JP6901241B2 - Constant velocity universal joint - Google Patents
Constant velocity universal joint Download PDFInfo
- Publication number
- JP6901241B2 JP6901241B2 JP2016133397A JP2016133397A JP6901241B2 JP 6901241 B2 JP6901241 B2 JP 6901241B2 JP 2016133397 A JP2016133397 A JP 2016133397A JP 2016133397 A JP2016133397 A JP 2016133397A JP 6901241 B2 JP6901241 B2 JP 6901241B2
- Authority
- JP
- Japan
- Prior art keywords
- shaft
- joint member
- inner joint
- velocity universal
- constant velocity
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000002093 peripheral effect Effects 0.000 claims description 22
- 238000006073 displacement reaction Methods 0.000 claims description 7
- 230000005540 biological transmission Effects 0.000 claims description 5
- 230000037431 insertion Effects 0.000 claims 3
- 238000003780 insertion Methods 0.000 claims 3
- 239000000463 material Substances 0.000 description 8
- 230000007423 decrease Effects 0.000 description 3
- 239000000314 lubricant Substances 0.000 description 3
- 238000000034 method Methods 0.000 description 2
- 238000013459 approach Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000004519 grease Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000002040 relaxant effect Effects 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 230000000452 restraining effect Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
Images
Landscapes
- Shafts, Cranks, Connecting Bars, And Related Bearings (AREA)
Description
本発明は、自動車や各種産業機械の動力伝達系に使用され、特に、自動車用ドライブシャフトやプロペラシャフトに組み込まれる等速自在継手に関する。 The present invention relates to a constant velocity universal joint used in a power transmission system of an automobile or various industrial machines, and particularly to be incorporated in a drive shaft or a propeller shaft for an automobile.
自動車のエンジンから車輪に回転力を等速で伝達する手段として使用される等速自在継手には、固定式等速自在継手と摺動式等速自在継手の二種がある。これら両者の等速自在継手は、駆動側と従動側の二軸を連結してその二軸が作動角をとっても等速で回転トルクを伝達し得る構造を備えている。 There are two types of constant velocity universal joints used as means for transmitting rotational force from an automobile engine to wheels at a constant velocity: a fixed constant velocity universal joint and a sliding constant velocity universal joint. Both of these constant-velocity universal joints have a structure in which two shafts on the driving side and the driven side are connected and the rotational torque can be transmitted at a constant speed even if the two shafts have an operating angle.
エンジンから車輪に動力を伝達するドライブシャフトは、エンジンと車輪との相対位置関係の変化による角度変位と軸方向変位に対応する必要がある。そのため、ドライブシャフトは、一般的に、エンジン側(インボード側)に摺動式等速自在継手を、車輪側(アウトボード側)に固定式等速自在継手をそれぞれ装備し、両者の等速自在継手をシャフトで連結した構造を具備する。 The drive shaft that transmits power from the engine to the wheels needs to correspond to angular displacement and axial displacement due to changes in the relative positional relationship between the engine and the wheels. Therefore, the drive shaft is generally equipped with a sliding constant velocity universal joint on the engine side (inboard side) and a fixed constant velocity universal joint on the wheel side (outboard side). It has a structure in which universal joints are connected by a shaft.
前述した固定式等速自在継手は、外側継手部材、内側継手部材、複数のボールおよびケージを備えている。固定式等速自在継手の内側継手部材の軸孔には、摺動式等速自在継手から延びるシャフトの端部がスプライン嵌合でトルク伝達可能に連結されている。 The fixed constant velocity universal joint described above includes an outer joint member, an inner joint member, a plurality of balls and a cage. The end of the shaft extending from the sliding constant velocity universal joint is connected to the shaft hole of the inner joint member of the fixed constant velocity universal joint so that torque can be transmitted by spline fitting.
従来、このドライブシャフトにおける固定式等速自在継手の内側継手部材とシャフトとの連結構造として、種々のものが提案されている(例えば、特許文献1参照)。 Conventionally, various types of connecting structures for connecting the inner joint member of the fixed constant velocity universal joint and the shaft in this drive shaft have been proposed (see, for example, Patent Document 1).
特許文献1(図1参照)の連結構造では、図9に示すように、シャフト120の端部の外周面に雄スプライン128を形成すると共に、内側継手部材112の軸孔127の内周面に雌スプライン129を形成し、内側継手部材112の軸孔127にシャフト120の端部を挿入し、雄スプライン128と雌スプライン129との凹凸嵌合により結合させている。
In the connection structure of Patent Document 1 (see FIG. 1), as shown in FIG. 9, a
シャフト120の端部に環状凹溝130を形成すると共に、内側継手部材112の軸孔127の内周面に段差部131を形成する。この段差部131は、内側継手部材112の端面に開口している。
An
シャフト120の環状凹溝130に止め輪132を嵌着し、その止め輪132を内側継手部材112の段差部131に係止させることにより、内側継手部材112に対してシャフト120を抜け止めしている。
By fitting the
一方、シャフト120の外周面に形成された雄スプライン128は、図10に示すように、その小径部(歯底部)133を滑らかに拡径させて外周面に繋げた切り上がり形状をなす。この雄スプライン128の切り上がり端部134から少し離れた部位に、雄スプライン128の大径部(歯先部)135の外径d1よりも大きな外径d2を有する肩部136が形成されている(d1<d2)。
On the other hand, as shown in FIG. 10, the
このシャフト120の肩部136に内側継手部材112の端面部141を当接させることにより、内側継手部材112がシャフト120の端部と反対側へ移動しないように軸方向に拘束されている。ここで、端面部141は、内側継手部材112の端面から盗み部137までのテーパ状部位である。
By bringing the
以上のように、シャフト120の環状凹溝130の止め輪132を内側継手部材112の段差部131に係止させることにより、内側継手部材112に対してシャフト120を抜け止めすると共に、シャフト120の肩部136に内側継手部材112の端面部141を当接させることにより、内側継手部材112を軸方向に拘束することで、シャフト120と内側継手部材112とが組み付けられている。
As described above, by locking the
ところで、前述した内側継手部材112とシャフト120との連結構造では、シャフト120の雄スプライン128の切り上がり端部134から少し離れた部位にある肩部136に、内側継手部材112の端面部141を当接させることにより、内側継手部材112を軸方向に拘束していることから、以下のような課題を持つ。
By the way, in the above-described connection structure between the inner
ここで、等速自在継手では、継手内部からの潤滑剤漏洩および継手外部からの異物侵入を防止するため、外側継手部材とシャフト120との間にブーツを装着するのが一般的である。そのため、図9に示すように、ブーツの小径端部をシャフト120の突起部125にブーツバンドにより締め付け固定するようにしている。
Here, in a constant velocity universal joint, boots are generally mounted between the outer joint member and the
このブーツのシャフト120への組み付けは、ブーツの小径端部にシャフト120の肩部136を通した上でその小径端部を突起部125に固定するようにしている。そのため、突起部125は肩部136の外径d2よりも大きな外径d3としており(d3>d2)、その突起部125の外径d3がシャフト120の最大径となっている。
The boot is assembled to the
このシャフト120の製作では、シャフト120の最大径となる突起部125を形成するための削り代を含めた外径を持つ素材を必要とする。このことから、シャフト120の素材径が制約を受けることになり、素材径を小さくすることが困難で、コスト低減を図ることが難しいというのが現状であった。
In the production of the
そこで、本発明は前述の改善点に鑑みて提案されたもので、その目的とするところは、簡便な構造でもってシャフトの素材径を小さくし、コスト低減を図り得る等速自在継手を提供することにある。 Therefore, the present invention has been proposed in view of the above-mentioned improvements, and an object of the present invention is to provide a constant velocity universal joint capable of reducing the material diameter of the shaft with a simple structure and reducing the cost. There is.
本発明に係る等速自在継手は、外側継手部材と、その外側継手部材との間でトルク伝達部材を介して角度変位を許容しながら回転トルクを伝達する内側継手部材とを備え、その内側継手部材の軸孔に軸部材を挿入し、内側継手部材と軸部材とをスプライン嵌合でトルク伝達可能に結合させた構造を具備する。 The constant velocity universal joint according to the present invention includes an outer joint member and an inner joint member that transmits rotational torque while allowing angular displacement via a torque transmission member between the outer joint member, and the inner joint thereof. It has a structure in which a shaft member is inserted into a shaft hole of the member, and the inner joint member and the shaft member are connected by spline fitting so that torque can be transmitted.
前述の目的を達成するための技術的手段として、本発明は、軸部材の外周面に形成された雄スプラインを切り抜け形状とし、その雄スプラインの大径部よりも小さい外径を有する肩部を軸部材の外周面に形成し、内側継手部材の軸孔の内周面に形成された雌スプラインの小径端部を軸部材の肩部に当接させたことを特徴とする。 As a technical means for achieving the above-mentioned object, the present invention has a male spline formed on the outer peripheral surface of a shaft member in a cut-out shape, and a shoulder portion having an outer diameter smaller than the large diameter portion of the male spline. It is characterized in that the small diameter end portion of the female spline formed on the outer peripheral surface of the shaft member and formed on the inner peripheral surface of the shaft hole of the inner joint member is brought into contact with the shoulder portion of the shaft member.
本発明では、軸部材の雄スプラインを切り抜け形状とし、内側継手部材の雌スプラインの小径端部を軸部材の肩部に当接させた構造としたことにより、軸部材の肩部の外径を従来よりも小さくすることが可能となる。このように、ブーツの小径端部に通される肩部の外径を小さくすることで、ブーツの小径端部を固定する突起部の外径、つまり、軸部材の最大径を従来よりも小さくすることができる。 In the present invention, the male spline of the shaft member has a cut-out shape, and the small diameter end of the female spline of the inner joint member is brought into contact with the shoulder of the shaft member, so that the outer diameter of the shoulder of the shaft member can be adjusted. It can be made smaller than before. In this way, by reducing the outer diameter of the shoulder portion passed through the small diameter end of the boot, the outer diameter of the protrusion that fixes the small diameter end of the boot, that is, the maximum diameter of the shaft member is made smaller than before. can do.
本発明において、内側継手部材の雌スプラインに盗み部を形成し、その盗み部に位置する雌スプラインの小径端部を軸部材の肩部に当接させた構造が望ましい。 In the present invention, it is desirable that a stealing portion is formed on the female spline of the inner joint member, and the small diameter end portion of the female spline located at the stealing portion is brought into contact with the shoulder portion of the shaft member.
このような構造を採用すれば、盗み部に位置する雌スプラインの小径端部を軸部材の肩部に当接させることで、ブーツの小径端部に通される肩部の外径をより一層小さくすることができる点で有効である。 If such a structure is adopted, the small diameter end of the female spline located at the stealing portion is brought into contact with the shoulder of the shaft member, so that the outer diameter of the shoulder passed through the small diameter end of the boot is further increased. It is effective in that it can be made smaller.
本発明において、内側継手部材の雌スプラインの小径端部と軸部材の肩部とがテーパ形状をなし、雌スプラインの小径端部を軸部材の肩部に同一のテーパ角度で当接させた構造が望ましい。 In the present invention, the small-diameter end of the female spline of the inner joint member and the shoulder of the shaft member form a tapered shape, and the small-diameter end of the female spline is brought into contact with the shoulder of the shaft member at the same taper angle. Is desirable.
このような構造を採用すれば、雌スプラインの小径端部を軸部材の肩部に同一のテーパ角度で当接させることで、軸部材の肩部の軸方向位置を精度よく確保することができる。 If such a structure is adopted, the small diameter end of the female spline is brought into contact with the shoulder of the shaft member at the same taper angle, so that the axial position of the shoulder of the shaft member can be accurately secured. ..
本発明において、軸部材の雄スプラインの切り抜け端部がテーパ形状をなし、その切り抜け端部のテーパ角度を肩部のテーパ角度よりも小さくした構造が望ましい。 In the present invention, it is desirable that the cut-out end of the male spline of the shaft member has a tapered shape, and the taper angle of the cut-out end is smaller than the taper angle of the shoulder.
このような構造を採用すれば、捩り強度が切り上がり形状よりも低い切り抜け形状の雄スプラインであっても、その切り抜け端部のテーパ角度を肩部のテーパ角度よりも小さくすることで、雄スプラインの切り抜け端部での応力集中を緩和することができる。 By adopting such a structure, even if the male spline has a cut-out shape whose torsional strength is lower than that of the cut-up shape, the taper angle of the cut-out end is made smaller than the taper angle of the shoulder, so that the male spline can be used. It is possible to relax the stress concentration at the cut-out end of the.
本発明によれば、軸部材の雄スプラインを切り抜け形状とし、内側継手部材の雌スプラインの小径端部を軸部材の肩部に当接させた構造としたことにより、ブーツの小径端部に通される軸部材の肩部の外径を従来よりも小さくすることが可能となる。これにより、ブーツの小径端部を固定する突起部の外径、つまり、軸部材の最大径を従来よりも小さくすることができる。その結果、シャフトの素材径を小さくすることができるので、等速自在継手のコスト低減が図れる。 According to the present invention, the male spline of the shaft member has a cut-out shape, and the small diameter end of the female spline of the inner joint member is brought into contact with the shoulder of the shaft member, so that the boot can pass through the small diameter end of the boot. The outer diameter of the shoulder portion of the shaft member to be formed can be made smaller than before. As a result, the outer diameter of the protrusion that fixes the small diameter end of the boot, that is, the maximum diameter of the shaft member can be made smaller than before. As a result, the material diameter of the shaft can be reduced, so that the cost of the constant velocity universal joint can be reduced.
本発明に係る等速自在継手の実施形態を図面に基づいて以下に詳述する。 An embodiment of a constant velocity universal joint according to the present invention will be described in detail below with reference to the drawings.
以下の実施形態では、自動車用ドライブシャフトに組み込まれる固定式等速自在継手の一つであるツェッパ型等速自在継手(BJ)を例示するが、他の固定式等速自在継手としてアンダーカットフリー型等速自在継手(UJ)にも適用可能である。また、ダブルオフセット型等速自在継手(DOJ)、クロスグルーブ型等速自在継手(LJ)やトリポード型等速自在継手(TJ)などの摺動式等速自在継手にも適用可能である。 In the following embodiment, a zipper type constant velocity universal joint (BJ), which is one of the fixed constant velocity universal joints incorporated in an automobile drive shaft, is illustrated, but undercut-free as another fixed constant velocity universal joint. It can also be applied to type constant velocity universal joints (UJ). It is also applicable to sliding type constant velocity universal joints such as double offset type constant velocity universal joints (DOJ), cross groove type constant velocity universal joints (LJ) and tripod type constant velocity universal joints (TJ).
4WD車やFR車などの自動車に組み込まれるドライブシャフトは、エンジンと車輪との相対位置関係の変化による角度変位と軸方向変位に対応する必要がある。そのため、ドライブシャフトは、一般的に、エンジン側(インボード側)に摺動式等速自在継手を、車輪側(アウトボード側)に固定式等速自在継手をそれぞれ装備し、両者の等速自在継手をシャフトで連結した構造を具備する。 Drive shafts incorporated in automobiles such as 4WD vehicles and FR vehicles need to cope with angular displacement and axial displacement due to changes in the relative positional relationship between the engine and wheels. Therefore, the drive shaft is generally equipped with a sliding constant velocity universal joint on the engine side (inboard side) and a fixed constant velocity universal joint on the wheel side (outboard side). It has a structure in which universal joints are connected by a shaft.
この実施形態の固定式等速自在継手(以下、単に等速自在継手と称す)は、図8に示すように、カップ状の外側継手部材11と、内側継手部材12と、トルク伝達部材である複数のボール13と、ケージ14とで主要部が構成されている。
As shown in FIG. 8, the fixed constant velocity universal joint (hereinafter, simply referred to as a constant velocity universal joint) of this embodiment is a cup-shaped outer
外側継手部材11は、軸方向に延びる円弧状トラック溝15が球面状内周面16の円周方向複数箇所に等間隔で形成されている。内側継手部材12は、外側継手部材11のトラック溝15と対をなして軸方向に延びる円弧状トラック溝17が球面状外周面18の円周方向複数箇所に等間隔で形成されている。
In the outer
ボール13は、外側継手部材11のトラック溝15と内側継手部材12のトラック溝17との間に介在して回転トルクを伝達する。ケージ14は、外側継手部材11の内周面16と内側継手部材12の外周面18との間に配されてボール13を保持する。なお、ボール13は、6個、8個あるいはそれ以外であってもよく、その個数は任意である。
The
以上の構成からなる等速自在継手において、作動角(外側継手部材11に対するシャフト20の角度変位)が付与されると、ケージ14で保持されたボール13は常にどの作動角においても、その作動角の二等分面内に維持され、継手の等速性が確保される。
In the constant velocity universal joint having the above configuration, when an operating angle (angle displacement of the
この等速自在継手では、外側継手部材11の内部空間にグリース等の潤滑剤を封入することにより、継手作動時において、継手内部の摺動部位、つまり、外側継手部材11に対して、内側継手部材12、ボール13およびケージ14からなる内部部品の摺動部位での潤滑性を確保するようにしている。
In this constant velocity universal joint, by enclosing a lubricant such as grease in the internal space of the outer
この等速自在継手は、継手内部に封入された潤滑剤の漏洩を防止すると共に継手外部からの異物侵入を防止するため、外側継手部材11の開口部19と、内側継手部材12から延びる軸部材であるシャフト20との間に、樹脂製あるいはゴム製の蛇腹状ブーツ21を装着した構造を具備する。
This constant velocity universal joint has an
ブーツ21の大径端部22は、外側継手部材11の開口部19の外周面にブーツバンド23により締め付け固定され、ブーツ21の小径端部24は、シャフト20の外周面に形成された突起部25にブーツバンド26により締め付け固定されている。
The large-
一方、内側継手部材12の軸孔27には、シャフト20の一端がスプライン嵌合でトルク伝達可能に連結されている。内側継手部材12とシャフト20との連結構造は、図1に示すように、シャフト20の端部の外周面に雄スプライン28を形成すると共に、内側継手部材12の軸孔27の内周面に雌スプライン29を形成し、その内側継手部材12の軸孔27にシャフト20の端部を挿入し、雄スプライン28と雌スプライン29との凹凸嵌合により結合させている。
On the other hand, one end of the
シャフト20の端部に環状凹溝30を形成すると共に、内側継手部材12の軸孔27の内周面に段差部31を形成する。この段差部31は、内側継手部材12の端面に開口している。シャフト20の環状凹溝30に止め輪32を嵌着し、その止め輪32を内側継手部材12の段差部31に係止させることにより、内側継手部材12に対してシャフト20を抜け止めしている。
An
一方、シャフト20の外周面に形成された雄スプライン28は、図2に示すように、その小径部(歯底部)33をそのままシャフト20の外周面に抜いた切り抜け形状としている。この雄スプライン28の切り抜け端部34から少し離れた部位に、雄スプライン28の大径部(歯先部)35の外径D1よりも小さな外径D2を有する肩部36が形成されている(D1>D2)。
On the other hand, as shown in FIG. 2, the
図2に示すように、内側継手部材12の端面部41から軸方向に延びる雌スプライン29に盗み部37が形成されている。この内側継手部材12の盗み部37に位置する雌スプライン29の小径端部38をシャフト20の肩部36に当接させている。これにより、内側継手部材12がシャフト20の端部と反対側へ移動しないように軸方向に拘束されている。ここで、前述の端面部41は、内側継手部材12の端面から盗み部37までのテーパ状部位である。
As shown in FIG. 2, a stealing
以上のように、シャフト20の環状凹溝30の止め輪32を内側継手部材12の段差部31に係止させることにより、内側継手部材12に対してシャフト20を抜け止めすると共に、シャフト20の肩部36に内側継手部材12の雌スプライン29の小径端部38を当接させることにより、内側継手部材12を軸方向に拘束することで、シャフト20と内側継手部材12とが組み付けられている。
As described above, by locking the retaining
この実施形態の等速自在継手では、シャフト20の雄スプライン28を切り抜け形状とし、内側継手部材12の雌スプライン29の小径端部38をシャフト20の肩部36に当接させた構造としたことにより、シャフト20の肩部36の外径D2を従来におけるシャフト120(図9および図10参照)の肩部136の外径d2よりも小さくすることが可能となる(D2<d2)。
In the constant velocity universal joint of this embodiment, the
つまり、従来の等速自在継手(図10参照)では、シャフト120の肩部136の外径d2が雄スプライン128の外径d1よりも大きかったのに対して(d2>d1)、この実施形態の等速自在継手(図2参照)では、シャフト20の肩部36の外径D2を雄スプライン28の外径D1(=d1)よりも小さくすることができる(D2<D1)。
That is, in the conventional constant velocity universal joint (see FIG. 10), the outer diameter d 2 of the
その結果、この実施形態におけるシャフト20(図1および図2参照)の肩部36の外径D2を、従来におけるシャフト120(図9および図10参照)の肩部136の外径d2よりも小さくすることが可能となる(D2<d2)。
As a result, the outer diameter D 2 of the
このように、ブーツ21の小径端部24(図8参照)に通される肩部36の外径D2を小さくすることで、そのブーツ21の小径端部24をブーツバンド26により締め付け固定する突起部25の外径D3(図1参照)、つまり、シャフト20の最大径を、従来の等速自在継手(図9参照)におけるシャフト120の突起部125の外径d3よりも小さくすることができる(D3<d3)。
In this way, by reducing the outer diameter D 2 of the
その結果、シャフト20の最大径となる突起部25を形成するための削り代を含めた外径を持つシャフト20の素材について、シャフト20の素材径が制約を受けることなく、その素材径を小さくすることができるので、等速自在継手のコスト低減が図れる。
As a result, with respect to the material of the
また、この内側継手部材12とシャフト20との連結構造において、内側継手部材12の雌スプライン29の小径端部38とシャフト20の肩部36との当接面がテーパ形状をなす。雌スプライン29の小径端部38をシャフト20の肩部36に同一のテーパ角度αで当接させている。つまり、雌スプライン29の小径端部38のテーパ角度αとシャフト20の肩部36のテーパ角度αとを同一にしている。
Further, in the connecting structure between the inner
このような構造を採用することにより、雌スプライン29の小径端部38をシャフト20の肩部36に同一のテーパ角度αで当接させることで、シャフト20の肩部36の軸方向位置を精度よく確保することができる。
By adopting such a structure, the
シャフト20の環状凹溝30と肩部36とは、図7に示すように、スライドステージ51上にホルダ52,53で支持されたチップ54,55で同時旋削することにより加工される。この同時旋削加工により、シャフト20の肩部36の軸方向位置、つまり、環状凹溝30と肩部36との間の離間寸法を精度よく確保することができる。
As shown in FIG. 7, the
ここで、従来の等速自在継手(図10参照)では、シャフト120の雄スプライン128が切り上がり形状であったのに対して、この実施形態の等速自在継手(図2参照)では、シャフト20の雄スプライン28を切り抜け形状としている。切り抜け形状の雄スプライン28の場合、切り上がり形状の雄スプライン128よりも捩り強度が低い傾向にあることから、図3および図4に示す構造が有効である。
Here, in the conventional constant velocity universal joint (see FIG. 10), the
図3および図4に示す実施形態の等速自在継手では、内側継手部材12とシャフト20との連結構造において、シャフト20の雄スプライン28の切り抜け端部39がテーパ形状をなし、その切り抜け端部39のテーパ角度βを肩部36のテーパ角度αよりも小さくした構造としている(β<α)。
In the constant velocity universal joint of the embodiment shown in FIGS. 3 and 4, in the connecting structure of the inner
このような構造を採用することにより、捩り強度が切り上がり形状よりも低い切り抜け形状の雄スプライン28であっても、その切り抜け端部39のテーパ角度βを肩部36のテーパ角度αよりも小さくすることで、雄スプライン28の切り抜け端部39での応力集中を緩和することができる。
By adopting such a structure, even if the
つまり、雄スプライン28の切り抜け端部39で、雄スプライン28の大径部(歯先部)35の高さが漸減する軸方向寸法が長くなることから、雄スプライン28の切り抜け端部39に作用する負荷が分散される。そのため、この雄スプライン28の切り抜け端部39での応力集中を緩和することができる。この応力集中の緩和により、捩り強度の低下を抑制することができる。
That is, at the cut-out
以上の実施形態では、内側継手部材12の雌スプライン29に盗み部37を形成し、その盗み部37に位置する雌スプライン29の小径端部38をシャフト20の肩部36に当接させた構造について説明したが、図3および図4に示す実施形態のように、雄スプライン28の切り抜け端部39の軸方向寸法を長くすることにより、図5および図6に示す構造であってもよい。
In the above embodiment, a stealing
参考例としての図5および図6に示す等速自在接手では、内側接手部材12の雌スプライン29に盗み部37(図3および図4参照)を形成していない。この内側接手部材12とシャフト20との連結構造においては、内側接手部材12の端面部41から軸方向に延びる雌スプライン29の小径端部40をシャフト20の肩部36に当接させている。
In the constant velocity universal joints shown in FIGS. 5 and 6 as reference examples, the stealing portion 37 (see FIGS. 3 and 4) is not formed on the
ここで、雌スプライン29に盗み部37がないことで、内側継手部材12の雌スプライン29とシャフト20の雄スプライン28との嵌合開始位置が内側継手部材12の端面側に近づくと内側継手部材12の強度が低下するおそれがある。
Here, since the
しかしながら、図5および図6に示す参考例のように、雄スプライン28の切り抜け端部39の軸方向寸法を長くすることにより、雌スプライン29に盗み部37がない構造であっても、内側継手部材12の雌スプライン29とシャフト20の雄スプライン28との嵌合開始位置が、図3および図4に示す実施形態の場合と同様であるため、内側継手部材12の強度を確保することができる。
However, as in the reference example shown in FIGS. 5 and 6, by lengthening the axial dimension of the cut-out
本発明は前述した実施形態に何ら限定されるものではなく、本発明の要旨を逸脱しない範囲内において、さらに種々なる形態で実施し得ることは勿論のことであり、本発明の範囲は、特許請求の範囲によって示され、さらに特許請求の範囲に記載の均等の意味、および範囲内のすべての変更を含む。 The present invention is not limited to the above-described embodiments, and it goes without saying that the present invention can be carried out in various forms without departing from the gist of the present invention. Indicated by the scope of the claim and further includes the equal meaning described in the claims, and all modifications within the scope.
11 外側継手部材
12 内側継手部材
13 トルク伝達部材(ボール)
20 軸部材(シャフト)
27 軸孔
28 雄スプライン
29 雌スプライン
36 肩部
37 盗み部
38 小径端部
39 切り抜け端部
11 Outer
20 Shaft member (shaft)
27
Claims (3)
前記軸部材の外周面に形成された雄スプラインを切り抜け形状とし、前記雄スプラインの大径部よりも小さい外径を有する肩部を軸部材の外周面に形成し、
前記内側継手部材の軸孔の内周面に雌スプラインを形成し、当該雌スプラインに、前記内側継手部材の軸孔に前記軸部材を挿入する際の挿入方向と反対側の端部に形成され、かつ歯先径を雌スプラインの他所の歯先径よりも大きくした盗み部と、当該盗み部の前記挿入方向側に形成されたテーパ状の小径端部とを設け、
前記盗み部の前記挿入方向側に形成された雌スプラインの小径端部を軸部材の前記肩部に当接させたことを特徴とする等速自在継手。 An inner joint member that transmits rotational torque while allowing angular displacement between the outer joint member and the outer joint member via a torque transmission member is provided, and the shaft member is inserted into the shaft hole of the inner joint member. , A constant velocity universal joint in which the inner joint member and the shaft member are coupled so that torque can be transmitted by spline fitting.
A male spline formed on the outer peripheral surface of the shaft member is formed into a cut-out shape, and a shoulder portion having an outer diameter smaller than the large diameter portion of the male spline is formed on the outer peripheral surface of the shaft member.
Said female spline formed on the inner peripheral surface of the shaft hole of the inner joint member, to the female spline is formed on an end portion of the insertion direction opposite to the time of inserting the shaft member in the axial hole of the inner joint member In addition, a stealing portion having a tooth tip diameter larger than the tooth tip diameter of another part of the female spline and a tapered small-diameter end formed on the insertion direction side of the stealing portion are provided.
A constant-velocity universal joint characterized in that a small-diameter end portion of a female spline formed on the insertion direction side of the stealing portion is brought into contact with the shoulder portion of a shaft member.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016133397A JP6901241B2 (en) | 2016-07-05 | 2016-07-05 | Constant velocity universal joint |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016133397A JP6901241B2 (en) | 2016-07-05 | 2016-07-05 | Constant velocity universal joint |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2018003989A JP2018003989A (en) | 2018-01-11 |
JP6901241B2 true JP6901241B2 (en) | 2021-07-14 |
Family
ID=60946182
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016133397A Active JP6901241B2 (en) | 2016-07-05 | 2016-07-05 | Constant velocity universal joint |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6901241B2 (en) |
-
2016
- 2016-07-05 JP JP2016133397A patent/JP6901241B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2018003989A (en) | 2018-01-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1967750B1 (en) | Constant velocity universal joint and inner member of the same | |
US11181150B2 (en) | Constant-velocity universal joint | |
WO2017073267A1 (en) | Fixed constant velocity universal joint | |
WO2017006698A1 (en) | Fixed-type constant velocity universal joint | |
JP6901241B2 (en) | Constant velocity universal joint | |
US10875357B2 (en) | Fixed constant velocity universal joint, and bearing device for wheels | |
JP2011080556A (en) | Constant velocity universal joint, drive shaft assembly and propeller shaft | |
US11525484B2 (en) | Constant velocity universal joint | |
US11493094B2 (en) | Constant velocity universal joint | |
JP6899663B2 (en) | Sliding constant velocity universal joint and its manufacturing method | |
JP2007078081A (en) | Sliding type constant velocity universal joint and its manufacturing method | |
JP6486694B2 (en) | Constant velocity universal joint | |
JP6284712B2 (en) | Constant velocity universal joint | |
WO2017195552A1 (en) | Sliding-type constant velocity universal joint and method for manufacturing same | |
JP2017203538A (en) | Slide-type constant velocity universal joint | |
JP2008002666A (en) | Drive shaft | |
JP5133206B2 (en) | Sliding constant velocity universal joint and manufacturing method thereof | |
JP2010025207A (en) | Constant velocity universal joint | |
JP2009079690A (en) | Constant velocity universal joint | |
JP2007064322A (en) | Fixed type constant velocity universal joint | |
JP2007225025A (en) | Fitting structure between inner joint member and shaft of constant velocity universal joint | |
JP2018017337A (en) | Support bearing falling prevention structure | |
JP6253933B2 (en) | Constant velocity universal joint | |
JP2010112439A (en) | Sliding type constant velocity universal joint and method of manufacturing the same | |
JP2017110694A (en) | Contact velocity universal joint |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190626 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20200520 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200603 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200803 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20201113 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20210107 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20210312 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20210527 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20210617 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6901241 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |