JP2018003989A - Constant velocity universal joint - Google Patents

Constant velocity universal joint Download PDF

Info

Publication number
JP2018003989A
JP2018003989A JP2016133397A JP2016133397A JP2018003989A JP 2018003989 A JP2018003989 A JP 2018003989A JP 2016133397 A JP2016133397 A JP 2016133397A JP 2016133397 A JP2016133397 A JP 2016133397A JP 2018003989 A JP2018003989 A JP 2018003989A
Authority
JP
Japan
Prior art keywords
shaft
joint member
constant velocity
inner joint
velocity universal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016133397A
Other languages
Japanese (ja)
Other versions
JP6901241B2 (en
Inventor
弘昭 牧野
Hiroaki Makino
弘昭 牧野
立己 ▲崎▼原
立己 ▲崎▼原
Tatsumi Sakihara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2016133397A priority Critical patent/JP6901241B2/en
Publication of JP2018003989A publication Critical patent/JP2018003989A/en
Application granted granted Critical
Publication of JP6901241B2 publication Critical patent/JP6901241B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To reduce a diameter of raw material for a shaft by a convenient structure and reduce cost of a constant velocity universal joint.SOLUTION: This invention relates to a constant speed universal joint comprising an outer joint member and an inner joint member 12 for transmitting a rotational torque between it and the outer joint member through balls while allowing an angular displacement in which a shaft 20 is inserted into a shaft hole 27 of the inner joint member 12 and the inner joint member 12 and the shaft 20 are connected in spline fitting to enable a torque transmission to be carried out. A male spline 28 formed at an outer peripheral surface of the shaft 20 is cut through, a shoulder part 36 having a smaller outer diameter than that of a large diameter part 35 of the male spline 28 is formed at an outer peripheral surface of the shaft 20 and a small diameter end part 38 of a female spline 29 formed at the inner peripheral surface of the shaft hole 27 of the inner joint member 12 is abutted against a shoulder 36 of the shaft 20.SELECTED DRAWING: Figure 2

Description

本発明は、自動車や各種産業機械の動力伝達系に使用され、特に、自動車用ドライブシャフトやプロペラシャフトに組み込まれる等速自在継手に関する。   The present invention relates to a constant velocity universal joint that is used in a power transmission system of an automobile or various industrial machines, and is particularly incorporated into a drive shaft or a propeller shaft for an automobile.

自動車のエンジンから車輪に回転力を等速で伝達する手段として使用される等速自在継手には、固定式等速自在継手と摺動式等速自在継手の二種がある。これら両者の等速自在継手は、駆動側と従動側の二軸を連結してその二軸が作動角をとっても等速で回転トルクを伝達し得る構造を備えている。   There are two types of constant velocity universal joints that are used as means for transmitting rotational force from an automobile engine to a wheel at a constant speed: a fixed constant velocity universal joint and a sliding constant velocity universal joint. Both of these constant velocity universal joints have a structure in which two shafts on the driving side and the driven side are connected so that rotational torque can be transmitted at a constant speed even if the two shafts have an operating angle.

エンジンから車輪に動力を伝達するドライブシャフトは、エンジンと車輪との相対位置関係の変化による角度変位と軸方向変位に対応する必要がある。そのため、ドライブシャフトは、一般的に、エンジン側(インボード側)に摺動式等速自在継手を、車輪側(アウトボード側)に固定式等速自在継手をそれぞれ装備し、両者の等速自在継手をシャフトで連結した構造を具備する。   A drive shaft that transmits power from the engine to the wheels needs to cope with angular displacement and axial displacement caused by a change in the relative positional relationship between the engine and the wheels. Therefore, the drive shaft is generally equipped with a sliding type constant velocity universal joint on the engine side (inboard side) and a fixed type constant velocity universal joint on the wheel side (outboard side). It has a structure in which universal joints are connected by a shaft.

前述した固定式等速自在継手は、外側継手部材、内側継手部材、複数のボールおよびケージを備えている。固定式等速自在継手の内側継手部材の軸孔には、摺動式等速自在継手から延びるシャフトの端部がスプライン嵌合でトルク伝達可能に連結されている。   The fixed constant velocity universal joint described above includes an outer joint member, an inner joint member, a plurality of balls, and a cage. The end of the shaft extending from the sliding type constant velocity universal joint is connected to the shaft hole of the inner joint member of the fixed type constant velocity universal joint so that torque can be transmitted by spline fitting.

従来、このドライブシャフトにおける固定式等速自在継手の内側継手部材とシャフトとの連結構造として、種々のものが提案されている(例えば、特許文献1参照)。   Conventionally, various structures have been proposed as a connection structure between an inner joint member of a fixed type constant velocity universal joint and a shaft in this drive shaft (see, for example, Patent Document 1).

特許文献1(図1参照)の連結構造では、図9に示すように、シャフト120の端部の外周面に雄スプライン128を形成すると共に、内側継手部材112の軸孔127の内周面に雌スプライン129を形成し、内側継手部材112の軸孔127にシャフト120の端部を挿入し、雄スプライン128と雌スプライン129との凹凸嵌合により結合させている。   In the connection structure of Patent Document 1 (see FIG. 1), as shown in FIG. 9, a male spline 128 is formed on the outer peripheral surface of the end portion of the shaft 120 and the inner peripheral surface of the shaft hole 127 of the inner joint member 112. A female spline 129 is formed, the end of the shaft 120 is inserted into the shaft hole 127 of the inner joint member 112, and the male spline 128 and the female spline 129 are connected by uneven fitting.

シャフト120の端部に環状凹溝130を形成すると共に、内側継手部材112の軸孔127の内周面に段差部131を形成する。この段差部131は、内側継手部材112の端面に開口している。   An annular groove 130 is formed at the end of the shaft 120, and a stepped portion 131 is formed on the inner peripheral surface of the shaft hole 127 of the inner joint member 112. The step 131 is open on the end surface of the inner joint member 112.

シャフト120の環状凹溝130に止め輪132を嵌着し、その止め輪132を内側継手部材112の段差部131に係止させることにより、内側継手部材112に対してシャフト120を抜け止めしている。   A retaining ring 132 is fitted into the annular groove 130 of the shaft 120, and the retaining ring 132 is locked to the step portion 131 of the inner joint member 112, thereby preventing the shaft 120 from coming off from the inner joint member 112. Yes.

一方、シャフト120の外周面に形成された雄スプライン128は、図10に示すように、その小径部(歯底部)133を滑らかに拡径させて外周面に繋げた切り上がり形状をなす。この雄スプライン128の切り上がり端部134から少し離れた部位に、雄スプライン128の大径部(歯先部)135の外径d1よりも大きな外径d2を有する肩部136が形成されている(d1<d2)。 On the other hand, the male spline 128 formed on the outer peripheral surface of the shaft 120 has a rounded shape in which the small diameter portion (tooth bottom portion) 133 is smoothly expanded and connected to the outer peripheral surface as shown in FIG. A shoulder 136 having an outer diameter d 2 larger than the outer diameter d 1 of the large-diameter portion (tooth tip portion) 135 of the male spline 128 is formed at a position slightly away from the raised end portion 134 of the male spline 128. (D 1 <d 2 ).

このシャフト120の肩部136に内側継手部材112の端面部141を当接させることにより、内側継手部材112がシャフト120の端部と反対側へ移動しないように軸方向に拘束されている。ここで、端面部141は、内側継手部材112の端面から盗み部137までのテーパ状部位である。   By bringing the end surface portion 141 of the inner joint member 112 into contact with the shoulder portion 136 of the shaft 120, the inner joint member 112 is restrained in the axial direction so as not to move to the side opposite to the end portion of the shaft 120. Here, the end surface portion 141 is a tapered portion from the end surface of the inner joint member 112 to the stealing portion 137.

以上のように、シャフト120の環状凹溝130の止め輪132を内側継手部材112の段差部131に係止させることにより、内側継手部材112に対してシャフト120を抜け止めすると共に、シャフト120の肩部136に内側継手部材112の端面部141を当接させることにより、内側継手部材112を軸方向に拘束することで、シャフト120と内側継手部材112とが組み付けられている。   As described above, the retaining ring 132 of the annular groove 130 of the shaft 120 is locked to the stepped portion 131 of the inner joint member 112, thereby preventing the shaft 120 from coming off from the inner joint member 112 and the shaft 120. The shaft 120 and the inner joint member 112 are assembled by restraining the inner joint member 112 in the axial direction by bringing the end face portion 141 of the inner joint member 112 into contact with the shoulder 136.

特許第4271301号公報Japanese Patent No. 4271301

ところで、前述した内側継手部材112とシャフト120との連結構造では、シャフト120の雄スプライン128の切り上がり端部134から少し離れた部位にある肩部136に、内側継手部材112の端面部141を当接させることにより、内側継手部材112を軸方向に拘束していることから、以下のような課題を持つ。   By the way, in the connection structure of the inner joint member 112 and the shaft 120 described above, the end surface portion 141 of the inner joint member 112 is attached to the shoulder 136 at a position slightly away from the rounded-up end portion 134 of the male spline 128 of the shaft 120. Since the inner joint member 112 is restrained in the axial direction by abutting, it has the following problems.

ここで、等速自在継手では、継手内部からの潤滑剤漏洩および継手外部からの異物侵入を防止するため、外側継手部材とシャフト120との間にブーツを装着するのが一般的である。そのため、図9に示すように、ブーツの小径端部をシャフト120の突起部125にブーツバンドにより締め付け固定するようにしている。   Here, in a constant velocity universal joint, in order to prevent lubricant leakage from the inside of the joint and entry of foreign matter from the outside of the joint, it is common to install a boot between the outer joint member and the shaft 120. Therefore, as shown in FIG. 9, the small-diameter end of the boot is fastened and fixed to the protrusion 125 of the shaft 120 by a boot band.

このブーツのシャフト120への組み付けは、ブーツの小径端部にシャフト120の肩部136を通した上でその小径端部を突起部125に固定するようにしている。そのため、突起部125は肩部136の外径d2よりも大きな外径d3としており(d3>d2)、その突起部125の外径d3がシャフト120の最大径となっている。 In assembling the boot to the shaft 120, the shoulder portion 136 of the shaft 120 is passed through the small-diameter end portion of the boot, and the small-diameter end portion is fixed to the protruding portion 125. Therefore, the protrusion 125 has an outer diameter d 3 larger than the outer diameter d 2 of the shoulder 136 (d 3 > d 2 ), and the outer diameter d 3 of the protrusion 125 is the maximum diameter of the shaft 120. .

このシャフト120の製作では、シャフト120の最大径となる突起部125を形成するための削り代を含めた外径を持つ素材を必要とする。このことから、シャフト120の素材径が制約を受けることになり、素材径を小さくすることが困難で、コスト低減を図ることが難しいというのが現状であった。   The manufacture of the shaft 120 requires a material having an outer diameter including a cutting allowance for forming the protrusion 125 that is the maximum diameter of the shaft 120. For this reason, the material diameter of the shaft 120 is restricted, and it is difficult to reduce the material diameter and to reduce the cost.

そこで、本発明は前述の改善点に鑑みて提案されたもので、その目的とするところは、簡便な構造でもってシャフトの素材径を小さくし、コスト低減を図り得る等速自在継手を提供することにある。   Therefore, the present invention has been proposed in view of the above-described improvements, and an object of the present invention is to provide a constant velocity universal joint that can reduce the material diameter of the shaft with a simple structure and reduce costs. There is.

本発明に係る等速自在継手は、外側継手部材と、その外側継手部材との間でトルク伝達部材を介して角度変位を許容しながら回転トルクを伝達する内側継手部材とを備え、その内側継手部材の軸孔に軸部材を挿入し、内側継手部材と軸部材とをスプライン嵌合でトルク伝達可能に結合させた構造を具備する。   A constant velocity universal joint according to the present invention includes an outer joint member and an inner joint member that transmits rotational torque while allowing angular displacement between the outer joint member and the outer joint member via the torque transmission member. A shaft member is inserted into the shaft hole of the member, and the inner joint member and the shaft member are coupled to each other so as to transmit torque by spline fitting.

前述の目的を達成するための技術的手段として、本発明は、軸部材の外周面に形成された雄スプラインを切り抜け形状とし、その雄スプラインの大径部よりも小さい外径を有する肩部を軸部材の外周面に形成し、内側継手部材の軸孔の内周面に形成された雌スプラインの小径端部を軸部材の肩部に当接させたことを特徴とする。   As technical means for achieving the aforementioned object, the present invention provides a male spline formed on the outer peripheral surface of the shaft member as a cut-out shape, and a shoulder portion having an outer diameter smaller than the large diameter portion of the male spline. A small-diameter end portion of a female spline formed on the outer peripheral surface of the shaft member and formed on the inner peripheral surface of the shaft hole of the inner joint member is brought into contact with the shoulder portion of the shaft member.

本発明では、軸部材の雄スプラインを切り抜け形状とし、内側継手部材の雌スプラインの小径端部を軸部材の肩部に当接させた構造としたことにより、軸部材の肩部の外径を従来よりも小さくすることが可能となる。このように、ブーツの小径端部に通される肩部の外径を小さくすることで、ブーツの小径端部を固定する突起部の外径、つまり、軸部材の最大径を従来よりも小さくすることができる。   In the present invention, the male spline of the shaft member has a cut-off shape, and the small-diameter end of the female spline of the inner joint member is in contact with the shoulder of the shaft member. It becomes possible to make it smaller than before. In this way, by reducing the outer diameter of the shoulder portion that is passed through the small-diameter end portion of the boot, the outer diameter of the protrusion that fixes the small-diameter end portion of the boot, that is, the maximum diameter of the shaft member is made smaller than before. can do.

本発明において、内側継手部材の雌スプラインに盗み部を形成し、その盗み部に位置する雌スプラインの小径端部を軸部材の肩部に当接させた構造が望ましい。   In the present invention, a structure in which a stealing portion is formed in the female spline of the inner joint member and a small-diameter end portion of the female spline located in the stealing portion is in contact with the shoulder portion of the shaft member is desirable.

このような構造を採用すれば、盗み部に位置する雌スプラインの小径端部を軸部材の肩部に当接させることで、ブーツの小径端部に通される肩部の外径をより一層小さくすることができる点で有効である。   If such a structure is adopted, the outer diameter of the shoulder portion passed through the small diameter end portion of the boot is further increased by bringing the small diameter end portion of the female spline located at the stealing portion into contact with the shoulder portion of the shaft member. This is effective in that it can be made smaller.

本発明において、内側継手部材の雌スプラインの小径端部と軸部材の肩部とがテーパ形状をなし、雌スプラインの小径端部を軸部材の肩部に同一のテーパ角度で当接させた構造が望ましい。   In the present invention, the small-diameter end of the female spline of the inner joint member and the shoulder of the shaft member are tapered, and the small-diameter end of the female spline is in contact with the shoulder of the shaft member at the same taper angle. Is desirable.

このような構造を採用すれば、雌スプラインの小径端部を軸部材の肩部に同一のテーパ角度で当接させることで、軸部材の肩部の軸方向位置を精度よく確保することができる。   If such a structure is adopted, the axial position of the shoulder portion of the shaft member can be accurately ensured by bringing the small diameter end portion of the female spline into contact with the shoulder portion of the shaft member at the same taper angle. .

本発明において、軸部材の雄スプラインの切り抜け端部がテーパ形状をなし、その切り抜け端部のテーパ角度を肩部のテーパ角度よりも小さくした構造が望ましい。   In the present invention, it is desirable that the cut-out end portion of the male spline of the shaft member has a tapered shape, and the taper angle of the cut-out end portion is smaller than the taper angle of the shoulder portion.

このような構造を採用すれば、捩り強度が切り上がり形状よりも低い切り抜け形状の雄スプラインであっても、その切り抜け端部のテーパ角度を肩部のテーパ角度よりも小さくすることで、雄スプラインの切り抜け端部での応力集中を緩和することができる。   By adopting such a structure, even if it is a male spline with a cut-out shape whose torsional strength is lower than the rounded-up shape, the taper angle of the cut-out end portion is made smaller than the taper angle of the shoulder portion. The stress concentration at the cut-out end of the can be alleviated.

本発明によれば、軸部材の雄スプラインを切り抜け形状とし、内側継手部材の雌スプラインの小径端部を軸部材の肩部に当接させた構造としたことにより、ブーツの小径端部に通される軸部材の肩部の外径を従来よりも小さくすることが可能となる。これにより、ブーツの小径端部を固定する突起部の外径、つまり、軸部材の最大径を従来よりも小さくすることができる。その結果、シャフトの素材径を小さくすることができるので、等速自在継手のコスト低減が図れる。   According to the present invention, the male spline of the shaft member has a cut-out shape, and the small-diameter end of the female spline of the inner joint member is in contact with the shoulder of the shaft member. It becomes possible to make the outer diameter of the shoulder part of the shaft member made smaller than before. Thereby, the outer diameter of the protrusion part which fixes the small diameter edge part of a boot, ie, the maximum diameter of a shaft member, can be made smaller than before. As a result, the material diameter of the shaft can be reduced, so that the cost of the constant velocity universal joint can be reduced.

本発明の実施形態で、内側継手部材とシャフトとの連結構造を示す断面図である。In embodiment of this invention, it is sectional drawing which shows the connection structure of an inner joint member and a shaft. 図1のA部を示す拡大断面図である。It is an expanded sectional view which shows the A section of FIG. 本発明の他の実施形態で、内側継手部材とシャフトとの連結構造を示す断面図である。It is sectional drawing which shows the connection structure of an inner joint member and a shaft in other embodiment of this invention. 図3のB部を示す拡大断面図である。It is an expanded sectional view which shows the B section of FIG. 本発明の他の実施形態で、内側継手部材とシャフトとの連結構造を示す断面図である。It is sectional drawing which shows the connection structure of an inner joint member and a shaft in other embodiment of this invention. 図5のC部を示す拡大断面図である。It is an expanded sectional view which shows the C section of FIG. 図1のシャフトの環状凹溝と肩部とを同時に旋削する要領を示す構成図である。It is a block diagram which shows the point which carries out the turning simultaneously of the annular ditch | groove and shoulder part of the shaft of FIG. 等速自在継手の全体構成を示す断面図である。It is sectional drawing which shows the whole structure of a constant velocity universal joint. 内側継手部材とシャフトとの従来の連結構造を示す断面図である。It is sectional drawing which shows the conventional connection structure of an inner side coupling member and a shaft. 図9のD部を示す拡大断面図である。It is an expanded sectional view which shows the D section of FIG.

本発明に係る等速自在継手の実施形態を図面に基づいて以下に詳述する。   An embodiment of a constant velocity universal joint according to the present invention will be described below in detail with reference to the drawings.

以下の実施形態では、自動車用ドライブシャフトに組み込まれる固定式等速自在継手の一つであるツェッパ型等速自在継手(BJ)を例示するが、他の固定式等速自在継手としてアンダーカットフリー型等速自在継手(UJ)にも適用可能である。また、ダブルオフセット型等速自在継手(DOJ)、クロスグルーブ型等速自在継手(LJ)やトリポード型等速自在継手(TJ)などの摺動式等速自在継手にも適用可能である。   In the following embodiment, a Rzeppa type constant velocity universal joint (BJ), which is one of the fixed type constant velocity universal joints incorporated in the drive shaft for automobiles, is illustrated, but undercut-free as another fixed type constant velocity universal joint. It can also be applied to a constant velocity universal joint (UJ). The present invention can also be applied to sliding type constant velocity universal joints such as a double offset type constant velocity universal joint (DOJ), a cross groove type constant velocity universal joint (LJ), and a tripod type constant velocity universal joint (TJ).

4WD車やFR車などの自動車に組み込まれるドライブシャフトは、エンジンと車輪との相対位置関係の変化による角度変位と軸方向変位に対応する必要がある。そのため、ドライブシャフトは、一般的に、エンジン側(インボード側)に摺動式等速自在継手を、車輪側(アウトボード側)に固定式等速自在継手をそれぞれ装備し、両者の等速自在継手をシャフトで連結した構造を具備する。   A drive shaft incorporated in an automobile such as a 4WD vehicle or an FR vehicle needs to cope with angular displacement and axial displacement caused by a change in the relative positional relationship between the engine and wheels. Therefore, the drive shaft is generally equipped with a sliding type constant velocity universal joint on the engine side (inboard side) and a fixed type constant velocity universal joint on the wheel side (outboard side). It has a structure in which universal joints are connected by a shaft.

この実施形態の固定式等速自在継手(以下、単に等速自在継手と称す)は、図8に示すように、カップ状の外側継手部材11と、内側継手部材12と、トルク伝達部材である複数のボール13と、ケージ14とで主要部が構成されている。   The fixed type constant velocity universal joint (hereinafter simply referred to as a constant velocity universal joint) of this embodiment is a cup-shaped outer joint member 11, an inner joint member 12, and a torque transmission member as shown in FIG. The plurality of balls 13 and the cage 14 constitute a main part.

外側継手部材11は、軸方向に延びる円弧状トラック溝15が球面状内周面16の円周方向複数箇所に等間隔で形成されている。内側継手部材12は、外側継手部材11のトラック溝15と対をなして軸方向に延びる円弧状トラック溝17が球面状外周面18の円周方向複数箇所に等間隔で形成されている。   In the outer joint member 11, arc-shaped track grooves 15 extending in the axial direction are formed at a plurality of positions in the circumferential direction of the spherical inner peripheral surface 16 at equal intervals. In the inner joint member 12, arc-shaped track grooves 17 extending in the axial direction in pairs with the track grooves 15 of the outer joint member 11 are formed at a plurality of positions in the circumferential direction of the spherical outer peripheral surface 18 at equal intervals.

ボール13は、外側継手部材11のトラック溝15と内側継手部材12のトラック溝17との間に介在して回転トルクを伝達する。ケージ14は、外側継手部材11の内周面16と内側継手部材12の外周面18との間に配されてボール13を保持する。なお、ボール13は、6個、8個あるいはそれ以外であってもよく、その個数は任意である。   The ball 13 is interposed between the track groove 15 of the outer joint member 11 and the track groove 17 of the inner joint member 12 and transmits rotational torque. The cage 14 is disposed between the inner peripheral surface 16 of the outer joint member 11 and the outer peripheral surface 18 of the inner joint member 12 to hold the ball 13. The number of balls 13 may be 6, 8, or any number, and the number is arbitrary.

以上の構成からなる等速自在継手において、作動角(外側継手部材11に対するシャフト20の角度変位)が付与されると、ケージ14で保持されたボール13は常にどの作動角においても、その作動角の二等分面内に維持され、継手の等速性が確保される。   In the constant velocity universal joint configured as described above, when an operating angle (angular displacement of the shaft 20 with respect to the outer joint member 11) is applied, the ball 13 held by the cage 14 always has an operating angle at any operating angle. Is maintained in the bisection plane, and the constant velocity of the joint is ensured.

この等速自在継手では、外側継手部材11の内部空間にグリース等の潤滑剤を封入することにより、継手作動時において、継手内部の摺動部位、つまり、外側継手部材11に対して、内側継手部材12、ボール13およびケージ14からなる内部部品の摺動部位での潤滑性を確保するようにしている。   In this constant velocity universal joint, a lubricant such as grease is sealed in the inner space of the outer joint member 11, so that when the joint is operated, the inner joint with respect to the sliding portion inside the joint, that is, the outer joint member 11 is operated. Lubricity at the sliding portion of the internal parts composed of the member 12, the ball 13 and the cage 14 is ensured.

この等速自在継手は、継手内部に封入された潤滑剤の漏洩を防止すると共に継手外部からの異物侵入を防止するため、外側継手部材11の開口部19と、内側継手部材12から延びる軸部材であるシャフト20との間に、樹脂製あるいはゴム製の蛇腹状ブーツ21を装着した構造を具備する。   This constant velocity universal joint is provided with an opening 19 of the outer joint member 11 and a shaft member extending from the inner joint member 12 in order to prevent leakage of the lubricant enclosed in the joint and prevent foreign matter from entering from the outside of the joint. A structure in which a resin or rubber bellows-like boot 21 is mounted between the shaft 20 and the shaft 20 is provided.

ブーツ21の大径端部22は、外側継手部材11の開口部19の外周面にブーツバンド23により締め付け固定され、ブーツ21の小径端部24は、シャフト20の外周面に形成された突起部25にブーツバンド26により締め付け固定されている。   The large diameter end 22 of the boot 21 is fastened and fixed to the outer peripheral surface of the opening 19 of the outer joint member 11 by a boot band 23, and the small diameter end 24 of the boot 21 is a protrusion formed on the outer peripheral surface of the shaft 20. Fastened to 25 by a boot band 26.

一方、内側継手部材12の軸孔27には、シャフト20の一端がスプライン嵌合でトルク伝達可能に連結されている。内側継手部材12とシャフト20との連結構造は、図1に示すように、シャフト20の端部の外周面に雄スプライン28を形成すると共に、内側継手部材12の軸孔27の内周面に雌スプライン29を形成し、その内側継手部材12の軸孔27にシャフト20の端部を挿入し、雄スプライン28と雌スプライン29との凹凸嵌合により結合させている。   On the other hand, one end of the shaft 20 is connected to the shaft hole 27 of the inner joint member 12 so that torque can be transmitted by spline fitting. As shown in FIG. 1, the connecting structure between the inner joint member 12 and the shaft 20 is formed with a male spline 28 on the outer peripheral surface of the end portion of the shaft 20 and on the inner peripheral surface of the shaft hole 27 of the inner joint member 12. A female spline 29 is formed, and an end portion of the shaft 20 is inserted into the shaft hole 27 of the inner joint member 12, and the male spline 28 and the female spline 29 are connected by uneven fitting.

シャフト20の端部に環状凹溝30を形成すると共に、内側継手部材12の軸孔27の内周面に段差部31を形成する。この段差部31は、内側継手部材12の端面に開口している。シャフト20の環状凹溝30に止め輪32を嵌着し、その止め輪32を内側継手部材12の段差部31に係止させることにより、内側継手部材12に対してシャフト20を抜け止めしている。   An annular groove 30 is formed at the end of the shaft 20, and a step portion 31 is formed on the inner peripheral surface of the shaft hole 27 of the inner joint member 12. The step portion 31 is open to the end surface of the inner joint member 12. A retaining ring 32 is fitted into the annular groove 30 of the shaft 20, and the retaining ring 32 is engaged with the step portion 31 of the inner joint member 12, thereby preventing the shaft 20 from coming off from the inner joint member 12. Yes.

一方、シャフト20の外周面に形成された雄スプライン28は、図2に示すように、その小径部(歯底部)33をそのままシャフト20の外周面に抜いた切り抜け形状としている。この雄スプライン28の切り抜け端部34から少し離れた部位に、雄スプライン28の大径部(歯先部)35の外径D1よりも小さな外径D2を有する肩部36が形成されている(D1>D2)。 On the other hand, as shown in FIG. 2, the male spline 28 formed on the outer peripheral surface of the shaft 20 has a cut-out shape in which the small diameter portion (tooth bottom portion) 33 is directly extracted from the outer peripheral surface of the shaft 20. A shoulder 36 having an outer diameter D 2 smaller than the outer diameter D 1 of the large-diameter portion (tooth tip portion) 35 of the male spline 28 is formed at a position slightly away from the cut-out end portion 34 of the male spline 28. (D 1 > D 2 ).

図2に示すように、内側継手部材12の端面部41から軸方向に延びる雌スプライン29に盗み部37が形成されている。この内側継手部材12の盗み部37に位置する雌スプライン29の小径端部38をシャフト20の肩部36に当接させている。これにより、内側継手部材12がシャフト20の端部と反対側へ移動しないように軸方向に拘束されている。ここで、前述の端面部41は、内側継手部材12の端面から盗み部37までのテーパ状部位である。   As shown in FIG. 2, a stealing portion 37 is formed in a female spline 29 extending in the axial direction from the end surface portion 41 of the inner joint member 12. The small-diameter end portion 38 of the female spline 29 located at the stealing portion 37 of the inner joint member 12 is brought into contact with the shoulder portion 36 of the shaft 20. Thereby, the inner joint member 12 is restrained in the axial direction so as not to move to the side opposite to the end of the shaft 20. Here, the aforementioned end surface portion 41 is a tapered portion from the end surface of the inner joint member 12 to the stealing portion 37.

以上のように、シャフト20の環状凹溝30の止め輪32を内側継手部材12の段差部31に係止させることにより、内側継手部材12に対してシャフト20を抜け止めすると共に、シャフト20の肩部36に内側継手部材12の雌スプライン29の小径端部38を当接させることにより、内側継手部材12を軸方向に拘束することで、シャフト20と内側継手部材12とが組み付けられている。   As described above, the retaining ring 32 of the annular groove 30 of the shaft 20 is locked to the step portion 31 of the inner joint member 12, thereby preventing the shaft 20 from coming off from the inner joint member 12 and the shaft 20. The shaft 20 and the inner joint member 12 are assembled by restraining the inner joint member 12 in the axial direction by bringing the small-diameter end portion 38 of the female spline 29 of the inner joint member 12 into contact with the shoulder portion 36. .

この実施形態の等速自在継手では、シャフト20の雄スプライン28を切り抜け形状とし、内側継手部材12の雌スプライン29の小径端部38をシャフト20の肩部36に当接させた構造としたことにより、シャフト20の肩部36の外径D2を従来におけるシャフト120(図9および図10参照)の肩部136の外径d2よりも小さくすることが可能となる(D2<d2)。 In the constant velocity universal joint of this embodiment, the male spline 28 of the shaft 20 has a cut-out shape, and the small-diameter end portion 38 of the female spline 29 of the inner joint member 12 is in contact with the shoulder portion 36 of the shaft 20. Thus, the outer diameter D 2 of the shoulder portion 36 of the shaft 20 can be made smaller than the outer diameter d 2 of the shoulder portion 136 of the conventional shaft 120 (see FIGS. 9 and 10) (D 2 <d 2 ).

つまり、従来の等速自在継手(図10参照)では、シャフト120の肩部136の外径d2が雄スプライン128の外径d1よりも大きかったのに対して(d2>d1)、この実施形態の等速自在継手(図2参照)では、シャフト20の肩部36の外径D2を雄スプライン28の外径D1(=d1)よりも小さくすることができる(D2<D1)。 That is, in the conventional constant velocity universal joint (see FIG. 10), the outer diameter d 2 of the shoulder portion 136 of the shaft 120 is larger than the outer diameter d 1 of the male spline 128 (d 2 > d 1 ). In the constant velocity universal joint (see FIG. 2) of this embodiment, the outer diameter D 2 of the shoulder portion 36 of the shaft 20 can be made smaller than the outer diameter D 1 (= d 1 ) of the male spline 28 (D 2 <D 1).

その結果、この実施形態におけるシャフト20(図1および図2参照)の肩部36の外径D2を、従来におけるシャフト120(図9および図10参照)の肩部136の外径d2よりも小さくすることが可能となる(D2<d2)。 As a result, the outer diameter D 2 of the shoulder portion 36 of the shaft 20 (see FIGS. 1 and 2) in this embodiment is larger than the outer diameter d 2 of the shoulder portion 136 of the conventional shaft 120 (see FIGS. 9 and 10). Can also be reduced (D 2 <d 2 ).

このように、ブーツ21の小径端部24(図8参照)に通される肩部36の外径D2を小さくすることで、そのブーツ21の小径端部24をブーツバンド26により締め付け固定する突起部25の外径D3(図1参照)、つまり、シャフト20の最大径を、従来の等速自在継手(図9参照)におけるシャフト120の突起部125の外径d3よりも小さくすることができる(D3<d3)。 In this way, by reducing the outer diameter D 2 of the shoulder portion 36 that is passed through the small diameter end portion 24 (see FIG. 8) of the boot 21, the small diameter end portion 24 of the boot 21 is fastened and fixed by the boot band 26. The outer diameter D 3 of the protrusion 25 (see FIG. 1), that is, the maximum diameter of the shaft 20 is made smaller than the outer diameter d 3 of the protrusion 125 of the shaft 120 in the conventional constant velocity universal joint (see FIG. 9). (D 3 <d 3 ).

その結果、シャフト20の最大径となる突起部25を形成するための削り代を含めた外径を持つシャフト20の素材について、シャフト20の素材径が制約を受けることなく、その素材径を小さくすることができるので、等速自在継手のコスト低減が図れる。   As a result, the material diameter of the shaft 20 having an outer diameter including a machining allowance for forming the protrusion 25 that is the maximum diameter of the shaft 20 is reduced without being restricted by the material diameter of the shaft 20. Therefore, the cost of the constant velocity universal joint can be reduced.

また、この内側継手部材12とシャフト20との連結構造において、内側継手部材12の雌スプライン29の小径端部38とシャフト20の肩部36との当接面がテーパ形状をなす。雌スプライン29の小径端部38をシャフト20の肩部36に同一のテーパ角度αで当接させている。つまり、雌スプライン29の小径端部38のテーパ角度αとシャフト20の肩部36のテーパ角度αとを同一にしている。   In the connection structure between the inner joint member 12 and the shaft 20, the contact surface between the small diameter end portion 38 of the female spline 29 of the inner joint member 12 and the shoulder portion 36 of the shaft 20 forms a taper shape. The small diameter end portion 38 of the female spline 29 is brought into contact with the shoulder portion 36 of the shaft 20 at the same taper angle α. That is, the taper angle α of the small-diameter end portion 38 of the female spline 29 and the taper angle α of the shoulder portion 36 of the shaft 20 are the same.

このような構造を採用することにより、雌スプライン29の小径端部38をシャフト20の肩部36に同一のテーパ角度αで当接させることで、シャフト20の肩部36の軸方向位置を精度よく確保することができる。   By adopting such a structure, the small diameter end portion 38 of the female spline 29 is brought into contact with the shoulder portion 36 of the shaft 20 at the same taper angle α, so that the axial position of the shoulder portion 36 of the shaft 20 can be accurately determined. Can be secured well.

シャフト20の環状凹溝30と肩部36とは、図7に示すように、スライドステージ51上にホルダ52,53で支持されたチップ54,55で同時旋削することにより加工される。この同時旋削加工により、シャフト20の肩部36の軸方向位置、つまり、環状凹溝30と肩部36との間の離間寸法を精度よく確保することができる。   As shown in FIG. 7, the annular groove 30 and the shoulder portion 36 of the shaft 20 are processed by simultaneous turning with chips 54 and 55 supported by holders 52 and 53 on a slide stage 51. By this simultaneous turning process, the axial position of the shoulder portion 36 of the shaft 20, that is, the separation dimension between the annular groove 30 and the shoulder portion 36 can be ensured with high accuracy.

ここで、従来の等速自在継手(図10参照)では、シャフト120の雄スプライン128が切り上がり形状であったのに対して、この実施形態の等速自在継手(図2参照)では、シャフト20の雄スプライン28を切り抜け形状としている。切り抜け形状の雄スプライン28の場合、切り上がり形状の雄スプライン128よりも捩り強度が低い傾向にあることから、図3および図4に示す構造が有効である。   Here, in the conventional constant velocity universal joint (see FIG. 10), the male spline 128 of the shaft 120 has a rounded shape, whereas in the constant velocity universal joint of this embodiment (see FIG. 2), the shaft Twenty male splines 28 are cut out. In the case of the cut-out male spline 28, the torsional strength tends to be lower than that of the cut-out male spline 128. Therefore, the structure shown in FIGS. 3 and 4 is effective.

図3および図4に示す実施形態の等速自在継手では、内側継手部材12とシャフト20との連結構造において、シャフト20の雄スプライン28の切り抜け端部39がテーパ形状をなし、その切り抜け端部39のテーパ角度βを肩部36のテーパ角度αよりも小さくした構造としている(β<α)。   In the constant velocity universal joint of the embodiment shown in FIGS. 3 and 4, in the connection structure between the inner joint member 12 and the shaft 20, the cut-out end portion 39 of the male spline 28 of the shaft 20 has a tapered shape, and the cut-out end portion thereof. The taper angle β of 39 is smaller than the taper angle α of the shoulder 36 (β <α).

このような構造を採用することにより、捩り強度が切り上がり形状よりも低い切り抜け形状の雄スプライン28であっても、その切り抜け端部39のテーパ角度βを肩部36のテーパ角度αよりも小さくすることで、雄スプライン28の切り抜け端部39での応力集中を緩和することができる。   By adopting such a structure, the taper angle β of the cut-out end portion 39 is smaller than the taper angle α of the shoulder portion 36 even in the male spline 28 having a cut-out shape whose torsional strength is lower than the cut-up shape. By doing so, the stress concentration at the cut-out end 39 of the male spline 28 can be relaxed.

つまり、雄スプライン28の切り抜け端部39で、雄スプライン28の大径部(歯先部)35の高さが漸減する軸方向寸法が長くなることから、雄スプライン28の切り抜け端部39に作用する負荷が分散される。そのため、この雄スプライン28の切り抜け端部39での応力集中を緩和することができる。この応力集中の緩和により、捩り強度の低下を抑制することができる。   That is, since the axial dimension in which the height of the large-diameter portion (tooth tip portion) 35 of the male spline 28 gradually decreases at the cut-out end portion 39 of the male spline 28, it acts on the cut-out end portion 39 of the male spline 28. Load is distributed. Therefore, the stress concentration at the cut-out end 39 of the male spline 28 can be relaxed. This relaxation of the stress concentration can suppress a decrease in torsional strength.

以上の実施形態では、内側継手部材12の雌スプライン29に盗み部37を形成し、その盗み部37に位置する雌スプライン29の小径端部38をシャフト20の肩部36に当接させた構造について説明したが、図3および図4に示す実施形態のように、雄スプライン28の切り抜け端部39の軸方向寸法を長くすることにより、図5および図6に示す構造であってもよい。   In the above embodiment, a structure in which the stealing portion 37 is formed in the female spline 29 of the inner joint member 12 and the small-diameter end portion 38 of the female spline 29 located in the stealing portion 37 is in contact with the shoulder portion 36 of the shaft 20. However, as in the embodiment shown in FIGS. 3 and 4, the structure shown in FIGS. 5 and 6 may be used by increasing the axial dimension of the cut-out end 39 of the male spline 28.

図5および図6に示す実施形態の等速自在継手では、内側継手部材12の雌スプライン29に盗み部37(図3および図4参照)を形成していない。この内側継手部材12とシャフト20との連結構造においては、内側継手部材12の端面部41から軸方向に延びる雌スプライン29の小径端部40をシャフト20の肩部36に当接させている。   In the constant velocity universal joint of the embodiment shown in FIGS. 5 and 6, the stealing portion 37 (see FIGS. 3 and 4) is not formed in the female spline 29 of the inner joint member 12. In the connection structure between the inner joint member 12 and the shaft 20, the small-diameter end portion 40 of the female spline 29 extending in the axial direction from the end surface portion 41 of the inner joint member 12 is brought into contact with the shoulder portion 36 of the shaft 20.

ここで、雌スプライン29に盗み部37がないことで、内側継手部材12の雌スプライン29とシャフト20の雄スプライン28との嵌合開始位置が内側継手部材12の端面側に近づくと内側継手部材12の強度が低下するおそれがある。   Here, when the female spline 29 does not have the stealing portion 37, when the fitting start position of the female spline 29 of the inner joint member 12 and the male spline 28 of the shaft 20 approaches the end face side of the inner joint member 12, the inner joint member The strength of 12 may be reduced.

しかしながら、図5および図6に示す実施形態のように、雄スプライン28の切り抜け端部39の軸方向寸法を長くすることにより、雌スプライン29に盗み部37がない構造であっても、内側継手部材12の雌スプライン29とシャフト20の雄スプライン28との嵌合開始位置が、図3および図4に示す実施形態の場合と同様であるため、内側継手部材12の強度を確保することができる。   However, as in the embodiment shown in FIGS. 5 and 6, even if the female spline 29 has no stealing portion 37 by increasing the axial dimension of the cut-off end portion 39 of the male spline 28, the inner joint Since the fitting start position of the female spline 29 of the member 12 and the male spline 28 of the shaft 20 is the same as in the embodiment shown in FIGS. 3 and 4, the strength of the inner joint member 12 can be ensured. .

本発明は前述した実施形態に何ら限定されるものではなく、本発明の要旨を逸脱しない範囲内において、さらに種々なる形態で実施し得ることは勿論のことであり、本発明の範囲は、特許請求の範囲によって示され、さらに特許請求の範囲に記載の均等の意味、および範囲内のすべての変更を含む。   The present invention is not limited to the above-described embodiments, and can of course be implemented in various forms without departing from the gist of the present invention. It includes the equivalent meanings recited in the claims and the equivalents recited in the claims, and all modifications within the scope.

11 外側継手部材
12 内側継手部材
13 トルク伝達部材(ボール)
20 軸部材(シャフト)
27 軸孔
28 雄スプライン
29 雌スプライン
36 肩部
37 盗み部
38 小径端部
39 切り抜け端部
11 outer joint member 12 inner joint member 13 torque transmission member (ball)
20 Shaft member
27 Shaft hole 28 Male spline 29 Female spline 36 Shoulder portion 37 Stealing portion 38 Small diameter end portion 39 Cut-out end portion

Claims (4)

外側継手部材と、前記外側継手部材との間でトルク伝達部材を介して角度変位を許容しながら回転トルクを伝達する内側継手部材とを備え、前記内側継手部材の軸孔に軸部材を挿入し、内側継手部材と前記軸部材とをスプライン嵌合でトルク伝達可能に結合させた等速自在継手であって、
前記軸部材の外周面に形成された雄スプラインを切り抜け形状とし、前記雄スプラインの大径部よりも小さい外径を有する肩部を軸部材の外周面に形成し、前記内側継手部材の軸孔の内周面に形成された雌スプラインの小径端部を軸部材の前記肩部に当接させたことを特徴とする等速自在継手。
An outer joint member and an inner joint member that transmits rotational torque while allowing angular displacement between the outer joint member and the outer joint member, and the shaft member is inserted into the shaft hole of the inner joint member. A constant velocity universal joint in which the inner joint member and the shaft member are coupled so as to transmit torque by spline fitting,
The male spline formed on the outer peripheral surface of the shaft member has a cut-out shape, and a shoulder portion having an outer diameter smaller than the large diameter portion of the male spline is formed on the outer peripheral surface of the shaft member, and the shaft hole of the inner joint member A constant velocity universal joint characterized in that a small-diameter end of a female spline formed on the inner peripheral surface of the shaft is in contact with the shoulder of the shaft member.
前記内側継手部材の雌スプラインに盗み部を形成し、前記盗み部に位置する雌スプラインの小径端部を軸部材の肩部に当接させた請求項1に記載の等速自在継手。   The constant velocity universal joint according to claim 1, wherein a stealing portion is formed in the female spline of the inner joint member, and a small-diameter end portion of the female spline located in the stealing portion is brought into contact with a shoulder portion of the shaft member. 前記内側継手部材の雌スプラインの小径端部と前記軸部材の肩部とがテーパ形状をなし、雌スプラインの小径端部を軸部材の肩部に同一のテーパ角度で当接させた請求項1又は2に記載の等速自在継手。   The small-diameter end of the female spline of the inner joint member and the shoulder of the shaft member are tapered, and the small-diameter end of the female spline is in contact with the shoulder of the shaft member at the same taper angle. Or the constant velocity universal joint of 2. 前記軸部材の雄スプラインの切り抜け端部がテーパ形状をなし、前記切り抜け端部のテーパ角度を肩部のテーパ角度よりも小さくした請求項1〜3のいずれか一項に記載の等速自在継手。   The constant velocity universal joint according to any one of claims 1 to 3, wherein a cutout end portion of the male spline of the shaft member has a tapered shape, and a taper angle of the cutout end portion is smaller than a taper angle of a shoulder portion. .
JP2016133397A 2016-07-05 2016-07-05 Constant velocity universal joint Active JP6901241B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016133397A JP6901241B2 (en) 2016-07-05 2016-07-05 Constant velocity universal joint

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016133397A JP6901241B2 (en) 2016-07-05 2016-07-05 Constant velocity universal joint

Publications (2)

Publication Number Publication Date
JP2018003989A true JP2018003989A (en) 2018-01-11
JP6901241B2 JP6901241B2 (en) 2021-07-14

Family

ID=60946182

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016133397A Active JP6901241B2 (en) 2016-07-05 2016-07-05 Constant velocity universal joint

Country Status (1)

Country Link
JP (1) JP6901241B2 (en)

Also Published As

Publication number Publication date
JP6901241B2 (en) 2021-07-14

Similar Documents

Publication Publication Date Title
US11181150B2 (en) Constant-velocity universal joint
US10962063B2 (en) Fixed constant velocity universal joint
US20180149207A1 (en) Fixed-type constant velocity universal joint
US11512743B2 (en) Constant velocity universal joint
JP2011080556A (en) Constant velocity universal joint, drive shaft assembly and propeller shaft
US11525484B2 (en) Constant velocity universal joint
JP6901241B2 (en) Constant velocity universal joint
US7914382B2 (en) Dual type constant velocity universal joint
US11493094B2 (en) Constant velocity universal joint
JP2007078081A (en) Sliding type constant velocity universal joint and its manufacturing method
JP6899663B2 (en) Sliding constant velocity universal joint and its manufacturing method
CN107110230B (en) Constant velocity universal joint
JP2017203538A (en) Slide-type constant velocity universal joint
JP2008002666A (en) Drive shaft
WO2017195552A1 (en) Sliding-type constant velocity universal joint and method for manufacturing same
US10875357B2 (en) Fixed constant velocity universal joint, and bearing device for wheels
JP2018017337A (en) Support bearing falling prevention structure
JP6253933B2 (en) Constant velocity universal joint
JP2020067142A (en) Stationary constant velocity universal joint
JP2020041662A (en) Slide type constant-velocity universal joint
JP2011069404A (en) Fixed type constant velocity universal joint
JP2010281342A (en) Fixed type constant velocity universal joint
JP2016180460A (en) Constant velocity universal joint
JP2017219174A (en) Fixed type equal velocity universal joint
JP2009121661A (en) Fixed constant velocity universal joint

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190626

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200603

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200803

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201113

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20210107

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210312

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210527

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210617

R150 Certificate of patent or registration of utility model

Ref document number: 6901241

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150