JP5361724B6 - 支持された超電導磁石 - Google Patents

支持された超電導磁石 Download PDF

Info

Publication number
JP5361724B6
JP5361724B6 JP2009527900A JP2009527900A JP5361724B6 JP 5361724 B6 JP5361724 B6 JP 5361724B6 JP 2009527900 A JP2009527900 A JP 2009527900A JP 2009527900 A JP2009527900 A JP 2009527900A JP 5361724 B6 JP5361724 B6 JP 5361724B6
Authority
JP
Japan
Prior art keywords
support element
superconducting magnet
support
supported
shield
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009527900A
Other languages
English (en)
Other versions
JP5361724B2 (ja
JP2010503983A (ja
Inventor
クルイプ、マルセル
マン、ニコラス
Original Assignee
シーメンス ピーエルシー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from GB0618107A external-priority patent/GB2441795B/en
Application filed by シーメンス ピーエルシー filed Critical シーメンス ピーエルシー
Publication of JP2010503983A publication Critical patent/JP2010503983A/ja
Application granted granted Critical
Publication of JP5361724B2 publication Critical patent/JP5361724B2/ja
Publication of JP5361724B6 publication Critical patent/JP5361724B6/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、支持された超電導磁石に関する。
必要な極低温を維持するために、MRIスキャナで使用されるような超電導磁石は真空容器内に吊り下げられなくてはならない。運転時および輸送時に遭遇する負荷の下で吊るされた容器を完全に拘束するために、従来の設計は多数のサスペンション要素を使用する。これらの要素は複雑であり、容器への多数の取付け具を必要とする。この結果は、組立てに時間がかかり、多量生産条件に適さない高価なサスペンションシステムとなる。
図1は、核磁気共鳴(NMR)または磁気共鳴映像(MRI)システム用の従来のソレノイド磁石装置の断面図を示す。超電導ワイヤの多数のコイルは、形成体1に巻きつけられる。その結果得られたアセンブリは、沸点にある液体クライオゲン2aで少なくともある程度満たされた極低温容器2内に収容される。それによってコイルは、臨界点より低い温度に保持される。
また図1には、外側真空容器4と熱シールド3も示されている。周知のようにこれらは、周囲の外気から、典型的には液体クライオゲン2aが入っている極低温容器2を熱的に隔離するように機能する。外側真空容器4と熱シールド3との間の空間には、固体断熱材5が配置され得る。撮影される患者または他の被験者のアクセスを可能にするために、ある一定の寸法の中心内腔4aが設けられる。
通常、極低温容器の重量を支えるために極低温容器2と外側真空容器4との間には、多数の支持要素7が接続される。これらは、引張りバンド、引張りロッド、ストラップ、圧縮支柱またはこの目的に適した如何なる公知の要素でもよい。これらの要素は、極低温容器が支持される場合に極めて低い熱伝導率を有するべきである。これは、典型的には周囲温度にある外側真空容器4から極低温容器2への熱の流入を最小にするために重要である。サスペンション要素は、典型的には熱シールド3と断熱材5とにある孔を貫通する。熱シールド3を保持するために類似の、または代替のサスペンション装置が設けられ得る。
サスペンション要素は、磁石への熱流を最小にするために最小の断面積と最大の長さのものでなくてはならない。図1に示されたような従来の設計では、多数の引張り専用の要素または引張り要素と圧縮要素との組合せが使用されている。これらは、高強度鋼から、あるいはグラスファイバ、カーボンファイバまたは他の適当な耐荷重ファイバを使用する先端複合材料から作られ得る。典型的な磁石および輻射シールドシステムを支持するために全部で16個の要素を使用するとして、典型的には各容器のために最小8個の要素が使用される。このようなシステムは、典型的には個別に組み立てられなくてはならない数100個の個別部品を含む。MRIシステムは一般に、完全に組み立てられてクライオゲンを充填された状態で輸送されるので、サスペンション装置は輸送と取り扱いに関連する大きな負荷に耐えなくてはならない。吊るされた容器は常に正確に拘束されていなくてはならず、また従来の要素が使用されるとき、これはこれらの要素がすべての予測可能な設計負荷の下できっちり固定されていることを保証するために予め加重されていることを必要とする。最小の全体的システム寸法を達成する必要によってサスペンションのための空間は限定され、アクセスは使用されなくてはならない断熱ブランケットによって更に制約される。各サスペンション要素は、熱シールド3と断熱材5とにある孔を貫通する。これらの孔は、効果的な断熱と熱シールドとを維持するために、いったんサスペンション要素が適所に置かれると、組立て時に密閉されなくてはならない。その結果、組立て手順は複雑で時間を要し、多量生産には適さない。
欧州特許第1001438号は、周囲温度から極低温まで冷却するときに極低温容器が熱シールドとOVC(外側真空容器)とに関して動き得る、超電導磁石での使用のための管状サスペンション装置を記載している。
米国特許第6,358,583号は、磁石構造体が第1の管状支持体によって熱シールド上に支持され、この熱シールドが第2の管状支持体によってOVC上に支持される装置を記載している。
米国特許第5,530,413号は、磁石と熱シールドとがソレノイド磁石と同軸の管状支持構造体によって支持されている、クライオスタット装置における被冷却ソレノイド磁石を記載している。
本発明は、従来の装置の多数のサスペンション要素が磁石の軸に実質的に直交する実質的に垂直な軸の周りに配置された単一の支持要素によって置き換えられる、実質的に水平な軸を有する支持された超電導磁石を提供する。支持要素は、好適には磁石によって経験されるすべての予測される力の方向の予測可能な負荷に耐えることができ、また引張り、圧縮およびねじりといった適当な方向に適当な強度を有するように整えられる。その結果、減少した数の構成要素が必要とされ、サスペンション要素が貫通するのを可能にするため、熱シールドと断熱材とに孔を設ける、あるいは孔を密閉する必要がなく、また事前加重が必要とされないので、サスペンション装置の複雑さは実質的に減らされる。したがって組立てプロセスは著しく単純化される。
それに応じて本発明は、請求項に記載の方法と装置とを提供する。
本発明の上記および更なる目的、ねらい、および特徴は、下記の図面に関連して本発明のある幾つかの実施形態の下記の説明から、より明らかになる。
外側容器内の極低温容器において水平に配置されたソレノイド磁石を保持するための、サスペンション要素の従来の構成を示す図である。 本発明の一実施形態によるサスペンションシステムを示す図である。 図2の実施形態の拡大部分を示す図である。 本発明のもう1つの実施形態によるサスペンションシステムを示す図である。 図4に示された実施形態の横断面図である。 サスペンションシステム装置の一例を示す図である。
本発明によるサスペンションシステムの一実施形態が図2に示されている。超電導磁石コイル24を収容した概ね管状の容器22(「極低温容器」)は、床のような支持面を圧迫する支持装置によって支持される。極低温容器22は、ぴったり合った熱輻射シールド26によって囲まれ、このアセンブリ全体は外側真空容器(「OVC」)28内に収容される。単一の略管状の支持要素30は一方の端部32で適当な連結手段を介して極低温容器22に接し、他方の端部34でシステムの床面設置を与える。OVC28は、床側端部34において、または床側端部34付近において管状サスペンション要素に取り付けられる。凹部36内に管状支持要素30を部分的に収容することによって床からのシステム全体の高さを増加させずに管状支持要素30のための空間を与えるために、極低温容器22には凹部36が設けられる。これは磁石コイル24の配置によって可能となる。磁石コイルのこの配置はそれ自体、従来どおりのものであり、本質的に、同様な半径の多数の1次コイルからなり、1次コイルのいずれかの端部に、または端部の近くに配置されたかなり大きな半径のシールドコイルを有する。管状支持要素は、極低温容器の重量が管状支持要素30と極低温容器22との相補的境界面を介して管状支持要素を圧迫する極低温容器を支持し保持する。最も単純な構成では、この相補的表面は、支持要素の軸に垂直な支持要素30の断面と、極低温容器22の凹部36の端部32における平面状の表面とを備える。
熱輻射シールド26は、好適には管状支持要素30の上方に位置するフランジ38から同様に支持される。管状支持要素は、シールドの重量を管状支持要素に伝達するように整えられた相補的境界面38によって外側真空容器28と極低温容器22とに関して固定された位置に熱輻射シールド26を保持するように機能し得る。
コンパクトな構成においても支持システムの必要な強度と熱的特性とを達成するために、管状支持要素30は、好適にはグラスファイバ、カーボンファイバ、またはエポキシまたは類似の樹脂のような適当なマトリックス材料に入れられている他の高性能ファイバから構成される1つ以上の複合材料から製造される。このような材料を使用すると、ファイバの配向は、支持された極低温容器22、床面設置部34、および熱輻射シールド26の荷重と境界面とを効果的に支持するために必要とされる構造的強度、熱伝導特性および熱収縮特性の必要とされる組合せを与えるように最適化され得る。
図2の極低温容器支持装置は、本発明の一態様による特に有利な組立てプロセスで組み立てられることができ、それによって磁石コイル24と凹部36を有する極低温容器22とのアセンブリは先ず、管状支持要素30が少なくとも部分的に凹部36内に収容されるように、管状支持要素30上に位置決めされる。輻射シールド26は好適には、管状支持要素30の周りに組み立てられて、この管状支持要素に取り付けられた多数の部品から製造される。最後にOVC28は、同様の仕方で製造されて設置され得る。容器22、28および熱シールド26の正確な位置合わせは、容器、シールドおよび管状支持要素30上の適当な特徴要素によって達成される。事前加重も他の調整も必要とされない。OVC28は熱シールド26を保持するために設けられたフランジ境界面38に類似したフランジに取り付けられ得るが、床面に、より近く位置決めされ得る。このような組立て方法で管状支持要素30は、OVCの残り部分が管状支持要素30の周りに組み立てられるときに、より効果的にOVCの一部になる少なくとも1つの閉鎖面39によって閉じられなくてはならない。熱輻射シールド26の部品が管状支持要素30の周りに組み立てられるときに熱輻射シールド26の一部になるように、ほぼフランジ38の高さにもう1つの閉鎖面が設けられ得る。
図3は、管状支持要素30と凹部36とフランジ38と関連特徴要素とをより詳細に示す図2の拡大部分を示す。完全な熱輻射シールドを与えるために熱輻射シールド26は、以後、シールド部26Aと呼ばれる閉鎖面によって管状支持要素30A、30Bの内部に亘って途切れずに広げられている。シールド部26Aは好適には、フランジ38の内側拡張部によって管状支持要素30に取り付けられる。
同様に、完全なOVCを与えるためにOVC28は、以後、OVC部34と呼ばれる閉鎖面によって管状サスペンション要素30A、30Bの内部に亘って途切れずに広げられている。OVC部34は、OVCの残り部分に接続されたフランジの内側拡張部によって管状支持要素30に取り付けられ得る。代替としてより簡単に、そして図3に示されるようにOVC部34は、OVCの残り部分のためにフランジを形成する連続したプレートであり得る。
管状支持要素の改良は、例えばOVC28と熱輻射シールド26との間に配置された下部30Bと熱輻射シールド26と極低温容器22との間に配置された上部30Aとを有する2つのセクションに管状支持要素を分割することによって可能である。これは、各セクションのために異なる複合材料と構造との使用を容易にする。例えば材料の熱伝導率が、使用時に各セクションが遭遇する温度範囲に関して最適化される材料が選択され得る。すなわち上部30Aに関しては極低温であり、下部30Bに関してはより高い温度である。更なる改良は、各セクションによって支持されなくてはならない機械的荷重にしたがって材料を選択することによって達成され得る。下部30Bは上部30Aによって支持される荷重に加えて熱輻射シールドの重量を支持しなくてはならないので、下部30Bは上部30Aより幾分高い機械的荷重を支持しなくてはならない。例えば各温度における適当な熱伝導率は、上部30Aに関してはカーボンファイバを使用し、下部30Bに関してはグラスファイバを使用して各容器の温度において比較的低い熱伝導率を与えることによって達成され得る。管状支持要素が印加荷重を支持して保持するために十分に機械的に強固であることを保証するために、十分な厚さとファイバ配向とこのような材料の他の公知のパラメータとを有する材料が用意されるべきである。
本発明の一態様によれば、数Gの加速度に相当する力に対して支持された荷重の質量を保持するために十分な機械的強度を有する単一の支持体30が提供される。
本発明の好適な実施形態では熱輻射シールド取付けフランジ38は、単一の管状支持要素30を形成するようにフランジに組み付けられた別々のセクション30A、30Bを有する管状支持要素の外面と内面との間で連続している。管状支持要素内に好適に設けられたシールド部26Aは、座屈に対して管状支持要素を強化するためにも役立つ。熱輻射シールド26は、能動的な冷凍によって典型的には70〜90Kの範囲の中間的極低温に冷却される熱ステーションであり得る。アルミニウムまたは鋼のような比較的伝熱性の材料のフランジ38を設けることによって、シールド部26Aは、このシールドの残り部分と同じ温度に冷却され得る。
代替実施形態では管状支持要素は、その表面に接着結合されたフランジ38を有する複合材料の連続した管であり得る。管状支持要素の内面に同様のフランジが接着結合され得る。このような実施形態では、例えば管状支持要素の一方または他方のセクション30A、30Bの孔を通る柔軟な銅の紐状リンクを介して、シールド部26Aを熱輻射シールドの残り部分に熱的にリンクするために代替の対策が行われる必要があり得る。
異なる磁石構成に適合するために、支持体の代替構成が可能である。図4は、極低温容器22に凹部を含まない本発明の一実施形態を示す。図4の構成では、極低温容器22の略水平な軸に略直交する略垂直な軸の周りに、単一の支持要素40が配置される。
支持要素40は、好適には単なる円筒形ではなく、利用可能な空間に適合し、平行移動と回転とに対抗して極低温容器22を支持するように、また極低温容器の外側表面と支持体40の適当に形作られた部分とを備える境界面を介して極低温容器を抱きかかえて支持し、保持するように形作られる。支持体40は、数Gの加速度に相当する力を含む予測される機械的荷重の全範囲を通して極低温容器22とその内容物とを支持して保持するために十分に強固でなければならないことは無論である。支持体の42のようなある特定の領域は、極低温容器とその内容物との重量の比較的大きな部分を支持することが必要とされ得る。支持体の44のような他のある特定の領域は、より低い静荷重を支持することが必要とされ得るが、支持体が取り付けられる極低温容器の熱収縮特性に適合すべきであり、また変位または回転に対抗して極低温容器を保持するように機能すべきである。適当な複合材料、ファイバ配向および厚さの使用によって支持体40の異なるセクションの特性は、これら種々の要件を満足させるように最適化され得る。図2および図3の構成と比較して図4の構成は、より長い支持要素長がその結果としての熱性能的利点をもって達成されることを可能にし、また薄肉にされ得る極低温容器22上の応力を最小にする。
支持要素がすべての方向の動きに対抗して極低温容器を保持することを保証するために、極低温容器22がすべての接触点で管状支持要素40に確実に結合されることが意図されている。ある幾つかの用途では、極低温容器は支持要素内に抱きかかえられ、それ自身の重量によって適所に保持され、支持要素に結合されないことで十分であると分かっている。
図5は、極低温容器22とOVC28との間に、支持体40上で支持された熱輻射シールド26を有するOVC28内に極低温容器22と図4の支持体40とを備える完全なクライオスタット装置内の図4に示されたような本発明の一実施形態の断面図を示す。支持体40は、任意選択的に異なる材料で作られた支持体の上部および下部をもって、また熱輻射シールドを支持する取付けフランジであって任意選択的に管状支持体の材料を貫通して延びる取付けフランジをもって、図3の支持体30の上記の変形体のいずれかと同様に構成され得る。シールド部は、好適にはシールド26を閉鎖するように支持体内に設けられる。これは、支持体が図2および図3に示されたような実施形態の場合より熱輻射シールドの表面積のより大きな部分を占めるので、図4および図5のような実施形態ではより重要であると信じられる。
支持体は、OVC28の取付け用のフランジとしても役立ち得る基部42上に取り付けられ得る。好適には基部42は、OVCの一部になる。
熱輻射シールド26とOVC28はそれぞれ、図2および図3の実施形態の場合のように組み立てられ得る。磁石コイルと極低温容器22とのアセンブリは先ず、支持体40内/上に位置決めされる。熱輻射シールド26は、好適には取付けフランジ48によって、好適には支持体40の周りに組み立てられて支持体に取り付けられる多数の部品から製造される。最後にOVC28が、同様な仕方で製造されて設置される。容器22、28と熱輻射シールド26との正確な位置合わせは、容器、熱輻射シールド、および支持体40上の適当な特徴要素によって達成される。事前加重も他の調整も必要とされない。
図5に示されたように、熱輻射シールド26とOVC28とを支持体40により良く調和させるために通常の円筒形以外の形に作ることが好都合であると分かっている。また図5に示されたように支持体40は、極低温容器をより良く抑えるためにテーパー付き(先細り)にされ得る。
図4および図5の構成では支持体40は、極低温容器の外側表面と支持体40の内端部表面の適当に形作られた部分とを備える相補的境界面を介して極低温容器22を保持する。
超電導磁石のような一部の極低温に冷却される装置は、極低温容器内に収容されない。これらは、当分野で周知の冷凍機または冷却回路装置によって直接冷却される。本発明は、このような装置に適用可能であり、下記のように修正可能である。図4および図5に示されたような実施形態に関して支持体40は、被冷却装置と直接連動するように適応されなくてはならない。超電導磁石は典型的には、アルミニウムのような材料で作られた熱伝導性形成体上に巻き付けられる。支持体40は、回転および平行移動に対抗して予測されるすべての力の方向にこのような形成体を確実に保持し、数Gの加速度に相当する力に耐えるように形作られ得る。超電導磁石のコイルのような被冷却装置の如何なる損傷しやすい部品も支持体が支えないように注意されるべきである。
図6は、極低温容器内にない形成体45上に多数のコイルとして巻かれた超電導磁石のような被冷却装置用に適応させられた図2および図3に示された装置に類似の異なる装置を示す。管状支持要素30(30A、30B)は、形成体45のような磁石コイル支持構造体に直接取り付けられる。極低温容器の欠如は、結果としての熱性能的利点を有する管状支持要素30の長くなった長さを可能にする。この装置の他の特徴と要件は、図3に示された装置のものと同様である。
前述のことに応じて本発明は、従来のシステムで使用される多数のサスペンション要素の代わりに単一の支持体が使用される、超電導磁石のための新しい支持装置を提供する。この支持要素は、略垂直な軸の周りに配置されて、略水平な軸の周りに配置されたソレノイド磁石構造体を支持する。
本発明は、図1を参照しながら説明された従来の支持システムに対して少なくとも下記の利点を提供する。支持装置の複雑さと構成部品の数は、図1に示された支持装置と比較して実質的に削減される。この支持装置は、多数のサスペンション要素が設置されて事前引張りされる必要がないので、この構造と組立て方法との結果としての単純化によって、外側真空容器への単一の接続を必要とするだけである。全体的組立てプロセスは単純化され、多量生産の単純化をもたらす。これらの製造上の利点に加えて本発明のサスペンション装置は、吊るされた容器の位置合わせのより高い精度を提供する。
本発明は限られた数の特定の実施形態を参照しながら説明されてきたが、本発明の種々の修正版と変形版は、添付の請求項に記載された本発明の範囲内で、当分野に精通する人々によって考えられる。

Claims (17)

  1. 状の極低温容器(22)内に配置され、極低温容器自体が外側真空容器(OVC)(28)内に配置された超電導磁石(24)と、
    支持面に対して前記超電導磁石と前記極低温容器との重量を支え、前記極低温容器と前記支持面との間に位置する単一の管状の支持要素(30)とを備え、
    記管状の支持要素は、垂直の軸の周りに配置されて、水平な軸の周りに配置されたソレノイド磁石構造体を支持し、さらに、
    記管状の支持要素は、前記外側真空容器(28)に関して固定された相対位置に前記極低温容器を保持し、前記極低温容器と前記超電導磁石との重量を前記管状の支持要素に伝達するように相補的境界面が配置され、
    前記極低温容器の壁に凹部(36)が設けられ、前記管状の支持要素は前記凹部内に少なくとも部分的に収容されてなる、支持された超電導磁石であって、
    前記外側真空容器と前記極低温容器との間に輻射シールド(26)が設けられ、前記輻射シールドは前記シールドと前記支持面との間に前記支持要素(30;40)を備えるシールド支持構造体(38)上で支持され、前記支持要素は前記シールドの重量を前記支持要素に伝達するように整えられた相補的境界面(38)によって前記外側真空容器(22)に関して固定された相対位置に前記シールドを保持することを特徴とする、支持された超電導磁石。
  2. 前記相補的境界面の一方は前記凹部(36)によって与えられ、前記相補的境界面の他方は前記管状の支持(サスペンション)要素(30)の一端部を備える、請求項1に記載の支持された超電導磁石。
  3. 前記極低温容器(22)は水平な軸を有し、前記管状の支持要素は前記極低温容器の径方向直径より小さい径方向直径を有する、請求項2に記載の支持された超電導磁石。
  4. 前記相補的境界面は前記支持要素(30;40)上にフランジを備える、請求項1に記載の支持された超電導磁石。
  5. 前記支持要素は上部(30A)と下部(30B)とを備え、前記上部と下部は前記フランジにおいて接合される、請求項4に記載の支持された超電導磁石。
  6. 前記フランジは、前記支持要素の壁を通して連続しており、前記支持要素の内部に、前記支持要素内の適所にシールド部(26A)を保持する取付けフランジを備える、請求項4または5に記載の支持された超電導磁石。
  7. 外側真空容器(OVC)(28)内に配置された水平な軸をもつ円筒形の超電導磁石を有する被冷却装置と、
    支持面に対して前記被冷却装置の重量を支え、前記被冷却装置と前記支持面との間に位置する単一の支持要素(40)とを備え、
    前記被冷却装置の重量を前記支持要素に伝達するように相補的境界面が配置され、
    前記支持要素は、垂直な軸の周りに配置され、さらに、
    前記支持要素は、前記OVC(28)に関して固定された相対位置に前記被冷却装置を保持してなり、
    前記支持要素は、前記被冷却装置の外側表面と、前記支持要素(40)の共形に形作られた部分とを備える相補的境界面を介して前記被冷却装置を抱きかかえて支持し、保持するように形作られ、寸法決めされてなる、支持された超電導磁石であって、
    前記外側真空容器と前記超電導磁石との間に輻射シールド(26)が設けられ、前記輻射シールドは前記シールドと前記支持面との間に前記支持要素(30;40)を備えるシールド支持構造体(38)上で支持され、前記支持要素は前記シールドの重量を前記支持構造体に伝達するように整えられた相補的境界面(38)によって前記外側真空容器(22)に関して固定された相対位置に前記シールドを保持することを特徴とする支持された超電導磁石。
  8. 前記被冷却装置は管状の極低温容器(22)内に超電導磁石を備え、前記支持要素(40)の適当に形作られた部分は上部内端面の部分である、請求項に記載の支持された超電導磁石。
  9. 前記極低温容器(22)は水平な軸を有し、前記支持要素は前記極低温容器の径方向直径より大きな径方向直径を有する、請求項に記載の支持された超電導磁石。
  10. 前記支持要素は断面が非円形であってテーパー付きである、請求項のいずれか一項に記載の支持された超電導磁石。
  11. 前記相補的境界面は前記支持要素(30;40)上にフランジを備える、請求項に記載の支持された超電導磁石。
  12. 前記支持要素は上部(30A)と下部(30B)とを備え、前記上部と下部は前記フランジにおいて接合される、請求項11に記載の支持された超電導磁石。
  13. 前記フランジは、前記支持要素の壁を通して連続しており、前記支持要素の内部に、前記支持要素内の適所にシールド部(26A)を保持する取付けフランジを備える、請求項11または12に記載の支持された超電導磁石。
  14. 前記支持要素は、下端部に亘る閉鎖部(34)を有し、前記OVCを取り付けるためのフランジを備え、前記閉鎖部はいったん前記OVCの残りの部分が組み立てられると前記OVC壁の一部となる、請求項1〜13のいずれか一項に記載の支持された超電導磁石。
  15. 外側真空容器(OVC)(28)内において支持面上で支持される、支持された超電導磁石(24)を組み立てる方法であって、
    前記超電導磁石の重量を支持構造体に伝達するように整えられた相補的境界面によって前記支持面に関して固定された位置に前記磁石を保持する、前記磁石と前記支持面との間に位置する支持要素(30;40)上で前記超電導磁石を支持するステップと;
    前記支持要素の周りに接合される複数の部品で前記外側真空容器を製造するステップと;
    前記支持要素(30)の周りにこの支持要素に取り付けられて前記OVCを組み立てるステップと;を含む、支持された超電導磁石を組み立てる方法において、
    前記OVCを組み立てるステップの前に、
    前記支持要素の周りに接合される複数の部品で熱輻射シールドを製造するステップと;
    前記支持要素(30;40)の周りに前記支持要素に取り付けられて前記熱輻射シールドを組み立てるステップと;を更に含む、支持された超電導磁石を組み立てる方法。
  16. 前記超電導磁石は最初に極低温容器(22)内に組み立てられ;
    前記極低温容器は前記極低温容器と前記支持面との間に位置する前記支持要素(30;40)上に支持され;
    前記支持要素は前記超電導磁石と前記極低温容器との重量を前記支持構造体に伝達するように整えられた相補的境界面によって前記支持面に関して固定された位置に前記極低温容器を保持する;請求項15に記載の、OVC(28)内において、支持された超電導磁石(24)を組み立てる方法。
  17. 前記支持要素は、垂直な軸の周りに配置されて、水平な軸の周りに配置されたソレノイド磁石構造体を支持する、請求項15または16に記載の支持された超電導磁石を組み立てる方法。
JP2009527900A 2006-09-15 2007-09-06 支持された超電導磁石 Expired - Fee Related JP5361724B6 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
GB0618107.7 2006-09-15
GB0618107A GB2441795B (en) 2006-09-15 2006-09-15 A supported superconducting magnet
PCT/GB2007/050525 WO2008032110A1 (en) 2006-09-15 2007-09-06 A supported superconducting magnet

Publications (3)

Publication Number Publication Date
JP2010503983A JP2010503983A (ja) 2010-02-04
JP5361724B2 JP5361724B2 (ja) 2013-12-04
JP5361724B6 true JP5361724B6 (ja) 2014-06-11

Family

ID=

Similar Documents

Publication Publication Date Title
US8729990B2 (en) Supported superconducting magnet
JP5219420B2 (ja) 外部真空容器内に支持された極低温容器を有するクライオスタット
US5442928A (en) Hybrid cooling system for a superconducting magnet
JP3663266B2 (ja) 開放型磁気共鳴イメージング磁石
JP4950135B2 (ja) セラミック巻型を持つヒートパイプ冷却型超伝導磁石
JPS6196299A (ja) 低温槽貫入管用の支持体
JP4319650B2 (ja) Nmr用低温プローブおよびnmr装置
JP4574492B2 (ja) 超電導マグネット装置
US11810711B2 (en) Cryostat assembly having a resilient, heat-conducting connection element
US10109407B2 (en) Structural support for conduction-cooled superconducting magnets
EP0452046A2 (en) Superconductive magnet
EP0450972A2 (en) Superconductive magnet
US7535225B2 (en) Magnetic resonance apparatus having a superconducting basic field magnet with a structurally reinforced cryoshield
JPH09283324A (ja) 貫通管アセンブリ
US4599592A (en) Device for holding the housing of a superconducting magnet winding
WO2016120309A1 (en) Superconducting magnetic arrangement, in particular for a magnetic resonance tomograph
EP0450971B1 (en) Superconductive magnet
JP5361724B6 (ja) 支持された超電導磁石
US4622824A (en) Cryostat suspension system
JP2588284B2 (ja) 超電導電磁石
EP4300120A1 (en) Thermal bus structure for a magnetic resonance imaging device
JP2012054260A (ja) 超電導マグネット装置
CN219016558U (zh) 磁体支架结构和磁共振成像装置
JP3647266B2 (ja) 超電導マグネット装置