both sides thereof. The roller guide surface 14 has an arc-shaped cross section and extends linearly in the axial direction of the outer ring 10. The outer ring 10 has a recess 18 formed in the axial direction by reducing the thickness of a portion corresponding to the space between the track grooves 12 in order to reduce the weight.

トリポード部材20は、円筒状をなすボス部22の外周面に、半径方向外方に突出した三本の脚軸24が円周方向等間隔(120°間隔)で一体形成されたものである。ボス22の軸孔に図示しない回転軸(例えば従動軸)の軸端がスプライン嵌合により連結される。各脚軸24の先端は、半径方向外方へ延びてトラック溝12の底面付近まで延在し、その外周面は一般的に円筒面とされている。   The tripod member 20 is formed by integrally forming three leg shafts 24 protruding outward in the radial direction on the outer peripheral surface of a cylindrical boss portion 22 at equal intervals in the circumferential direction (120 ° intervals). A shaft end of a rotating shaft (not shown) (not shown) is connected to the shaft hole of the boss 22 by spline fitting. The tip of each leg shaft 24 extends outward in the radial direction and extends to the vicinity of the bottom surface of the track groove 12, and the outer peripheral surface thereof is generally a cylindrical surface.

外輪10のトラック溝12のローラ案内面14と脚軸24の外周面との間に針状ころ40を介してローラ30が回転自在に配設される。ローラ30の外周面は縦断面円弧状とされ、ローラ案内面14とアンギュラ接触により二箇所で接触する場合と、サーキュラ接触により一箇所で接触する場合がある。一方、ローラ30の内周面は、円筒状に形成されている。   A roller 30 is rotatably disposed via a needle roller 40 between the roller guide surface 14 of the track groove 12 of the outer ring 10 and the outer peripheral surface of the leg shaft 24. The outer peripheral surface of the roller 30 has an arc shape in vertical section, and may contact with the roller guide surface 14 at two locations by angular contact or contact at one location by circular contact. On the other hand, the inner peripheral surface of the roller 30 is formed in a cylindrical shape.

このトリポード部材20の脚軸24に針状ころ40を介して回転自在に装着されたローラ30が、外輪10のトラック溝12に挿入されて係合し、そのトラック溝12の互いに対向する一対のローラ案内面14に沿って転動することにより、連結二軸(駆動軸と従動軸)間の角度変位と軸方向変位を許容しながらトルク伝達を行う。   A roller 30 rotatably mounted on the leg shaft 24 of the tripod member 20 via a needle roller 40 is inserted into and engaged with the track groove 12 of the outer ring 10, and a pair of track grooves 12 facing each other. By rolling along the roller guide surface 14, torque is transmitted while allowing angular displacement and axial displacement between the two connecting shafts (drive shaft and driven shaft).

図3は図1の部分拡大図で、脚軸24、針状ころ40およびローラ30を示す。脚軸24の外周面は針状ころ40の内側転動面を構成し、ローラ30の内周面は針状ころ40の外側転動面を構成している。ローラ30の内周面と脚軸24の外周面との間に、複数の針状ころ40が単列総ころ状態で配設される。   FIG. 3 is a partially enlarged view of FIG. 1 and shows the leg shaft 24, the needle rollers 40, and the rollers 30. The outer circumferential surface of the leg shaft 24 constitutes the inner rolling surface of the needle roller 40, and the inner circumferential surface of the roller 30 constitutes the outer rolling surface of the needle roller 40. A plurality of needle rollers 40 are disposed between the inner peripheral surface of the roller 30 and the outer peripheral surface of the leg shaft 24 in a single row full roller state.

この実施形態におけるトリポード型等速自在継手では、同図に示すように、脚軸24の外周面に、針状ころ40を収容して底面23aが針状ころ40の転動面となる凹溝部23を周方向に形成し、凹溝部23の半径方向基端側に内側鍔部25を設けると共に半径方向先端側に外側鍔部27を設ける。なお、凹溝部23の底面23aと鍔面25a,27aとの間には、針状ころ40の半径方向移動をスムーズに行うため、その凹溝部23の底面23aから後退するように凹んだ逃げ29(ぬすみ)が形成されている。   In the tripod type constant velocity universal joint in this embodiment, as shown in the figure, the concave groove portion in which the needle roller 40 is accommodated on the outer peripheral surface of the leg shaft 24 and the bottom surface 23 a becomes the rolling surface of the needle roller 40. 23 is formed in the circumferential direction, and an inner flange portion 25 is provided on the radially proximal end side of the concave groove portion 23 and an outer flange portion 27 is provided on the distal end side in the radial direction. In order to smoothly move the needle rollers 40 in the radial direction between the bottom surface 23a of the groove 23 and the flange surfaces 25a, 27a, a relief 29 recessed so as to retreat from the bottom 23a of the groove 23 is provided. (Nusumi) is formed.

この実施形態におけるトリポード型等速自在継手では、脚軸24の外周面に、針状ころ40を収容して底面23aが針状ころ40の転動面となる凹溝部23を周方向に形成し、その凹溝部23の半径方向基端側に内側鍔部25を設けると共に半径方向先端側に外側鍔部27を設けたことにより、従来のような止め輪170やアウタワッシャ160(図7〜図9参照)を必要とすることなく、凹溝部23内に収容された針状ころ40を内側鍔部25と外側鍔部27とで半径方向に位置規制することができる。特に、この実施形態では、針状ころ40の端部が内側鍔部25の鍔面25aおよび外側鍔部27の鍔面27aに当接することにより、その針状ころ40の半径方向移動が規制される。   In the tripod type constant velocity universal joint in this embodiment, the concave groove portion 23 in which the needle roller 40 is accommodated on the outer peripheral surface of the leg shaft 24 and the bottom surface 23a becomes the rolling surface of the needle roller 40 is formed in the circumferential direction. By providing the inner flange 25 on the proximal end side in the radial direction of the concave groove 23 and the outer flange 27 on the distal end side in the radial direction, a conventional retaining ring 170 and outer washer 160 (see FIGS. 9), the position of the needle roller 40 accommodated in the recessed groove portion 23 can be restricted in the radial direction by the inner flange portion 25 and the outer flange portion 27. In particular, in this embodiment, the end of the needle roller 40 abuts on the flange surface 25a of the inner flange portion 25 and the flange surface 27a of the outer flange portion 27, so that the radial movement of the needle roller 40 is restricted. The

このようにして、部品点数の削減化と組み付け作業性の向上が図れて、継手が作動角をとった状態で脚軸24がローラ30に対して相対的に半径方向移動しても、脚軸24の半径方向先端側に設けられた外側鍔部27により針状ころ40が凹溝部23から飛び出して脱落することを防止でき、脚軸24の外周面とローラ30の内周面との間で針状ころ40の安定した転動が可能となる。なお、この場合においても、内側鍔部25は、針状ころ40の半径方向内方への位置規制手段としての機能を発揮する。   In this way, the number of parts can be reduced and the assembly workability can be improved, and even if the leg shaft 24 moves in the radial direction relative to the roller 30 in a state where the joint takes an operating angle, the leg shaft It is possible to prevent the needle roller 40 from jumping out of the groove 23 and falling off by the outer flange 27 provided on the distal end side in the radial direction of 24, and between the outer peripheral surface of the leg shaft 24 and the inner peripheral surface of the roller 30. The needle roller 40 can be stably rolled. In this case as well, the inner flange 25 functions as a means for restricting the position of the needle rollers 40 inward in the radial direction.

この実施形態において、内側鍔部25および外側鍔部27は、凹溝部23の底面23aに向けて縮径するテーパ状の鍔面25a,27aを有する構造としている。内側鍔部側の鍔面25aおよび外側鍔部側の鍔面27aと凹溝部23の底面23aとはテーパ角度α1,α2をなす。この実施形態では、角度α1とα2が同一の大きさである場合を例示しているが、異なる大きさであってもよい。 In this embodiment, the inner flange portion 25 and the outer flange portion 27 have a structure having tapered flange surfaces 25 a and 27 a that are reduced in diameter toward the bottom surface 23 a of the recessed groove portion 23. The inner flange portion side flange surface 25a, the outer flange portion side flange surface 27a, and the bottom surface 23a of the recessed groove portion 23 form taper angles α 1 and α 2 . In this embodiment, the case where the angles α 1 and α 2 are the same size is illustrated, but may be different sizes.

このように内側鍔部25および外側鍔部27の鍔面25a,27aをテーパ状とした構造にしたことにより、内側鍔部25と外側鍔部27との間で針状ころ40が半径方向に移動するに際して、その針状ころ40の端部が内側鍔部25のテーパ状鍔面25aあるいは外側鍔部27のテーパ状鍔面27aに当接することにより、針状ころ40の半径方向移動が規制される。   As described above, since the flange surfaces 25a and 27a of the inner flange portion 25 and the outer flange portion 27 are tapered, the needle rollers 40 are radially disposed between the inner flange portion 25 and the outer flange portion 27. When moving, the end of the needle roller 40 comes into contact with the tapered flange surface 25a of the inner flange portion 25 or the tapered flange surface 27a of the outer flange portion 27, so that the radial movement of the needle roller 40 is restricted. Is done.

ここで、図4(A)は内側鍔部25の鍔面25aをテーパ状とした実施形態を示し、同図(B)は内側鍔部28の鍔面28aが凹溝部26の底面26aと直交方向に延びる比較形態を示す。同図(A)(B)に示すように、実施形態は比較形態よりも、針状ころ40の端部が内側鍔部25のテーパ状鍔面25aに接触する面積が小さくなり、且つ、凹溝部23の底面23aからその接触点までの距離が小さくなる(a<b)。その結果、針状ころ40が脚軸24の円周方向に転動する際に生じる針状ころ40を転動方向に倒そうとする力が小さくなるため、針状ころ40を円滑に転動させることができる。これは、図示しないが、外側鍔部27のテーパ状鍔面27aについても同様である。   4A shows an embodiment in which the flange surface 25a of the inner flange portion 25 is tapered, and FIG. 4B shows an embodiment in which the flange surface 28a of the inner flange portion 28 is orthogonal to the bottom surface 26a of the recessed groove portion 26. The comparative form extended in a direction is shown. As shown in FIGS. 4A and 4B, the embodiment has a smaller area in which the end of the needle roller 40 contacts the tapered flange surface 25a of the inner flange portion 25 than the comparative embodiment, and is recessed. The distance from the bottom surface 23a of the groove 23 to the contact point becomes small (a <b). As a result, since the force to fall the needle roller 40 in the rolling direction is reduced when the needle roller 40 rolls in the circumferential direction of the leg shaft 24, the needle roller 40 rolls smoothly. Can be made. Although not shown, this is the same for the tapered flange surface 27a of the outer flange portion 27.

なお、テーパ角度α1,α2は、凹溝部23の底面23aからの開き角で90°より大きく、かつ、140°以下、望ましくは130°に規定する。このテーパ角度α1,α2が90°以下であると、凹溝部の底面から内側鍔部あるいは外側鍔部と針状ころとの接触点までの距離が大きくなり、針状ころの円滑な転動が妨げられる。逆に、140°より大きくなると、針状ころの保持能力が小さくなる。従って、テーパ角度α1,α2を90°より大きく、かつ、140°以下に規定したことは、針状ころを凹溝部内に確実に保持し、かつ、針状ころが脚軸円周方向に対して円滑に転動するという点で有効である。 The taper angles α 1 and α 2 are defined to be an opening angle from the bottom surface 23a of the groove 23 greater than 90 ° and 140 ° or less, preferably 130 °. When the taper angles α 1 and α 2 are 90 ° or less, the distance from the bottom surface of the concave groove portion to the contact point between the inner flange portion or the outer flange portion and the needle roller increases, and the needle roller smoothly rotates. Movement is hindered. On the contrary, when it becomes larger than 140 °, the holding ability of the needle rollers becomes small. Therefore, when the taper angles α 1 and α 2 are defined to be larger than 90 ° and 140 ° or less, the needle rollers are securely held in the groove and the needle rollers are circumferential in the leg axis direction. It is effective in that it rolls smoothly.

この実施形態のトリポード部材20において、脚軸24の凹溝部23の底面23aを焼入れ鋼切削加工あるいは総形研削加工により形成する。脚軸24の凹溝部23の底面23aは、針状ころ40の転動面となることから、その底面23aを焼入れ鋼切削加工あるいは総形研削加工により形成することにより、その凹溝部23の底面23aを高精度に形成することができ、針状ころ40の良好な転動面を確保できる。   In the tripod member 20 of this embodiment, the bottom surface 23a of the concave groove portion 23 of the leg shaft 24 is formed by quenching steel cutting or total grinding. Since the bottom surface 23a of the concave groove portion 23 of the leg shaft 24 is a rolling surface of the needle roller 40, the bottom surface of the concave groove portion 23 is formed by forming the bottom surface 23a by quenching steel cutting or general grinding. 23a can be formed with high accuracy, and a good rolling surface of the needle roller 40 can be secured.

また、脚軸24は、凹溝部23を除いて鍛造肌としている。ここで、トリポード部材20の脚軸24は鍛造により製作され、その脚軸24で寸法精度が要求されるのは凹溝部23である。このことから、前述したように脚軸24の凹溝部23の底面23aを焼入れ鋼切削加工あるいは総形研削加工により形成することは有効な手段である。   Further, the leg shaft 24 has a forged skin except for the concave groove 23. Here, the leg shaft 24 of the tripod member 20 is manufactured by forging, and it is the groove 23 that requires dimensional accuracy in the leg shaft 24. For this reason, as described above, it is an effective means to form the bottom surface 23a of the concave groove portion 23 of the leg shaft 24 by quenching steel cutting or total shape grinding.

これに対して、凹溝部23を除く部位はそれほど高い寸法精度が要求されない。そのため、脚軸24の凹溝部23を除いた部位の表面を鍛造肌のままにすれば、焼入れ鋼切削加工あるいは総形研削加工を施す必要がないことから、製造コストの低減化が図れる。   On the other hand, the portions other than the concave groove portion 23 do not require so high dimensional accuracy. Therefore, if the surface of the part of the leg shaft 24 excluding the recessed groove portion 23 is left as a forged skin, it is not necessary to perform a hardened steel cutting process or a total form grinding process, so that the manufacturing cost can be reduced.

さらに、図5に示すように、脚軸24の凹溝部23および内側鍔部25に表面硬化層nを形成する。この凹溝部23に表面硬化層nを形成したことにより、凹溝部23での針状ころ40との転動疲労強度を向上させることができる。また、脚軸24の付け根部である内側鍔部25に表面硬化層nを形成したことにより、脚軸24に負荷される曲げ応力に対する強度を確保できる。なお、この脚軸24において、凹溝部23および内側鍔部25以外の他の部位にも表面硬化層を形成するようにしてもよい。   Further, as shown in FIG. 5, a hardened surface layer n is formed in the concave groove portion 23 and the inner flange portion 25 of the leg shaft 24. By forming the surface hardened layer n in the concave groove 23, the rolling fatigue strength with the needle roller 40 in the concave groove 23 can be improved. Further, by forming the surface hardened layer n on the inner flange portion 25 which is the base portion of the leg shaft 24, it is possible to ensure the strength against the bending stress applied to the leg shaft 24. It should be noted that a hardened surface layer may be formed on the leg shaft 24 at other portions than the concave groove portion 23 and the inner flange portion 25.

継手が作動角をとった状態で継手の回転に伴ってローラ30に対して脚軸24が相対的に半径方向に移動する。この時、脚軸24の移動量は、半径方向外方への移動量よりも半径方向内方への移動量の方が大きく、その半径方向内方への移動量は作動角に比例して大きくなる。   The leg shaft 24 moves in the radial direction relative to the roller 30 as the joint rotates while the joint takes an operating angle. At this time, the movement amount of the leg shaft 24 is larger in the movement amount in the radial direction than in the radial direction, and the movement amount in the radial direction is proportional to the operating angle. growing.

従って、継手の常用作動角が大きい場合(例えば、6°より大きい場合)には、図6に示すように、脚軸24の半径方向内方への移動量が大きいことから、脚軸24の凹溝部26,23の半径方向中心位置P2を外輪10のローラ案内面14の半径方向中心位置Pよりも半径方向外方へオフセットさせればよい(オフセット量f2)。 Therefore, when the common operating angle of the joint is large (for example, larger than 6 °), the amount of movement of the leg shaft 24 in the radial direction is large as shown in FIG. The radial center position P 2 of the concave grooves 26 and 23 may be offset radially outward from the radial center position P of the roller guide surface 14 of the outer ring 10 (offset amount f 2 ).

一方、継手の常用作動角が小さい場合(例えば、6°以下の場合)には、図3に示すように、脚軸24の凹溝部23の半径方向中心位置P2と外輪10のローラ案内面14の半径方向中心位置Pとを一致させればよい。このようにすれば、脚軸24の凹溝部23の偏摩耗を防止することが可能となる。 On the other hand, when the common operating angle of the joint is small (for example, 6 ° or less), as shown in FIG. 3, the radial center position P 2 of the concave groove 23 of the leg shaft 24 and the roller guide surface of the outer ring 10 are used. 14 radial center positions P may be made coincident with each other. If it does in this way, it will become possible to prevent the partial wear of the ditch | groove part 23 of the leg axis | shaft 24. FIG.

さらに、脚軸24の凹溝部23の半径方向寸法を、針状ころ40の両端部と内側鍔部25および外側鍔部27との間に存在する合計隙間が、継手の常用作動角において脚軸24が半径方向に移動する際の最大移動量よりも大きくなるように設定する。   Further, the radial dimension of the concave groove portion 23 of the leg shaft 24 is such that the total gap existing between the both end portions of the needle roller 40 and the inner flange portion 25 and the outer flange portion 27 corresponds to the leg shaft at the normal operating angle of the joint. 24 is set to be larger than the maximum movement amount when moving in the radial direction.

このようにすれば、針状ころ40が半径方向に移動可能な量は、継手の常用作動角において脚軸24が半径方向に移動する際の最大移動量よりも大きくなることから、針状ころ40の端部が内側鍔部25あるいは外側鍔部27と接触する回数を低減でき、その結果、針状ころ40の回転挙動が安定するので、この等速自在継手を搭載した自動車のNVH(Noise Vibration Harshness)性能の向上に寄与する。   In this way, the amount of movement of the needle roller 40 in the radial direction is larger than the maximum movement amount when the leg shaft 24 moves in the radial direction at the normal operating angle of the joint. The number of times that the end of 40 contacts the inner flange 25 or the outer flange 27 can be reduced. As a result, the rotational behavior of the needle roller 40 is stabilized. Vibration Harshness) Contributes to improved performance.

なお、前述した針状ころ40の両端部と内側鍔部25および外側鍔部27との間に存在する合計隙間とは、この実施形態の場合、図3に示すように、針状ころ40が脚軸24の凹溝部23の半径方向中心位置にある状態で、針状ころ40の一方の端部と内側鍔部25のテーパ面25aとの接触点との隙間S3と針状ころ40の他方の端部と外側鍔部27のテーパ面27aとの接触点との隙間S4の合計を意味する。 In the case of this embodiment, the total gap existing between the both end portions of the needle roller 40 and the inner flange portion 25 and the outer flange portion 27 is as shown in FIG. The gap S 3 between the one end of the needle roller 40 and the contact point between the tapered surface 25 a of the inner flange 25 and the needle roller 40 in a state where the concave groove 23 of the leg shaft 24 is at the center position in the radial direction. It means the sum of the gaps S 4 between the other end and the contact point between the outer flange 27 and the tapered surface 27a.

本発明は前述した実施形態に何ら限定されるものではなく、本発明の要旨を逸脱しない範囲内において、さらに種々なる形態で実施し得ることは勿論のことであり、本発明の範囲は、特許請求の範囲によって示され、さらに特許請求の範囲に記載の均等の意味、および範囲内のすべての変更を含む。   The present invention is not limited to the above-described embodiments, and can of course be implemented in various forms without departing from the gist of the present invention. It includes the equivalent meanings recited in the claims and the equivalents recited in the claims, and all modifications within the scope.

本発明に係るトリポード型等速自在継手の実施形態で、継手の横断面図である。1 is a cross-sectional view of a joint in an embodiment of a tripod type constant velocity universal joint according to the present invention. 本発明に係るトリポード型等速自在継手の実施形態で、継手の縦断面図である。1 is a longitudinal sectional view of a joint in an embodiment of a tripod type constant velocity universal joint according to the present invention. 図1の脚軸、針状ころおよびローラを示す要部拡大断面図である。It is a principal part expanded sectional view which shows the leg shaft of FIG. 1, a needle roller, and a roller. (A)は本発明の実施形態で内側鍔部の鍔面をテーパ状とした本発明の実施形態を示す要部拡大断面図、(B)は内側鍔部の鍔面を凹溝部の底面と直交する方向に延ばした比較形態を示す要部拡大断面図である。(A) is the principal part expanded sectional view which shows embodiment of this invention which made the collar face of the inner collar part tapered in embodiment of this invention, (B) is the bottom face of a ditch | groove part, and the collar face of an inner collar part is shown. It is a principal part expanded sectional view which shows the comparative form extended in the orthogonal direction. 本発明の実施形態で、脚軸の凹溝部および内側鍔部に表面硬化層を形成した状態を示す要部拡大断面図である。In embodiment of this invention, it is a principal part expanded sectional view which shows the state in which the surface hardening layer was formed in the ditch | groove part and inner side collar part of a leg shaft. 本発明の実施形態で、脚軸の凹溝部の半径方向中心位置を外輪のローラ案内面の半径方向中心位置よりも半径方向外方へオフセット状態を示す要部拡大断面図である。FIG. 4 is an enlarged cross-sectional view of a main part showing an offset state in which the radial center position of the concave groove portion of the leg shaft is offset radially outward from the radial center position of the roller guide surface of the outer ring in the embodiment of the present invention. 従来のトリポード型等速自在継手の一例で、継手の横断面図である。It is an example of the conventional tripod type constant velocity universal joint, and is a cross-sectional view of the joint. 従来のトリポード型等速自在継手の一例で、継手の縦断面図である。It is an example of the conventional tripod type constant velocity universal joint, and is a longitudinal cross-sectional view of the joint. 図7の脚軸、針状ころおよびローラを示す要部拡大断面図である。It is a principal part expanded sectional view which shows the leg axis | shaft of FIG. 7, a needle roller, and a roller.

符号の説明Explanation of symbols

10 外側継手部材
12 トラック溝
14 ローラ案内面
20 トリポード部材
23 凹溝部
23a 底面
24 脚軸
25 内側鍔部
25a テーパ状の鍔面
27 外側鍔部
27a テーパ状の鍔面
30 ローラ
40 針状ころ
DESCRIPTION OF SYMBOLS 10 Outer joint member 12 Track groove 14 Roller guide surface 20 Tripod member 23 Concave groove portion 23a Bottom surface 24 Leg shaft 25 Inner flange 25a Tapered flange 27 Outer flange 27a Tapered flange 30 Roller 40 Needle roller

Claims (6)

内周面に軸方向に延びる三本のトラック溝が形成され、各トラック溝の両側でそれぞれ軸方向に延びるローラ案内面を有する外側継手部材と、半径方向に突出した三本の脚軸を有するトリポード部材と、前記トリポード部材の脚軸に回転自在に支持されると共に前記外側継手部材のトラック溝に転動自在に挿入されて前記ローラ案内面に沿って案内されるローラと、前記脚軸とローラとの間に配設された複数の針状ころとを備えたトリポード型等速自在継手において、
前記脚軸の外周面に、前記針状ころを収容して底面が針状ころの転動面となる凹溝部を周方向に形成し、前記凹溝部の半径方向基端側に内側鍔部を設けると共に半径方向先端側に外側鍔部を設け、前記内側鍔部および外側鍔部と凹溝部の底面との間に形成された鍔面をテーパ状とし、そのテーパ角度を凹溝部の底面からの開き角で90°より大きく、かつ、140°以下とし、前記脚軸の凹溝部の半径方向寸法を、針状ころの一方の端部と内側鍔部のテーパ面との接触点との隙間と針状ころの他方の端部と外側鍔部のテーパ面との接触点との隙間の合計が、継手の常用作動角において前記脚軸が外側継手部材の半径方向に移動する際の最大移動量よりも大きくなるように設定したことを特徴とするトリポード型等速自在継手。
Three track grooves extending in the axial direction are formed on the inner peripheral surface, and an outer joint member having a roller guide surface extending in the axial direction on each side of each track groove and three leg shafts projecting in the radial direction are provided. A tripod member, a roller rotatably supported by a leg shaft of the tripod member, and a roller that is rotatably inserted into a track groove of the outer joint member and guided along the roller guide surface, and the leg shaft; In a tripod type constant velocity universal joint provided with a plurality of needle rollers arranged between the rollers,
On the outer peripheral surface of the leg shaft, a concave groove portion is formed in the circumferential direction in which the needle rollers are accommodated and the bottom surface serves as a rolling surface of the needle rollers, and an inner flange portion is provided on the radial base end side of the concave groove portion. An outer flange is provided on the radial front end side, the flange formed between the inner flange and the outer flange and the bottom surface of the groove portion is tapered, and the taper angle is changed from the bottom surface of the groove portion. The opening angle is greater than 90 ° and not more than 140 °, and the radial dimension of the concave groove portion of the leg shaft is defined as a gap between a contact point between one end of the needle roller and the tapered surface of the inner flange. The total clearance between the other end of the needle roller and the contact point between the tapered surface of the outer flange is the maximum amount of movement when the leg shaft moves in the radial direction of the outer joint member at the normal operating angle of the joint. Tripod type constant velocity universal joint, characterized in that it is set to be larger .
前記脚軸の凹溝部の少なくとも底面を焼入れ鋼切削加工あるいは総形研削加工により形成した請求項1に記載のトリポード型等速自在継手。   The tripod type constant velocity universal joint according to claim 1, wherein at least the bottom surface of the concave groove portion of the leg shaft is formed by quenching steel cutting or general grinding. 前記脚軸は、凹溝部を除いて鍛造肌である請求項1又は2に記載のトリポード型等速自在継手。   The tripod type constant velocity universal joint according to claim 1, wherein the leg shaft is a forged skin except for the recessed groove portion. 前記脚軸は、少なくとも凹溝部および内側鍔部を含む部位に表面硬化層を形成した請求項1〜3のいずれか一項に記載のトリポード型等速自在継手。   The tripod type constant velocity universal joint according to any one of claims 1 to 3, wherein the leg shaft has a surface hardened layer formed at a portion including at least a concave groove portion and an inner flange portion. 前記脚軸の凹溝部の半径方向中心位置を外側継手部材のローラ案内面の半径方向中心位置よりも半径方向外方へオフセットさせた請求項1〜4のいずれか一項に記載のトリポード型等速自在継手。   The tripod type | mold etc. as described in any one of Claims 1-4 which offset the radial direction center position of the concave groove part of the said leg shaft to the radial direction outward rather than the radial direction center position of the roller guide surface of an outer joint member. Fast universal joint. 前記脚軸の凹溝部の半径方向中心位置と外側継手部材のローラ案内面の半径方向中心位置とを一致させた請求項1〜4のいずれか一項に記載のトリポード型等速自在継手。   The tripod type constant velocity universal joint according to any one of claims 1 to 4, wherein the radial center position of the concave groove portion of the leg shaft and the radial center position of the roller guide surface of the outer joint member are matched.
JP2007322072A 2007-12-13 2007-12-13 Tripod type constant velocity universal joint Active JP5372364B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007322072A JP5372364B2 (en) 2007-12-13 2007-12-13 Tripod type constant velocity universal joint
PCT/JP2008/070678 WO2009075158A1 (en) 2007-12-13 2008-11-13 Tripod type constant velocity universal joint

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007322072A JP5372364B2 (en) 2007-12-13 2007-12-13 Tripod type constant velocity universal joint

Publications (2)

Publication Number Publication Date
JP2009144803A JP2009144803A (en) 2009-07-02
JP5372364B2 true JP5372364B2 (en) 2013-12-18

Family

ID=40755401

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007322072A Active JP5372364B2 (en) 2007-12-13 2007-12-13 Tripod type constant velocity universal joint

Country Status (2)

Country Link
JP (1) JP5372364B2 (en)
WO (1) WO2009075158A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5699716B2 (en) * 2011-03-18 2015-04-15 株式会社ジェイテクト Sliding tripod type constant velocity joint

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000240675A (en) * 1998-12-22 2000-09-05 Ntn Corp Tripod type constant velocity universal joint
FR2821906B1 (en) * 2001-03-07 2003-06-13 Gkn Glaenzer Spicer CROSSOVER ASSEMBLY FOR TRANSMISSION JOINT AND CORRESPONDING TRANSMISSION JOINT
JP4100602B2 (en) * 2002-05-28 2008-06-11 トヨタ自動車株式会社 Cold closed forging method of tripod rough profile
JP2004068968A (en) * 2002-08-08 2004-03-04 Toyoda Mach Works Ltd Tripod joint
JP2007225025A (en) * 2006-02-23 2007-09-06 Ntn Corp Fitting structure between inner joint member and shaft of constant velocity universal joint
JP4943276B2 (en) * 2007-08-31 2012-05-30 Ntn株式会社 Tripod type constant velocity universal joint

Also Published As

Publication number Publication date
WO2009075158A1 (en) 2009-06-18
JP2009144803A (en) 2009-07-02

Similar Documents

Publication Publication Date Title
US7217194B2 (en) Constant velocity universal joint
JP2002235766A (en) Tripod type constant velocity universal joint
US8210952B2 (en) Universal joint
WO2011078103A1 (en) Tripod constant-velocity universal joint
JP5372364B2 (en) Tripod type constant velocity universal joint
WO2019111903A1 (en) Tripod constant velocity universal joint
CN101466958A (en) Constant-velocity universal joint
JP5020750B2 (en) Tripod type constant velocity universal joint
JP5154199B2 (en) Tripod type constant velocity universal joint
JP2021143716A (en) Rotation transmission slide spline shaft and constant velocity universal joint
JP6050043B2 (en) Constant velocity universal joint
JP7233497B1 (en) Tripod type constant velocity universal joint
KR101891135B1 (en) Tripod constant velocity joint
JP2011226588A (en) Sliding constant velocity universal joint
JP6824729B2 (en) Tripod type constant velocity universal joint
JP2020051542A (en) Drive shaft
JP6899663B2 (en) Sliding constant velocity universal joint and its manufacturing method
JP2017166576A (en) Constant velocity universal joint
JP2008051190A (en) Fixed type constant velocity universal joint
JP6433689B2 (en) Sliding constant velocity universal joint
JP2011127623A (en) Tripod constant velocity universal joint
JP2007333155A (en) Constant-velocity universal joint
JP2008019952A (en) Tripod type constant velocity universal joint
JP2017110694A (en) Contact velocity universal joint
JP2013155803A (en) Sliding type constant velocity universal joint

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130902

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130918

R150 Certificate of patent or registration of utility model

Ref document number: 5372364

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250