JP2008051190A - Fixed type constant velocity universal joint - Google Patents

Fixed type constant velocity universal joint Download PDF

Info

Publication number
JP2008051190A
JP2008051190A JP2006227052A JP2006227052A JP2008051190A JP 2008051190 A JP2008051190 A JP 2008051190A JP 2006227052 A JP2006227052 A JP 2006227052A JP 2006227052 A JP2006227052 A JP 2006227052A JP 2008051190 A JP2008051190 A JP 2008051190A
Authority
JP
Japan
Prior art keywords
cage
joint member
track groove
spherical surface
track
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006227052A
Other languages
Japanese (ja)
Inventor
Manabu Hoshino
学 星野
Masashi Funabashi
雅司 船橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2006227052A priority Critical patent/JP2008051190A/en
Publication of JP2008051190A publication Critical patent/JP2008051190A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To stabilize, when a ball located in a most protruding phase derails from a track groove of an outer ring at the maximum working angle, the behavior of the ball until the ball fits again in the track groove. <P>SOLUTION: The fixed type constant velocity universal joint comprises: the outer ring 10 having a plurality of track grooves 22 formed on an inner spherical surface 12; an inner ring 20 having a plurality of track grooves 27 formed on an outer spherical surface 22; a plurality of balls 27 interposed between the outer ring 25 and the inner ring 28; and a cage 30 interposed between the outer ring 25 and the inner ring 28 to hold the balls 29. The opening-side groove bottom of the track groove 22 of the outer ring 25 is tapered, and the deep-side groove bottom of the track groove 27 of the inner ring 28 is tapered. For attaining a larger angle, an interference member 60 for applying a radially inward pushing force to the ball 30 which is located in a most protruding phase and derails from the track groove 14 at the maximum working angle by shortening the track groove 14 of the outer ring 10, is disposed on an opening end bottom portion of the outer ring 10. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は固定式等速自在継手に関し、詳しくは、自動車や各種産業機械の動力伝達系において使用されるもので、駆動側と従動側の二軸間で作動角度変位のみを許容する固定式の等速自在継手に関する。   The present invention relates to a fixed type constant velocity universal joint, and more particularly to a fixed type constant velocity universal joint that is used in a power transmission system of an automobile or various industrial machines, and that allows only an operating angular displacement between two axes of a driving side and a driven side. It relates to a constant velocity universal joint.

近年、自動車の乗車空間拡大の観点からホイールベースを長くすることがあるが、それに伴って車両回転半径が大きくならないようにするため、自動車のドライブシャフト等の連結用継手として使用されている固定式等速自在継手の高角化による前輪の操舵角の増大が求められている。   In recent years, the wheelbase may be lengthened from the viewpoint of expanding the riding space of automobiles, but in order to prevent the vehicle turning radius from increasing accordingly, the fixed type used as a coupling joint for automobile drive shafts, etc. There is a need to increase the steering angle of the front wheels by increasing the angle of the constant velocity universal joint.

一般的に、この等速自在継手は、図11に示すように内球面112に複数のトラック溝114を円周方向等間隔に軸方向に沿って開口端118に向けて形成した外側継手部材としての外輪110と、外球面122に外輪110のトラック溝114と対をなす複数のトラック溝124を円周方向等間隔に軸方向に沿って形成した内側継手部材としての内輪120と、外輪110のトラック溝114と内輪120のトラック溝124との間に介在してトルクを伝達する複数のボール130と、外輪110の内球面112と内輪120の外球面122との間に介在してボール130を保持するケージ140とを備えている。   Generally, this constant velocity universal joint is an outer joint member in which a plurality of track grooves 114 are formed on an inner spherical surface 112 at equal intervals in the circumferential direction toward the opening end 118 as shown in FIG. Of the outer ring 110, an inner ring 120 as an inner joint member in which a plurality of track grooves 124 paired with the track grooves 114 of the outer ring 110 are formed on the outer spherical surface 122 along the axial direction at equal intervals in the circumferential direction, A plurality of balls 130 that transmit torque by being interposed between the track groove 114 and the track groove 124 of the inner ring 120, and a ball 130 that is interposed between the inner spherical surface 112 of the outer ring 110 and the outer spherical surface 122 of the inner ring 120. The cage 140 to hold | maintain is provided.

前述した高角化のニーズに対する等速自在継手は、大きな作動角を取り得る構造とするため、図11に示すようにケージ140の内球面144の曲率中心Oと、外球面142の曲率中心Oとは、継手中心面Pに対して等距離fだけ軸方向に逆向きにオフセットされている(ケージオフセット)。このように、ケージオフセットを設けることにより、ケージ140は、外輪110の開口側に向けて厚肉で、かつ、その奥側に向けて薄肉となる形状を有する。 Since the constant velocity universal joint for the above-mentioned needs for increasing the angle has a structure capable of obtaining a large operating angle, the center of curvature O 3 of the inner spherical surface 144 of the cage 140 and the center of curvature O of the outer spherical surface 142 are shown in FIG. 4 is offset in the axial direction by an equal distance f with respect to the joint center plane P (cage offset). Thus, by providing the cage offset, the cage 140 has a shape that is thick toward the opening side of the outer ring 110 and thin toward the back side.

また、外輪110のトラック溝114の曲率中心Oおよび内輪120のトラック溝124の曲率中心Oは、外輪110の内球面112の曲率中心Oおよび内輪120の外球面122の曲率中心Oに対して等距離Fだけ軸方向に逆向きにオフセットされている(トラックオフセット)。このように、トラックオフセットを設けることにより、外輪110のトラック溝114および内輪120のトラック溝124のそれぞれは、外輪110の開口側で深く、かつ、その奥側で浅くなっている。これら一対のトラック溝114,124により、外輪110の奥側から開口側に向けて径方向間隔が徐々に増加する楔状のボールトラックが形成されている。 Further, the center of curvature O 1 of the track groove 114 of the outer ring 110 and the center of curvature O 2 of the track groove 124 of the inner ring 120 are the center of curvature O 4 of the inner spherical surface 112 of the outer ring 110 and the center of curvature O 3 of the outer spherical surface 122 of the inner ring 120. Is offset in the axial direction by an equal distance F (track offset). Thus, by providing the track offset, each of the track groove 114 of the outer ring 110 and the track groove 124 of the inner ring 120 is deep on the opening side of the outer ring 110 and shallow on the back side thereof. The pair of track grooves 114 and 124 form a wedge-shaped ball track in which the radial interval gradually increases from the back side of the outer ring 110 toward the opening side.

なお、内輪120の外球面122の曲率中心Oは、ケージ140の内球面144の曲率中心と一致し、外輪110の内球面112の曲率中心Oは、ケージ140の外球面142の曲率中心と一致している。 Note that the center of curvature O 3 of the outer spherical surface 122 of the inner ring 120 coincides with the center of curvature of the inner spherical surface 144 of the cage 140, and the center of curvature O 4 of the inner spherical surface 112 of the outer ring 110 is the center of curvature of the outer spherical surface 142 of the cage 140. Is consistent with

この固定式等速自在継手では、さらに高角化を図るため、外輪110のトラック溝114の開口側溝底を、その外輪110の開口側に向けて直線的に拡径したテーパ状にすると共に、内輪120のトラック溝124の奥側溝底を、その内輪120の奥側に向けて直線的に拡径したテーパ状とすることにより、高角域の作動を実現している(例えば、特許文献1〜3参照)。   In this fixed type constant velocity universal joint, in order to further increase the angle, the opening-side groove bottom of the track groove 114 of the outer ring 110 is tapered so as to linearly expand toward the opening side of the outer ring 110, and the inner ring The operation of the high angle region is realized by forming the back groove bottom of the 120 track grooves 124 into a tapered shape linearly expanding toward the back side of the inner ring 120 (for example, Patent Documents 1 to 3). reference).

図12は、継手が最大作動角θをとった状態、つまり、外輪110の回転軸Xと内輪120の回転軸Y(内輪120に連結されたシャフト150の中心軸)が最大作動角θをとった状態を示す。また、特許文献4に開示された固定式等速自在継手では、最大作動角をとった時に最も飛び出した位相(位相角φ=0°)にあるボール130が外輪110のトラック溝114から外れ、そのボール130の隣りに位置するボール130が外輪110のトラック溝114が外れない範囲内で、外輪110のトラック溝114を短くする構造が提案されている。このような構造とすることにより、シャフト150との干渉を回避して継手の高角化を図るようにしている。   FIG. 12 shows a state in which the joint has a maximum operating angle θ, that is, the rotation axis X of the outer ring 110 and the rotation axis Y of the inner ring 120 (the central axis of the shaft 150 connected to the inner ring 120) have the maximum operating angle θ. Indicates the state. Further, in the fixed type constant velocity universal joint disclosed in Patent Document 4, the ball 130 that is in the most protruding phase (phase angle φ = 0 °) when the maximum operating angle is taken is disengaged from the track groove 114 of the outer ring 110, A structure in which the track groove 114 of the outer ring 110 is shortened within a range in which the ball 130 adjacent to the ball 130 cannot be removed from the track groove 114 of the outer ring 110 has been proposed. By adopting such a structure, interference with the shaft 150 is avoided and the angle of the joint is increased.

なお、図中、外輪110のトラック溝114を軸方向に移動するボール130がそのトラック溝114と接触する点の移動軌跡mを破線で示す。また、外輪110のトラック溝114から外れたボール130の接触点Aを図中×印で示す。
特開2001−153149号公報 特開2001−304282号公報 特開2001−349332号公報 特公平6−68290号公報
In the figure, the movement trajectory m of the point where the ball 130 moving in the axial direction in the track groove 114 of the outer ring 110 contacts the track groove 114 is indicated by a broken line. Further, the contact point A of the ball 130 that is out of the track groove 114 of the outer ring 110 is indicated by a cross in the figure.
JP 2001-153149 A JP 2001-304282 A JP 2001-349332 A Japanese Examined Patent Publication No. 6-68290

ところで、前述の特許文献4に開示された固定式等速自在継手では、最大作動角時に最も飛び出した位相にあるボールと外輪との接触点がその外輪のトラック溝から外れるように外輪のトラック溝を短くした構造を採用している。この場合、シャフトとの干渉を回避して継手の高角化を実現する上で有効な手段である。   By the way, in the fixed type constant velocity universal joint disclosed in the above-mentioned Patent Document 4, the track groove of the outer ring so that the contact point between the ball and the outer ring in the phase that protrudes most at the maximum operating angle is removed from the track groove of the outer ring. The structure is shortened. In this case, it is an effective means for avoiding interference with the shaft and realizing a high angle joint.

しかしながら、最大作動角時に最も飛び出した位相にあるボールと外輪のトラック溝との接触点がトラック溝から一旦外れると、その接触点が再び外輪のトラック溝に収容されるまで、その外れた状態にあるボールの挙動は不安定となり、それが原因で振動や異音が発生する可能性がある。   However, once the contact point between the ball in the most protruding phase at the maximum operating angle and the track groove of the outer ring is removed from the track groove, the contact point is removed until it is accommodated in the track groove of the outer ring again. The behavior of a certain ball becomes unstable, which can cause vibration and noise.

そこで、本発明は前述の問題点に鑑みて提案されたもので、その目的とするところは、最大作動角時に最も飛び出した位相にあるボールが外輪のトラック溝から外れた後に再びそのトラック溝に収まるまでボールの挙動を安定化させ得る高角化の固定式等速自在継手を提供することにある。   Therefore, the present invention has been proposed in view of the above-described problems, and the object of the present invention is to re-enter the track groove after the ball in the phase that protrudes most at the maximum operating angle is removed from the track groove of the outer ring. An object of the present invention is to provide a fixed type constant velocity universal joint with a high angle that can stabilize the behavior of the ball until it is settled.

前述の目的を達成するための技術的手段として、本発明は、内球面に複数のトラック溝を円周方向等間隔に軸方向に沿って開口端に向けて形成した外側継手部材と、外球面に外側継手部材のトラック溝と対をなす複数のトラック溝を円周方向等間隔に軸方向に沿って形成した内側継手部材と、外側継手部材と内側継手部材の両トラック溝間に介在してトルクを伝達する複数のボールと、外側継手部材の内球面と内側継手部材の外球面との間に介在してボールを保持するケージとを備え、ケージの外球面中心と内球面中心は継手中心に対して軸方向に等距離だけ反対側にオフセットされ、ケージの縦断面において、外側継手部材の開口端側を厚肉にすると共にその反開口端側を薄肉にし、外側継手部材のトラック溝の開口端側溝底を開口端に向けて直線的に拡径したテーパ状にすると共に、内側継手部材のトラック溝の反開口端側溝底をその反開口端側に向けて直線的に拡径したテーパ状とし、さらに高角化を実現するために外側継手部材のトラック溝を短くすることで、最大作動角時に最も飛び出る位相にあってトラック溝から外れるボールに対して、径方向内側へ向けて押し込み力を作用させる干渉部材を外側継手部材のトラック溝の開口端底部に配設したことを特徴とする。   As technical means for achieving the above-mentioned object, the present invention includes an outer joint member in which a plurality of track grooves are formed on the inner spherical surface at equal intervals in the circumferential direction toward the opening end along the axial direction, A plurality of track grooves that are paired with the track grooves of the outer joint member, and are formed between the track grooves of the outer joint member and the inner joint member. A plurality of balls for transmitting torque, and a cage for holding the balls interposed between the inner spherical surface of the outer joint member and the outer spherical surface of the inner joint member, the outer spherical center and the inner spherical center of the cage being the joint center Is offset to the opposite side by an equal distance in the axial direction, and in the longitudinal section of the cage, the open end side of the outer joint member is made thick and the non-open end side is made thin so that the track groove of the outer joint member Open end side groove bottom toward opening end In addition, a taper shape with a linearly expanded diameter and a taper shape with the diameter of the inner joint member track groove on the side opposite to the opening end side of the track groove linearly expanded toward the side opposite to the opening end side further increase the angle. For this reason, by shortening the track groove of the outer joint member, an outer joint member is provided with an interference member that applies a pushing force toward the inner side in the radial direction with respect to the ball that protrudes most at the maximum operating angle and deviates from the track groove. The track groove is arranged at the bottom of the opening end of the track groove.

本発明では、さらに高角化を実現するために外側継手部材のトラック溝を短くすることで、最大作動角時に最も飛び出る位相にあるボールがそのトラック溝から外れても、外側継手部材のトラック溝の開口端底部に配設された干渉部材が、最も飛び出る位相にあるボールに対して径方向内側へ向けて押し込み力を作用させるため、トラック溝から一旦外れた後に再びトラック溝に収まるまでボールの挙動を安定化させることができる。   In the present invention, the track groove of the outer joint member is shortened in order to achieve a higher angle, so that even if the ball in the phase that protrudes most at the maximum operating angle is removed from the track groove, the track groove of the outer joint member is reduced. The interference member arranged at the bottom of the open end exerts a pushing force toward the inner side in the radial direction on the ball that is in the most popping out phase, so that the behavior of the ball until it comes out of the track groove and then fits in the track groove again. Can be stabilized.

前述した構成における干渉部材はリング状をなし、そのリング状の干渉部材を外側継手部材のトラック溝の開口端底部を含む円周方向部位に形成された環状溝に嵌挿した構造とすることが望ましい。このようにすれば、干渉部材を外側継手部材に容易に配設することができる。   The interference member in the configuration described above has a ring shape, and the ring-shaped interference member is inserted into an annular groove formed in a circumferential direction portion including the bottom end of the track groove of the outer joint member. desirable. In this way, the interference member can be easily disposed on the outer joint member.

前述した構成におけるケージは、その外球面の開口側端部を軸方向に向けて延在させ、ケージの内球面の開口側端部を外球面の開口側端部に向けて拡径するテーパ状とした構造が望ましい。ここで、ケージの外球面の開口側端部を軸方向に向けて延在させる場合、等速自在継手が最大作動角をとった状態で、内側継手部材に取り付けられたシャフトがケージの開口側端部と干渉しない程度にその外球面の開口側端部を延在させる。   The cage having the above-described configuration has a tapered shape in which the opening end of the outer spherical surface extends in the axial direction and the opening end of the inner spherical surface of the cage expands toward the opening end of the outer spherical surface. Such a structure is desirable. Here, when the opening side end of the outer spherical surface of the cage is extended in the axial direction, the shaft attached to the inner joint member is the opening side of the cage with the constant velocity universal joint having the maximum operating angle. The opening side end of the outer spherical surface is extended to the extent that it does not interfere with the end.

シャフトがケージの開口側端部と干渉しない程度までケージの外球面の開口側端部を延在させる場合、ケージの内球面の開口側端部のテーパ角度を、外側継手部材と内側継手部材がなす最大作動角の半分以上とすることが望ましい。このようにテーパ角度を最大作動角の半分以上とすれば、高角域においてもケージの外球面と外側継手部材の内球面との接触面積を確保することができる点で好ましい。なお、このテーパ角度が最大作動角の半分よりも小さければ、シャフトがケージのテーパ状開口側端部と干渉することになる。   When the open end of the outer spherical surface of the cage is extended to the extent that the shaft does not interfere with the open end of the cage, the taper angle of the open end of the inner spherical surface of the cage is determined by the outer joint member and the inner joint member. It is desirable to make it more than half of the maximum operating angle. Thus, if the taper angle is set to more than half of the maximum operating angle, it is preferable in that the contact area between the outer spherical surface of the cage and the inner spherical surface of the outer joint member can be secured even in a high angle region. If this taper angle is smaller than half of the maximum operating angle, the shaft will interfere with the tapered opening side end of the cage.

このように高角域においてもケージの外球面と外側継手部材の内球面との接触面積を確保することができることにより、最大作動角をとった時に、ボールがケージを開口側へ押し、そのケージの外球面の開口側端部と外側継手部材の内球面が強く擦れ合っても発熱による耐久性の低下や伝達トルクの損失を最小限に抑えることができる。また、ケージの剛性を最大限に確保することができるので、ケージ自体の強度も向上する。   In this way, the contact area between the outer spherical surface of the cage and the inner spherical surface of the outer joint member can be ensured even in a high angle region, so that when the maximum operating angle is taken, the ball pushes the cage toward the opening side, Even if the opening-side end portion of the outer spherical surface and the inner spherical surface of the outer joint member rub against each other strongly, it is possible to minimize a decrease in durability and loss of transmission torque due to heat generation. Moreover, since the rigidity of the cage can be ensured to the maximum, the strength of the cage itself is also improved.

本発明では、外側継手部材および内側継手部材の両トラック溝をテーパ状とすることにより、外側継手部材の外径を大きくすることなく、作動角の高角化を容易に実現する上で、外側継手部材の肉厚を薄くしてもその外側継手部材の強度および加工性を低下させないように、この固定式等速自在継手の内部諸元の中で、トラック溝をテーパ状にすることによる影響および傾向を検証し、前述のトラック溝のテーパ角度の最適値としてその上限値を12°に規定した。   In the present invention, by forming both track grooves of the outer joint member and the inner joint member into a tapered shape, it is possible to easily increase the operating angle without increasing the outer diameter of the outer joint member. In order to prevent the strength and workability of the outer joint member from being reduced even if the thickness of the member is reduced, the effects of tapering the track groove in the internal specifications of this fixed type constant velocity universal joint and The tendency was verified, and the upper limit value was defined as 12 ° as the optimum value of the taper angle of the track groove.

本出願人は、従来必要な基本性能である強度や耐久性を確保しながら、静的内部力解析、有限要素法(FEM)解析を用いて検討を進め、トラック溝のテーパ角度の範囲を絞り込んで最適設定した。そして、テーパ角度を変えたサンプルの評価結果と解析結果との整合性を確認した。   The present applicant will proceed with the study using static internal force analysis and finite element method (FEM) analysis while securing strength and durability, which are the basic performance required in the past, and narrow the range of the taper angle of the track groove. Was set optimally. And the consistency with the evaluation result and analysis result of the sample which changed the taper angle was confirmed.

前述の構成において、ケージの外球面中心と内球面中心とのケージオフセット量fと、外側継手部材のトラック溝の曲率中心または内側継手部材のトラック溝の曲率中心とボール中心との距離PCRとの比の値f/PCRが0.12以下であることが望ましい。このケージオフセット量fは、ケージの縦断面における肉厚差に関係するため、この点を考慮してケージオフセット量fを設定することが望ましい。   In the above configuration, the cage offset amount f between the outer spherical center and the inner spherical center of the cage, and the distance PCR between the center of curvature of the track groove of the outer joint member or the center of curvature of the track groove of the inner joint member and the ball center. It is desirable that the ratio value f / PCR is 0.12 or less. Since the cage offset amount f is related to the thickness difference in the longitudinal section of the cage, it is desirable to set the cage offset amount f in consideration of this point.

例えば、ケージオフセット量fを大きく設定することにより、外側継手部材の開口側にケージの厚肉側を位置させるようにすれば、外側継手部材の開口側のケージの肉厚を増大させて強度向上を図ることができる利点を有する。また、外側継手部材の開口側のケージの肉厚を増大させることによって、作動角をとった時、外側継手部材の開口端部から飛び出そうとするボールをケージで拘束することができる。   For example, if the cage offset amount f is set large so that the thick side of the cage is positioned on the opening side of the outer joint member, the thickness of the cage on the opening side of the outer joint member is increased to improve the strength. It has the advantage that can be aimed at. Further, by increasing the thickness of the cage on the opening side of the outer joint member, when the operating angle is taken, the ball that is about to jump out from the opening end of the outer joint member can be restrained by the cage.

ただし、ケージオフセット量fが大きすぎると、ケージのポケット内におけるボールの周方向移動量が大きくなり、ボールの適正な運動を確保するため、ケージのポケットの周方向寸法を大きくする必要が生じるので、ケージの柱部が細くなり、強度面が問題となる。また、ケージの入口側と反対側に位置する奥側の肉厚が小さくなり、強度面が問題となる。   However, if the cage offset amount f is too large, the amount of movement of the ball in the cage pocket in the circumferential direction increases, and it is necessary to increase the circumferential dimension of the cage pocket in order to ensure proper movement of the ball. The pillar portion of the cage becomes thin, and the strength becomes a problem. Moreover, the thickness of the back side located on the opposite side to the entrance side of the cage is reduced, and the strength is a problem.

以上より、ケージオフセット量fが過大であるのは好ましくなく、ケージオフセット量fを設ける意義と前述の強度面での問題との均衡を図り得る最適範囲が存在する。ただ、ケージオフセット量fの最適範囲は継手の大きさによって変わるので、継手の大きさを表わす基本寸法との関係において求める必要がある。そのため、ケージオフセット量fと、外側継手部材のトラック溝の曲率中心または内側継手部材のトラック溝の曲率中心とボール中心との距離PCRとの比f/PCRを用いる。   From the above, it is not preferable that the cage offset amount f is excessive, and there exists an optimum range in which the significance of providing the cage offset amount f can be balanced with the above-described strength problem. However, since the optimum range of the cage offset amount f varies depending on the size of the joint, it needs to be determined in relation to the basic dimension representing the size of the joint. Therefore, the ratio f / PCR of the cage offset amount f and the distance PCR between the center of curvature of the track groove of the outer joint member or the center of curvature of the track groove of the inner joint member and the ball center is used.

そこで、前述の構成におけるケージオフセット量は、そのケージオフセット量fと、作動角0°時における外側継手部材のトラック溝の曲率中心または内側継手部材のトラック溝の曲率中心とボール中心との距離PCRとの比f/PCRを0より大きく、かつ、0.12以下とすることが望ましい。   Therefore, the cage offset amount in the above-described configuration is the cage offset amount f and the distance PCR between the center of curvature of the track groove of the outer joint member or the center of curvature of the track groove of the inner joint member and the ball center when the operating angle is 0 °. It is desirable that the ratio f / PCR is greater than 0 and 0.12 or less.

この比f/PCRが0.12より大きいと前述の強度面での問題がある。逆に、0以下であるとケージオフセット量fを設ける意義がなくなる。すなわち、ケージオフセット量fが0の場合、トラックオフセット量も0のため、オフセットが0となり、くさび角=0でボール(ケージ)位置が定まらず、作動性が著しく悪化することから、0以下の範囲では、その目的が達成できない。従って、ケージ強度の確保、耐久性の確保の点から、比f/PCRが0より大きく、かつ、0.12以下であることが、ケージオフセット量fの最適範囲である。   If this ratio f / PCR is larger than 0.12, there is a problem in the aforementioned strength. Conversely, if it is 0 or less, the significance of providing the cage offset amount f is lost. That is, when the cage offset amount f is 0, the track offset amount is also 0, so the offset becomes 0, the ball (cage) position is not determined when the wedge angle = 0, and the operability is significantly deteriorated. In range, the purpose cannot be achieved. Therefore, from the viewpoint of ensuring cage strength and durability, the optimum range of the cage offset amount f is that the ratio f / PCR is greater than 0 and 0.12 or less.

なお、本発明は、ボール数が6個あるいは8個である固定式等速自在継手に適用可能であるが、ボール数が8個の固定式等速自在継手に適用すれば、固定式等速自在継手のコンパクト化が図れる点で有効である。   The present invention can be applied to a fixed type constant velocity universal joint having six or eight balls. However, when applied to a fixed type constant velocity universal joint having eight balls, the fixed type constant velocity universal joint is applicable. This is effective in that the universal joint can be made compact.

本発明では、さらに高角化を実現するために外側継手部材のトラック溝を短くすることで、最大作動角時に最も飛び出る位相にあってトラック溝から外れるボールに対して、径方向内側へ向けて押し込み力を作用させる干渉部材を外側継手部材のトラック溝の開口端底部に配設した構造を具備する。   In the present invention, the track groove of the outer joint member is shortened in order to achieve a higher angle, so that the ball which is in the most popping phase at the maximum operating angle and is out of the track groove is pushed inward in the radial direction. An interference member for applying a force is provided at the bottom of the opening end of the track groove of the outer joint member.

これにより、外側継手部材のトラック溝を短くすることで、最大作動角時に最も飛び出る位相にあるボールがそのトラック溝から外れても、外側継手部材のトラック溝の開口端底部に配設された干渉部材が、最も飛び出る位相にあるボールに対して径方向内側へ向けて押し込み力を作用させるため、トラック溝から一旦外れた後に再びトラック溝に収まるまでボールの挙動を安定化させることができ、振動や異音の発生を抑制することができる。   As a result, by shortening the track groove of the outer joint member, even if the ball in the phase that protrudes most at the maximum operating angle is detached from the track groove, the interference disposed at the bottom of the opening end of the track groove of the outer joint member. The member exerts a pushing force toward the inner side in the radial direction to the ball in the most popping phase, so that the behavior of the ball can be stabilized until it comes out of the track groove and then fits in the track groove again. And the generation of abnormal noise can be suppressed.

その結果、作動角の高角化を容易に実現することができ、近年における自動車の乗車空間拡大の観点からホイールベースを長くする要望に対して、車両回転半径が大きくならないように前輪の操舵角の増大を容易に図ることができる。   As a result, it is possible to easily increase the operating angle, and in response to the desire to lengthen the wheel base from the viewpoint of expanding the riding space of automobiles in recent years, the steering angle of the front wheels has been reduced so as not to increase the vehicle turning radius. Increase can be easily achieved.

本発明に係る固定式等速自在継手の実施形態を以下に詳述する。   An embodiment of a fixed type constant velocity universal joint according to the present invention will be described in detail below.

図1に示す固定式等速自在継手は、外輪10と、内輪20と、ボール30と、ケージ40を主要な構成要素としている。この固定式等速自在継手によって連結すべき二軸、例えば従動側の回転軸(図示せず)を外輪10と結合し、駆動側の回転軸(図示せず)を結合して、両者が角度をなした状態でも等速でトルクを伝達するようになっている。なお、図1は外輪10の回転軸Xと内輪20の回転軸Y(内輪20に連結されたシャフト50の中心軸)とがなす作動角θが0°の状態を示し、図3はその作動角θが最大の状態を示す。   The fixed type constant velocity universal joint shown in FIG. 1 includes an outer ring 10, an inner ring 20, a ball 30, and a cage 40 as main components. Two shafts to be connected by this fixed type constant velocity universal joint, for example, a driven rotary shaft (not shown) is connected to the outer ring 10, and a drive rotary shaft (not shown) is connected to each other. Torque is transmitted at a constant speed even in a state where 1 shows a state where the operating angle θ formed by the rotation axis X of the outer ring 10 and the rotation axis Y of the inner ring 20 (the central axis of the shaft 50 connected to the inner ring 20) is 0 °, and FIG. The state where the angle θ is maximum is shown.

外側継手部材としての外輪10はマウス部16とステム部(図示せず)とからなり、ステム部にて従動側の回転軸とトルク伝達可能に結合する。マウス部16は一端にて開口した椀状で、その内球面12に、軸方向に延びた複数のトラック溝14が円周方向等間隔に形成されている。そのトラック溝14はマウス部16の開口端18まで延びている。   The outer ring 10 serving as an outer joint member includes a mouth portion 16 and a stem portion (not shown), and is coupled to the driven-side rotating shaft at the stem portion so that torque can be transmitted. The mouse portion 16 has a bowl shape opened at one end, and a plurality of track grooves 14 extending in the axial direction are formed on the inner spherical surface 12 at equal intervals in the circumferential direction. The track groove 14 extends to the open end 18 of the mouse portion 16.

内側継手部材としての内輪20は、その外球面22に、軸方向に延びた複数のトラック溝24が円周方向等間隔に形成されている。そのトラック溝24は内輪20の軸方向に切り通されている。内輪20は駆動側の回転軸とトルク伝達可能に結合するためのスプライン孔26を有している。   The inner ring 20 as an inner joint member has a plurality of track grooves 24 extending in the axial direction formed on the outer spherical surface 22 at equal intervals in the circumferential direction. The track groove 24 is cut in the axial direction of the inner ring 20. The inner ring 20 has a spline hole 26 for coupling with a drive-side rotating shaft so as to transmit torque.

外輪10のトラック溝14と内輪20のトラック溝24とは対をなし、各対のトラック溝14,24で構成されるボールトラックに1個ずつ、トルク伝達要素としてのボール30が転動可能に組み込んである。ボール30は外輪10のトラック溝14と内輪20のトラック溝24との間に介在してトルクを伝達する。   The track groove 14 of the outer ring 10 and the track groove 24 of the inner ring 20 make a pair, and a ball 30 as a torque transmitting element can roll on each ball track constituted by the pair of track grooves 14, 24. It is incorporated. The ball 30 is interposed between the track groove 14 of the outer ring 10 and the track groove 24 of the inner ring 20 to transmit torque.

各ボール30はケージ40の円周方向に配設したポケット46内に収容されている。ボール30の数、換言すれば、トラック溝14,24の数は任意であるが、例を挙げるならば6あるいは8である。コンパクトな等速自在継手を実現する上では、この実施形態のようにボールは8個が好ましい。   Each ball 30 is accommodated in a pocket 46 disposed in the circumferential direction of the cage 40. The number of balls 30, in other words, the number of track grooves 14, 24 is arbitrary, but 6 or 8 for example. In order to realize a compact constant velocity universal joint, eight balls are preferable as in this embodiment.

ケージ40は外輪10と内輪20との間に摺動可能に介在し、外球面42にて外輪10の内球面12と接し、内球面44にて内輪20の外球面22と接する。外輪10の内球面12の曲率中心とケージ40の外球面42の曲率中心とは一致し、図2に符号Oで示している。同様に、内輪20の外球面22の曲率中心とケージ40の内球面44の曲率中心とは一致し、図2に符号Oで示している。なお、図面では、外輪10の内球面12とケージ40の外球面42との間、内輪20の外球面22とケージ40の内球面44との間のすきまが誇張して示している。 The cage 40 is slidably interposed between the outer ring 10 and the inner ring 20, is in contact with the inner spherical surface 12 of the outer ring 10 at the outer spherical surface 42, and is in contact with the outer spherical surface 22 of the inner ring 20 at the inner spherical surface 44. The center of curvature of the inner spherical surface 12 of the outer ring 10 and the center of curvature of the outer spherical surface 42 of the cage 40 coincide with each other, and are denoted by reference numeral O 4 in FIG. Similarly, coincide with the center of curvature of the inner spherical surface 44 of the center of curvature and the cage 40 of the outer spherical surface 22 of the inner ring 20, it is indicated by reference numeral O 3 in FIG. In the drawing, the clearance between the inner spherical surface 12 of the outer ring 10 and the outer spherical surface 42 of the cage 40 and between the outer spherical surface 22 of the inner ring 20 and the inner spherical surface 44 of the cage 40 are exaggerated.

外輪10のトラック溝14は円弧部分14aと直線部分14bとからなり、円弧部分14aはマウス部16の奥側つまり反開口端側に位置し、直線部分14bは開口端側に位置する。そして、トラック溝14は、開口端側の溝底を、開口端18に向かって直線的に拡径するテーパ角度αのテーパ状としている。   The track groove 14 of the outer ring 10 includes an arc portion 14a and a straight portion 14b. The arc portion 14a is located on the back side of the mouse portion 16, that is, on the side opposite to the opening, and the straight portion 14b is located on the opening end side. The track groove 14 has a taper shape with a taper angle α that linearly increases the diameter of the groove bottom on the opening end side toward the opening end 18.

内輪20のトラック溝24は円弧部分24aと直線部分24bとからなり、円弧部分24aは外輪10の開口端側に位置し、直線部分24bは反開口端側に位置する。そして、トラック溝24は、外輪10の奥側つまり反開口端側の溝底を、反開口端側に向かって直線的に拡径するテーパ角度αのテーパ状としている。   The track groove 24 of the inner ring 20 includes an arc portion 24a and a straight portion 24b. The arc portion 24a is located on the opening end side of the outer ring 10, and the straight portion 24b is located on the counter-opening end side. The track groove 24 has a tapered shape with a taper angle α that linearly expands the groove bottom on the back side of the outer ring 10, that is, on the side opposite to the opening side toward the side opposite to the opening side.

この継手では、大きな作動角θを取り得る構造とするため、図2に示すように、外輪10のトラック溝14の曲率中心Oは内球面12の中心Oに対して、内輪20のトラック溝24の曲率中心Oは外球面22の中心Oに対して、等距離Fだけ軸方向に逆向きにオフセットさせている(トラックオフセット)。同様に、ケージ40の外球面42の曲率中心Oと内球面44の曲率中心Oは、継手中心Oに対して等距離fだけ軸方向に逆向きにオフセットさせている(ケージオフセット)。 Since this joint has a structure that can take a large operating angle θ, as shown in FIG. 2, the center of curvature O 1 of the track groove 14 of the outer ring 10 is tracked by the track of the inner ring 20 with respect to the center O 4 of the inner spherical surface 12. The curvature center O 2 of the groove 24 is offset in the axial direction opposite to the center O 3 of the outer spherical surface 22 by an equal distance F (track offset). Similarly, the center of curvature O 3 center of curvature O 4 and the inner spherical surface 44 of the outer spherical surface 42 of the cage 40 is then offset in opposite directions in the axial direction by an equal distance f with respect to the joint center O (cage offset).

図3に示すように、外輪10の回転軸Xと内輪20の回転軸Yが0°以外のある作動角θをとったとき、両回転軸X,Yのなす角度θの二等分線に垂直な平面すなわち継手中心面P内にすべてのボール30があれば、ボール中心から両回転軸X,Yまでの距離が相等しく、したがって、両回転軸X,Y間で等角速度で回転運動の伝達が行われる。継手中心面Pと回転軸X,Yとの交点を継手中心Oと称する。固定式等速自在継手では、作動角θに関わりなく継手中心Oは固定されている。   As shown in FIG. 3, when the rotation axis X of the outer ring 10 and the rotation axis Y of the inner ring 20 take a certain operating angle θ other than 0 °, a bisector of the angle θ formed by both the rotation axes X and Y If all the balls 30 are in the vertical plane, that is, the joint center plane P, the distances from the ball center to the two rotation axes X and Y are equal to each other. Transmission takes place. The intersection of the joint center plane P and the rotation axes X and Y is referred to as a joint center O. In the fixed type constant velocity universal joint, the joint center O is fixed regardless of the operating angle θ.

対をなす外輪10のトラック溝14と内輪20のトラック溝24とで構成されるボールトラックは、トラックオフセットを設けることにより、外輪10のマウス部16の奥側から開口端側に向かって径方向間隔が徐々に拡大する楔状を呈している。   The ball track constituted by the track groove 14 of the outer ring 10 and the track groove 24 of the inner ring 20 that form a pair is provided with a track offset so that the radial direction from the back side of the mouth portion 16 of the outer ring 10 toward the opening end side is provided. It has a wedge shape in which the interval gradually increases.

ケージ40は、前述したようにケージオフセットを設けたことにより、外輪10の開口端側に向けて厚肉で、その反開口端側に向けて薄肉となった形状を有する。つまり、外輪10の開口端側に厚肉部41、その反開口端側に薄肉部43が配されている。この厚肉部41の外球面側を軸方向に向けて延在させ、厚肉部41の内球面側を外球面側に向けて拡径するテーパ状としている。   Since the cage 40 is provided with the cage offset as described above, the cage 40 has a shape that is thick toward the opening end side of the outer ring 10 and thin toward the opposite opening end side. That is, the thick part 41 is arranged on the opening end side of the outer ring 10, and the thin part 43 is arranged on the opposite opening end side. The outer spherical surface side of the thick portion 41 is extended in the axial direction, and the inner spherical surface side of the thick portion 41 is tapered toward the outer spherical surface.

このようにケージ40の厚肉部41の外球面側を軸方向に向けて延在させることにより、継手が最大作動角をとった時、高角域においてもケージ40の外球面42と外輪10の内球面12との接触面積を確保することができる。その結果、ボール30がケージ40を開口端側へ押し、そのケージ40の厚肉部41の外球面42と外輪10の内球面12が強く擦れ合っても発熱による耐久性の低下や伝達トルクの損失を最小限に抑えることができる。また、ケージ40の剛性を最大限に確保することができるので、ケージ自体の強度も向上する。   Thus, by extending the outer spherical surface side of the thick portion 41 of the cage 40 in the axial direction, the outer spherical surface 42 of the cage 40 and the outer ring 10 can be obtained even in a high angle region when the joint takes the maximum operating angle. A contact area with the inner spherical surface 12 can be ensured. As a result, even when the ball 30 pushes the cage 40 toward the opening end side and the outer spherical surface 42 of the thick portion 41 of the cage 40 and the inner spherical surface 12 of the outer ring 10 rub against each other strongly, the durability is reduced due to heat generation and the transmission torque is reduced. Loss can be minimized. Moreover, since the rigidity of the cage 40 can be ensured to the maximum, the strength of the cage itself is also improved.

また、ケージ40の厚肉部41の内球面側を外球面側に向けて拡径するテーパ状とすることにより、継手が最大作動角をとった状態で、内輪20に取り付けられたシャフト50がケージ40の厚肉部41と干渉しないようにすることができる(図3参照)。   Further, the shaft 50 attached to the inner ring 20 with the joint having the maximum operating angle is formed by a taper shape in which the inner spherical surface side of the thick portion 41 of the cage 40 is enlarged toward the outer spherical surface side. It is possible to prevent interference with the thick portion 41 of the cage 40 (see FIG. 3).

この実施形態の等速自在継手では、図3および図4に示すように、最大作動角時に最も飛び出る位相にあるボール30の接触点Bが外輪10のトラック溝14から外れるようにそのトラック溝14を短くする。このように外輪10のトラック溝14を軸方向で短くすることにより、シャフト50との干渉を回避して継手の高角化を実現することが容易となる。図中、外輪10のトラック溝14を軸方向に移動するボール30がそのトラック溝14と接触する点の移動軌跡nを点線で示す。また、外輪10のトラック溝14から外れたボール30の接触点Bを図中×印で示す。   In the constant velocity universal joint of this embodiment, as shown in FIG. 3 and FIG. 4, the track groove 14 so that the contact point B of the ball 30 that is in the most popping out phase at the maximum operating angle deviates from the track groove 14 of the outer ring 10. To shorten. Thus, by shortening the track groove 14 of the outer ring 10 in the axial direction, it becomes easy to avoid the interference with the shaft 50 and realize a high angle of the joint. In the drawing, the movement locus n of the point where the ball 30 moving in the axial direction in the track groove 14 of the outer ring 10 contacts the track groove 14 is indicated by a dotted line. Further, a contact point B of the ball 30 that has come off the track groove 14 of the outer ring 10 is indicated by a cross in the figure.

前述したように外輪10のトラック溝14を短くすることで、最大作動角時に最も飛び出る位相(位相角φ=0°)にあるボール30の接触点Bがトラック溝14から外れることに対して、そのボール30に径方向内側へ向けて押し込み力(図4の白抜き矢印参照)を作用させる干渉部材60を外輪10のトラック溝14の開口端底部に配設する。   As described above, by shortening the track groove 14 of the outer ring 10, the contact point B of the ball 30 at the most popping out phase (phase angle φ = 0 °) at the maximum operating angle is deviated from the track groove 14. An interference member 60 is provided at the bottom of the opening end of the track groove 14 of the outer ring 10 to apply a pushing force (see the white arrow in FIG. 4) to the ball 30 inward in the radial direction.

この干渉部材60はリング状をなす金属製あるいはゴム・樹脂製のもので、そのリング状の干渉部材60を外輪10のトラック溝14の開口端底部を含む円周方向部位に形成された環状のスリット溝62に嵌挿した構造としている。このスリット溝62は、外輪10のトラック溝14の開口端底部を含む円周方向部位の内周面に形成されている。   The interference member 60 is made of a ring-shaped metal or rubber / resin, and the ring-shaped interference member 60 is formed in an annular portion formed in a circumferential direction portion including the bottom of the opening end of the track groove 14 of the outer ring 10. The structure is inserted into the slit groove 62. The slit groove 62 is formed on the inner peripheral surface of the circumferential portion including the bottom of the opening end of the track groove 14 of the outer ring 10.

このような構造とすれば、干渉部材60を外輪10に容易に取り付けることができる。なお、干渉部材60は、ボール30に対して径方向内側へ向けて押し込み力を作用させることが可能なようにトラック溝14の底面から突出して配設する必要がある。また、最も飛び出す位相にあるボール30に負荷される荷重は非常に小さく設定されているので、干渉部材60に負荷される荷重も非常に小さくすることができる。   With such a structure, the interference member 60 can be easily attached to the outer ring 10. The interference member 60 needs to be disposed so as to protrude from the bottom surface of the track groove 14 so that a pressing force can be applied to the ball 30 inward in the radial direction. Further, since the load applied to the ball 30 in the most popping out phase is set to be very small, the load applied to the interference member 60 can also be made very small.

以上のように干渉部材60を設けたことにより、外輪10のトラック溝14を短くすることで、最大作動角時に最も飛び出る位相にあるボール30がそのトラック溝14から外れても、外輪10のトラック溝14の開口端底部に配設された干渉部材60が、最も飛び出る位相にあるボール30に対して径方向内側へ向けて押し込み力を作用させるため、トラック溝14から一旦外れた後に再びトラック溝14に収まるまでボール30の挙動を安定化させることができ、振動や異音の発生を抑制することができる。   By providing the interference member 60 as described above, by shortening the track groove 14 of the outer ring 10, even if the ball 30 in the phase that protrudes most at the maximum operating angle is detached from the track groove 14, the track of the outer ring 10 is The interference member 60 disposed at the bottom of the opening end of the groove 14 exerts a pushing force toward the radially inner side with respect to the ball 30 in the most protruding phase. The behavior of the ball 30 can be stabilized until it falls within 14, and the occurrence of vibrations and abnormal noise can be suppressed.

なお、外輪10のトラック溝14の開口端底部を含む円周方向部位の内周面にスリット溝62を形成することが困難な場合には、図5および図6に示すように、外輪10のトラック溝14の開口端底部を含む円周方向部位の端面に環状の凹溝64を形成し、この凹溝64に干渉部材60を嵌め込んだ上で、外輪10の開口端にカバー66を被着した構造とすることも可能である。   When it is difficult to form the slit groove 62 on the inner peripheral surface of the circumferential portion including the bottom of the opening end of the track groove 14 of the outer ring 10, as shown in FIGS. An annular concave groove 64 is formed on the end surface of the circumferential portion including the bottom of the opening end of the track groove 14, and the interference member 60 is fitted into the concave groove 64, and a cover 66 is covered on the open end of the outer ring 10. A worn structure is also possible.

カバー66は、外輪10の外周面に形成された段部に圧入などにより挿着される筒状部66aと、その筒状部から内側に折曲されたフランジ部66bとからなり、このフランジ部66bで干渉部材60の脱落を防止する。このフランジ部66bの内周縁をテーパ状とすることにより、シャフト50との干渉を回避するようにしている。   The cover 66 includes a cylindrical portion 66a that is inserted into a step portion formed on the outer peripheral surface of the outer ring 10 by press-fitting or the like, and a flange portion 66b that is bent inward from the cylindrical portion. 66b prevents the interference member 60 from falling off. By making the inner peripheral edge of the flange portion 66b tapered, interference with the shaft 50 is avoided.

外輪10と内輪20が最大作動角θをとったとき、外輪10のマウス部16の開口端18からボール30が飛び出すことを防止するため、ケージ40のポケット46で拘束できるようにケージオフセット量fを従来のものよりも大きく設定する。すなわち、ケージオフセット量をf、ボール30の中心軌跡半径値、すなわち、作動角0°時における外輪10のトラック溝14の曲率中心Oまたは内輪20のトラック溝24の曲率中心Oとボール30の中心Oとを結ぶ線分の長さをPCRとした場合、f/PCRが0より大きく、かつ、0.12以下となるように設定する。 When the outer ring 10 and the inner ring 20 take the maximum operating angle θ, the cage offset amount f is set so that the ball 30 can be restrained by the pocket 46 of the cage 40 in order to prevent the ball 30 from jumping out from the opening end 18 of the mouth portion 16 of the outer ring 10. Is set larger than the conventional one. That is, the cage offset amount is f, the radius of the center locus of the ball 30, that is, the center of curvature O 1 of the track groove 14 of the outer ring 10 or the center of curvature O 2 of the track groove 24 of the inner ring 20 and the ball 30 when the operating angle is 0 °. Assuming that the length of the line connecting the center O 5 is PCR, f / PCR is set to be greater than 0 and 0.12 or less.

このように、外輪10および内輪20の両トラック溝14,24をテーパ状とすれば、最大作動角の高角化と共に、外輪10のトラック溝14におけるボール30との接触長さを確保することができるので、外輪10と内輪20との間で安定したトルク伝達を確保することができる。また、作動角をとった時にボール30が最も飛び出そうとする位相(位相角φ=0°)(図3および図7参照)のトラック荷重およびポケット荷重を低減することができるので、外輪10と内輪20の高角域での作動において有利である。ここで、トラック荷重とは、接触するボール30からトラック溝14,24が受ける荷重を意味する。   Thus, if both the track grooves 14 and 24 of the outer ring 10 and the inner ring 20 are tapered, the maximum operating angle can be increased and the contact length with the ball 30 in the track groove 14 of the outer ring 10 can be secured. Therefore, stable torque transmission can be ensured between the outer ring 10 and the inner ring 20. Further, since the track load and the pocket load of the phase (phase angle φ = 0 °) (see FIGS. 3 and 7) in which the ball 30 is most likely to jump out when the operating angle is taken can be reduced. This is advantageous in the operation of the inner ring 20 in a high angle region. Here, the track load means a load received by the track grooves 14 and 24 from the ball 30 in contact.

また、ケージ40の外球面42は外輪10の内球面12に接触案内され、ケージ40の内球面44は内輪20の外球面22に接触案内され、トルク伝達時にケージ40と外輪10または内輪20との間で球面力が作用するが、その球面力の最大値を低減することができ、継手内部での発熱を抑制できる。さらに、鍛造型が抜き易いことから冷間鍛造による加工性がよく、製造コストの低減も図れる。   Further, the outer spherical surface 42 of the cage 40 is contact-guided to the inner spherical surface 12 of the outer ring 10, and the inner spherical surface 44 of the cage 40 is contact-guided to the outer spherical surface 22 of the inner ring 20, so that the cage 40 and the outer ring 10 or the inner ring 20 are A spherical force acts between the two, but the maximum value of the spherical force can be reduced and heat generation inside the joint can be suppressed. Furthermore, since the forging die can be easily pulled out, the workability by cold forging is good, and the manufacturing cost can be reduced.

外輪10および内輪20の両トラック溝14,24をテーパ状とすることにより、前述したトラック荷重、ポケット荷重および球面力からなる内部力の影響および傾向を検証し、有限要素法(FEM)解析を実施することで、トラック溝14,24のテーパ角度α(図1および図2参照)の範囲を絞り込んで最適設定した。   By making both the track grooves 14 and 24 of the outer ring 10 and the inner ring 20 into a tapered shape, the influence and tendency of the internal force including the track load, pocket load and spherical force described above are verified, and a finite element method (FEM) analysis is performed. By carrying out, the range of the taper angle α (see FIGS. 1 and 2) of the track grooves 14 and 24 was narrowed down and optimally set.

まず、トラック溝14,24のテーパ角度αを大きくすることによる内部力(トラック荷重、ポケット荷重および球面力)の傾向は、表1のとおりである。なお、表1において、ボール30が最も飛び出そうとする位相(位相角φ=0°)と内部力が最大値となるボール30の位相、つまり、ボール30が最も奥に入る位相(位相角φ=180°付近)について検証した(図3および図7参照)。また、球面力の変動幅とは、球面力の最大値と最小値との差を意味する。

Figure 2008051190
First, the tendency of the internal force (track load, pocket load and spherical force) by increasing the taper angle α of the track grooves 14 and 24 is shown in Table 1. In Table 1, the phase at which the ball 30 is most likely to jump out (phase angle φ = 0 °) and the phase of the ball 30 at which the internal force is maximum, that is, the phase at which the ball 30 is deepest (phase angle φ = Around 180 °) (see FIG. 3 and FIG. 7). The fluctuation range of the spherical force means a difference between the maximum value and the minimum value of the spherical force.
Figure 2008051190

表1から明らかなようにテーパ角度αを大きくすると、ポケット荷重の最大値が大きくなるが、ボール30が最も奥に入る位相(位相角φ=180°付近)で外輪10の肉厚を大きく、また、ケージオフセット量を大きくしてケージ40の肉厚を大きくすることにより強度を確保することができるので問題にはならない。   As apparent from Table 1, when the taper angle α is increased, the maximum value of the pocket load is increased, but the wall thickness of the outer ring 10 is increased at the phase where the ball 30 enters the innermost part (phase angle φ = 180 °), Further, since the strength can be ensured by increasing the cage offset amount and increasing the thickness of the cage 40, there is no problem.

次に、テーパ角度αの上限値を決定するために、有限要素法(FEM)解析を実施した。テーパ角度αが大きくなれば、ボール30が最も飛び出そうとする位相(位相角φ=0°)では内部力(トラック荷重およびポケット荷重)が小さくなり、強度的に有利になるが、外輪10の開口端18でありその肉厚が小さくなるため、トラック溝14に発生する応力値を継手強度に換算して傾向を確認した。その結果は、図8に示すとおりである。同図に示す特性から明らかなようにテーパ角度αが12.9°で継手強度が必要強度を下回ることから、テーパ角度αの最適範囲としてその上限値を12°として規定した。   Next, in order to determine the upper limit value of the taper angle α, a finite element method (FEM) analysis was performed. When the taper angle α is increased, the internal force (track load and pocket load) is reduced at the phase (phase angle φ = 0 °) in which the ball 30 is most likely to jump out, which is advantageous in terms of strength. Since it is the opening end 18 and its wall thickness becomes small, the tendency was confirmed by converting the stress value generated in the track groove 14 into joint strength. The result is as shown in FIG. As apparent from the characteristics shown in the figure, since the joint angle is less than the required strength when the taper angle α is 12.9 °, the upper limit of the taper angle α is defined as 12 °.

なお、前述の実施形態では、トラックオフセットを設けた場合について例示したが、そのトラックオフセットを設けずにトラックオフセット量Fを0にしてもよい。トラックオフセットを設けていると、外輪10のトラック溝14の円弧部分14aがその奥側に向けて浅くなることから、作動角をとった時にトラック溝14の最奥部に位置するボール30の乗り上げが生じる可能性がある。   In the above-described embodiment, the case where the track offset is provided is illustrated, but the track offset amount F may be set to 0 without providing the track offset. When the track offset is provided, the arc portion 14a of the track groove 14 of the outer ring 10 becomes shallower toward the inner side, so that the ball 30 positioned at the innermost portion of the track groove 14 rides up when the operating angle is taken. May occur.

そこで、外輪10のトラック溝14の曲率中心Oをその内球面12の曲率中心Oに一致させ、かつ、内輪20のトラック溝24の曲率中心Oをその外球面22の曲率中心Oに一致させてトラックオフセット量Fを0とすることにより、外輪10のトラック溝14の円弧部分14aが奥側に向けて浅くなることがなく均一な深さとなることから、作動角をとった時にトラック溝14の最奥部に位置するボール30の乗り上げを抑制することができる。 Accordingly, the center of curvature O 1 of the track groove 14 of the outer ring 10 is made to coincide with the center of curvature O 4 of the inner spherical surface 12, and the center of curvature O 2 of the track groove 24 of the inner ring 20 is made to be the center of curvature O 3 of the outer spherical surface 22. By making the track offset amount F equal to 0, the arc portion 14a of the track groove 14 of the outer ring 10 has a uniform depth without becoming shallow toward the back side. It is possible to suppress the riding of the ball 30 located at the innermost part of the track groove 14.

トラックオフセット量F、ケージオフセット量f、テーパ角度αの各因子を変動させて内部力解析を行った結果を次に述べる。ここで、トラックオフセットについては、高角域に入っても許容負荷トルクが落ちない超高角固定式等速自在継手の特性を考慮してトラックオフセット量F=0すなわち「トラックオフセットなし」とした。ケージオフセットについては、内部力の観点からはできるだけ小さい方がよいが、継手の機能確保のためにはある程度ケージオフセットをつけなくてはならないことから、0≦f/PCR≦0.150で変動させた。テーパ角度αについては、0°から12°までの範囲で変動させた。   The results of the internal force analysis performed by varying each factor of the track offset amount F, the cage offset amount f, and the taper angle α will be described below. Here, with respect to the track offset, the track offset amount F = 0, that is, “no track offset” is set in consideration of the characteristics of the ultra-high angle fixed type constant velocity universal joint in which the allowable load torque does not drop even when entering the high angle region. The cage offset should be as small as possible from the viewpoint of internal force. However, to ensure the function of the joint, a certain amount of cage offset must be provided, so that 0 ≦ f / PCR ≦ 0.150 is varied. It was. The taper angle α was varied in the range from 0 ° to 12 °.

ケージオフセット量f=0(f/PCR=0)ならば、テーパ角度αが1.1°以上のとき、ボール30が最も飛び出そうとする位相(0°位相)のトラック荷重およびポケット荷重はゼロになる。一方、テーパ角度α=12°ならば、ケージオフセット量f=3.94(f/PCR=0.114)以下のとき、ボール30が最も飛び出そうとする位相(0°位相)のトラック荷重およびポケット荷重はゼロになる。   If the cage offset amount is f = 0 (f / PCR = 0), when the taper angle α is 1.1 ° or more, the track load and the pocket load at the phase (0 ° phase) at which the ball 30 is most likely to jump out are zero. become. On the other hand, when the taper angle α = 12 °, when the cage offset amount f = 3.94 (f / PCR = 0.114) or less, the track load of the phase (0 ° phase) at which the ball 30 is most likely to jump out and Pocket load is zero.

つまり、ケージオフセット量fとテーパ角度αとの関係が図9の斜線領域内に設定されていれば、ボール30が最も飛び出そうとする位相(0°位相)のトラック荷重およびポケット荷重はゼロになる。ここで、図9は内部力解析により算出したデータに基づいて作図したもので、横軸がテーパ角度α(deg)、縦軸がf/PCRを表している。   That is, if the relationship between the cage offset amount f and the taper angle α is set within the hatched region in FIG. 9, the track load and pocket load at the phase (0 ° phase) at which the ball 30 is most likely to jump out are zero. Become. Here, FIG. 9 is plotted based on data calculated by internal force analysis, and the horizontal axis represents the taper angle α (deg) and the vertical axis represents f / PCR.

これより、ボール30が最も飛び出そうとする位相(0°位相)に負荷される荷重を極力小さくし、より高角作動域において有利となる内部仕様は次のようになる。
トラックオフセット:なし
ケージオフセット量f:0<f/PCR≦0.12
テーパ角度α:1°≦α≦12°
Thus, the internal specifications that are advantageous in a higher angle operating range are as follows, with the load applied to the phase (0 ° phase) where the ball 30 is most likely to jump out minimized.
Track offset: None Cage offset amount f: 0 <f / PCR ≦ 0.12
Taper angle α: 1 ° ≦ α ≦ 12 °

また、この実施形態では、ボール30が最も飛び出そうとする位相(0°位相)における荷重が低減する一方、ピークの荷重は従来の等速自在継手と比較して大きくなることから、強度を確保するため、ケージ40の厚肉部41を外輪10の開口端側に向けた配置とするのが好ましい。   Further, in this embodiment, the load at the phase (0 ° phase) where the ball 30 is most likely to jump out is reduced, while the peak load is larger than that of the conventional constant velocity universal joint, so that the strength is ensured. Therefore, it is preferable to arrange the thick portion 41 of the cage 40 toward the opening end side of the outer ring 10.

前述の内部仕様で寸法を設定した本発明による固定式等速自在継手(実施例)と従来の固定式等速自在継手(比較例)について、最大作動角時のボール30が最も飛び出そうとする位相(0°位相)におけるトラック荷重およびポケット荷重を算出したところ、結果は図10に示すとおりであった。同図より、比較例に対して実施例が、トラック荷重とポケット荷重のいずれも8割以上減少していることが分かる。   For the fixed type constant velocity universal joint according to the present invention (example) and the conventional fixed type constant velocity universal joint (comparative example) according to the present invention, the ball 30 at the maximum operating angle is most likely to jump out. When the track load and the pocket load in the phase (0 ° phase) were calculated, the results were as shown in FIG. From the figure, it can be seen that in the example, both the track load and the pocket load are reduced by 80% or more compared to the comparative example.

本発明は前述した実施形態に何ら限定されるものではなく、本発明の要旨を逸脱しない範囲内において、さらに種々なる形態で実施し得ることは勿論のことであり、本発明の範囲は、特許請求の範囲によって示され、さらに特許請求の範囲に記載の均等の意味、および範囲内のすべての変更を含む。   The present invention is not limited to the above-described embodiments, and can of course be implemented in various forms without departing from the scope of the present invention. The scope of the present invention is not limited to patents. It includes the equivalent meanings recited in the claims, and the equivalent meanings recited in the claims, and all modifications within the scope.

本発明に係る固定式等速自在継手の実施形態を示す断面図である。It is sectional drawing which shows embodiment of the fixed type constant velocity universal joint which concerns on this invention. 図1の等速自在継手において、ケージオフセットおよびトラックオフセット等の内部諸元を説明するための図である。FIG. 2 is a diagram for explaining internal specifications such as a cage offset and a track offset in the constant velocity universal joint of FIG. 1. 図1の等速自在継手において、外輪に対して内輪が最大作動角をとった状態を示す断面図である。In the constant velocity universal joint of FIG. 1, it is sectional drawing which shows the state which the inner ring took the maximum operating angle with respect to the outer ring. 図3の要部拡大図である。It is a principal part enlarged view of FIG. 本発明の他の実施形態で、外輪に対して内輪が最大作動角をとった状態を示す断面図である。In other embodiment of this invention, it is sectional drawing which shows the state which the inner ring | wheel took the maximum operating angle with respect to the outer ring | wheel. 図5の要部拡大図である。It is a principal part enlarged view of FIG. ケージに収容されたボールの位相を示す断面図である。It is sectional drawing which shows the phase of the ball accommodated in the cage. トラック溝のテーパ角度に対する継手強度の関係を示す特性図である。It is a characteristic view which shows the relationship of the joint strength with respect to the taper angle of a track groove. トラック溝のテーパ角度とf/PCRとの関係を示す特性図である。It is a characteristic view which shows the relationship between the taper angle of a track groove, and f / PCR. 最大作動角時における基本トルク負荷時の0°位相荷重を示す特性図である。It is a characteristic view which shows the 0 degree phase load at the time of the basic torque load at the time of a maximum operating angle. 固定式等速自在継手の従来例を示す断面図である。It is sectional drawing which shows the prior art example of a fixed type constant velocity universal joint. 図11の等速自在継手において、外輪に対して内輪が最大作動角をとった状態を示す断面図である。12 is a cross-sectional view showing a state in which the inner ring has a maximum operating angle with respect to the outer ring in the constant velocity universal joint of FIG.

符号の説明Explanation of symbols

10 外側継手部材(外輪)
12 外側継手部材(外輪)の内球面
14 外側継手部材(外輪)のトラック溝
18 開口端
20 内側継手部材(内輪)
22 内側継手部材(内輪)の外球面
24 内側継手部材(内輪)のトラック溝
30 ボール
40 ケージ
42 ケージの外球面
44 ケージの内球面
60 干渉部材
62 環状溝(スリット溝)
f ケージオフセット量
F トラックオフセット量
外側継手部材(外輪)のトラック溝の曲率中心
内側継手部材(内輪)のトラック溝の曲率中心
ケージの内球面中心
ケージの外球面中心
α トラック溝のテーパ角度
10 Outer joint member (outer ring)
12 Inner spherical surface of outer joint member (outer ring) 14 Track groove of outer joint member (outer ring) 18 Open end 20 Inner joint member (inner ring)
22 Outer spherical surface of inner joint member (inner ring) 24 Track groove of inner joint member (inner ring) 30 Ball 40 Cage 42 Outer spherical surface of cage 44 Inner spherical surface of cage 60 Interference member 62 Annular groove (slit groove)
f Cage offset amount F Track offset amount O 1 Center of curvature of track groove of outer joint member (outer ring) O 2 Center of curvature of track groove of inner joint member (inner ring) O 3 Center of inner spherical surface of cage O 4 Center of outer spherical surface of cage 4 α Track groove taper angle

Claims (7)

内球面に複数のトラック溝を円周方向等間隔に軸方向に沿って開口端に向けて形成した外側継手部材と、外球面に前記外側継手部材のトラック溝と対をなす複数のトラック溝を円周方向等間隔に軸方向に沿って形成した内側継手部材と、前記外側継手部材と内側継手部材の両トラック溝間に介在してトルクを伝達する複数のボールと、外側継手部材の内球面と内側継手部材の外球面との間に介在してボールを保持するケージとを備え、
前記ケージの外球面中心と内球面中心は継手中心に対して軸方向に等距離だけ反対側にオフセットされ、ケージの縦断面において、外側継手部材の開口端側を厚肉にすると共にその反開口端側を薄肉にし、
前記外側継手部材のトラック溝の開口端側溝底を、前記開口端に向けて直線的に拡径したテーパ状にすると共に、前記内側継手部材のトラック溝の反開口端側溝底を、その反開口端側に向けて直線的に拡径したテーパ状とし、
前記外側継手部材のトラック溝を短くすることで、最大作動角時に最も飛び出る位相にあって前記トラック溝から外れるボールに対して、径方向内側へ向けて押し込み力を作用させる干渉部材を前記外側継手部材のトラック溝の開口端底部に配設したことを特徴とする固定式等速自在継手。
An outer joint member in which a plurality of track grooves are formed on the inner spherical surface at equal intervals in the circumferential direction toward the opening end along the axial direction, and a plurality of track grooves that are paired with the track grooves of the outer joint member are formed on the outer spherical surface. An inner joint member formed along the axial direction at equal intervals in the circumferential direction, a plurality of balls that are interposed between both track grooves of the outer joint member and the inner joint member, and an inner spherical surface of the outer joint member And a cage for holding the ball interposed between the outer spherical surface of the inner joint member,
The outer spherical center and the inner spherical center of the cage are offset to the opposite side by an equal distance in the axial direction with respect to the joint center, and in the longitudinal section of the cage, the opening end side of the outer joint member is made thicker and the opposite opening. Thin the end side,
The outer end of the track groove of the outer joint member is tapered so that the opening end side groove bottom linearly expands toward the opening end, and the anti-opening end side groove bottom of the track groove of the inner joint member is anti-opened. The taper is linearly expanded toward the end,
By shortening the track groove of the outer joint member, an interference member that applies a pushing force toward the inside in the radial direction is applied to the ball that is in the most popping out phase at the maximum operating angle and is released from the track groove. A fixed type constant velocity universal joint, wherein the fixed type constant velocity universal joint is arranged at the bottom of the opening end of the track groove of the member.
前記外側継手部材のトラック溝の開口端底部を含む円周方向部位に環状溝を形成し、その環状溝にリング状の干渉部材を嵌挿した請求項1に記載の固定式等速自在継手。   The fixed type constant velocity universal joint according to claim 1, wherein an annular groove is formed in a circumferential direction portion including an opening end bottom portion of the track groove of the outer joint member, and a ring-shaped interference member is inserted into the annular groove. 前記ケージの外球面の開口側端部を軸方向に向けて延在させ、ケージの内球面の開口側端部を外球面の開口側端部に向けて拡径するテーパ状とした請求項1又は2に記載の固定式等速自在継手。   2. A tapered shape in which an opening-side end portion of the outer spherical surface of the cage extends in the axial direction and an opening-side end portion of the inner spherical surface of the cage expands toward the opening-side end portion of the outer spherical surface. Or the fixed type constant velocity universal joint of 2. 前記ケージの内球面の開口側端部のテーパ角度を、外側継手部材と内側継手部材がなす最大作動角の半分以上とした請求項3に記載の固定式等速自在継手。   The fixed type constant velocity universal joint according to claim 3, wherein the taper angle of the opening side end portion of the inner spherical surface of the cage is equal to or more than half of the maximum operating angle formed by the outer joint member and the inner joint member. 前記外側継手部材および内側継手部材の両トラック溝のテーパ角度の上限値を12°とした請求項1〜4のいずれか一項に記載の固定式等速自在継手。   The fixed type constant velocity universal joint according to any one of claims 1 to 4, wherein an upper limit value of a taper angle of both track grooves of the outer joint member and the inner joint member is 12 °. 前記ケージの外球面中心と内球面中心とのケージオフセット量fと、作動角0°時における外側継手部材のトラック溝の曲率中心または内側継手部材のトラック溝の曲率中心とボール中心との距離PCRとの比の値f/PCRが0より大きく、かつ、0.12以下である請求項1〜5のいずれか一項に記載の固定式等速自在継手。   The cage offset amount f between the outer spherical center and inner spherical center of the cage, and the distance PCR between the center of curvature of the track groove of the outer joint member or the center of curvature of the track groove of the inner joint member and the ball center when the operating angle is 0 °. The fixed constant velocity universal joint according to any one of claims 1 to 5, wherein a ratio value f / PCR with respect to is greater than 0 and equal to or less than 0.12. 前記ボールの個数を8個とした請求項1〜6のいずれか一項に記載の固定式等速自在継手。   The fixed type constant velocity universal joint according to any one of claims 1 to 6, wherein the number of the balls is eight.
JP2006227052A 2006-08-23 2006-08-23 Fixed type constant velocity universal joint Withdrawn JP2008051190A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006227052A JP2008051190A (en) 2006-08-23 2006-08-23 Fixed type constant velocity universal joint

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006227052A JP2008051190A (en) 2006-08-23 2006-08-23 Fixed type constant velocity universal joint

Publications (1)

Publication Number Publication Date
JP2008051190A true JP2008051190A (en) 2008-03-06

Family

ID=39235448

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006227052A Withdrawn JP2008051190A (en) 2006-08-23 2006-08-23 Fixed type constant velocity universal joint

Country Status (1)

Country Link
JP (1) JP2008051190A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113719550A (en) * 2021-08-23 2021-11-30 中国航发贵阳发动机设计研究所 High-rotating-speed high-power large-compensation-amount coupling
CN113864350A (en) * 2020-06-12 2021-12-31 上海纳铁福传动系统有限公司 High-efficiency large-angle rzeppa fixed universal joint

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113864350A (en) * 2020-06-12 2021-12-31 上海纳铁福传动系统有限公司 High-efficiency large-angle rzeppa fixed universal joint
CN113719550A (en) * 2021-08-23 2021-11-30 中国航发贵阳发动机设计研究所 High-rotating-speed high-power large-compensation-amount coupling

Similar Documents

Publication Publication Date Title
JP2007270997A (en) Fixed type constant velocity universal joint
JP2006266329A (en) Fixed type constant velocity universal joint
JP2007064264A (en) Fixed type constant velocity universal joint
JP4879501B2 (en) High angle fixed type constant velocity universal joint
JP4896662B2 (en) Fixed constant velocity universal joint
JP4745186B2 (en) Fixed constant velocity universal joint
JP2008051190A (en) Fixed type constant velocity universal joint
JP4262863B2 (en) Fixed type constant velocity universal joint
JP4896673B2 (en) Fixed constant velocity universal joint and manufacturing method thereof
JP2005106233A (en) Fixed type constant velocity universal joint
JP2008051189A (en) Fixed-type constant-speed universal joint
JP2008051191A (en) Fixed-type constant-speed universal joint
JP5749912B2 (en) Double offset type constant velocity joint
JP2008101656A (en) Fixed type constant velocity universal joint
WO2018221170A1 (en) Constant-velocity universal joint
JP2007263222A (en) Fixed type constant velocity universal joint
JP2007016899A (en) Fixed-type constant-velocity universal joint
JP2007024106A (en) Fixed type constant velocity universal joint
JP2006266368A (en) Fixed type constant velocity universal joint
JP2007211805A (en) Fixed type constant velocity universal joint
JP5372364B2 (en) Tripod type constant velocity universal joint
JP2008095804A (en) Fixed type constant velocity universal joint
JP2007132379A (en) Fixed type constant velocity universal joint
JP2006283831A (en) Constant velocity universal joint
JP2007211807A (en) Fixed type constant velocity universal joint

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20091110