JP2007024106A - Fixed type constant velocity universal joint - Google Patents

Fixed type constant velocity universal joint Download PDF

Info

Publication number
JP2007024106A
JP2007024106A JP2005204421A JP2005204421A JP2007024106A JP 2007024106 A JP2007024106 A JP 2007024106A JP 2005204421 A JP2005204421 A JP 2005204421A JP 2005204421 A JP2005204421 A JP 2005204421A JP 2007024106 A JP2007024106 A JP 2007024106A
Authority
JP
Japan
Prior art keywords
cage
joint member
spherical surface
center
constant velocity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005204421A
Other languages
Japanese (ja)
Inventor
Manabu Hoshino
学 星野
Akira Nakagawa
亮 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2005204421A priority Critical patent/JP2007024106A/en
Priority to US11/372,040 priority patent/US8147342B2/en
Priority to EP06251417.9A priority patent/EP1705395B1/en
Publication of JP2007024106A publication Critical patent/JP2007024106A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Rolling Contact Bearings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fixed type constant velocity universal joint with a cage easily incorporated into an outer ring without causing the degradation of strength and durability and the loss of transmission torque. <P>SOLUTION: The fixed type constant velocity universal joint comprises the outer ring 25 having a plurality of track grooves 22 formed in an inner spherical face 21, an inner ring having a plurality of track grooves in the outer spherical face, a plurality of balls laid between the outer ring 25 and the inner ring for transmitting torque, and the cage 30 laid between the outer ring 25 and the inner ring for holding the balls. The opening side groove bottom of the track groove 22 of the outer ring 25 is tapered, and the corner side groove bottom of the track groove of the inner ring is tapered. The center of each of the outer and inner spherical faces of the cage 30 and the curvature center of the track groove 22 of each of the outer ring 25 and the inner ring are offset an axially equal distance from the center of the joint to the opposite side. An outer spherical face 32 located at the opening end of a pocket 33 of the cage 30 is partially cut, and an outer diameter ϕd<SB>1</SB>of the cage 30 on a flat cut face 40 thereof is set smaller than an in-low diameter ϕD<SB>1</SB>of the outer ring 25. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は固定型等速自在継手に関し、詳しくは、自動車や各種産業機械の動力伝達系において使用されるもので、駆動側と従動側の二軸間で作動角度変位のみを許容する固定型の等速自在継手に関する。   The present invention relates to a fixed type constant velocity universal joint, and more particularly to a fixed type constant velocity universal joint that is used in a power transmission system of an automobile or various industrial machines, and that allows only an operating angular displacement between two axes of a driving side and a driven side. It relates to a constant velocity universal joint.

近年、自動車の乗車空間拡大の観点からホイールベースを長くすることがあるが、それに伴って車両回転半径が大きくならないようにするため、自動車のドライブシャフト等の連結用継手として使用されている固定型等速自在継手の高角化による前輪の操舵角の増大が求められている。   In recent years, the wheelbase may be lengthened from the viewpoint of expanding the riding space of an automobile, but in order to prevent the turning radius of the vehicle from increasing accordingly, a fixed type used as a coupling joint for an automobile drive shaft or the like. There is a need to increase the steering angle of the front wheels by increasing the angle of the constant velocity universal joint.

一般的に、固定型等速自在継手は、図18に示すように内球面1に複数のトラック溝2を円周方向等間隔に軸方向に沿って開口端3に向けて形成した外側継手部材としての外輪5と、外球面6に外輪5のトラック溝2と対をなす複数のトラック溝7を円周方向等間隔に軸方向に沿って形成した内側継手部材としての内輪8と、外輪5のトラック溝2と内輪8のトラック溝7との間に介在してトルクを伝達する複数のボール9と、外輪5の内球面1と内輪8の外球面6との間に介在してボール9を保持するケージ10とを備えている。   Generally, as shown in FIG. 18, the fixed type constant velocity universal joint is an outer joint member in which a plurality of track grooves 2 are formed on the inner spherical surface 1 at equal intervals in the circumferential direction toward the opening end 3 along the axial direction. An outer ring 5, an inner ring 8 as an inner joint member in which a plurality of track grooves 7 paired with the track groove 2 of the outer ring 5 are formed on the outer spherical surface 6 along the axial direction at equal intervals in the circumferential direction, and the outer ring 5 Between the track groove 2 of the inner ring 8 and the track groove 7 of the inner ring 8 to transmit torque, and between the inner spherical surface 1 of the outer ring 5 and the outer spherical surface 6 of the inner ring 8, the balls 9 And a cage 10 for holding the

前述した高角化のニーズに対する固定型等速自在継手は、大きな作動角を取り得る構造とするため、図18に示すようにケージ10の内球面11の曲率中心Oと、外球面12の曲率中心Oとは、継手中心面Pに対して等距離fだけ軸方向に逆向きにオフセットされている(ケージオフセット)。また、外輪5のトラック溝2の曲率中心Oおよび内輪8のトラック溝7の曲率中心Oは、外輪5の内球面1の曲率中心Oおよび内輪8の外球面6の曲率中心Oに対して等距離Fだけ軸方向に逆向きにオフセットされている(トラックオフセット)。内輪8の外球面6の曲率中心Oと、外輪5の内球面1の曲率中心Oは、それぞれケージ10の内外球面11,12の曲率中心と一致している。(例えば、特許文献1〜3参照)。 Since the fixed type constant velocity universal joint for the above-mentioned needs for increasing the angle has a structure capable of obtaining a large operating angle, the curvature center O 3 of the inner spherical surface 11 of the cage 10 and the curvature of the outer spherical surface 12 as shown in FIG. The center O 4 is offset in the axial direction by an equal distance f with respect to the joint center plane P (cage offset). Further, the center of curvature O 1 of the track groove 2 of the outer ring 5 and the center of curvature O 2 of the track groove 7 of the inner ring 8 are the center of curvature O 4 of the inner spherical surface 1 of the outer ring 5 and the center of curvature O 3 of the outer spherical surface 6 of the inner ring 8. Is offset in the axial direction by an equal distance F (track offset). The center of curvature O 3 of the outer spherical surface 6 of the inner ring 8 and the center of curvature O 4 of the inner spherical surface 1 of the outer ring 5 coincide with the centers of curvature of the inner and outer spherical surfaces 11 and 12 of the cage 10, respectively. (For example, see Patent Documents 1 to 3).

前述したトラックオフセットを設けることにより、一対のトラック溝2,7により、外輪5の奥側から開口端側に向けて径方向間隔が徐々に増加する楔状のボールトラックが形成されている。また、ケージオフセットを設けることにより、ケージ10は、外輪5の奥側で薄肉に、その開口端側で厚肉となる断面形状としている。この固定型等速自在継手では、高角域での使用を実現するため、前述したケージオフセットを大きく設定し、ケージ10の厚肉部を外輪5の開口端側に配置するようにしている。
特開2001−153149号公報 特開2001−304282号公報 特開2001−349332号公報
By providing the above-described track offset, a pair of track grooves 2 and 7 form a wedge-shaped ball track in which the radial interval gradually increases from the back side of the outer ring 5 toward the opening end side. Further, by providing a cage offset, the cage 10 has a cross-sectional shape that is thin on the back side of the outer ring 5 and thick on the opening end side. In this fixed type constant velocity universal joint, in order to realize use in a high angle region, the above-described cage offset is set large, and the thick portion of the cage 10 is arranged on the opening end side of the outer ring 5.
JP 2001-153149 A JP 2001-304282 A JP 2001-349332 A

ところで、前述した各特許文献1〜3に開示された固定型等速自在継手では、高角域での作動を実現させるためにケージオフセットを大きく設定する一方で、トラックオフセットを小さくしている。   By the way, in the fixed type constant velocity universal joint disclosed in each of Patent Documents 1 to 3, the cage offset is set large in order to realize the operation in the high angle region, while the track offset is made small.

図19は、継手が最大作動角θをとった状態、つまり、外輪5の回転軸Xと内輪8の回転軸Yが最大作動角θをとった状態を示す。トラックオフセットを設けると、外輪5のトラック溝2の奥側に位置する部位が浅くなることから、例えば継手が最大作動角をとった時にボール9が最も奥側に位置する位相(位相角φ=180°)でそのボール9が外輪5のトラック溝2から乗り上げる可能性がある。   FIG. 19 shows a state in which the joint has a maximum operating angle θ, that is, a state in which the rotation axis X of the outer ring 5 and the rotation axis Y of the inner ring 8 have the maximum operating angle θ. When the track offset is provided, the portion of the outer ring 5 located on the back side of the track groove 2 becomes shallow. Therefore, for example, when the joint takes the maximum operating angle, the phase where the ball 9 is located on the farthest side (phase angle φ = 180 °), the ball 9 may run from the track groove 2 of the outer ring 5.

そこで、このトラックオフセットを小さく設定することにより、外輪5のトラック溝2の奥側に位置する部位が浅くならないようにし、トラック溝2の最奥部に位置するボール9の乗り上げを抑制するようにしている。   Therefore, by setting this track offset small, the portion of the outer ring 5 located on the back side of the track groove 2 is prevented from becoming shallow, and the riding of the ball 9 located at the innermost part of the track groove 2 is suppressed. ing.

しかしながら、前述したようにトラックオフセットを小さく設定すると、図19に示すように外輪5がケージ10を抱え込む抱き角(球面角)γが小さくなる。ここで、抱き角(球面角)γとは、継手中心面Pに対して外輪5の内球面1の開口側端部がなす角度を意味する。このような等速自在継手において、外輪5にケージ10を容易に組み込むためには、図20(a)(b)に示すように外輪5のインロー径φDをケージ10の最外径φd以上に設定すればよいが、その場合、外輪5における抱き角(球面角)γがさらに小さくなってしまう。その結果、等速自在継手の強度、耐久性の低下や伝達トルクの損失を招くことになる。 However, when the track offset is set to be small as described above, the holding angle (spherical angle) γ with which the outer ring 5 holds the cage 10 becomes small as shown in FIG. Here, the holding angle (spherical angle) γ means an angle formed by the opening side end portion of the inner spherical surface 1 of the outer ring 5 with respect to the joint center plane P. In such a constant velocity universal joint, in order to easily incorporate the cage 10 into the outer ring 5, the inner ring diameter φD 0 of the outer ring 5 is changed to the outermost diameter φd 0 of the cage 10 as shown in FIGS. In this case, the holding angle (spherical angle) γ in the outer ring 5 is further reduced. As a result, the strength and durability of the constant velocity universal joint are reduced and the transmission torque is lost.

そこで、本発明は前述の問題点に鑑みて提案されたもので、その目的とするところは、強度、耐久性の低下や伝達トルクの損失を招くことなく、ケージを外輪に容易に組み込むことができるようにした固定型等速自在継手を提供することにある。   Therefore, the present invention has been proposed in view of the above-described problems, and the object of the present invention is to easily incorporate the cage into the outer ring without causing a decrease in strength and durability and loss of transmission torque. An object of the present invention is to provide a fixed type constant velocity universal joint that can be used.

前記目的を達成するための技術的手段として、本発明は、内球面に複数のトラック溝を円周方向等間隔に軸方向に沿って開口端に向けて形成した外側継手部材と、外球面に外側継手部材のトラック溝と対をなす複数のトラック溝を円周方向等間隔に軸方向に沿って形成した内側継手部材と、外側継手部材と内側継手部材の両トラック溝間に介在してトルクを伝達する複数のボールと、外側継手部材の内球面と内側継手部材の外球面との間に介在してボールを保持するケージとを備え、外側継手部材のトラック溝の開口側溝底を開口端に向けて直線的に拡径したテーパ状にすると共に、内側継手部材のトラック溝の奥側溝底をその奥端に向けて直線的に拡径したテーパ状とし、ケージの外球面中心と内球面中心は継手中心に対して軸方向に等距離だけ反対側にオフセットされ、かつ、外側継手部材のトラック溝の曲率中心と内側継手部材のトラック溝の曲率中心は継手中心に対してケージオフセット量だけオフセットされた固定型等速自在継手において、ケージの少なくとも対向する二つのポケットの前記開口端側に位置する外球面を部分的にカットし、かつ、そのカット部分におけるケージの外径を外側継手部材のインロー径よりも小さく設定したことを特徴とする。   As technical means for achieving the above object, the present invention provides an outer joint member in which a plurality of track grooves are formed on the inner spherical surface at equal intervals in the circumferential direction toward the opening end along the axial direction. Torque by interposing between the track grooves of the outer joint member and the inner joint member, the inner joint member having a plurality of track grooves paired with the track grooves of the outer joint member formed along the axial direction at equal intervals in the circumferential direction And a cage for holding the ball interposed between the inner spherical surface of the outer joint member and the outer spherical surface of the inner joint member, and the opening-side groove bottom of the track groove of the outer joint member The taper has a diameter that is linearly expanded toward the inner surface, and the inner groove of the track groove of the inner joint member has a diameter that is linearly expanded toward the inner end. Center is equidistant in the axial direction with respect to the joint center In the fixed type constant velocity universal joint, the center of curvature of the track groove of the outer joint member and the center of curvature of the track groove of the inner joint member are offset from the joint center by a cage offset amount. The outer spherical surface located on the opening end side of at least two opposing pockets of the outer surface is partially cut, and the outer diameter of the cage at the cut portion is set smaller than the inner diameter of the outer joint member. To do.

本発明では、ケージの少なくとも対向する二つのポケットの開口端側に位置する外球面を部分的にカットする。この場合、等速自在継手が最大作動角をとった状態、つまり、外側継手部材の回転軸と内側継手部材の回転軸とが最大角度をとった状態で、ボールとの接触点を確保できる程度までポケットの開口端側に位置する外球面を部分的にカットする。   In the present invention, the outer spherical surface located on the open end side of at least two opposing pockets of the cage is partially cut. In this case, the contact point with the ball can be secured in a state where the constant velocity universal joint has a maximum operating angle, that is, in a state where the rotation shaft of the outer joint member and the rotation shaft of the inner joint member take the maximum angle. The outer spherical surface located on the opening end side of the pocket is partially cut up to.

ここで、ボールとの接触点を確保できる程度とは、等速自在継手が最大作動角をとった状態で、ボールが最も飛び出そうとする位相(位相角φ=0°)においても、ケージのポケットからボールが飛び出すことを防止できる程度を意味する。また、ケージの少なくとも対向する二つのポケットについて部分的なカットを行えばよいが、対向する全てのポケットについて部分的なカットを行ってもよい。少なくとも対向する二つのポケットとしたのは、ケージを外側継手部材に組み込む場合、外側継手部材の軸線に対してケージの軸線を直交させた状態で外側継手部材内にケージを挿入し、その挿入後、ケージを90°回転させてその軸線を外側継手部材の軸線に一致させるため、ケージの挿入に際して、対向する二つのポケットについて部分的なカットがなされ、そのカット部分におけるケージの外径を外側継手部材のインロー径よりも小さく設定されていれば、ケージを外側継手部材内に挿入することが可能となるためである。   Here, the degree to which the contact point with the ball can be secured means that the constant velocity universal joint has the maximum operating angle, and the phase where the ball is most likely to jump out (phase angle φ = 0 °) This means that the ball can be prevented from jumping out of the pocket. Moreover, partial cutting may be performed for at least two opposing pockets of the cage, but partial cutting may be performed for all opposing pockets. At least two opposing pockets are used when inserting the cage into the outer joint member, inserting the cage into the outer joint member with the cage axis perpendicular to the axis of the outer joint member, and In order to rotate the cage by 90 ° so that its axis coincides with the axis of the outer joint member, when inserting the cage, partial cuts are made for two opposing pockets, and the outer diameter of the cage at the cut portion is set to the outer joint. This is because the cage can be inserted into the outer joint member if it is set smaller than the inlay diameter of the member.

本発明では、ケージの少なくとも対向する二つのポケットの開口端側に位置する外球面を部分的にカットし、かつ、そのカット部分におけるケージの外径を外側継手部材のインロー径よりも小さく設定したことにより、ケージの強度を確保しつつ、従来よりもケージの最外径を小さくすることができ、ひいては外側継手部材のインロー径を小さくすることができるので、外側継手部材における抱き角(球面角)が小さくならないことから、等速自在継手の強度、耐久性の低下や伝達トルクの損失を招くことなく、ケージの外側継手部材への組み込みが容易となる。   In the present invention, the outer spherical surface located on the opening end side of at least two opposing pockets of the cage is partially cut, and the outer diameter of the cage at the cut portion is set smaller than the inner diameter of the outer joint member. As a result, the outermost diameter of the cage can be made smaller than in the prior art while securing the strength of the cage, and consequently the inner diameter of the outer joint member can be made smaller. ) Does not become small, it is easy to incorporate the cage into the outer joint member without degrading the strength and durability of the constant velocity universal joint and loss of transmission torque.

前述した構成におけるケージは、その外球面の開口側端部を軸方向に向けて延在させ、ケージの内球面の開口側端部を外球面の開口側端部に向けて拡径するテーパ状とした構造が望ましい。ここで、ケージの外球面の開口側端部を軸方向に向けて延在させる場合、等速自在継手が最大作動角をとった状態で、内側継手部材に取り付けられたシャフトがケージの開口側端部と干渉しない程度にその外球面の開口側端部を延在させる。   The cage having the above-described configuration has a tapered shape in which the opening end of the outer spherical surface extends in the axial direction and the opening end of the inner spherical surface of the cage expands toward the opening end of the outer spherical surface. Such a structure is desirable. Here, when the opening side end of the outer spherical surface of the cage is extended in the axial direction, the shaft attached to the inner joint member is the opening side of the cage with the constant velocity universal joint having the maximum operating angle. The opening side end of the outer spherical surface is extended to the extent that it does not interfere with the end.

シャフトがケージの開口側端部と干渉しない程度までケージの外球面の開口側端部を延在させる場合、ケージの内球面の開口側端部のテーパ角度を、外側継手部材と内側継手部材がなす最大作動角の半分以上とすることが望ましい。このようにテーパ角度を最大作動角の半分以上とすれば、高角域においてもケージの外球面と外側継手部材の内球面との接触面積を確保することができる点で好ましい。なお、このテーパ角度が最大作動角の半分よりも小さければ、シャフトがケージのテーパ状開口側端部と干渉することになる。   When the open end of the outer spherical surface of the cage is extended to the extent that the shaft does not interfere with the open end of the cage, the taper angle of the open end of the inner spherical surface of the cage is determined by the outer joint member and the inner joint member. It is desirable to make it more than half of the maximum operating angle. Thus, if the taper angle is set to more than half of the maximum operating angle, it is preferable in that the contact area between the outer spherical surface of the cage and the inner spherical surface of the outer joint member can be secured even in a high angle region. If this taper angle is smaller than half of the maximum operating angle, the shaft will interfere with the tapered opening side end of the cage.

このように高角域においてもケージの外球面と外側継手部材の内球面との接触面積を確保することができることにより、最大作動角をとった時に、ボールがケージを開口側へ押し、そのケージの外球面の開口側端部と外側継手部材の内球面が強く擦れ合っても発熱による耐久性の低下や伝達トルクの損失を最小限に抑えることができる。また、ケージの剛性を最大限に確保することができるので、ケージ自体の強度も向上する。   In this way, the contact area between the outer spherical surface of the cage and the inner spherical surface of the outer joint member can be ensured even in a high angle region, so that when the maximum operating angle is taken, the ball pushes the cage toward the opening side, Even if the opening-side end portion of the outer spherical surface and the inner spherical surface of the outer joint member rub against each other strongly, it is possible to minimize a decrease in durability and loss of transmission torque due to heat generation. Moreover, since the rigidity of the cage can be ensured to the maximum, the strength of the cage itself is also improved.

一方、この等速自在継手に許容レベルを超えるトルクが動的捩りモードで負荷されると、外側継手部材および内側継手部材のトラック溝が変形し、そのトラック溝エッジが盛り上がる。この盛り上がりがケージ球面に干渉し、ケージの動きを拘束する。その際、ケージの円周方向に沿って形成され、かつ、ボールを収容するポケットのエッジ部に割れや欠け等が発生する可能性がある。   On the other hand, when a torque exceeding an allowable level is applied to the constant velocity universal joint in the dynamic torsion mode, the track grooves of the outer joint member and the inner joint member are deformed, and the track groove edge is raised. This swell interferes with the cage spherical surface and restrains the cage movement. At this time, there is a possibility that cracks, chips or the like may occur in the edge portion of the pocket that is formed along the circumferential direction of the cage and accommodates the ball.

そこで、本発明では、前述の構成におけるポケットのケージ内球面側あるいはケージ外球面側の少なくともいずれか一方のエッジ部を球面R形状とすることが望ましい。主に内側継手部材のトラック溝エッジでの盛り上がりがケージの内球面に干渉し易いことから、ポケットのケージ内球面側のエッジ部を球面R形状とすることが好ましいが、ポケットのケージ外球面側のエッジ部も球面R形状としてもよく、ポケットのケージ内球面側およびケージ外球面側の両方のエッジ部を球面R形状とすれば最適である。なお、「球面R形状」とは、ケージの内球面あるいは外球面とポケットの端面とを滑らかに繋ぐ球面状の連続曲面を意味する。   Therefore, in the present invention, it is desirable that at least one of the edge portions of the pocket in the above-described configuration on the inner spherical surface side or the outer cage spherical surface side has a spherical R shape. Since the bulge at the track groove edge of the inner joint member easily interferes with the inner spherical surface of the cage, it is preferable that the edge portion on the inner spherical surface side of the pocket has a spherical R shape. The edge portions of the pockets may also have a spherical R shape, and it is optimal if the edge portions on both the inner spherical surface side and the outer spherical surface side of the pocket have a spherical R shape. The “spherical R shape” means a spherical continuous curved surface that smoothly connects the inner spherical surface or outer spherical surface of the cage and the end surface of the pocket.

このようにポケットのケージ内球面側あるいはケージ外球面側のエッジ部を球面R形状とすれば、トラック溝エッジの盛り上がりがケージ球面に干渉しても、ポケットのエッジ部に割れや欠け等が発生しにくくなり、ケージの強度を確保することができる。   If the pocket inner spherical surface or cage outer spherical surface edge of the pocket has a spherical R shape as described above, even if the rise of the track groove edge interferes with the cage spherical surface, cracking or chipping occurs at the pocket edge. The strength of the cage can be ensured.

また、トラック溝エッジの盛り上がりがケージ球面に干渉することにより、ケージの動きが拘束されると、ポケットの薄肉側隅部に応力が集中する。   Further, when the rise of the track groove edge interferes with the cage spherical surface and the movement of the cage is restrained, stress concentrates on the thin side corner of the pocket.

そこで、本発明では、前述した構成におけるポケットの薄肉側隅部の曲率半径を、その厚肉側隅部の曲率半径より大きく、かつ、ボールの半径より小さく設定することが望ましい。   Therefore, in the present invention, it is desirable to set the radius of curvature of the thin side corner of the pocket in the above-described configuration to be larger than the radius of curvature of the thick side corner and smaller than the radius of the ball.

このようにポケットの薄肉側隅部の曲率半径を、その厚肉側隅部の曲率半径より大きく、かつ、ボールの半径より小さくすれば、前述したようにトラック溝エッジの盛り上がりがケージ球面に干渉しても、ポケットの薄肉側隅部への応力集中を緩和することができ、薄肉側隅部と厚肉側隅部での応力バランスを最適化することができ、その結果、ケージの強度を確保することができる。   Thus, if the radius of curvature of the thin-walled corner of the pocket is larger than the radius of curvature of the thick-walled corner and smaller than the radius of the ball, as described above, the rise of the track groove edge interferes with the cage spherical surface. However, the stress concentration at the thin wall corner can be relaxed, and the stress balance at the thin wall corner and the thick wall corner can be optimized. Can be secured.

なお、ポケットの薄肉側隅部の曲率半径が、その厚肉側隅部の曲率半径以下であれば、ポケットの薄肉側隅部への応力集中を緩和することが困難となり、また、ポケットの薄肉側隅部の曲率半径がボール半径以上であれば、ポケット間の柱部にボールが接触した時に薄肉側隅部がボールに干渉することになる。   If the radius of curvature of the thin-walled corner of the pocket is equal to or less than the radius of curvature of the thick-walled corner, it will be difficult to alleviate the stress concentration on the thin-walled corner of the pocket, and the pocket If the radius of curvature of the side corner is equal to or greater than the ball radius, the thin side corner will interfere with the ball when the ball contacts the pillar between the pockets.

本発明では、外側継手部材および内側継手部材の両トラック溝をテーパ状とすることにより、外側継手部材の外径を大きくすることなく、作動角の高角化を容易に実現する上で、外側継手部材の肉厚を薄くしてもその外側継手部材の強度および加工性を低下させないように、この固定型等速自在継手の内部諸元の中で、トラック溝をテーパ状にすることによる影響および傾向を検証し、前述のトラック溝のテーパ角度の最適値としてその上限値を12°に規定した。   In the present invention, by forming both track grooves of the outer joint member and the inner joint member into a tapered shape, it is possible to easily increase the operating angle without increasing the outer diameter of the outer joint member. In order to prevent the strength and workability of the outer joint member from being reduced even if the thickness of the member is reduced, the effects of tapering the track groove in the internal specifications of this fixed type constant velocity universal joint and The tendency was verified, and the upper limit value was defined as 12 ° as the optimum value of the taper angle of the track groove.

本出願人は、従来必要な基本性能である強度や耐久性を確保しながら、静的内部力解析、有限要素法(FEM)解析を用いて検討を進め、トラック溝のテーパ角度の範囲を絞り込んで最適設定した。そして、テーパ角度を変えたサンプルの評価結果と解析結果との整合性を確認した。   The present applicant will proceed with the study using static internal force analysis and finite element method (FEM) analysis while securing strength and durability, which are the basic performance required in the past, and narrow the range of the taper angle of the track groove. Was set optimally. And the consistency with the evaluation result and analysis result of the sample which changed the taper angle was confirmed.

前述の構成において、ケージの外球面中心と内球面中心とのケージオフセット量fと、作動角0°時における外側継手部材のトラック溝の曲率中心または内側継手部材のトラック溝の曲率中心とボールの中心とを結ぶ線分の長さPCRとの比の値f/PCRが0.12以下であることが望ましい。このケージオフセット量fは、ケージの縦断面における肉厚差に関係するため、この点を考慮してケージオフセット量fを設定することが望ましい。   In the above-described configuration, the cage offset amount f between the outer spherical center and the inner spherical center of the cage, the center of curvature of the track groove of the outer joint member or the center of curvature of the track groove of the inner joint member at the operating angle of 0 °, and the ball It is desirable that the value f / PCR of the ratio of the length of the line segment connecting the centers to the PCR is 0.12 or less. Since the cage offset amount f is related to the thickness difference in the longitudinal section of the cage, it is desirable to set the cage offset amount f in consideration of this point.

例えば、ケージオフセット量fを大きく設定することにより、外側継手部材の開口端側にケージの厚肉側を位置させるようにすれば、外側継手部材の開口端側のケージの肉厚を増大させて強度向上を図ることができる利点を有する。また、外側継手部材の開口端側のケージの肉厚を増大させることによって、作動角をとった時、外側継手部材の開口端から飛び出そうとするボールをケージで拘束することができる。   For example, if the cage offset amount f is set large so that the thick side of the cage is positioned on the open end side of the outer joint member, the thickness of the cage on the open end side of the outer joint member is increased. There is an advantage that the strength can be improved. Further, by increasing the thickness of the cage on the opening end side of the outer joint member, the ball that is about to jump out from the opening end of the outer joint member can be restrained by the cage when the operating angle is taken.

ただし、ケージオフセット量fが大きすぎると、ケージのポケット内におけるボールの周方向移動量が大きくなり、ボールの適正な運動を確保するため、ケージのポケットの周方向寸法を大きくする必要が生じるので、ケージの柱部が細くなり、強度面が問題となる。また、ケージの入口側と反対側に位置する奥側の肉厚が小さくなり、強度面が問題となる。   However, if the cage offset amount f is too large, the amount of movement of the ball in the cage pocket in the circumferential direction increases, and it is necessary to increase the circumferential dimension of the cage pocket in order to ensure proper movement of the ball. The pillar portion of the cage becomes thin, and the strength becomes a problem. Moreover, the thickness of the back side located on the opposite side to the entrance side of the cage is reduced, and the strength is a problem.

以上より、ケージオフセット量fが過大であるのは好ましくなく、ケージオフセット量fを設ける意義と前述の強度面での問題との均衡を図り得る最適範囲が存在する。ただ、ケージオフセット量fの最適範囲は継手の大きさによって変わるので、継手の大きさを表わす基本寸法との関係において求める必要がある。そのため、ケージオフセット量fと、外側継手部材のトラック溝の曲率中心または内側継手部材のトラック溝の曲率中心とボールの中心とを結ぶ線分の長さPCRとの比f/PCRを用いる。   From the above, it is not preferable that the cage offset amount f is excessive, and there exists an optimum range in which the significance of providing the cage offset amount f can be balanced with the above-described strength problem. However, since the optimum range of the cage offset amount f varies depending on the size of the joint, it needs to be determined in relation to the basic dimension representing the size of the joint. Therefore, the ratio f / PCR of the cage offset amount f and the length PCR of the line segment connecting the center of curvature of the track groove of the outer joint member or the center of curvature of the track groove of the inner joint member and the center of the ball is used.

そこで、前述の構成におけるケージオフセット量は、そのケージオフセット量fと、作動角0°時における外側継手部材のトラック溝の曲率中心または内側継手部材のトラック溝の曲率中心とボールの中心とを結ぶ線分の長さPCRとの比f/PCRを0より大きく、かつ、0.12以下とすることが望ましい。   Therefore, the cage offset amount f in the above-described configuration connects the cage offset amount f and the center of curvature of the track groove of the outer joint member or the center of curvature of the track groove of the inner joint member and the center of the ball when the operating angle is 0 °. It is desirable that the ratio f / PCR with the line segment length PCR is larger than 0 and not more than 0.12.

この比f/PCRが0.12より大きいと前述の強度面での問題がある。逆に、0以下であるとケージオフセット量fを設ける意義がなくなる。すなわち、ケージオフセットの大きな目的は、外側継手部材と内側継手部材のトラック溝中心を軸方向にオフセットさせることにより、ボールの位置を安定させて二等分面上にボールを保持させることであり、このオフセットがないと、ボールの位置が定まらないことから、0以下の範囲では、その目的が達成できない。従って、ケージ強度の確保、耐久性の確保の点から、比f/PCRが0より大きく、かつ、0.12以下であることが、ケージオフセット量fの最適範囲である。   If this ratio f / PCR is larger than 0.12, there is a problem in the aforementioned strength. Conversely, if it is 0 or less, the significance of providing the cage offset amount f is lost. That is, a large purpose of the cage offset is to stabilize the position of the ball and hold the ball on the bisected surface by offsetting the track groove centers of the outer joint member and the inner joint member in the axial direction. Without this offset, the position of the ball cannot be determined, so the objective cannot be achieved within a range of 0 or less. Therefore, from the viewpoint of ensuring cage strength and durability, the optimum range of the cage offset amount f is that the ratio f / PCR is greater than 0 and 0.12 or less.

本発明によれば、ケージの少なくとも対向する二つのポケットの開口端側に位置する外球面を部分的にカットし、かつ、そのカット部分におけるケージの外径を外側継手部材のインロー径よりも小さく設定したことにより、ケージの強度を確保しつつ、従来よりもケージの最外径および外側継手部材のインロー径を小さくすることができるので、外側継手部材における抱き角(球面角)が小さくならないことから、等速自在継手の強度、耐久性の低下や伝達トルクの損失を招くことなく、ケージを外側継手部材に容易に組み込むことができ、等速自在継手の品質の向上および組立性の向上が同時に図れる。   According to the present invention, the outer spherical surface located on the opening end side of at least two opposing pockets of the cage is partially cut, and the outer diameter of the cage at the cut portion is smaller than the inner diameter of the outer joint member. By setting, the outermost diameter of the cage and the spigot diameter of the outer joint member can be made smaller than before while securing the strength of the cage, so that the holding angle (spherical angle) in the outer joint member does not become smaller. Therefore, the cage can be easily assembled into the outer joint member without degrading the strength and durability of the constant velocity universal joint and loss of transmission torque, improving the quality and assembly of the constant velocity universal joint. At the same time.

本発明に係る固定型等速自在継手の実施形態を以下に詳述する。   An embodiment of a fixed type constant velocity universal joint according to the present invention will be described in detail below.

図1に示す実施形態の等速自在継手は、内球面21に複数のトラック溝22を円周方向等間隔に軸方向に沿って開口端23に向けて形成したマウス部24を有する外側継手部材である外輪25と、外球面26に外輪25のトラック溝22と対をなす複数のトラック溝27を円周方向等間隔に軸方向に沿って形成した内側継手部材である内輪28と、外輪25のトラック溝22と内輪28のトラック溝27間に介在してトルクを伝達する複数のボール29と、外輪25の内球面21と内輪28の外球面26との間に介在して各ボール29を保持するケージ30とを備えている。複数のボール29は、ケージ30に形成されたポケット33に収容されて円周方向等間隔に配置されている。   The constant velocity universal joint of the embodiment shown in FIG. 1 has an outer joint member having a mouth portion 24 in which a plurality of track grooves 22 are formed on an inner spherical surface 21 at equal intervals in the circumferential direction toward the opening end 23 along the axial direction. An outer ring 25, an inner ring 28 that is an inner joint member in which a plurality of track grooves 27 that are paired with the track grooves 22 of the outer ring 25 are formed along the axial direction at equal intervals in the circumferential direction, and the outer ring 25. Between the track groove 22 of the inner ring 28 and the track groove 27 of the inner ring 28 to transmit torque, and between the inner spherical surface 21 of the outer ring 25 and the outer spherical surface 26 of the inner ring 28, each ball 29 is interposed. The cage 30 to hold | maintain is provided. The plurality of balls 29 are accommodated in pockets 33 formed in the cage 30 and arranged at equal intervals in the circumferential direction.

前述の外輪25のマウス部24から一体的に延びるステム部(図示せず)に例えば従動軸(図示せず)が連設され、内輪28に駆動軸(図示せず)がセレーション等で結合されることにより、それら従動軸と駆動軸間で作動角度変位を許容しながらトルク伝達が可能な構造となっている。   For example, a driven shaft (not shown) is connected to a stem portion (not shown) integrally extending from the mouse portion 24 of the outer ring 25 described above, and a drive shaft (not shown) is coupled to the inner ring 28 by serration or the like. Thus, the torque can be transmitted while allowing the operating angle displacement between the driven shaft and the drive shaft.

外輪25の各トラック溝22は、その開口側溝底を外輪25の開口端23に向けて直線的に拡径させたテーパ状としている。つまり、トラック溝22は、マウス部24の奥側での円弧底22aと、マウス部24の開口側でのテーパ底22bとを有する。一方、内輪28の各トラック溝27は、その奥側溝底を内輪28の奥端に向けて直線的に拡径させたテーパ状としている。つまり、トラック溝27は、マウス部24の開口側での円弧底27aと、マウス部24の奥側でのテーパ底27bとを有する。   Each track groove 22 of the outer ring 25 has a tapered shape in which the opening side groove bottom is linearly expanded toward the opening end 23 of the outer ring 25. That is, the track groove 22 has an arc bottom 22 a on the back side of the mouse part 24 and a tapered bottom 22 b on the opening side of the mouse part 24. On the other hand, each track groove 27 of the inner ring 28 has a tapered shape in which the inner side groove bottom is linearly expanded toward the inner end of the inner ring 28. That is, the track groove 27 has an arc bottom 27 a on the opening side of the mouse part 24 and a tapered bottom 27 b on the back side of the mouse part 24.

ここで、図1は作動角が0°の状態、図2は作動角が最大作動角θの状態を示している。作動角とは、外輪25の回転軸Xと内輪28の回転軸Yとがなす角度を意味する。また、外輪25の回転軸Xと内輪28の回転軸Yが0°以外のある作動角をとったとき、両回転軸X,Yのなす角度θの二等分線に垂直な平面を継手中心面Pと称する。作動角θをとったとき、すべてのボール29が継手中心面P上にあれば、ボール中心から両回転軸X,Yまでの距離が相等しく、従って、両回転軸X,Y間で等速度で回転運動の伝達が行われる。継手中心面Pと回転軸X,Yとの交点を継手中心Oと称する。固定型等速自在継手では、作動角θに関わりなく継手中心Oは固定されている。   Here, FIG. 1 shows a state where the operating angle is 0 °, and FIG. 2 shows a state where the operating angle is the maximum operating angle θ. The operating angle means an angle formed by the rotation axis X of the outer ring 25 and the rotation axis Y of the inner ring 28. Further, when the rotation axis X of the outer ring 25 and the rotation axis Y of the inner ring 28 take an operating angle other than 0 °, a plane perpendicular to the bisector of the angle θ formed by both the rotation axes X and Y is the joint center. This is referred to as plane P. If all the balls 29 are on the joint center plane P when the operating angle θ is taken, the distances from the ball center to the two rotation axes X and Y are equal to each other. Rotational motion is transmitted at. The intersection of the joint center plane P and the rotation axes X and Y is referred to as a joint center O. In the fixed type constant velocity universal joint, the joint center O is fixed regardless of the operating angle θ.

図3は、(a)に実施形態のケージ30を示し、このケージ30と比較するため、(b)に従来のケージ10(図18参照)を示す。また、図4は、図3(a)に示す実施形態のケージ30の左側面図であり、図5は図4の断面図である。   FIG. 3A shows the cage 30 of the embodiment in FIG. 3A, and a conventional cage 10 (see FIG. 18) is shown in FIG. 4 is a left side view of the cage 30 of the embodiment shown in FIG. 3A, and FIG. 5 is a cross-sectional view of FIG.

この実施形態のケージ30は、ポケット33の開口端側に位置する外球面32を部分的にカットし、かつ、その平坦状のカット面40におけるケージ30の外径φdを外輪25のインロー径φD(図2参照)よりも小さく設定している。図2に示すように外輪25の回転軸Xと内輪28の回転軸Yとが最大作動角θをとった状態で、ボール29との接触点を確保できる程度までポケット33の開口端側に位置する外球面32を部分的にカットすればよい。ここで、ボール33との接触点を確保できる程度とは、等速自在継手が最大作動角θをとった状態で、ボール29が最も飛び出そうとする位相(位相角φ=0°)においても、ケージ30のポケット33からボール29が飛び出すことを防止できる程度を意味する。 The cage 30 of this embodiment partially cuts the outer spherical surface 32 located on the opening end side of the pocket 33, and the outer diameter φd 1 of the cage 30 on the flat cut surface 40 is set to the inlay diameter of the outer ring 25. It is set smaller than φD 1 (see FIG. 2). As shown in FIG. 2, in a state where the rotation axis X of the outer ring 25 and the rotation axis Y of the inner ring 28 take the maximum operating angle θ, it is positioned on the opening end side of the pocket 33 to the extent that a contact point with the ball 29 can be secured. What is necessary is just to cut partially the outer spherical surface 32 to perform. Here, the degree to which the contact point with the ball 33 can be secured means that the constant velocity universal joint has the maximum operating angle θ and the phase at which the ball 29 is most likely to jump out (phase angle φ = 0 °). This means that the ball 29 can be prevented from jumping out of the pocket 33 of the cage 30.

この実施形態では、図4および図5に示すように円周方向に等間隔に配置されたポケット33の全てについてカット面40を形成しているが、必ずしも全てのポケット33について形成する必要はなく、少なくとも対向する二つのポケット33についてカット面40を形成するだけであってもよい。   In this embodiment, as shown in FIGS. 4 and 5, the cut surfaces 40 are formed for all the pockets 33 arranged at equal intervals in the circumferential direction. However, it is not always necessary to form all the pockets 33. The cut surface 40 may only be formed for at least two opposing pockets 33.

少なくとも対向する二つのポケット33としたのは、図6に示すようにケージ30を外輪25に組み込む場合、外輪25の軸線に対してケージ30の軸線を直交させた状態で外輪25内にケージ30を挿入し、その挿入後、ケージ30を90°回転させてその軸線を外輪25の軸線に一致させるため、ケージ30の挿入に際して、対向する二つのポケット33について部分的なカットがなされ、その平坦状のカット面40におけるケージ30の外径φdを外輪25のインロー径φDよりも小さく設定されていれば、ケージ30を外輪25内に挿入することが可能となるためである。 The at least two pockets 33 opposed to each other are formed when the cage 30 is incorporated in the outer ring 25 as shown in FIG. 6, and the cage 30 is placed in the outer ring 25 with the axis of the cage 30 orthogonal to the axis of the outer ring 25. After the insertion, the cage 30 is rotated by 90 ° so that its axis coincides with the axis of the outer ring 25. Therefore, when the cage 30 is inserted, the two pockets 33 facing each other are partially cut and flattened. This is because the cage 30 can be inserted into the outer ring 25 if the outer diameter φd 1 of the cage 30 on the cut surface 40 is set smaller than the inner diameter φD 1 of the outer ring 25.

この実施形態のようにケージ30のポケット33の開口端側に位置する外球面32を部分的にカットし、かつ、その平坦状のカット面40におけるケージ30の外径φdを外輪25のインロー径φDよりも小さく設定すれば、ケージ30の強度を確保しつつ、従来よりもケージ30の外径φd(<従来のケージ10の最外径φd)を小さくすることができ、ひいては外輪25のインロー径φD(<従来の外輪5のインロー径φD)を小さくすることができるので、外輪25における抱き角(球面角)γ(図2参照)が小さくならないことから、等速自在継手の強度、耐久性の低下や伝達トルクの損失を招くことなく、ケージ30の外輪25への組み込みが容易となる。 As in this embodiment, the outer spherical surface 32 located on the opening end side of the pocket 33 of the cage 30 is partially cut, and the outer diameter φd 1 of the cage 30 on the flat cut surface 40 is set to the inlay of the outer ring 25. By setting the diameter smaller than the diameter φD 1, the outer diameter φd 1 of the cage 30 (<the outermost diameter φd 0 of the conventional cage 10) can be made smaller than the conventional one while securing the strength of the cage 30. Since the inner ring diameter φD 1 of the outer ring 25 (<the conventional inner ring diameter φD 0 of the outer ring 5) can be reduced, the holding angle (spherical angle) γ (see FIG. 2) of the outer ring 25 does not become smaller, so constant velocity. The cage 30 can be easily assembled into the outer ring 25 without causing a decrease in the strength and durability of the universal joint and loss of transmission torque.

また、このケージ30は、図3(a)(b)に示すように従来品よりも、その外球面32の開口側端部を軸方向に向けて延在させ、内球面31の開口側端部を外球面32の開口側端部に向けて拡径するテーパ面34を形成している。このケージ30の開口側端部では、図2に示すように外輪25と内輪28が最大作動角θをとった状態で、内輪28にセレーション嵌合で取り付けられたシャフト50がケージ30の開口側端部と干渉しない程度にその外球面32の開口側端部を延在させる。   In addition, as shown in FIGS. 3A and 3B, the cage 30 has an end on the opening side of the outer spherical surface 32 extending in the axial direction as compared with the conventional product, and an opening side end of the inner spherical surface 31. A tapered surface 34 whose diameter is enlarged toward the opening side end of the outer spherical surface 32 is formed. At the opening side end of the cage 30, the shaft 50 attached to the inner ring 28 by serration fitting with the outer ring 25 and the inner ring 28 having the maximum operating angle θ as shown in FIG. The opening side end of the outer spherical surface 32 is extended to the extent that it does not interfere with the end.

シャフト50がケージ30の開口側端部と干渉しない程度までケージ30の外球面32の開口側端部を延在させる場合、ケージ30の内球面31の開口側端部に位置するテーパ面34のテーパ角度θ/2を、外輪25と内輪28がなす最大作動角θの半分以上とすることが望ましい。このようにテーパ面34のテーパ角度θ/2を最大作動角θの半分以上とすれば、高角域においてもケージ30の外球面32と外輪25の内球面21との接触面積を確保することができる。なお、このテーパ角度θ/2が最大作動角θの半分よりも小さければ、シャフト50がケージ30の開口側端部と干渉することになる。   When the opening side end portion of the outer spherical surface 32 of the cage 30 is extended to the extent that the shaft 50 does not interfere with the opening side end portion of the cage 30, the tapered surface 34 positioned at the opening side end portion of the inner spherical surface 31 of the cage 30. It is desirable that the taper angle θ / 2 be at least half of the maximum operating angle θ formed by the outer ring 25 and the inner ring 28. Thus, if the taper angle θ / 2 of the taper surface 34 is set to be not less than half of the maximum operating angle θ, a contact area between the outer spherical surface 32 of the cage 30 and the inner spherical surface 21 of the outer ring 25 can be secured even in a high angle region. it can. If the taper angle θ / 2 is smaller than half of the maximum operating angle θ, the shaft 50 interferes with the opening side end portion of the cage 30.

このように高角域においてもケージ30の外球面32と外輪25の内球面21との接触面積を確保することができることにより、最大作動角θをとった時に、ボール29がケージ30を開口側へ押し、そのケージ30の外球面32の開口側端部と外輪25の内球面21が強く擦れ合っても発熱による耐久性の低下や伝達トルクの損失を最小限に抑えることができる。また、ケージ30の剛性を最大限に確保することができるので、ケージ30自体の強度も向上する。   Thus, even in a high angle region, the contact area between the outer spherical surface 32 of the cage 30 and the inner spherical surface 21 of the outer ring 25 can be secured, so that the ball 29 moves the cage 30 toward the opening side when the maximum operating angle θ is taken. Even if the opening side end of the outer spherical surface 32 of the cage 30 and the inner spherical surface 21 of the outer ring 25 rub against each other strongly, it is possible to minimize a decrease in durability and loss of transmission torque due to heat generation. Moreover, since the rigidity of the cage 30 can be ensured to the maximum, the strength of the cage 30 itself is also improved.

図7は、前述したケージ30において、ポケット33のケージ内球面31とポケット端面39とを繋ぐエッジ部35を球面R形状とした実施形態を示す。この球面R形状は、ケージ30の内球面31とポケット33の端面39とを滑らかに繋ぐ球面状の連続曲面である。ケージ内球面側のエッジ部35はポケット33の開口縁全周に亘って形成されている。なお、図8は、ポケット33のケージ内球面側のエッジ部35を球面R形状とすると共にそのケージ外球面側のエッジ部36も球面R形状とした実施形態を示す。このケージ外球面側のエッジ部36についても、その球面R形状は、ケージ30の外球面32とポケット33の端面39とを滑らかに繋ぐ球面状の連続曲面であり、ポケット33の開口縁全周に亘って形成されている。   FIG. 7 shows an embodiment in which the edge portion 35 connecting the cage inner spherical surface 31 and the pocket end surface 39 of the pocket 33 has a spherical R shape in the cage 30 described above. The spherical R shape is a spherical continuous curved surface that smoothly connects the inner spherical surface 31 of the cage 30 and the end surface 39 of the pocket 33. The edge portion 35 on the inner spherical surface side of the cage is formed over the entire periphery of the opening edge of the pocket 33. FIG. 8 shows an embodiment in which the edge portion 35 on the spherical surface inside the cage of the pocket 33 has a spherical R shape, and the edge portion 36 on the spherical surface side of the cage also has a spherical R shape. The edge portion 36 on the cage outer spherical surface side also has a spherical R shape that is a spherical continuous curved surface that smoothly connects the outer spherical surface 32 of the cage 30 and the end surface 39 of the pocket 33. It is formed over.

このようにポケット33のケージ内球面側あるいはケージ外球面側のエッジ部35,36を球面R形状とすれば、等速自在継手に許容レベルを超えるトルクが動的捩りモードで負荷された場合、外輪25および内輪28のトラック溝エッジの盛り上がりがケージ30の内球面31および外球面32に干渉しても、ポケット33のエッジ部35,36に割れや欠け等が発生しにくくなり、ケージ30の強度を確保することができる。   Thus, if the edge portions 35 and 36 on the inner spherical surface side or the outer spherical surface side of the pocket 33 have a spherical R shape, when a torque exceeding an allowable level is applied to the constant velocity universal joint in the dynamic torsion mode, Even if the rise of the track groove edges of the outer ring 25 and the inner ring 28 interferes with the inner spherical surface 31 and the outer spherical surface 32 of the cage 30, the edge portions 35 and 36 of the pocket 33 are less likely to be cracked or chipped. Strength can be secured.

ケージ30は、後述するようにケージオフセットを設けることにより、外輪25の開口端側に向けて厚肉で、その奥側に向けて薄肉となった形状を有する。このケージ30において、図9に示すようにポケット33の薄肉側隅部37の曲率半径を、その厚肉側隅部38の曲率半径より大きく、かつ、ボール29の半径より小さく設定する。なお、ポケット33の薄肉側隅部37の曲率半径とその厚肉側隅部38の曲率半径とを比較し易くするため、図10にポケット形状を平面的に示す。図11は、ポケット33の薄肉側隅部37の曲率半径を、厚肉側隅部38の曲率半径と同一にした最小値Rminに設定した場合を示し、また、図12は、ポケット33の薄肉側隅部37の曲率半径を、ボール29の半径と同一にした最大値Rmaxに設定した場合を示す。   The cage 30 has a shape that is thick toward the opening end side of the outer ring 25 and thin toward the back side by providing a cage offset as described later. In this cage 30, as shown in FIG. 9, the radius of curvature of the thin side corner 37 of the pocket 33 is set larger than the radius of curvature of the thick side corner 38 and smaller than the radius of the ball 29. In addition, in order to make it easy to compare the curvature radius of the thin-side corner portion 37 of the pocket 33 with the curvature radius of the thick-side corner portion 38, FIG. FIG. 11 shows a case where the radius of curvature of the thin side corner 37 of the pocket 33 is set to the minimum value Rmin which is the same as the radius of curvature of the thick side corner 38, and FIG. The case where the radius of curvature of the side corner 37 is set to the maximum value Rmax that is the same as the radius of the ball 29 is shown.

このようにポケット33の薄肉側隅部37の曲率半径を、その厚肉側隅部38の曲率半径より大きく、かつ、ボール29の半径より小さくすることで、前述したようにトラック溝エッジの盛り上がりがケージ30の内球面31および外球面32に干渉することによりケージ30の動きが拘束されても、ポケット33の薄肉側隅部37へ応力が集中することを緩和でき、薄肉側隅部37と厚肉側隅部38での応力バランスを最適化することができ、その結果、ケージ30の強度を確保することができる。   Thus, by increasing the radius of curvature of the thin side corner 37 of the pocket 33 to be larger than the radius of curvature of the thick side corner 38 and smaller than the radius of the ball 29, the track groove edge rises as described above. Even if the movement of the cage 30 is constrained by interfering with the inner spherical surface 31 and the outer spherical surface 32 of the cage 30, stress concentration on the thin-side corner 37 of the pocket 33 can be alleviated. The stress balance at the thick side corner 38 can be optimized, and as a result, the strength of the cage 30 can be ensured.

FEM解析によれば、ポケット33の薄肉側隅部37の曲率半径を大きくすれば、その部位に発生する応力が減少し、厚肉側隅部38の応力値に近づくことから、最適な応力バランスとなり、トラック溝エッジの盛り上がりがケージ30の内球面31および外球面32に干渉してケージ30を拘束しても、ケージ30が破損するまでの余裕代が増えることから、高角域における継手の強度を確保することができる。   According to the FEM analysis, if the radius of curvature of the thin-walled corner 37 of the pocket 33 is increased, the stress generated at that portion decreases and approaches the stress value of the thick-walled corner 38. Even if the rise of the track groove edge interferes with the inner spherical surface 31 and the outer spherical surface 32 of the cage 30 and restrains the cage 30, the allowance until the cage 30 is damaged increases. Can be secured.

図13は、外輪25および内輪28のそれぞれのトラック溝22,27の形状、トラックオフセットおよびケージオフセットを説明するため、図1の拡大断面(ハッチングは省略)を示す。   FIG. 13 shows an enlarged cross section (hatching is omitted) of FIG. 1 in order to explain the shapes of the track grooves 22 and 27 of the outer ring 25 and the inner ring 28, the track offset and the cage offset.

この実施形態の等速自在継手では、大きな作動角を取り得る構造とするため、ケージ30の内球面31の曲率中心Oと、外球面32の曲率中心Oとは、継手中心面Pに対して等距離fだけ軸方向に逆向きにオフセットされている(ケージオフセット)。また、外輪25のトラック溝22の曲率中心Oと、内輪28のトラック溝27の曲率中心Oとは、外輪25の内球面21の曲率中心Oと内輪28の外球面26の曲率中心Oに対して等距離Fだけ軸方向に逆向きにオフセットされている(トラックオフセット)。内輪28の外球面26の曲率中心Oと、外輪25の内球面21の曲率中心Oはそれぞれケージ30の内外球面31,32の曲率中心と一致している。 In the constant velocity universal joint according to this embodiment, the center of curvature O 3 of the inner spherical surface 31 of the cage 30 and the center of curvature O 4 of the outer spherical surface 32 are located on the joint central plane P in order to obtain a structure that can have a large operating angle. On the other hand, they are offset in the opposite axial direction by an equal distance f (cage offset). Further, the center of curvature O 1 of the track groove 22 of the outer ring 25 and the center of curvature O 2 of the track groove 27 of the inner ring 28 are the center of curvature O 4 of the inner spherical surface 21 of the outer ring 25 and the center of curvature of the outer spherical surface 26 of the inner ring 28. It is offset in the axial direction by an equal distance F from O 3 (track offset). The center of curvature O 3 of the outer spherical surface 26 of the inner ring 28 and the center of curvature O 4 of the inner spherical surface 21 of the outer ring 25 coincide with the centers of curvature of the inner and outer spherical surfaces 31 and 32 of the cage 30, respectively.

このようにして、一対のトラック溝22,27により、外輪25の奥側から開口端側に向けて径方向間隔が徐々に増加する楔状のボールトラックが形成されている。各ボール29は一対のトラック溝22,27間に転動可能に組み込まれており、外輪25と内輪28が作動角θをとった状態でトルクを伝達するとき、楔状のボールトラックの間隔の広い方へ移動させようとする軸方向の力を受ける。   In this way, the pair of track grooves 22 and 27 forms a wedge-shaped ball track in which the radial interval gradually increases from the back side of the outer ring 25 toward the opening end side. Each ball 29 is incorporated between a pair of track grooves 22 and 27 so as to be able to roll. When the torque is transmitted with the outer ring 25 and the inner ring 28 having the operating angle θ, the interval between the wedge-shaped ball tracks is wide. Receives an axial force to move in the direction.

外輪25と内輪28が最大作動角θをとったとき、外輪25のマウス部24の開口端23からボール29が飛び出すことを防止するため、ケージ30のポケット33で拘束できるようにケージオフセット量fを従来のものよりも大きく設定する。すなわち、ケージオフセット量をf、作動角0°におけるボール29の中心軌跡半径値、すなわち、外輪25のトラック溝22の曲率中心Oまたは内輪28のトラック溝27の曲率中心Oとボール29の中心Oとを結ぶ線分の長さをPCRとした場合、f/PCRが0より大きく、かつ、0.12以下となるように設定する。 When the outer ring 25 and the inner ring 28 have the maximum operating angle θ, the cage offset amount f is set so that the ball 29 can be restrained by the pocket 33 of the cage 30 in order to prevent the ball 29 from jumping out from the open end 23 of the mouth portion 24 of the outer ring 25. Is set larger than the conventional one. That is, the cage offset amount is f and the radius of the center locus of the ball 29 at the operating angle of 0 °, that is, the center of curvature O 1 of the track groove 22 of the outer ring 25 or the center of curvature O 2 of the track groove 27 of the inner ring 28 and the ball 29. when the length of a line connecting the center O 5 and PCR, f / PCR is greater than 0, and is set to be 0.12 or less.

このように、外輪25および内輪28の両トラック溝22,27をテーパ状とすれば、最大作動角の高角化と共に、外輪25のトラック溝22におけるボール29との接触長さを確保することができるので、外輪25と内輪28との間で安定したトルク伝達を確保することができる。また、作動角をとった時にボール29が最も飛び出そうとする位相(位相角φ=0°)(図2および図14参照)のトラック荷重およびポケット荷重を低減することができるので、外輪25と内輪28の高角域での作動において有利である。ここで、トラック荷重とポケット荷重とは、接触するボール29からトラック溝22,27またはポケット33が受ける荷重を意味する。   Thus, if both the track grooves 22 and 27 of the outer ring 25 and the inner ring 28 are tapered, the maximum operating angle can be increased and the contact length with the ball 29 in the track groove 22 of the outer ring 25 can be secured. Therefore, stable torque transmission can be ensured between the outer ring 25 and the inner ring 28. Further, since the track load and the pocket load of the phase (phase angle φ = 0 °) (see FIGS. 2 and 14) in which the ball 29 is most likely to jump out when the operating angle is taken can be reduced. This is advantageous in the operation of the inner ring 28 in a high angle region. Here, the track load and the pocket load mean a load received by the track grooves 22 and 27 or the pocket 33 from the ball 29 in contact therewith.

また、ケージ30の外球面32は外輪25の内球面21に接触案内され、ケージ30の内球面31は内輪28の外球面26に接触案内され、トルク伝達時にケージ30と外輪25または内輪28との間で球面力が作用するが、その球面力の最大値を低減することができ、継手内部での発熱を抑制できる。さらに、外輪25については、鍛造型が抜き易いことから冷間鍛造による加工性がよく、製造コストの低減も図れる。   Further, the outer spherical surface 32 of the cage 30 is contact-guided to the inner spherical surface 21 of the outer ring 25, and the inner spherical surface 31 of the cage 30 is contact-guided to the outer spherical surface 26 of the inner ring 28, and the cage 30 and the outer ring 25 or the inner ring 28 are transmitted during torque transmission. A spherical force acts between the two, but the maximum value of the spherical force can be reduced and heat generation inside the joint can be suppressed. Further, the outer ring 25 has good workability by cold forging because the forging die can be easily pulled out, and the manufacturing cost can be reduced.

本出願人は、外輪25および内輪28の両トラック溝22,27をテーパ状とすることにより、前述したトラック荷重、ポケット荷重および球面力からなる内部力の影響および傾向を検証し、有限要素法(FEM)解析を実施することで、トラック溝22,27のテーパ角度α(図1および図13参照)の範囲を絞り込んで最適設定した。   The present applicant verifies the influence and tendency of the internal force consisting of the track load, the pocket load and the spherical force described above by making both the track grooves 22 and 27 of the outer ring 25 and the inner ring 28 into a tapered shape. By performing (FEM) analysis, the range of the taper angle α (see FIGS. 1 and 13) of the track grooves 22 and 27 was narrowed down and optimally set.

まず、トラック溝22,27のテーパ角度αを大きくすることによる内部力(トラック荷重、ポケット荷重および球面力)の傾向は、表1のとおりである。なお、表1において、ボール29が最も飛び出そうとする位相(位相角φ=0°)と内部力が最大値となるボール29の位相、つまり、ボール29が最も奥に入る位相(位相角φ=180°付近)について検証した(図2および図14参照)。また、球面力の変動幅とは、球面力の最大値と最小値との差を意味する。   First, the tendency of the internal force (track load, pocket load and spherical force) by increasing the taper angle α of the track grooves 22 and 27 is shown in Table 1. In Table 1, the phase at which the ball 29 is most likely to jump out (phase angle φ = 0 °) and the phase of the ball 29 at which the internal force reaches the maximum value, that is, the phase at which the ball 29 enters the deepest (phase angle φ = 180 ° vicinity) (see FIG. 2 and FIG. 14). The fluctuation range of the spherical force means a difference between the maximum value and the minimum value of the spherical force.

Figure 2007024106
Figure 2007024106

上表から明らかなようにテーパ角度αを大きくすると、ポケット荷重の最大値が大きくなるが、ボール29が最も奥に入る位相(位相角φ=180°付近)で外輪25の肉厚を大きく、また、ケージオフセット量を大きくしてケージの肉厚を大きくすることにより強度を確保することができるので問題にはならない。   As is apparent from the above table, when the taper angle α is increased, the maximum value of the pocket load is increased, but the wall thickness of the outer ring 25 is increased at the phase where the ball 29 is deepest (phase angle φ = 180 °), Further, since the strength can be ensured by increasing the cage offset amount to increase the cage wall thickness, there is no problem.

次に、テーパ角度αの上限値を決定するために、有限要素法(FEM)解析を実施した。テーパ角度αが大きくなれば、ボール29が最も飛び出そうとする位相(位相角φ=0°)では内部力(トラック荷重およびポケット荷重)が小さくなり、強度的に有利になるが、外輪25の開口端23でありその肉厚が小さくなるため、トラック溝22に発生する応力値を継手強度に換算して傾向を確認した。その結果は、図15に示すとおりである。同図に示す特性から明らかなようにテーパ角度αが12.9°で継手強度が必要強度を下回ることから、テーパ角度αの最適範囲としてその上限値を12°として規定した。   Next, in order to determine the upper limit value of the taper angle α, a finite element method (FEM) analysis was performed. When the taper angle α is increased, the internal force (track load and pocket load) is reduced at the phase (phase angle φ = 0 °) at which the ball 29 is most likely to jump out, which is advantageous in terms of strength. Since it is the opening end 23 and the wall thickness becomes small, the tendency was confirmed by converting the stress value generated in the track groove 22 into the joint strength. The result is as shown in FIG. As apparent from the characteristics shown in the figure, since the joint angle is less than the required strength when the taper angle α is 12.9 °, the upper limit of the taper angle α is defined as 12 °.

なお、前述の実施形態では、トラックオフセットを設けた場合について例示したが、そのトラックオフセットを設けずにトラックオフセット量Fを0にしてもよい。つまり、トラックオフセットを設けていると、外輪25の奥側に位置する円弧底22aがその奥側に向けて浅くなることから、作動角をとった時にトラック溝22の最奥部に位置するボール29の乗り上げが生じる可能性がある。   In the above-described embodiment, the case where the track offset is provided is illustrated, but the track offset amount F may be set to 0 without providing the track offset. That is, when the track offset is provided, the arc bottom 22a located on the back side of the outer ring 25 becomes shallow toward the back side, so that the ball located at the deepest part of the track groove 22 when the operating angle is taken. 29 rides may occur.

そこで、外輪25のトラック溝22の曲率中心Oをその内球面21の曲率中心Oに一致させ、かつ、内輪28のトラック溝27の曲率中心Oをその外球面26の曲率中心Oに一致させてトラックオフセット量Fを0とすることにより、外輪25の奥側に位置する円弧底22aが奥側に向けて浅くなることがなく均一な深さとなることから、作動角をとった時にトラック溝22の最奥部に位置するボール29の乗り上げを抑制することができる。 Therefore, the center of curvature O 1 of the track groove 22 of the outer ring 25 is made to coincide with the center of curvature O 4 of the inner spherical surface 21, and the center of curvature O 2 of the track groove 27 of the inner ring 28 is made to be the center of curvature O 3 of the outer spherical surface 26. By making the track offset amount F equal to 0, the arc bottom 22a located on the back side of the outer ring 25 has a uniform depth without becoming shallow toward the back side, so the operating angle was taken. Occasionally, the ball 29 located at the innermost part of the track groove 22 can be prevented from climbing.

トラックオフセット量F、ケージオフセット量f、テーパ角度αの各因子を変動させて内部力解析を行った結果を次に述べる。ここで、トラックオフセットについては、高角域に入っても許容負荷トルクが落ちない超高角固定式等速自在継手の特性を考慮してトラックオフセット量F=0すなわち「トラックオフセットなし」とした。ケージオフセットについては、内部力の観点からはできるだけ小さい方がよいが、継手の機能確保のためにはある程度ケージオフセットをつけなくてはならないことから、0≦f/PCR≦0.150で変動させた。テーパ角度αについては、0°から12°までの範囲で変動させた。   The results of the internal force analysis performed by varying each factor of the track offset amount F, the cage offset amount f, and the taper angle α will be described below. Here, with respect to the track offset, the track offset amount F = 0, that is, “no track offset” is set in consideration of the characteristics of the ultra-high angle fixed type constant velocity universal joint in which the allowable load torque does not drop even when entering the high angle region. The cage offset should be as small as possible from the viewpoint of internal force. However, to ensure the function of the joint, a certain amount of cage offset must be provided, so that 0 ≦ f / PCR ≦ 0.150 is varied. It was. The taper angle α was varied in the range from 0 ° to 12 °.

ケージオフセット量f=0(f/PCR=0)ならば、テーパ角度αが1.1°以上のとき、ボール29が最も飛び出そうとする位相(0°位相)のトラック荷重およびポケット荷重はゼロになる。一方、テーパ角度α=12°ならば、ケージオフセット量f=3.94(f/PCR=0.114)以下のとき、ボール29が最も飛び出そうとする位相(0°位相)のトラック荷重およびポケット荷重はゼロになる。   If the cage offset amount is f = 0 (f / PCR = 0), when the taper angle α is 1.1 ° or more, the track load and the pocket load at the phase (0 ° phase) at which the ball 29 is most likely to jump out are zero. become. On the other hand, if the taper angle α = 12 °, when the cage offset amount f = 3.94 (f / PCR = 0.114) or less, the track load of the phase (0 ° phase) at which the ball 29 is most likely to jump out and Pocket load is zero.

つまり、ケージオフセット量fとテーパ角度αとの関係が図16の斜線領域内に設定されていれば、ボール29が最も飛び出そうとする位相(0°位相)のトラック荷重およびポケット荷重はゼロになる。ここで、図16は内部力解析により算出したデータに基づいて作図したもので、横軸がテーパ角度α(deg)、縦軸がf/PCRを表している。   That is, if the relationship between the cage offset amount f and the taper angle α is set within the hatched region in FIG. 16, the track load and pocket load at the phase (0 ° phase) at which the ball 29 is most likely to jump out are zero. Become. Here, FIG. 16 is drawn based on data calculated by internal force analysis, where the horizontal axis represents the taper angle α (deg) and the vertical axis represents f / PCR.

これより、ボール29が最も飛び出そうとする位相(0°位相)に負荷される荷重を極力小さくし、より高角作動域において有利となる内部仕様は次のようになる。
トラックオフセット:なし
ケージオフセット量f:0<f/PCR≦0.12(但し、作動角は0°とする。)
テーパ角度α:1°≦α≦12°
Thus, the internal specifications that are advantageous in a higher angle operating range are as follows, with the load applied to the phase (0 ° phase) at which the ball 29 is most likely to jump out minimized.
Track offset: None Cage offset amount f: 0 <f / PCR ≦ 0.12 (however, the operating angle is 0 °)
Taper angle α: 1 ° ≦ α ≦ 12 °

また、この実施の形態では、ボール29が最も飛び出そうとする位相(0°位相)における荷重が低減する一方、ピークの荷重は従来の等速自在継手と比較して大きくなることから、強度を確保するため、ケージ30の肉厚部を外輪25の開口端側に向けた配置とするのが好ましい。   Further, in this embodiment, the load at the phase (0 ° phase) where the ball 29 is most likely to jump out is reduced, while the peak load is larger than that of the conventional constant velocity universal joint. In order to ensure, it is preferable to arrange the thick portion of the cage 30 toward the opening end side of the outer ring 25.

前述の内部仕様で寸法を設定した本発明による固定式等速自在継手(実施例)と従来の固定式等速自在継手(比較例)について、ボール29が最も飛び出そうとする位相(0°位相)におけるトラック荷重およびポケット荷重を算出したところ、結果は図17に示すとおりであった。同図より、比較例に対して実施例が、トラック荷重とポケット荷重のいずれも8割以上減少していることが分かる。   For the fixed type constant velocity universal joint according to the present invention (example) and the conventional fixed type constant velocity universal joint (comparative example) according to the present invention whose dimensions are set according to the above-described internal specifications, the phase at which the ball 29 is most likely to protrude (0 ° phase) When the track load and the pocket load in) were calculated, the results were as shown in FIG. From the figure, it can be seen that in the example, both the track load and the pocket load are reduced by 80% or more compared to the comparative example.

本発明に係る固定型等速自在継手の実施形態を示す断面図である。It is sectional drawing which shows embodiment of the fixed type constant velocity universal joint which concerns on this invention. 図1の等速自在継手において、外輪に対して内輪が最大作動角をとった状態を示す断面図である。In the constant velocity universal joint of FIG. 1, it is sectional drawing which shows the state which the inner ring took the maximum operating angle with respect to the outer ring. (a)は図1の等速自在継手におけるケージを示す断面図、(b)は従来の等速自在継手におけるケージを示す断面図である。(A) is sectional drawing which shows the cage in the constant velocity universal joint of FIG. 1, (b) is sectional drawing which shows the cage in the conventional constant velocity universal joint. 図3(a)に示すケージの左側面図である。FIG. 4 is a left side view of the cage shown in FIG. 図4の断面図である。FIG. 5 is a cross-sectional view of FIG. 4. ケージを外輪に組み込む要領を説明するためのもので、外輪を開口側から見た側面図である。FIG. 5 is a side view of the outer ring viewed from the opening side, for explaining a procedure for incorporating the cage into the outer ring. ポケットのケージ内球面側のエッジ部を球面R形状とした実施形態を示すケージの断面図である。It is sectional drawing of the cage which shows embodiment which made the edge part of the spherical surface in a cage of a pocket the spherical surface R shape. ポケットのケージ内球面側のエッジ部およびケージ外球面のエッジ部を球面R形状とした実施形態を示すケージの断面図である。It is sectional drawing of the cage which shows the embodiment which made the edge part of the spherical surface in a cage of a pocket, and the edge part of a cage outer spherical surface into the spherical surface R shape. ポケットのケージ内球面側のエッジ部およびケージ外球面のエッジ部を球面R形状とし、ポケットの薄肉側隅部の曲率半径を厚肉側隅部よりも大きくした実施形態を示すケージの断面図である。FIG. 6 is a cross-sectional view of a cage showing an embodiment in which an edge portion on the inner spherical surface side of the pocket and an edge portion of the outer spherical surface of the pocket are formed into a spherical R shape, and the radius of curvature of the thin side corner of the pocket is larger than that of the thick side corner. is there. ポケットの薄肉側隅部および厚肉側隅部を示す部分拡大平面図である。It is the elements on larger scale which show the thin wall side corner part and thick wall side corner part of a pocket. ポケットの薄肉側隅部を最小曲率半径とした場合を示す部分拡大平面図である。It is the elements on larger scale which show the case where the thin wall side corner part of a pocket is made into the minimum curvature radius. ポケットの薄肉側隅部を最大曲率半径とした場合を示す部分拡大平面図である。It is the elements on larger scale which show the case where the thin wall side corner part of a pocket is made into the maximum curvature radius. 図1の等速自在継手において、ケージオフセットおよびトラックオフセット等の内部諸元を説明するための図である。FIG. 2 is a diagram for explaining internal specifications such as a cage offset and a track offset in the constant velocity universal joint of FIG. 1. ケージに収容されたボールの位相を示す断面図である。It is sectional drawing which shows the phase of the ball accommodated in the cage. トラック溝のテーパ角度に対する継手強度の関係を示す特性図である。It is a characteristic view which shows the relationship of the joint strength with respect to the taper angle of a track groove. トラック溝のテーパ角度とf/PCRとの関係を示す特性図である。It is a characteristic view which shows the relationship between the taper angle of a track groove, and f / PCR. 基本トルク負荷時の0°位相荷重を示す特性図である。It is a characteristic view which shows the 0 degree phase load at the time of a basic torque load. 固定型等速自在継手の従来例を示す断面図である。It is sectional drawing which shows the prior art example of a fixed type constant velocity universal joint. 図18の等速自在継手において、外輪に対して内輪が最大作動角をとった状態を示す断面図である。In the constant velocity universal joint of FIG. 18, it is sectional drawing which shows the state which the inner ring took the maximum operating angle with respect to the outer ring. (a)は図18の外輪を開口側から見た側面図、(b)は図18のケージを示す断面図である。(A) is the side view which looked at the outer ring | wheel of FIG. 18 from the opening side, (b) is sectional drawing which shows the cage of FIG.

符号の説明Explanation of symbols

21 外側継手部材(外輪)の内球面
22 外側継手部材(外輪)のトラック溝
23 開口端
25 外側継手部材(外輪)
26 内側継手部材(内輪)の外球面
27 内側継手部材(内輪)のトラック溝
28 内側継手部材(内輪)
29 ボール
30 ケージ
31 ケージの内球面
32 ケージの外球面
33 ポケット
34 テーパ面
35,36 エッジ部
37 薄肉側隅部
38 厚肉側隅部
40 カット部分(カット面)
f ケージオフセット量
F トラックオフセット量
外側継手部材(外輪)のトラック溝の曲率中心
内側継手部材(内輪)のトラック溝の曲率中心
ケージの内球面中心
ケージの外球面中心
α トラック溝のテーパ角度
θ/2 ケージの内球面の開口側端部のテーパ角度
φd ケージの外径
φD 外輪のインロー径
21 Inner spherical surface of outer joint member (outer ring) 22 Track groove of outer joint member (outer ring) 23 Open end 25 Outer joint member (outer ring)
26 Outer spherical surface of inner joint member (inner ring) 27 Track groove of inner joint member (inner ring) 28 Inner joint member (inner ring)
29 Ball 30 Cage 31 Cage inner spherical surface 32 Cage outer spherical surface 33 Pocket 34 Tapered surface 35, 36 Edge portion 37 Thin side corner portion 38 Thick side corner portion 40 Cut portion (cut surface)
f Cage offset amount F Track offset amount O 1 Center of curvature of track groove of outer joint member (outer ring) O 2 Center of curvature of track groove of inner joint member (inner ring) O 3 Center of inner spherical surface of cage O 4 Center of outer spherical surface of cage 4 α Tapered angle of track groove θ / 2 Tapered angle of opening side end of inner spherical surface of cage φd 1 Outer diameter of cage φD 1 Inner diameter of outer ring

Claims (8)

内球面に複数のトラック溝を円周方向等間隔に軸方向に沿って開口端に向けて形成した外側継手部材と、外球面に前記外側継手部材のトラック溝と対をなす複数のトラック溝を円周方向等間隔に軸方向に沿って形成した内側継手部材と、前記外側継手部材と内側継手部材の両トラック溝間に介在してトルクを伝達する複数のボールと、外側継手部材の内球面と内側継手部材の外球面との間に介在してボールを保持するポケットを有するケージとを備え、
前記外側継手部材のトラック溝の開口側溝底を、前記開口端に向けて直線的に拡径したテーパ状にすると共に、前記内側継手部材のトラック溝の奥側溝底を、その奥端に向けて直線的に拡径したテーパ状とし、
前記ケージの外球面中心と内球面中心は継手中心に対して軸方向に等距離だけ反対側にオフセットされ、かつ、外側継手部材のトラック溝の曲率中心と内側継手部材のトラック溝の曲率中心は継手中心に対してケージオフセット量だけオフセットされ、
前記ケージの少なくとも対向する二つのポケットの前記開口端側に位置する外球面を部分的にカットし、かつ、そのカット部分におけるケージの外径を外側継手部材のインロー径よりも小さく設定したことを特徴とする固定型等速自在継手。
An outer joint member in which a plurality of track grooves are formed on the inner spherical surface at equal intervals in the circumferential direction toward the opening end along the axial direction, and a plurality of track grooves that are paired with the track grooves of the outer joint member are formed on the outer spherical surface. An inner joint member formed along the axial direction at equal intervals in the circumferential direction, a plurality of balls that are interposed between both track grooves of the outer joint member and the inner joint member, and an inner spherical surface of the outer joint member And a cage having a pocket interposed between the outer spherical surface of the inner joint member and holding the ball,
The outer side groove bottom of the track groove of the outer joint member has a tapered shape linearly expanded toward the opening end, and the inner side groove bottom of the track groove of the inner joint member faces the inner end. The taper is linearly expanded in diameter,
The outer spherical center and the inner spherical center of the cage are offset to the opposite side by an equal distance in the axial direction with respect to the joint center, and the center of curvature of the track groove of the outer joint member and the center of curvature of the track groove of the inner joint member are Offset by the amount of cage offset with respect to the joint center,
The outer spherical surface located on the opening end side of at least two opposing pockets of the cage is partially cut, and the outer diameter of the cage at the cut portion is set smaller than the inner diameter of the outer joint member. Fixed constant velocity universal joint.
前記ケージの外球面の開口側端部を軸方向に向けて延在させ、ケージの内球面の開口側端部を外球面の開口側端部に向けて拡径するテーパ状とした請求項1に記載の固定型等速自在継手。   2. A tapered shape in which an opening-side end portion of the outer spherical surface of the cage extends in the axial direction and an opening-side end portion of the inner spherical surface of the cage expands toward the opening-side end portion of the outer spherical surface. Fixed type constant velocity universal joint described in 1. 前記ケージの内球面の開口側端部のテーパ角度を、外側継手部材と内側継手部材がなす最大作動角の半分以上とした請求項2に記載の固定型等速自在継手。   The fixed type constant velocity universal joint according to claim 2, wherein a taper angle of an opening side end portion of the inner spherical surface of the cage is set to be not less than half of a maximum operating angle formed by the outer joint member and the inner joint member. 前記ケージの円周方向に沿って形成され、かつ、前記ボールを収容するポケットのケージ内球面側あるいはケージ外球面側の少なくともいずれか一方のエッジ部を球面R形状とした請求項1〜3のいずれか一項に記載の固定型等速自在継手。   The edge part of the cage inner spherical surface side or the cage outer spherical surface side of the pocket that is formed along the circumferential direction of the cage and accommodates the ball has a spherical R shape. Fixed type constant velocity universal joint as described in any one of Claims. 前記ケージの円周方向に沿って形成され、かつ、前記ボールを収容するポケットの薄肉側隅部の曲率半径を、その厚肉側隅部の曲率半径より大きく、かつ、ボールの半径より小さく設定した請求項1〜4のいずれか一項に記載の固定型等速自在継手。   The radius of curvature of the thin side corner of the pocket that accommodates the ball is formed along the circumferential direction of the cage, and is set larger than the radius of curvature of the thick side corner and smaller than the radius of the ball. The fixed type constant velocity universal joint as described in any one of Claims 1-4. 前記外側継手部材および内側継手部材の両トラック溝のテーパ角度の上限値を12°とした請求項1〜5のいずれか一項に記載の固定型等速自在継手。   The fixed type constant velocity universal joint according to any one of claims 1 to 5, wherein an upper limit value of a taper angle of both track grooves of the outer joint member and the inner joint member is 12 °. 前記ケージの外球面中心と内球面中心とのケージオフセット量fと、作動角0°時における外側継手部材のトラック溝の曲率中心または内側継手部材のトラック溝の曲率中心とボールの中心とを結ぶ線分の長さPCRとの比の値f/PCRが0より大きく、かつ、0.12以下である請求項1〜6のいずれか一項に記載の固定型等速自在継手。   The cage offset amount f between the outer spherical center and the inner spherical center of the cage is connected to the center of curvature of the track groove of the outer joint member or the center of curvature of the track groove of the inner joint member and the center of the ball when the operating angle is 0 °. The fixed type constant velocity universal joint according to any one of claims 1 to 6, wherein a value f / PCR of a ratio with the length PCR of the line segment is larger than 0 and 0.12 or less. 前記外側継手部材の開口端側にケージの厚肉側を位置させた請求項1〜7のいずれか一項に記載の固定型等速自在継手。   The fixed type constant velocity universal joint according to any one of claims 1 to 7, wherein a thick side of the cage is positioned on an opening end side of the outer joint member.
JP2005204421A 2005-03-22 2005-07-13 Fixed type constant velocity universal joint Withdrawn JP2007024106A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2005204421A JP2007024106A (en) 2005-07-13 2005-07-13 Fixed type constant velocity universal joint
US11/372,040 US8147342B2 (en) 2005-03-22 2006-03-10 Fixed-type constant-velocity universal joint
EP06251417.9A EP1705395B1 (en) 2005-03-22 2006-03-16 Fixed-type constant-velocity universal joint

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005204421A JP2007024106A (en) 2005-07-13 2005-07-13 Fixed type constant velocity universal joint

Publications (1)

Publication Number Publication Date
JP2007024106A true JP2007024106A (en) 2007-02-01

Family

ID=37785143

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005204421A Withdrawn JP2007024106A (en) 2005-03-22 2005-07-13 Fixed type constant velocity universal joint

Country Status (1)

Country Link
JP (1) JP2007024106A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011065400A1 (en) * 2009-11-26 2011-06-03 Ntn株式会社 Stationary constant-velocity universal joint
WO2012008323A1 (en) * 2010-07-15 2012-01-19 株式会社ジェイテクト Constant-velocity ball joint

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011065400A1 (en) * 2009-11-26 2011-06-03 Ntn株式会社 Stationary constant-velocity universal joint
US8684849B2 (en) 2009-11-26 2014-04-01 Ntn Corporation Fixed type constant velocity universal joint
WO2012008323A1 (en) * 2010-07-15 2012-01-19 株式会社ジェイテクト Constant-velocity ball joint

Similar Documents

Publication Publication Date Title
EP1705395B1 (en) Fixed-type constant-velocity universal joint
JP2007270997A (en) Fixed type constant velocity universal joint
JP2010043667A (en) Fixed-type constant velocity universal joint
WO2005068863A1 (en) Constant velocity joint
JP2008151182A (en) Constant velocity universal joint
JP2002323061A (en) Constant velocity universal joint
JP2006266329A (en) Fixed type constant velocity universal joint
JP5214336B2 (en) Fixed constant velocity universal joint
EP1031748A1 (en) Constant velocity universal joint for propeller shaft
JP2007064264A (en) Fixed type constant velocity universal joint
JP4879501B2 (en) High angle fixed type constant velocity universal joint
JP2007024106A (en) Fixed type constant velocity universal joint
JP4896662B2 (en) Fixed constant velocity universal joint
JP2007309366A (en) Constant velocity joint
JP2005201371A (en) Constant velocity joint
JP2007016899A (en) Fixed-type constant-velocity universal joint
JP4745186B2 (en) Fixed constant velocity universal joint
JP4896673B2 (en) Fixed constant velocity universal joint and manufacturing method thereof
JP2004332817A (en) Fixed type constant speed universal joint
JP2007032648A (en) Large operation angle fixing type constant velocity universal joint
JP2006266368A (en) Fixed type constant velocity universal joint
JP2007263222A (en) Fixed type constant velocity universal joint
JP2008051190A (en) Fixed type constant velocity universal joint
JP2007170422A (en) Fixed constant velocity universal joint
JP2007032647A (en) Large operation angle fixing type constant velocity universal joint

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20081007