JP2017110694A - Contact velocity universal joint - Google Patents

Contact velocity universal joint Download PDF

Info

Publication number
JP2017110694A
JP2017110694A JP2015244030A JP2015244030A JP2017110694A JP 2017110694 A JP2017110694 A JP 2017110694A JP 2015244030 A JP2015244030 A JP 2015244030A JP 2015244030 A JP2015244030 A JP 2015244030A JP 2017110694 A JP2017110694 A JP 2017110694A
Authority
JP
Japan
Prior art keywords
shaft
joint member
velocity universal
center hole
constant velocity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015244030A
Other languages
Japanese (ja)
Inventor
義男 井戸田
Yoshio Itoda
義男 井戸田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2015244030A priority Critical patent/JP2017110694A/en
Publication of JP2017110694A publication Critical patent/JP2017110694A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To reduce machining man-hours and machining time in recess groove machining, to easily contract a shaft.SOLUTION: A contact velocity universal joint includes an outside joint member 11, and an inside joint member 12 configured to transmit torque while allowing angle displacement through a ball 13 between itself and the outside joint member 11, wherein a shaft 19 is fitted into a shaft hole 20 of the inside joint member 12 in a torque transmittable manner, and the shaft 19 is prevented from falling out from the inside joint member 12. At a center hole 23 for machining formed on a shaft end surface 22 of the shaft 19, mounted is a stopper member 24 configured to prevent the shaft 19 from falling out from the inside joint member 12.SELECTED DRAWING: Figure 1

Description

本発明は、自動車や各種産業機械の動力伝達系において使用され、特に、自動車用のドライブシャフトやプロペラシャフト等に組み込まれる等速自在継手に関する。   The present invention relates to a constant velocity universal joint that is used in a power transmission system of an automobile or various industrial machines, and is particularly incorporated in a drive shaft or a propeller shaft for an automobile.

自動車のエンジンから車輪に回転力を等速で伝達するドライブシャフトやプロペラシャフトに組み込まれる等速自在継手には、固定式等速自在継手と摺動式等速自在継手の二種がある。これら両者の等速自在継手は、駆動側と従動側の二軸を連結してその二軸が作動角をとっても等速で回転トルクを伝達し得る構造を備えている。   There are two types of constant velocity universal joints incorporated in drive shafts and propeller shafts that transmit rotational force from the engine of an automobile to wheels at a constant speed: fixed constant velocity universal joints and sliding constant velocity universal joints. Both of these constant velocity universal joints have a structure in which two shafts on the driving side and the driven side are connected so that rotational torque can be transmitted at a constant speed even if the two shafts have an operating angle.

ドライブシャフトは、エンジンと車輪との相対的位置関係の変化による角度変位と軸方向変位に対応する必要がある。そのため、ドライブシャフトは、一般的に、エンジン側(インボード側)に摺動式等速自在継手を、車輪側(アウトボード側)に固定式等速自在継手をそれぞれ装備し、両者の等速自在継手をシャフトで連結した構造を具備する。   The drive shaft needs to cope with angular displacement and axial displacement due to a change in the relative positional relationship between the engine and the wheels. Therefore, the drive shaft is generally equipped with a sliding type constant velocity universal joint on the engine side (inboard side) and a fixed type constant velocity universal joint on the wheel side (outboard side). It has a structure in which universal joints are connected by a shaft.

このドライブシャフトを構成するシャフトの両端に設けられた等速自在継手は、外側継手部材と、その外側継手部材との間でトルク伝達部材を介して角度変位を許容しながらトルクを伝達する内側継手部材とを備え、その内側継手部材の軸孔にシャフトをトルク伝達可能に嵌合させ、シャフトを内側継手部材に対して抜け止めした構造を有する。   The constant velocity universal joint provided at both ends of the shaft constituting the drive shaft is an inner joint that transmits torque while allowing angular displacement between the outer joint member and the outer joint member via a torque transmission member. And the shaft is fitted into the shaft hole of the inner joint member so that torque can be transmitted, and the shaft is prevented from coming off from the inner joint member.

この内側継手部材に対するシャフトの抜け止め構造としては、特許文献1に開示されたものがある。この特許文献1で開示された抜け止め構造は、シャフトの軸端部に環状の凹溝を形成すると共に、内側継手部材の軸孔の奥側端部に凹部を形成し、シャフトの凹溝に嵌合された止め輪を内側継手部材の凹部に係止させることにより、シャフトを内側継手部材に対して抜け止めしている。   As a shaft retaining structure for the inner joint member, there is one disclosed in Patent Document 1. The retaining structure disclosed in Patent Document 1 forms an annular groove at the shaft end of the shaft, and forms a recess at the back end of the shaft hole of the inner joint member. By locking the fitted retaining ring in the recess of the inner joint member, the shaft is prevented from coming off from the inner joint member.

特開2006−207721号公報JP 2006-207721 A

ところで、特許文献1で開示されたシャフト抜け止め構造は、シャフトの軸端部の外周面に環状の凹溝を形成すると共に、内側継手部材の軸孔の奥側端部に凹部を形成し、シャフトの凹溝に嵌合された止め輪を内側継手部材の凹部に係止させるようにしている。   By the way, the shaft retaining structure disclosed in Patent Document 1 forms an annular concave groove on the outer peripheral surface of the shaft end portion of the shaft, and forms a concave portion at the back end portion of the shaft hole of the inner joint member. The retaining ring fitted in the concave groove of the shaft is engaged with the concave portion of the inner joint member.

このようなシャフト抜け止め構造の場合、シャフトの軸端部の外周面に凹溝を形成しなければならず、シャフトの軸端部における凹溝加工の加工工数および加工時間が増加してコストアップを招く可能性がある。   In the case of such a shaft retaining structure, it is necessary to form a groove on the outer peripheral surface of the shaft end of the shaft, which increases the processing time and processing time for the groove processing at the shaft end of the shaft, thereby increasing the cost. May be incurred.

また、シャフトの軸端部の外周面に凹溝を形成するため、シャフトは、内側継手部材の奥側端部から突出する部分を必要とする。その突出部の分だけ、シャフトの軸長が長くなってこの点でもコストアップを招くことになる。   Moreover, in order to form a ditch | groove in the outer peripheral surface of the axial end part of a shaft, the shaft requires the part which protrudes from the back | end side edge part of an inner side coupling member. The shaft length of the shaft is increased by the amount of the protruding portion, which also increases the cost.

さらに、止め輪を内側継手部材の奥側端面で係止することにより抜け止めしているものもあるが、特許文献1のように、内側継手部材の軸孔の奥側端部に形成された凹部に止め輪を係止する構造では、内側継手部材の軸孔に凹部を形成する加工が必要となる。この点でも、内側継手部材の軸孔における凹部加工の加工工数および加工時間が増加してコストアップを招く可能性がある。   Furthermore, although there are those that retain the retaining ring by locking with the back end face of the inner joint member, as in Patent Document 1, it is formed at the back end of the shaft hole of the inner joint member. In the structure in which the retaining ring is locked to the recess, a process for forming the recess in the shaft hole of the inner joint member is required. In this respect as well, there is a possibility that the processing man-hours and processing time for the recess processing in the shaft hole of the inner joint member increase, resulting in an increase in cost.

そこで、本発明は前述の問題点に鑑みて提案されたもので、その目的とするところは、凹溝加工の加工工数および加工時間を削減し、シャフトの短縮化を容易に実現し得る等速自在継手を提供することにある。   Therefore, the present invention has been proposed in view of the above-described problems, and the object of the present invention is to reduce the number of processing steps and processing time for the concave groove processing, and the constant speed at which the shaft can be easily shortened. It is to provide a universal joint.

本発明に係る等速自在継手は、外側継手部材と、その外側継手部材との間でトルク伝達部材を介して角度変位を許容しながらトルクを伝達する内側継手部材とを備え、その内側継手部材の軸孔にシャフトをトルク伝達可能に嵌合させ、シャフトを内側継手部材に対して抜け止めした構造を具備する。   The constant velocity universal joint according to the present invention includes an outer joint member and an inner joint member that transmits torque while allowing angular displacement between the outer joint member and the outer joint member via the torque transmission member. The shaft hole is fitted to the shaft hole so that torque can be transmitted, and the shaft is prevented from coming off from the inner joint member.

前述の目的を達成するための技術的手段として、本発明は、シャフトの軸端面に形成された加工用センタ穴に、シャフトを内側継手部材に対して抜け止めするストッパ部材を装着したことを特徴とする。   As a technical means for achieving the above-mentioned object, the present invention is characterized in that a stopper member for preventing the shaft from coming off from the inner joint member is attached to a processing center hole formed in the shaft end surface of the shaft. And

本発明では、シャフトの抜け止め構造として、シャフトの軸端面に形成された加工用センタ穴を利用したことにより、従来のようなシャフトの軸端部の外周面に凹溝を形成する加工が不要となる。その結果、内側継手部材の奥側端部から突出する部分も不要となるので、シャフトの軸長を短縮化することができる。なお、内側継手部材の軸孔に凹部を形成する必要もなくなる。   In the present invention, a machining center hole formed on the shaft end surface of the shaft is used as a shaft retaining structure, so that it is not necessary to form a groove on the outer peripheral surface of the shaft end portion of the shaft as in the prior art. It becomes. As a result, the portion protruding from the back end of the inner joint member is not necessary, so that the shaft length of the shaft can be shortened. It is not necessary to form a recess in the shaft hole of the inner joint member.

本発明におけるストッパ部材は、加工用センタ穴に圧入される凸部と、その凸部の軸方向端部に設けられ、内側継手部材の端面に当接するフランジ部とで構成されていることが望ましい。   The stopper member in the present invention is preferably composed of a convex portion that is press-fitted into the machining center hole, and a flange portion that is provided at an axial end portion of the convex portion and abuts against the end face of the inner joint member. .

この抜け止め構造では、凸部をシャフトの加工用センタ穴に圧入し、フランジ部を内側継手部材の端面に係止させることで、ストッパ部材により、内側継手部材に対してシャフトを容易に抜け止めすることができる。   In this retaining structure, the convex part is press-fitted into the machining center hole of the shaft, and the flange part is locked to the end face of the inner joint member, so that the shaft can be easily retained from the inner joint member by the stopper member. can do.

本発明におけるストッパ部材は、加工用センタ穴に圧入される凸部で構成され、凸部は、加工用センタ穴への圧入によりシャフトの軸端部を拡径可能な締め代に設定された外径を有することが望ましい。   The stopper member in the present invention is configured by a convex portion that is press-fitted into the machining center hole, and the convex portion is an outer portion that is set to a tightening allowance capable of expanding the shaft end of the shaft by press-fitting into the machining center hole. It is desirable to have a diameter.

この抜け止め構造では、凸部を加工用センタ穴に圧入することにより、シャフトの軸端部を拡径させることで、ストッパ部材により、内側継手部材に対してシャフトを容易に抜け止めすることができる。   In this retaining structure, the shaft can be easily retained against the inner joint member by the stopper member by expanding the shaft end of the shaft by press-fitting the convex portion into the machining center hole. it can.

本発明によれば、シャフトの軸端面に形成された加工用センタ穴を利用したことにより、従来のようなシャフトの軸端部の外周面に凹溝を形成する加工が不要となる。また、内側継手部材の奥側端部から突出する部分も不要となるので、シャフトの軸長を短縮化することができる。   According to the present invention, since the machining center hole formed on the shaft end surface of the shaft is used, it is not necessary to form a groove on the outer peripheral surface of the shaft end portion of the shaft. Moreover, since the part which protrudes from the back | inner side edge part of an inner side coupling member becomes unnecessary, the axial length of a shaft can be shortened.

その結果、加工工数および加工時間を削減することでコスト低減が図れ、シャフトの短縮化により軽量コンパクトな等速自在継手を提供できる。   As a result, costs can be reduced by reducing the number of processing steps and processing time, and a lightweight and compact constant velocity universal joint can be provided by shortening the shaft.

本発明の実施形態で、固定式等速自在継手を示す断面図である。It is sectional drawing which shows a fixed type constant velocity universal joint in embodiment of this invention. 図1のP−P線に沿う断面図である。It is sectional drawing which follows the PP line | wire of FIG. 本発明の他の実施形態で、摺動式等速自在継手を示す断面図である。It is sectional drawing which shows the sliding type constant velocity universal joint in other embodiment of this invention. 図3のQ−Q線に沿う断面図である。It is sectional drawing which follows the QQ line of FIG. 図3の摺動式等速自在継手に適用した他の実施形態を示す断面図である。It is sectional drawing which shows other embodiment applied to the sliding-type constant velocity universal joint of FIG. 図3の摺動式等速自在継手に適用した他の実施形態を示す断面図である。It is sectional drawing which shows other embodiment applied to the sliding-type constant velocity universal joint of FIG.

本発明に係る等速自在継手の実施形態を図面に基づいて以下に詳述する。   An embodiment of a constant velocity universal joint according to the present invention will be described below in detail with reference to the drawings.

図1および図2は、固定式等速自在継手に適用した場合を例示する。図示の固定式等速自在継手は、アンダーカットフリー型等速自在継手(UJ)であるが、ツェッパ型等速自在継手(BJ)にも適用可能である。   1 and 2 exemplify a case where the present invention is applied to a fixed type constant velocity universal joint. The illustrated fixed type constant velocity universal joint is an undercut-free type constant velocity universal joint (UJ), but can also be applied to a Rzeppa type constant velocity universal joint (BJ).

また、図3および図4は、摺動式等速自在継手に適用した場合を例示する。図示の摺動式等速自在継手は、トリポード型等速自在継手(TJ)であるが、ダブルオフセット型等速自在継手(DOJ)やクロスグルーブ型等速自在継手(LJ)にも適用可能である。   3 and 4 exemplify the case where the present invention is applied to a sliding type constant velocity universal joint. The illustrated sliding type constant velocity universal joint is a tripod type constant velocity universal joint (TJ), but can also be applied to a double offset type constant velocity universal joint (DOJ) or a cross groove type constant velocity universal joint (LJ). is there.

図1および図2に示す実施形態の固定式等速自在継手は、外側継手部材11と、内側継手部材12と、トルク伝達部材である6個のボール13と、ケージ14とで主要部が構成されている。   The fixed type constant velocity universal joint of the embodiment shown in FIG. 1 and FIG. 2 is composed mainly of an outer joint member 11, an inner joint member 12, six balls 13 as torque transmission members, and a cage 14. Has been.

外側継手部材11は、一端が開口したカップ状をなし、軸方向に延びる6本の曲線状トラック溝15が球状内周面16の円周方向6箇所に等間隔で形成されている。内側継手部材12は、軸方向に延びる6本の曲線状トラック溝17が外側継手部材11のトラック溝15と対をなして球状外周面18の円周方向6箇所に等間隔で形成されている。   The outer joint member 11 has a cup shape with one end opened, and six curved track grooves 15 extending in the axial direction are formed at six equal intervals in the circumferential direction of the spherical inner peripheral surface 16. In the inner joint member 12, six curved track grooves 17 extending in the axial direction form pairs with the track grooves 15 of the outer joint member 11 and are formed at equal intervals in six circumferential directions on the spherical outer peripheral surface 18. .

ボール13は、外側継手部材11のトラック溝15と内側継手部材12のトラック溝17との間に配されて外側継手部材11と内側継手部材12との間で回転トルクを伝達する。ケージ14は、外側継手部材11の内周面16と内側継手部材12の外周面18との間に介在してボール13を保持する。なお、ボール13は6個を例示するが、8個であってもよく、その個数は任意である。   The ball 13 is disposed between the track groove 15 of the outer joint member 11 and the track groove 17 of the inner joint member 12 and transmits rotational torque between the outer joint member 11 and the inner joint member 12. The cage 14 is interposed between the inner peripheral surface 16 of the outer joint member 11 and the outer peripheral surface 18 of the inner joint member 12 to hold the ball 13. The number of balls 13 is six, but may be eight and the number is arbitrary.

以上の構成からなる等速自在継手においては、内側継手部材12にシャフト19がスプライン嵌合によりトルク伝達可能に結合されている。このスプライン嵌合は、内側継手部材12の軸孔20の内周面に雌スプラインを形成すると共に、シャフト19の軸端部21の外周面に雄スプラインを形成し、内側継手部材12の軸孔20にシャフト19の軸端部21を圧入することにより構成されている。   In the constant velocity universal joint configured as described above, the shaft 19 is coupled to the inner joint member 12 so as to transmit torque by spline fitting. In this spline fitting, a female spline is formed on the inner peripheral surface of the shaft hole 20 of the inner joint member 12 and a male spline is formed on the outer peripheral surface of the shaft end portion 21 of the shaft 19. The shaft end portion 21 of the shaft 19 is press-fitted into the shaft 20.

内側継手部材12とシャフト19との結合構造において、シャフト19を内側継手部材12に対して以下の構造でもって抜け止めしている。この等速自在継手は、シャフト19の軸端面22に形成された加工用センタ穴23に、シャフト19を内側継手部材12に対して抜け止めするストッパ部材24を装着した抜け止め構造を具備する。   In the coupling structure of the inner joint member 12 and the shaft 19, the shaft 19 is prevented from coming off from the inner joint member 12 with the following structure. This constant velocity universal joint includes a retaining structure in which a stopper member 24 that retains the shaft 19 with respect to the inner joint member 12 is attached to a machining center hole 23 formed in the shaft end surface 22 of the shaft 19.

一般的に、シャフト19には、ブーツ装着用の凹溝を形成するための加工やスプラインを形成するための加工が施される。この加工時にシャフト19を位置決めするためにシャフト19の軸端面22には加工用センタ孔23が予め設けられている。   Generally, the shaft 19 is subjected to processing for forming a groove for mounting a boot or processing for forming a spline. In order to position the shaft 19 during the processing, a processing center hole 23 is provided in advance on the shaft end surface 22 of the shaft 19.

この実施形態では、シャフト19の軸端面22に予め形成された加工用センタ穴23を利用する。これにより、シャフト19の軸端部21の外周面に凹溝を形成する従来のような加工が不要となる。その結果、凹溝加工の加工工数および加工時間を削減することができ、コスト低減を図ることができる。   In this embodiment, a machining center hole 23 formed in advance on the shaft end surface 22 of the shaft 19 is used. Thereby, the conventional process which forms a ditch | groove in the outer peripheral surface of the shaft end part 21 of the shaft 19 becomes unnecessary. As a result, it is possible to reduce the processing man-hours and processing time for the concave groove processing, and it is possible to reduce the cost.

一方、ストッパ部材24は、前述の加工用センタ穴23に圧入される凸部25と、その凸部25の軸方向端部に一体的に設けられ、内側継手部材12の奥側端面26に当接するフランジ部27とで構成されている。このストッパ部材24では、凸部25をシャフト19の加工用センタ穴23に圧入し、フランジ部27を内側継手部材12の端面26に係止させる。なお、ストッパ部材24は、SUS、SPCおよびZAM等の金属製、あるいはTE等の樹脂製のいずれであってもよい。外側継手部材11および内側継手部材12の材質としては、S53C等に代表される機械構造用の中炭素鋼が好適である。   On the other hand, the stopper member 24 is provided integrally with the convex portion 25 that is press-fitted into the above-described machining center hole 23 and the axial end portion of the convex portion 25, and contacts the back end surface 26 of the inner joint member 12. It is comprised with the flange part 27 which touches. In the stopper member 24, the convex portion 25 is press-fitted into the machining center hole 23 of the shaft 19, and the flange portion 27 is locked to the end surface 26 of the inner joint member 12. The stopper member 24 may be made of metal such as SUS, SPC, and ZAM, or resin such as TE. As the material of the outer joint member 11 and the inner joint member 12, medium carbon steel for machine structures represented by S53C and the like is suitable.

このように、シャフト19の軸端面22の加工用センタ穴23を利用してストッパ部材24で内側継手部材12に対してシャフト19を抜け止めすることにより、従来のシャフトのように内側継手部材12の奥側端部から突出する部分も不要となる。その結果、シャフト19の軸長を短縮化することができるので、等速自在継手の軽量コンパクト化が図れる。   In this way, by using the processing center hole 23 of the shaft end surface 22 of the shaft 19 to prevent the shaft 19 from coming off from the inner joint member 12 by the stopper member 24, the inner joint member 12 as in the conventional shaft is used. The part which protrudes from the back | inner side edge part of is also unnecessary. As a result, since the shaft length of the shaft 19 can be shortened, the constant velocity universal joint can be reduced in weight and size.

なお、以上で説明した固定式等速自在継手の組み立てでは、外側継手部材11の内部に、内側継手部材12、ボール13およびケージ14からなる内部部品を組み込んだ後、外側継手部材11の内部に収容された内側継手部材12にシャフト19を圧入することにより、内側継手部材12にシャフト19を組み付けるようにしている。   In the assembly of the fixed type constant velocity universal joint described above, the internal parts including the inner joint member 12, the ball 13, and the cage 14 are assembled in the outer joint member 11, and then the inner part of the outer joint member 11 is assembled. The shaft 19 is assembled into the inner joint member 12 by press-fitting the shaft 19 into the accommodated inner joint member 12.

そのため、ストッパ部材24は、外側継手部材11の内部に組み込む前の状態にある内側継手部材12の奥側端面26にフランジ部27を溶接などにより予め固着することにより組み付けられる。そして、外側継手部材11の内部に組み込まれた内側継手部材12の軸孔20にシャフト19を圧入することにより、内側継手部材12にシャフト19をスプライン嵌合によりトルク伝達可能に結合すると共に、ストッパ部材24の凸部25をシャフト19の加工用センタ穴23に圧入する。このようにして、内側継手部材12に対してシャフト19が抜け止めされる。   Therefore, the stopper member 24 is assembled by fixing the flange portion 27 in advance to the inner end surface 26 of the inner joint member 12 in a state before being assembled into the outer joint member 11 by welding or the like. The shaft 19 is press-fitted into the shaft hole 20 of the inner joint member 12 incorporated in the outer joint member 11, thereby coupling the shaft 19 to the inner joint member 12 by spline fitting so that torque can be transmitted, and a stopper. The convex portion 25 of the member 24 is press-fitted into the machining center hole 23 of the shaft 19. In this way, the shaft 19 is prevented from coming off from the inner joint member 12.

次に、図3および図4に示す実施形態の摺動式等速自在継手は、外側継手部材31と、内側継手部材であるトリポード部材32と、トルク伝達部材である3個のローラ33とで主要部が構成されている。   Next, the sliding type constant velocity universal joint of the embodiment shown in FIGS. 3 and 4 includes an outer joint member 31, a tripod member 32 which is an inner joint member, and three rollers 33 which are torque transmission members. The main part is composed.

外側継手部材31は、一端が開口したカップ状をなし、軸方向に延びる3本の直線状トラック溝34が円筒状内周面35の円周方向3箇所に等間隔で形成されている。各トラック溝34は、その内側両壁に互いに対向する一対のローラ案内面36を有する。ローラ案内面36は円弧状断面を有し、外側継手部材31の軸線方向に直線状に延びる。   The outer joint member 31 has a cup shape with one open end, and three linear track grooves 34 extending in the axial direction are formed at three equal intervals in the circumferential direction of the cylindrical inner peripheral surface 35. Each track groove 34 has a pair of roller guide surfaces 36 facing each other on both inner walls thereof. The roller guide surface 36 has an arc-shaped cross section and extends linearly in the axial direction of the outer joint member 31.

トリポード部材32は、円筒状をなすボス37の外周面に3本の脚軸38が円周方向等間隔(120°間隔)で放射状に一体形成されている。脚軸38は、先端がトラック溝34の底部付近まで半径方向に延在し、外周面は一般的に円筒面とされている。   In the tripod member 32, three leg shafts 38 are integrally formed radially on the outer peripheral surface of a cylindrical boss 37 at equal intervals in the circumferential direction (120 ° intervals). The leg shaft 38 has a distal end extending in the radial direction to the vicinity of the bottom of the track groove 34, and an outer peripheral surface thereof is generally a cylindrical surface.

外側継手部材31のローラ案内面36と脚軸38の外周面との間に針状ころ39を介してローラ33が回転自在に配設される。ローラ33の外周面は縦断面円弧状とされ、ローラ33の内周面は円筒状に形成されている。ローラ33と脚軸38との間に、複数の針状ころ39が、保持器のない、いわゆる単列総ころ状態で配設されている。脚軸38の外周面は針状ころ39の内側転動面を構成し、ローラ33の内周面は針状ころ39の外側転動面を構成している。   A roller 33 is rotatably disposed between the roller guide surface 36 of the outer joint member 31 and the outer peripheral surface of the leg shaft 38 via a needle roller 39. The outer peripheral surface of the roller 33 has an arc shape in the longitudinal section, and the inner peripheral surface of the roller 33 is formed in a cylindrical shape. A plurality of needle rollers 39 are disposed between the roller 33 and the leg shaft 38 in a so-called single row full roller state without a cage. The outer peripheral surface of the leg shaft 38 constitutes the inner rolling surface of the needle roller 39, and the inner peripheral surface of the roller 33 constitutes the outer rolling surface of the needle roller 39.

針状ころ39は、脚軸38の付け根部に外嵌されたインナワッシャ40と半径方向内側で接すると共に、脚軸38の先端部に外嵌されたアウタワッシャ41と半径方向外側で接している。アウタワッシャ41は、脚軸38の先端部に形成された環状溝42(図3参照)に止め輪43を嵌合させることにより抜け止めされている。   The needle rollers 39 are in contact with the inner washer 40 fitted to the base of the leg shaft 38 on the radially inner side, and are in contact with the outer washer 41 fitted on the tip of the leg shaft 38 on the outer side in the radial direction. . The outer washer 41 is prevented from coming off by fitting a retaining ring 43 into an annular groove 42 (see FIG. 3) formed at the tip of the leg shaft 38.

以上の構成からなる等速自在継手においては、トリポード部材32のボス37にシャフト19がスプライン嵌合によりトルク伝達可能に結合されている。このスプライン嵌合は、ボス37の軸孔44の内周面に雌スプラインを形成すると共に、シャフト19の軸端部45の外周面に雄スプラインを形成し、ボス37の軸孔44にシャフト19の軸端部45を圧入することにより構成されている。   In the constant velocity universal joint configured as described above, the shaft 19 is coupled to the boss 37 of the tripod member 32 so as to transmit torque by spline fitting. In this spline fitting, a female spline is formed on the inner peripheral surface of the shaft hole 44 of the boss 37, a male spline is formed on the outer peripheral surface of the shaft end portion 45 of the shaft 19, and the shaft 19 is inserted into the shaft hole 44 of the boss 37. The shaft end portion 45 is press-fitted.

このトリポード部材32とシャフト19との結合構造において、シャフト19をトリポード部材32に対して以下の構造でもって抜け止めしている。この実施形態の等速自在継手は、シャフト19の軸端面46に形成された加工用センタ穴47に、シャフト19をトリポード部材32に対して抜け止めするストッパ部材24を装着した抜け止め構造を具備する。   In the coupling structure of the tripod member 32 and the shaft 19, the shaft 19 is prevented from coming off from the tripod member 32 with the following structure. The constant velocity universal joint of this embodiment has a retaining structure in which a stopper member 24 for retaining the shaft 19 with respect to the tripod member 32 is mounted in a processing center hole 47 formed in the shaft end surface 46 of the shaft 19. To do.

この実施形態においても、前述の固定式等速自在継手の場合と同様、シャフト19の軸端面46に予め形成された加工用センタ穴47を利用し、その加工用センタ穴47に圧入される凸部25と、その凸部25の軸方向端部に一体的に設けられ、トリポード部材32の奥側端面48に当接するフランジ部27とで構成されたストッパ部材24を使用する。このストッパ部材24では、凸部25をシャフト19の加工用センタ穴47に圧入し、フランジ部27をトリポード部材32の端面48に係止させる。   In this embodiment as well, as in the case of the fixed type constant velocity universal joint described above, the processing center hole 47 formed in advance on the shaft end surface 46 of the shaft 19 is used, and the convex that is press-fitted into the processing center hole 47. A stopper member 24 is used, which is composed of a portion 25 and a flange portion 27 that is provided integrally with the end portion in the axial direction of the convex portion 25 and abuts against the back end surface 48 of the tripod member 32. In the stopper member 24, the convex portion 25 is press-fitted into the machining center hole 47 of the shaft 19, and the flange portion 27 is locked to the end surface 48 of the tripod member 32.

このように、シャフト19の軸端面46の加工用センタ穴47を利用してストッパ部材24でトリポード部材32に対してシャフト19を抜け止めすることにより、シャフト19の軸端部45の外周面に凹溝を形成する従来のような加工が不要となる。その結果、凹溝加工の加工工数および加工時間を削減することができ、コスト低減を図ることができる。また、従来のシャフトのようにトリポード部材32の奥側端部から突出する部分も不要となる。その結果、シャフト19の軸長を短縮化することができるので、等速自在継手の軽量コンパクト化が図れる。   In this way, by using the processing center hole 47 of the shaft end surface 46 of the shaft 19 to prevent the shaft 19 from coming off from the tripod member 32 by the stopper member 24, Conventional processing for forming the groove is not required. As a result, it is possible to reduce the processing man-hours and processing time for the concave groove processing, and it is possible to reduce the cost. Moreover, the part which protrudes from the back side edge part of the tripod member 32 like the conventional shaft becomes unnecessary. As a result, since the shaft length of the shaft 19 can be shortened, the constant velocity universal joint can be reduced in weight and size.

なお、以上で説明した摺動式等速自在継手の組み立てでは、外側継手部材31の内部に、トリポード部材32およびローラ33からなる内部部品を組み込む前に、トリポード部材32にシャフト19を組み付けることが可能である。   In the assembly of the sliding type constant velocity universal joint described above, the shaft 19 can be assembled to the tripod member 32 before incorporating the internal parts including the tripod member 32 and the roller 33 into the outer joint member 31. Is possible.

そのため、トリポード部材32の軸孔44にシャフト19の軸端部45を圧入した後、そのシャフト19の軸端面46の加工用センタ穴47にストッパ部材24の凸部25を圧入し、フランジ部27をトリポード部材32の端面48に係止させる。このようにして、トリポード部材32に対してシャフト19が抜け止めされる。   Therefore, after the shaft end portion 45 of the shaft 19 is press-fitted into the shaft hole 44 of the tripod member 32, the convex portion 25 of the stopper member 24 is press-fitted into the machining center hole 47 of the shaft end surface 46 of the shaft 19, and the flange portion 27. Is locked to the end surface 48 of the tripod member 32. In this way, the shaft 19 is prevented from coming off from the tripod member 32.

以上の2つの実施形態では、ストッパ部材24の凸部25を円柱形状とし、その凸部25をシャフト19の加工用センタ穴23,47に圧入した場合について説明したが、本発明はこれに限定されることなく、図5に示すような抜け止め構造であってもよい。   In the above two embodiments, the case where the convex portion 25 of the stopper member 24 has a cylindrical shape and the convex portion 25 is press-fitted into the processing center holes 23 and 47 of the shaft 19 has been described. However, the present invention is limited to this. Instead, a retaining structure as shown in FIG. 5 may be used.

この抜け止め構造では、ストッパ部材24の凸部25の外周面に雄スプライン49を形成し、その凸部25をシャフト19の円筒形状の加工用センタ穴47に圧入する。この圧入により、凸部25の雄スプライン49の形状を加工用センタ穴47に転写することにより加工センタ穴47周面に凹部を形成し、ストッパ部材24の凸部25とシャフト19の加工用センタ穴47とを凸部と凹部との嵌合接触部位全域が密着する凹凸嵌合構造を構成して結合させる。外側継手部材11および内側継手部材12の材質としては、S53C等に代表される0.40〜0.60重量%の炭素を含む機械構造用の中炭素鋼が好適である。シャフト19の材料としては、S40C等の0.30〜0.55重量%の炭素を含む中炭素鋼からなり、加工用センタ穴47は未硬化である。ストッパ部材24はSUS、中炭素鋼を焼入れ硬化したものである。   In this retaining structure, a male spline 49 is formed on the outer peripheral surface of the convex portion 25 of the stopper member 24, and the convex portion 25 is press-fitted into the cylindrical processing center hole 47 of the shaft 19. By this press-fitting, the shape of the male spline 49 of the convex portion 25 is transferred to the machining center hole 47 to form a concave portion on the peripheral surface of the machining center hole 47, and the convex portion 25 of the stopper member 24 and the machining center of the shaft 19 are formed. The hole 47 is connected by forming a concave-convex fitting structure in which the entire fitting contact portion between the convex portion and the concave portion is in close contact. As the material of the outer joint member 11 and the inner joint member 12, medium carbon steel for machine structure containing 0.40 to 0.60% by weight of carbon represented by S53C and the like is suitable. The material of the shaft 19 is made of medium carbon steel containing 0.30 to 0.55% by weight of carbon such as S40C, and the processing center hole 47 is unhardened. The stopper member 24 is obtained by quenching and hardening SUS and medium carbon steel.

このような構造を採用することにより、ストッパ部材24をシャフト19に強固に取り付けることが可能となり、強固な抜け止め構造を実現することができる。なお、この構造は、図示の摺動式等速自在継手だけでなく、前述の固定式等速自在継手にも適用可能である。   By adopting such a structure, the stopper member 24 can be firmly attached to the shaft 19, and a strong retaining structure can be realized. This structure is applicable not only to the illustrated sliding type constant velocity universal joint, but also to the above-described fixed type constant velocity universal joint.

また、以上で説明した実施形態では、シャフト19の加工用センタ穴47に圧入される凸部25と、その凸部25の軸方向端部に一体的に設けられ、トリポード部材32の奥側端面48に当接するフランジ部27とで構成されたストッパ部材24について説明したが、本発明はこれに限定されることなく、図6に示すような抜け止め構造であってもよい。   Further, in the embodiment described above, the convex portion 25 press-fitted into the machining center hole 47 of the shaft 19 and the end surface on the back side of the tripod member 32 provided integrally with the axial end portion of the convex portion 25. Although the stopper member 24 configured with the flange portion 27 that abuts on the 48 has been described, the present invention is not limited to this, and a retaining structure as shown in FIG. 6 may be used.

この抜け止め構造では、シャフト19の加工用センタ穴47に圧入される凸部50のみで構成されたストッパ部材51を使用する。このストッパ部材51の凸部50は、加工用センタ穴47への圧入によりシャフト19の軸端部45を拡径可能な締め代に設定された外径を有する。   In this retaining structure, a stopper member 51 composed of only the convex portion 50 press-fitted into the machining center hole 47 of the shaft 19 is used. The convex portion 50 of the stopper member 51 has an outer diameter set to a tightening allowance capable of expanding the shaft end portion 45 of the shaft 19 by press-fitting into the processing center hole 47.

このような構造を採用することにより、ストッパ部材51の凸部50をシャフト19の加工用センタ穴47に圧入することで、シャフト19の軸端部45を拡径させる(図中の矢印参照)。このシャフト19の軸端部45の拡径により、その軸端部45でのトリポード部材32との結合力が増大することで、トリポード部材32に対してシャフト19を抜け止めすることができる。シャフト19の材料としては、S40C等の0.30〜0.55重量%の炭素を含む中炭素鋼からなり、加工用センタ穴47は未硬化である。ストッパ部材24はSUS、中炭素鋼を焼入れ硬化したものである。   By adopting such a structure, the shaft end 45 of the shaft 19 is expanded in diameter by press-fitting the convex portion 50 of the stopper member 51 into the machining center hole 47 of the shaft 19 (see the arrow in the figure). . By increasing the diameter of the shaft end portion 45 of the shaft 19, the coupling force with the tripod member 32 at the shaft end portion 45 increases, so that the shaft 19 can be prevented from coming off from the tripod member 32. The material of the shaft 19 is made of medium carbon steel containing 0.30 to 0.55% by weight of carbon such as S40C, and the processing center hole 47 is unhardened. The stopper member 24 is obtained by quenching and hardening SUS and medium carbon steel.

この構造は、外側継手部材31の内部に、トリポード部材32およびローラ33からなる内部部品を組み込む前に、トリポード部材32にシャフト19を組み付けることが可能な摺動式等速自在継手に有効である。   This structure is effective for a sliding type constant velocity universal joint in which the shaft 19 can be assembled to the tripod member 32 before incorporating the internal parts including the tripod member 32 and the roller 33 into the outer joint member 31. .

本発明は前述した実施形態に何ら限定されるものではなく、本発明の要旨を逸脱しない範囲内において、さらに種々なる形態で実施し得ることは勿論のことであり、本発明の範囲は、特許請求の範囲によって示され、さらに特許請求の範囲に記載の均等の意味、および範囲内のすべての変更を含む。   The present invention is not limited to the above-described embodiments, and can of course be implemented in various forms without departing from the gist of the present invention. It includes the equivalent meanings recited in the claims and the equivalents recited in the claims, and all modifications within the scope.

11,31 外側継手部材
12,32 内側継手部材
13,33 トルク伝達部材(ボール、ローラ)
19 シャフト
22,46 軸端面
23,47 加工用センタ穴
24 ストッパ部材
25 凸部
27 フランジ部
11, 31 Outer joint member 12, 32 Inner joint member 13, 33 Torque transmission member (ball, roller)
19 Shaft 22, 46 Shaft end face 23, 47 Processing center hole 24 Stopper member 25 Convex part 27 Flange part

Claims (4)

外側継手部材と、前記外側継手部材との間でトルク伝達部材を介して角度変位を許容しながらトルクを伝達する内側継手部材とを備え、前記内側継手部材の軸孔にシャフトをトルク伝達可能に嵌合させ、前記シャフトを内側継手部材に対して抜け止めした等速自在継手であって、
前記シャフトの軸端面に形成された加工用センタ穴に、シャフトを内側継手部材に対して抜け止めするストッパ部材を装着したことを特徴とする等速自在継手。
An outer joint member and an inner joint member that transmits torque while allowing angular displacement between the outer joint member and the outer joint member via the torque transmission member, and capable of transmitting torque to the shaft hole of the inner joint member A constant velocity universal joint that is fitted and the shaft is prevented from coming off from the inner joint member,
A constant velocity universal joint, wherein a stopper member for preventing the shaft from coming off from the inner joint member is mounted in a machining center hole formed in the shaft end surface of the shaft.
前記ストッパ部材は、前記加工用センタ穴に圧入される凸部と、前記凸部の軸方向端部に設けられ、内側継手部材の端面に当接するフランジ部とで構成されている請求項1に記載の等速自在継手。   The said stopper member is comprised by the convex part press-fitted in the said center hole for a process, and the flange part which is provided in the axial direction edge part of the said convex part, and contact | abuts the end surface of an inner joint member. The constant velocity universal joint described. 前記ストッパ部材は、前記加工用センタ穴に圧入される凸部で構成され、前記凸部は、加工用センタ穴への圧入によりシャフトの軸端部を拡径可能な締め代に設定された外径を有する請求項1又は2に記載の等速自在継手。   The stopper member includes a convex portion that is press-fitted into the machining center hole, and the convex portion is an outer portion that is set to a tightening allowance that allows the shaft end portion of the shaft to be expanded by press-fitting into the machining center hole. The constant velocity universal joint according to claim 1, wherein the constant velocity universal joint has a diameter. 前記ストッパ部材は、前記加工用センタ穴に圧入される凸部の外周面に雄スプラインを形成し、その凸部をシャフトの円筒形状の加工用センタ穴に圧入することにより、凸部の雄スプラインの形状を加工用センタ穴に転写して、凸部と凹部との嵌合接触部位全域が密着する凹凸嵌合構造を構成する請求項2に記載の等速自在継手。   The stopper member forms a male spline on the outer peripheral surface of the convex portion press-fitted into the machining center hole, and presses the convex portion into the cylindrical machining center hole of the shaft, thereby forming the male spline of the convex portion. The constant velocity universal joint according to claim 2, wherein the shape is transferred to the machining center hole to constitute a concave-convex fitting structure in which the entire fitting contact portion between the convex portion and the concave portion is in close contact.
JP2015244030A 2015-12-15 2015-12-15 Contact velocity universal joint Pending JP2017110694A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015244030A JP2017110694A (en) 2015-12-15 2015-12-15 Contact velocity universal joint

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015244030A JP2017110694A (en) 2015-12-15 2015-12-15 Contact velocity universal joint

Publications (1)

Publication Number Publication Date
JP2017110694A true JP2017110694A (en) 2017-06-22

Family

ID=59081202

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015244030A Pending JP2017110694A (en) 2015-12-15 2015-12-15 Contact velocity universal joint

Country Status (1)

Country Link
JP (1) JP2017110694A (en)

Similar Documents

Publication Publication Date Title
US8128504B2 (en) Constant velocity universal joint
EP2172666B1 (en) Joint for steering
US10962063B2 (en) Fixed constant velocity universal joint
JP5283832B2 (en) Constant velocity universal joint
JP2008240907A (en) Universal coupling
JP2017110694A (en) Contact velocity universal joint
WO2019111903A1 (en) Tripod constant velocity universal joint
JP2010127311A (en) Fixed type constant velocity universal joint and wheel bearing device using the same
JP2008051222A (en) Two member connecting structure
WO2016114050A1 (en) Constant-velocity universal joint
JP5372364B2 (en) Tripod type constant velocity universal joint
JP6899663B2 (en) Sliding constant velocity universal joint and its manufacturing method
JP2017203538A (en) Slide-type constant velocity universal joint
JP2009079690A (en) Constant velocity universal joint
JP2007225025A (en) Fitting structure between inner joint member and shaft of constant velocity universal joint
JP2007002943A (en) Constant velocity universal joint and its inner member
JP6901241B2 (en) Constant velocity universal joint
JP2008196591A (en) Fixed type constant velocity universal joint and its manufacturing method
JP2007333155A (en) Constant-velocity universal joint
JP6253933B2 (en) Constant velocity universal joint
JP2009121667A (en) Sliding type constant velocity universal joint
JP5154199B2 (en) Tripod type constant velocity universal joint
JP6433689B2 (en) Sliding constant velocity universal joint
WO2017195552A1 (en) Sliding-type constant velocity universal joint and method for manufacturing same
JP2010031910A (en) Outside joint member of constant velocity universal joint and constant velocity universal joint