JP5361023B2 - Method for measuring high-frequency signal transmission characteristics of wiring board and wiring board used therefor - Google Patents

Method for measuring high-frequency signal transmission characteristics of wiring board and wiring board used therefor Download PDF

Info

Publication number
JP5361023B2
JP5361023B2 JP2009251472A JP2009251472A JP5361023B2 JP 5361023 B2 JP5361023 B2 JP 5361023B2 JP 2009251472 A JP2009251472 A JP 2009251472A JP 2009251472 A JP2009251472 A JP 2009251472A JP 5361023 B2 JP5361023 B2 JP 5361023B2
Authority
JP
Japan
Prior art keywords
signal
pad
pitch
ground
connection pad
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009251472A
Other languages
Japanese (ja)
Other versions
JP2011095191A (en
Inventor
義信 澤
Original Assignee
京セラSlcテクノロジー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラSlcテクノロジー株式会社 filed Critical 京セラSlcテクノロジー株式会社
Priority to JP2009251472A priority Critical patent/JP5361023B2/en
Publication of JP2011095191A publication Critical patent/JP2011095191A/en
Application granted granted Critical
Publication of JP5361023B2 publication Critical patent/JP5361023B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measurement Of Resistance Or Impedance (AREA)
  • Structure Of Printed Boards (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a measuring method of a high-frequency signal transmission characteristic of a wiring board capable of measuring a transmission characteristic of a signal in a transmission line for connecting a pad having a narrow pitch to a pad having a wide pitch on the wiring board, excellently even in a frequency band of a high frequency exceeding 10 GHz, and to provide the wiring board used therefor. <P>SOLUTION: A probe connection pad 5S for a signal and a probe connection pad 5S for grounding which are connected to a pad 4S for a signal formed with a wide pitch and a pad 4G for grounding are provided on the wiring board 10 so that the pitch is narrowed, and a probe 8 having a contact terminal 9S for a signal and a contact terminal 9G for grounding whose tip parts are arranged with a narrow pitch are brought into contact with an external connection pad for a signal and an external connection pad for grounding, to thereby perform measurement, by bringing the tip part of the contact terminal 9S for the signal into contact with the probe connection pad 5S for the signal, and by bringing the tip part of the contact terminal 9G for grounding into contact with the probe connection pad 5G for grounding. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は、配線基板の高周波信号伝送特性の測定およびそれに用いる配線基板に関するものである。   The present invention relates to measurement of high-frequency signal transmission characteristics of a wiring board and a wiring board used therefor.

半導体素子を搭載するための配線基板においては、半導体素子の作動の高速化・高周波化に伴い、例えば10GHzを超える高周波の周波数帯域における信号の伝送特性が良好であることが求められる場合がある。このような場合、配線基板の設計者は、配線基板を構成する絶縁材料の誘電率や誘電正接、導体の電導率などを勘案の上、信号が伝播される伝送線路の特性インピーダンスや信号の伝送モード等がなるべく一定になるように設計する。しかしながら、実際には複雑な要因が絡まり、設計どおりに信号が伝播されることは少なく、配線基板の伝送線路を信号が良好に伝播するかどうかは、伝送線路の両端に測定装置のプローブを当てるとともに高周波信号を伝送線路の一端から入力し、その信号の反射損や透過損を測定することにより判断している。   A wiring board for mounting a semiconductor element may be required to have good signal transmission characteristics in a frequency band of a high frequency exceeding 10 GHz, for example, as the operation of the semiconductor element increases in speed and frequency. In such a case, the wiring board designer considers the dielectric constant and dielectric loss tangent of the insulating material that constitutes the wiring board, the electrical conductivity of the conductor, etc., and the transmission line characteristic impedance and signal transmission Design so that the mode is as constant as possible. However, in reality, complicated factors are entangled, and the signal is rarely propagated as designed, and the probe of the measuring device is applied to both ends of the transmission line to determine whether the signal propagates well through the transmission line on the wiring board. At the same time, a high frequency signal is input from one end of the transmission line, and the reflection loss and transmission loss of the signal are measured.

図2(a),(b)に示すように、半導体素子をフリップチップ接続により搭載するフリップチップBGAタイプの配線基板20において伝送線路の伝送特性を測定する従来の方法を示す。配線基板20は、セラミックス材料や樹脂材料から成り、上面中央部に半導体素子を搭載するための搭載部11aを有する絶縁基板11と、銅等の良導電性材料から成り、絶縁基板11の搭載部11aから絶縁基板11の内部を介して絶縁基板11の下面に導出する信号線路12Sおよび接地線路12Gを含む配線導体とを有している。信号線路12Sおよび接地線路12Gは、互いに対になって信号を伝送する伝送線路を形成しており、搭載部11aにおいて半導体素子の電極が接続される直径が70〜100μm程度の円形の信号用半導体素子接続パッド13Sおよび接地用半導体素子接続パッド13Gを含む複数の半導体素子接続パッドを100〜200μm程度のピッチで有しているとともに、絶縁基板11の下面において外部電気回路の配線導体に接続される直径が400〜600μm程度の円形の信号用外部接続パッド14Sおよび接地用外部接続パッド14Gを含む複数の外部接続パッドを800〜1200μm程度のピッチで有している。   As shown in FIGS. 2A and 2B, a conventional method for measuring transmission characteristics of a transmission line in a flip chip BGA type wiring board 20 on which a semiconductor element is mounted by flip chip connection will be described. The wiring substrate 20 is made of a ceramic material or a resin material, and is made of an insulating substrate 11 having a mounting portion 11a for mounting a semiconductor element at the center of the upper surface, and made of a highly conductive material such as copper. 11a, and a wiring conductor including a signal line 12S and a ground line 12G that are led to the lower surface of the insulating substrate 11 through the inside of the insulating substrate 11. The signal line 12S and the ground line 12G form a transmission line for transmitting signals in pairs with each other, and a circular signal semiconductor having a diameter of about 70 to 100 μm to which the electrode of the semiconductor element is connected in the mounting portion 11a. A plurality of semiconductor element connection pads including the element connection pad 13S and the grounding semiconductor element connection pad 13G are provided at a pitch of about 100 to 200 μm, and are connected to the wiring conductor of the external electric circuit on the lower surface of the insulating substrate 11. A plurality of external connection pads including a circular signal external connection pad 14S and a ground external connection pad 14G having a diameter of about 400 to 600 μm are provided at a pitch of about 800 to 1200 μm.

そして、この配線基板20において信号線路12Sおよび接地線路12Gから成る伝送線路における信号の伝送特性を測定するには、伝送特性を測定するための測定装置のプローブ15と17とを信号用半導体素子接続パッド13Sおよび接地用半導体素子接続パッド13Gと信号用外部接続パッド14Sおよび接地用外部接続パッド14Gとにそれぞれ接続し、例えば信号用半導体素子接続パッド13Sおよび接地用半導体素子接続パッド13Gから信号を入力し、信号用半導体素子接続パッド13Sおよび接地用半導体素子接続パッド13Gに戻ってくる信号や信号用外部接続パッド14Sおよび接地用外部接続パッド14Gに到達する信号の量を測定したり、逆に信号用外部接続パッド14Sおよび接地用外部接続パッド14Gから信号を入力し、信号用外部接続パッド14Sおよび接地用外部接続パッド14Gに戻ってくる信号や信号用半導体素子接続パッド13Sおよび接地用半導体素子接続パッド13Gに到達する信号の量を測定したりすることにより、伝送線路の反射損や挿入損を求める方法が採られている。   In order to measure the signal transmission characteristic in the transmission line composed of the signal line 12S and the ground line 12G on the wiring board 20, the probes 15 and 17 of the measuring device for measuring the transmission characteristic are connected to the signal semiconductor element. The pad 13S and the ground semiconductor element connection pad 13G are connected to the signal external connection pad 14S and the ground external connection pad 14G, respectively. For example, signals are input from the signal semiconductor element connection pad 13S and the ground semiconductor element connection pad 13G. Then, the amount of the signal returning to the signal semiconductor element connection pad 13S and the ground semiconductor element connection pad 13G or the amount of the signal reaching the signal external connection pad 14S and the ground external connection pad 14G is measured, or vice versa. From external connection pad 14S for ground and external connection pad 14G for grounding To measure the amount of a signal returning to the signal external connection pad 14S and the ground external connection pad 14G and a signal reaching the signal semiconductor element connection pad 13S and the ground semiconductor element connection pad 13G. Thus, a method for obtaining the reflection loss and insertion loss of the transmission line is adopted.

なお、信号用半導体素子接続パッド13Sおよび接地用半導体素子接続パッド13Gに接続されるプローブ15は、中央部に信号用半導体素子接続パッド13Sに接続される信号用接触端子16Sが配置されているとともに、その両側に接地用半導体素子接続パッド13Gに接続される接地用接触端子16Gが配置されている。プローブ15における信号用接触端子16Sと接地用接触端子16Gとはその先端部が半導体素子接続パッド13Sおよび13Gの配列ピッチに対応した100〜200μmのピッチであるとともに信号用接触端子16Sにおける特性インピーダンスが例えば50Ωになるように配置されており、信号用接触端子16Sの先端部を信号用半導体素子接続パッド13Sに接触させるとともに接地用接触端子16Gの先端部を接地用半導体素子接続パッド13Gに接触させることにより、それぞれが信号用半導体素子接続パッド13S,接地用半導体素子接続パッド13Gに接続される。   The probe 15 connected to the signal semiconductor element connection pad 13S and the ground semiconductor element connection pad 13G has a signal contact terminal 16S connected to the signal semiconductor element connection pad 13S disposed at the center. The ground contact terminals 16G connected to the ground semiconductor element connection pads 13G are arranged on both sides thereof. The signal contact terminal 16S and the ground contact terminal 16G in the probe 15 have pitches of 100 to 200 μm corresponding to the arrangement pitch of the semiconductor element connection pads 13S and 13G, and the characteristic impedance at the signal contact terminal 16S. For example, it is arranged to be 50Ω, and the tip of the signal contact terminal 16S is brought into contact with the signal semiconductor element connection pad 13S, and the tip of the ground contact terminal 16G is brought into contact with the ground semiconductor element connection pad 13G. As a result, each is connected to the signal semiconductor element connection pad 13S and the ground semiconductor element connection pad 13G.

他方、信号用外部接続パッド14Sおよび接地用外部接続パッド14Gに接続されるプローブ17は、中央部に信号用外部接続パッド14Sに接続される信号用接触端子18Sが配置されているとともに、その両側に接地用外部接続パッド14Gに接続される接地用接触端子18Gが配置されている。このプローブ17においては、両側の接地用接触端子18Gの先端部の幅が中央部の信号用接触端子18Sよりも広くなっており、信号用接触端子18Sと接地用接触端子18Gとは中央の信号用接触端子18Sの先端部と両側の接地用接触端子18Gの外側先端部とが外部接続パッド14Sおよび14Gの配列ピッチに対応した800〜1200μmのピッチであるとともに信号用接触端子18Sにおける特性インピーダンスが例えば50Ωになるように配置されており、信号用接触端子18Sを信号用外部接続パッド14Sに接触させるとともに接地用接触端子18Gを接地用外部接続パッド14Gに接触させることにより、それぞれが信号用外部接続パッド14S,接地用外部接続パッド14Gに接続される。   On the other hand, the probe 17 connected to the signal external connection pad 14S and the ground external connection pad 14G has a signal contact terminal 18S connected to the signal external connection pad 14S at the center, and both sides thereof. Further, a ground contact terminal 18G connected to the ground external connection pad 14G is disposed. In this probe 17, the width of the tip of the ground contact terminal 18G on both sides is wider than the signal contact terminal 18S in the center, and the signal contact terminal 18S and the ground contact terminal 18G are in the center. The tip of the contact terminal 18S and the outer tip of the ground contact terminal 18G on both sides have a pitch of 800 to 1200 μm corresponding to the arrangement pitch of the external connection pads 14S and 14G, and the characteristic impedance in the signal contact terminal 18S is For example, the signal contact terminal 18S is brought into contact with the signal external connection pad 14S and the ground contact terminal 18G is brought into contact with the ground external connection pad 14G so that each signal external terminal is connected to the signal external connection pad 14G. The connection pad 14S is connected to the grounding external connection pad 14G.

しかしながら、この従来の方法においては、半導体素子接続パッド13Sおよび13Gに接続されるプローブ15は、半導体素子接続パッド13Sおよび13Gに接触する先端部のピッチが半導体素子接続パッド13Sおよび13Gのピッチに対応した100〜200μmの狭いピッチであるものの、外部接続パッド14Sおよび14Gに接続されるプローブ17は、外部接続パッド14Sおよび14Gに接触する先端部のピッチが外部接続パッド14Sおよび14Gのピッチに対応した800〜1200μmの広いピッチとなっている。このようにプローブ17において外部接続パッド14Sおよび14Gに接触する先端部のピッチが800〜1200μmの広いピッチである場合、10GHz以下の周波数帯域における信号の伝送特性は十分に測定することが可能であるものの、10GHzを超える周波数帯域においては、良好に測定することが困難であった。   However, in this conventional method, in the probe 15 connected to the semiconductor element connection pads 13S and 13G, the pitch of the tips contacting the semiconductor element connection pads 13S and 13G corresponds to the pitch of the semiconductor element connection pads 13S and 13G. In the probe 17 connected to the external connection pads 14S and 14G, the pitch of the tips contacting the external connection pads 14S and 14G corresponds to the pitch of the external connection pads 14S and 14G. A wide pitch of 800 to 1200 μm is obtained. As described above, when the pitch of the tip portions of the probe 17 contacting the external connection pads 14S and 14G is a wide pitch of 800 to 1200 μm, the signal transmission characteristics in the frequency band of 10 GHz or less can be sufficiently measured. However, it was difficult to measure well in a frequency band exceeding 10 GHz.

特開2001−264384号公報JP 2001-264384 A

本発明の課題は、配線基板におけるピッチの狭いパッドとピッチの広いパッドとの間を接続する伝送線路における信号の伝送特性を、10GHzを超える高周波の周波数帯域においても良好に測定することが可能な配線基板の高周波信号伝送特性の測定方法およびそれに用いる配線基板を提供することにある。   It is an object of the present invention to be able to satisfactorily measure signal transmission characteristics in a transmission line connecting a pad with a narrow pitch and a pad with a wide pitch on a wiring board even in a high frequency band exceeding 10 GHz. An object of the present invention is to provide a method for measuring high-frequency signal transmission characteristics of a wiring board and a wiring board used therefor.

本発明の配線基板の高周波信号伝送特性の測定方法は、第一のピッチで設けられた第一の信号用パッドおよび第一の接地用パッドと、前記第一のピッチより広い第二のピッチで設けられた第二の信号用パッドおよび第二の接地用パッドと、前記第一の信号用パッドと前記第二の信号用パッドとの間を接続する信号線路および前記第一の接地用パッドと前記第二の接地用パッドとの間を接続する接地線路とを有する配線基板の前記第一の信号用パッドおよび前記第一の接地用パッドと前記第二の信号用パッドおよび前記第二の接地用パッドとの間における高周波信号伝送特性を、両者間に測定装置のプローブを接続して測定する配線基板の高周波信号伝送特性の測定方法であって、前記配線基板の表面に前記第二の信号用パッドに接続された信号用プローブ接続パッドおよび前記第二の接地用パッドに接続された接地用プローブ接続パッドを前記信号用プローブ接続パッドと前記接地用プローブ接続パッドとのピッチが前記第二のピッチより狭い第三のピッチに狭まるように設けるとともに、先端部が前記第一のピッチで配置された第一の信号用接触端子および第一の接地用接触端子を有する第一のプローブを、前記第一の信号用接触端子の先端部と前記第一の信号用パッドとを接触させるとともに前記第一の接地用接触端子の先端部と前記第一の接地用パッドとを接触させることにより前記第一の信号用パッドおよび前記第一の接地用パッドに接続するとともに、先端部が前記第三のピッチで配置された第二の信号用接触端子および第二の接地用接触端子を有する第二のプローブを、前記第二の信号用接触端子の先端部と前記信号用プローブ接続パッドとを接触させるとともに前記第二の接地用接触端子の先端部と前記接地用プローブ接続パッドとを接触させることにより前記第二の信号用パッドおよび前記第二の接地用パッドに接続して測定することを特徴とするものである。   The method for measuring high-frequency signal transmission characteristics of a wiring board according to the present invention includes a first signal pad and a first grounding pad provided at a first pitch, and a second pitch wider than the first pitch. A second signal pad and a second grounding pad provided; a signal line connecting the first signal pad and the second signal pad; and the first grounding pad; The first signal pad, the first ground pad, the second signal pad, and the second ground of the wiring board having a ground line connecting between the second ground pad and the second ground pad. A method of measuring a high-frequency signal transmission characteristic of a wiring board for measuring a high-frequency signal transmission characteristic between the circuit board and a probe of a measuring device between the two pads, wherein the second signal is applied to a surface of the wiring board. Connected to the pad A third pitch in which the pitch between the signal probe connection pad and the ground probe connection pad is smaller than the second pitch. A first probe having a first signal contact terminal and a first ground contact terminal, the tip of which is arranged at the first pitch, and the first signal contact terminal. The first signal pad and the first signal pad and the first ground pad by contacting the first ground pad and the first ground pad. A second probe having a second signal contact terminal and a second ground contact terminal which are connected to the first ground pad and whose tips are arranged at the third pitch; By bringing the tip of the second signal contact terminal into contact with the signal probe connection pad and bringing the tip of the second ground contact terminal into contact with the ground probe connection pad, the second The signal pad and the second grounding pad are connected for measurement.

また、本発明の配線基板は、第一のピッチで設けられた第一の信号用パッドおよび第一の接地用パッドと、前記第一のピッチより広い第二のピッチで設けられた第二の信号用パッドおよび第二の接地用パッドと、前記第一の信号用パッドと前記第二の信号用パッドとの間を接続する信号線路および前記第一の接地用パッドと前記第二の接地用パッドとの間を接続する接地線路とを有する配線基板であって、前記第二の信号用パッドに接続された信号用プローブ接続パッドおよび前記第二の接地用パッドに接続された接地用プローブ接続パッドを前記信号用プローブ接続パッドと前記接地用プローブ接続パッドとのピッチが前記第二のピッチより狭い第三のピッチに狭まるように設けたことを特徴とするものである。   The wiring board of the present invention includes a first signal pad and a first grounding pad provided at a first pitch, and a second pitch provided at a second pitch wider than the first pitch. A signal pad and a second grounding pad; a signal line connecting the first signal pad and the second signal pad; and the first grounding pad and the second grounding pad. A wiring board having a ground line connecting between the pads and a signal probe connection pad connected to the second signal pad and a ground probe connection connected to the second ground pad The pad is provided so that a pitch between the signal probe connection pad and the ground probe connection pad is narrowed to a third pitch which is narrower than the second pitch.

本発明の配線基板の高周波信号伝送特性の測定方法によれば、第一のピッチよりも広い第二のピッチで形成された第二の信号用パッドおよび第二の接地用パッドに、前記第二の信号用パッドに接続された信号用プローブ接続パッドおよび前記第二の接地用パッドに接続された接地用プローブ接続パッドを前記信号用プローブ接続パッドと前記接地用プローブ接続パッドとのピッチが前記第二のピッチより狭い第三のピッチに狭まるように配線基板に設けるとともに、先端部が前記第三のピッチで配置された第二の信号用接触端子および第二の接地用接触端子を有する第二のプローブを、前記第二の信号用接触端子の先端部と前記信号用プローブ接続パッドとを接触させるとともに前記第二の接地用接触端子の先端部と前記接地用プローブ接続パッドとを接触させることにより前記第二の信号用パッドおよび前記第二の接地用パッドに接続することから、たとえ第二のピッチが800〜1200μmと広いものであったとしても、第三のピッチを例えば100〜200μmの狭いものとすることにより、測定装置と第二の信号用パッドおよび第二の接地用パッドとを接触端子の先端部のピッチが狭いプローブを用いて接続することにより測定することが可能となるので、10GHzを超える周波数帯域においても配線基板の高周波信号伝送特性を良好に測定することができる。   According to the method for measuring a high-frequency signal transmission characteristic of the wiring board according to the present invention, the second signal pad and the second grounding pad formed at a second pitch wider than the first pitch are applied to the second grounding pad. The signal probe connection pad connected to the signal pad and the ground probe connection pad connected to the second ground pad are arranged such that the pitch between the signal probe connection pad and the ground probe connection pad is the first pitch. A second board having a second signal contact terminal and a second ground contact terminal provided on the wiring board so as to be narrowed to a third pitch narrower than the second pitch, and having a tip portion arranged at the third pitch. The probe is connected to the tip of the second signal contact terminal and the signal probe connection pad, and the tip of the second ground contact terminal is connected to the ground probe. The second signal pad and the second grounding pad are brought into contact with each other, so that even if the second pitch is as wide as 800 to 1200 μm, the third signal pad and the second grounding pad are connected. Measurement is performed by connecting the measuring device, the second signal pad, and the second grounding pad using a probe having a narrow pitch at the tip of the contact terminal by setting the pitch to be narrow, for example, 100 to 200 μm. Therefore, it is possible to satisfactorily measure the high-frequency signal transmission characteristics of the wiring board even in a frequency band exceeding 10 GHz.

また、本発明の配線基板によれば、第一のピッチよりも広い第二のピッチで形成された第二の信号用パッドおよび第二の接地用パッドに、前記第二の信号用パッドに接続された信号用プローブ接続パッドおよび前記第二の接地用パッドに接続された接地用プローブ接続パッドを前記信号用プローブ接続パッドと前記接地用プローブ接続パッドとのピッチが前記第二のピッチより狭い第三のピッチに狭まるように設けたことから、たとえ第二のピッチが800〜1200μmと広いものであったとしても、第三のピッチを例えば100〜200μmの狭いものとすることにより、測定装置と第二の信号用パッドおよび第二の接地用パッドとを接触端子の先端部のピッチが狭いプローブを用いて接続することにより測定することが可能となるので、10GHzを超える周波数帯域においても配線基板の高周波信号伝送特性を良好に測定することができる。   Further, according to the wiring board of the present invention, the second signal pad and the second ground pad formed at the second pitch wider than the first pitch are connected to the second signal pad. The signal probe connection pad and the ground probe connection pad connected to the second ground pad are arranged so that the pitch between the signal probe connection pad and the ground probe connection pad is narrower than the second pitch. Since the third pitch is narrowed to the third pitch, even if the second pitch is as wide as 800 to 1200 μm, the third pitch is set as narrow as 100 to 200 μm, for example. Since it is possible to measure by connecting the second signal pad and the second grounding pad using a probe having a narrow pitch at the tip of the contact terminal, Even in a frequency band exceeding 10 GHz, the high-frequency signal transmission characteristics of the wiring board can be satisfactorily measured.

(a)は、本発明の配線基板の高周波信号伝送特性の測定方法およびそれに用いる配線基板の実施形態の一例を説明するための簡略断面図であり、(b)は、(a)に示す測定方法および配線基板を説明するための簡略下面図である。(A) is a simplified sectional view for explaining an example of an embodiment of a high-frequency signal transmission characteristic of a wiring board of the present invention and a wiring board used therefor, and (b) is a measurement shown in (a). It is a simplified bottom view for demonstrating a method and a wiring board. (a)は、従来の配線基板の高周波信号伝送特性の測定方法を説明するための簡略断面図であり、(b)は、(a)に示す測定方法および配線基板を説明するための簡略下面図である。(A) is a simplified cross-sectional view for explaining a conventional method for measuring a high-frequency signal transmission characteristic of a wiring board, and (b) is a simplified bottom view for explaining the measuring method and the wiring board shown in (a). FIG.

次に、本発明の配線基板の高周波信号伝送特性の測定方法およびそれに用いる配線基板を図1(a),(b)を基にして説明する。図1(a)に示すように、本発明の配線基板の高周波信号伝送特性の測定方法に用いられる本発明の配線基板10は、アルミナや窒化アルミニウム、ムライト、ガラスセラミックス等のセラミックス材料や、エポキシ樹脂やビスマレイミドトリアジン樹脂、アリル変性ポリフェニレンエーテル樹脂等の熱硬化性樹脂を含有する樹脂材料から成り、上面中央部に半導体素子を搭載するための搭載部1aを有する絶縁基板1と、タングステンやモリブデン、銅等の金属から成り、絶縁基板1の搭載部1aから絶縁基板1の内部を介して絶縁基板1の下面に導出する信号線路2Sおよび接地線路2Gを含む配線導体とを有している。信号線路2Sおよび接地線路2Gは、互いに対になって信号を伝送する伝送線路を形成しており、搭載部1aにおいて半導体素子の電極が接続される直径が70〜100μm程度の円形の信号用半導体素子接続パッド3Sおよび接地用半導体素子接続パッド3Gを含む複数の半導体素子接続パッドを例えば格子状の並びに100〜200μm程度のピッチで有しているとともに、絶縁基板1の下面において外部電気回路の配線導体に接続される直径が400〜600μm程度の円形の信号用外部接続パッド4Sおよび接地用外部接続パッド4Gを含む複数の外部接続パッドを例えば格子状の並びに800〜1200μm程度のピッチで有している。   Next, a method for measuring high-frequency signal transmission characteristics of a wiring board according to the present invention and a wiring board used therefor will be described with reference to FIGS. 1 (a) and 1 (b). As shown in FIG. 1 (a), the wiring substrate 10 of the present invention used in the method for measuring the high-frequency signal transmission characteristics of the wiring substrate of the present invention includes ceramic materials such as alumina, aluminum nitride, mullite, glass ceramics, and epoxy. An insulating substrate 1 made of a resin material containing a thermosetting resin such as a resin, a bismaleimide triazine resin, or an allyl-modified polyphenylene ether resin, and having a mounting portion 1a for mounting a semiconductor element at the center of the upper surface; and tungsten or molybdenum And a wiring conductor including a signal line 2 </ b> S and a ground line 2 </ b> G led out from the mounting portion 1 a of the insulating substrate 1 to the lower surface of the insulating substrate 1 through the inside of the insulating substrate 1. The signal line 2S and the ground line 2G form a transmission line for transmitting signals in pairs with each other, and a circular signal semiconductor having a diameter of about 70 to 100 μm to which the electrode of the semiconductor element is connected in the mounting portion 1a. A plurality of semiconductor element connection pads including the element connection pads 3S and the grounding semiconductor element connection pads 3G have, for example, a lattice shape and a pitch of about 100 to 200 μm, and wiring of an external electric circuit on the lower surface of the insulating substrate 1 A plurality of external connection pads including a circular signal external connection pad 4S having a diameter of about 400 to 600 μm and a ground external connection pad 4G connected to the conductor are provided, for example, in a lattice shape and at a pitch of about 800 to 1200 μm. Yes.

さらに本発明においては、配線基板10の下面に、信号用外部接続パッド4Sに接続された信号用プローブ接続パッド5Sおよび接地用外部接続パッド4Gに接続された接地用プローブ接続パッド5Gを備えている。信号用プローブ接続パッド5Sおよび接地用プローブ接続パッド5Gは、信号用外部接続パッド4Sおよび接地用外部接続パッド4Gと同じ材料により形成されており、通常は、それぞれが対応する信号用外部接続パッド4Sまたは接地用外部接続パッド4Gと一体的に同時形成されている。信号用プローブ接続パッド5Sと接地用プローブ接続パッド5Gとは、その一端側においてそのピッチが信号用外部接続パッド4Sおよび接地用外部接続パッド4Gのピッチよりも狭いピッチに狭まるように形成されており、ピッチが狭まった部分におけるピッチは半導体素子接続パッド3S,3Gのピッチと同じ100〜200μmである。   Furthermore, in the present invention, a signal probe connection pad 5S connected to the signal external connection pad 4S and a ground probe connection pad 5G connected to the ground external connection pad 4G are provided on the lower surface of the wiring board 10. . The signal probe connection pad 5S and the ground probe connection pad 5G are made of the same material as the signal external connection pad 4S and the ground external connection pad 4G. Usually, the signal external connection pads 4S correspond to each other. Alternatively, it is integrally formed with the grounding external connection pad 4G. The signal probe connection pad 5S and the ground probe connection pad 5G are formed so that the pitch is narrower at one end than the pitch of the signal external connection pad 4S and the ground external connection pad 4G. The pitch at the narrowed portion is 100 to 200 μm, which is the same as the pitch of the semiconductor element connection pads 3S and 3G.

そして、この配線基板10において信号線路2Sおよび接地線路2Gから成る伝送線路における高周波信号伝送特性を測定するには、伝送特性を測定するための測定装置のプローブ6と8とを信号用半導体素子接続パッド3Sおよび接地用半導体素子接続パッド3Gと信号用プローブ接続パッド5Sおよび接地用プローブ接続パッド5Gとにそれぞれ接続し、例えば信号用半導体素子接続パッド3Sおよび接地用半導体素子接続パッド3Gから信号を入力し、信号用半導体素子接続パッド3Sおよび接地用半導体素子接続パッド3Gに戻ってくる信号や信号用プローブ接続パッド5Sおよび接地用プローブ接続パッド5Gに到達する信号の量を測定したり、逆に信号用プローブ接続パッド5Sおよび接地用プローブ接続パッド5Gから信号を入力し、信号用プローブ接続パッド5Sおよび接地用プローブ接続パッド5Gに戻ってくる信号や信号用半導体素子接続パッド3Sおよび接地用半導体素子接続パッド3Gに到達する信号の量を測定したりすることにより、伝送線路の反射損や挿入損を求める方法が採られる。   In order to measure the high-frequency signal transmission characteristic in the transmission line composed of the signal line 2S and the ground line 2G on the wiring board 10, the probes 6 and 8 of the measuring device for measuring the transmission characteristic are connected to the signal semiconductor element. The pad 3S and the ground semiconductor element connection pad 3G are connected to the signal probe connection pad 5S and the ground probe connection pad 5G, respectively. For example, signals are input from the signal semiconductor element connection pad 3S and the ground semiconductor element connection pad 3G. Then, the amount of the signal returning to the signal semiconductor element connection pad 3S and the ground semiconductor element connection pad 3G or the amount of the signal reaching the signal probe connection pad 5S and the ground probe connection pad 5G is measured, or vice versa. Signals from the probe connection pad 5S and the ground probe connection pad 5G By measuring the amount of the signal returning to the signal probe connection pad 5S and the ground probe connection pad 5G and the amount of the signal reaching the signal semiconductor element connection pad 3S and the ground semiconductor element connection pad 3G. The method of obtaining the reflection loss and insertion loss of the transmission line is employed.

なお、信号用半導体素子接続パッド3Sおよび接地用半導体素子接続パッド3Gに接続されるプローブ6は、中央部に信号用半導体素子接続パッド3Sに接続される信号用接触端子7Sが配置されているとともに、その両側に接地用半導体素子接続パッド3Gに接続される接地用接触端子7Gが配置されている。プローブ6における信号用接触端子7Sと接地用接触端子7Gとはその先端部が半導体素子接続パッド3Sおよび3Gの配列ピッチに対応した100〜200μmのピッチであるとともに信号用接触端子7Sにおける特性インピーダンスが例えば50Ωになるように配置されており、信号用接触端子7Sの先端部を信号用半導体素子接続パッド3Sに接触させるとともに接地用接触端子7Gの先端部を接地用半導体素子接続パッド3Gに接触させることにより、それぞれが信号用半導体素子接続パッド3S,接地用半導体素子接続パッド3Gに接続される。   The probe 6 connected to the signal semiconductor element connection pad 3S and the ground semiconductor element connection pad 3G has a signal contact terminal 7S connected to the signal semiconductor element connection pad 3S at the center. The ground contact terminals 7G connected to the ground semiconductor element connection pads 3G are arranged on both sides thereof. The signal contact terminal 7S and the ground contact terminal 7G in the probe 6 have pitches of 100 to 200 μm corresponding to the arrangement pitch of the semiconductor element connection pads 3S and 3G, and the characteristic impedance at the signal contact terminal 7S. For example, the tip of the signal contact terminal 7S is brought into contact with the signal semiconductor element connection pad 3S and the tip of the ground contact terminal 7G is brought into contact with the ground semiconductor element connection pad 3G. As a result, each is connected to the signal semiconductor element connection pad 3S and the ground semiconductor element connection pad 3G.

他方、信号用プローブ接続パッド5Sおよび接地用プローブ接続パッド5Gに接続されるプローブ8は、中央部に信号用プローブ接続パッド5Sに接続される信号用接触端子9Sが配置されているとともに、その両側に接地用プローブ接続パッド5Gに接続される接地用接触端子9Gが配置されている。プローブ8における信号用接触端子9Sと接地用接触端子9Gとはその先端部がプローブ接続パッド5Sおよび5Gの配列ピッチに対応した100〜200μmのピッチであるとともに信号用接触端子9Sにおける特性インピーダンスが例えば50Ωになるように配置されており、信号用接触端子9Sの先端部を信号用プローブ接続パッド5Sに接触させるとともに接地用接触端子9Gの先端部を接地用プローブ接続パッド5Gに接触させることにより、それぞれが信号用プローブ接続パッド5S,接地用プローブ接続パッド5Gに接続される。   On the other hand, the probe 8 connected to the signal probe connection pad 5S and the ground probe connection pad 5G has a signal contact terminal 9S connected to the signal probe connection pad 5S at the center, and both sides thereof. The ground contact terminals 9G connected to the ground probe connection pads 5G are arranged. The signal contact terminal 9S and the ground contact terminal 9G in the probe 8 have pitches of 100 to 200 μm corresponding to the arrangement pitch of the probe connection pads 5S and 5G, and the characteristic impedance of the signal contact terminal 9S is, for example, The tip of the signal contact terminal 9S is brought into contact with the signal probe connection pad 5S and the tip of the ground contact terminal 9G is brought into contact with the ground probe connection pad 5G. Each is connected to the signal probe connection pad 5S and the ground probe connection pad 5G.

このとき、本発明の配線基板の高周波信号伝送特性の測定方法によれば、800〜1200μmの広いピッチで形成された信号用外部接続パッド4Sおよび接地用外部接続パッド4Gに、信号用外部接続パッド4Sに接続された信号用プローブ接続パッド5Sおよび接地用外部接続パッド4Gに接続された接地用プローブ接続パッド5Gを、信号用プローブ接続パッド5Sと接地用プローブ接続パッド5Gとのピッチが外部接続パッド4S,4Gのピッチより狭い100〜200μmのピッチに狭まるように配線基板10に設けるとともに、先端部が150から200μmのピッチで配置された信号用接触端子9Sおよび接地用接触端子9Gを有するプローブ8を、信号用接触端子9Sの先端部と信号用プローブ接続パッド5Sとを接触させるとともに接地用接触端子9Gの先端部と接地用プローブ接続パッド5Gとを接触させることにより信号用外部接続パッド4Sおよび接地用外部接続パッド4Gに接続することから、たとえ外部接続パッド4S,4Gのピッチが800〜1200μmと広いものであったとしても、プローブ接続パッド5S,5Gのピッチを100〜200μmに狭めることにより、測定装置と信号用外部接続パッド4Sおよび接地用外部接続パッド4Gとを接触端子9S,9Gの先端部のピッチが100〜200μmの狭いプローブ8を用いて接続することにより測定することが可能となるので、10GHzを超える周波数帯域においても配線基板10の高周波信号伝送特性を良好に測定することができる。   At this time, according to the method for measuring the high-frequency signal transmission characteristic of the wiring board of the present invention, the signal external connection pad 4S and the ground external connection pad 4G formed with a wide pitch of 800 to 1200 μm are connected to the signal external connection pad. The signal probe connection pad 5S connected to 4S and the ground probe connection pad 5G connected to the ground external connection pad 4G have the pitch between the signal probe connection pad 5S and the ground probe connection pad 5G as the external connection pad. A probe 8 having a signal contact terminal 9S and a ground contact terminal 9G provided on the wiring board 10 so as to be narrowed to a pitch of 100 to 200 μm, which is narrower than the pitch of 4S and 4G, and having tip portions arranged at a pitch of 150 to 200 μm. Is brought into contact with the tip of the signal contact terminal 9S and the signal probe connection pad 5S. Since both are connected to the signal external connection pad 4S and the ground external connection pad 4G by bringing the tip of the ground contact terminal 9G into contact with the ground probe connection pad 5G, the pitches of the external connection pads 4S and 4G are the same. The contact terminal between the measuring device and the signal external connection pad 4S and the ground external connection pad 4G is reduced by narrowing the pitch of the probe connection pads 5S and 5G to 100 to 200 μm. Since it becomes possible to perform measurement by connecting with the narrow probe 8 having a pitch of 9S, 9G of 100 to 200 μm, the high frequency signal transmission characteristic of the wiring board 10 is excellent even in a frequency band exceeding 10 GHz. Can be measured.

また、本発明の配線基板10によれば、800〜1200μmの広いピッチで形成された信号用外部接続パッド4Sおよび接地用外部接続パッド4Gに、信号用外部接続パッド4Sに接続された信号用プローブ接続パッド5Sおよび接地用外部接続パッド4Gに接続された接地用プローブ接続パッド5Gを、信号用プローブ接続パッド5Sと接地用プローブ接続パッド5Gとのピッチが外部接続パッド4S,4Gのピッチより狭い100〜200μmのピッチに狭まるように配線基板10に設けたことから、たとえ外部接続パッド4S,4Gのピッチが800〜1200μmと広いものであったとしても、プローブ接続パッド5S,5Gのピッチを100〜200μmに狭めることにより、測定装置と信号用外部接続パッド4Sおよび接地用外部接続パッド4Gとを接触端子9S,9Gの先端部のピッチが100〜200μmの狭いプローブ8を用いて接続することにより測定することが可能となるので、10GHzを超える周波数帯域においても配線基板10の高周波信号伝送特性を良好に測定することができる。ちなみに、本発明者が、特性インピーダンスを50Ωに整合させた信号線路とその両側の接地線路とからなる伝送線路の両端にそれぞれピッチが200μmのプローブを接続した本発明に対応する解析モデルと、前記伝送線路の一端にピッチが200μmのプローブを接続させるとともに他端にピッチが1000μmのプローブを接続した従来技術に対応する解析モデルとを電磁界シミュレーターを用いて解析した結果によると、本発明に対応するモデルでは従来技術に対応するモデルに対して伝送線路の両端のプローブ間の20GHzにおける射損が5dB程度改善されるとともに、挿入損が0.1dB程度改善される結果となった。   Further, according to the wiring board 10 of the present invention, the signal probe connected to the signal external connection pad 4S is connected to the signal external connection pad 4S and the ground external connection pad 4G formed at a wide pitch of 800 to 1200 μm. The grounding probe connection pad 5G connected to the connection pad 5S and the grounding external connection pad 4G has a narrower pitch between the signal probe connection pad 5S and the grounding probe connection pad 5G than the pitch of the external connection pads 4S and 4G. Since the wiring board 10 is provided so as to be narrowed to a pitch of ˜200 μm, even if the pitch of the external connection pads 4S, 4G is as wide as 800-1200 μm, the pitch of the probe connection pads 5S, 5G is set to 100— By narrowing to 200 μm, measuring device, signal external connection pad 4S and grounding outside Measurement can be performed by connecting the connection pad 4G with a narrow probe 8 having a pitch of 100 to 200 μm at the tips of the contact terminals 9S and 9G, so that the wiring board 10 can be used even in a frequency band exceeding 10 GHz. High frequency signal transmission characteristics can be measured satisfactorily. Incidentally, the inventor has an analysis model corresponding to the present invention in which a probe having a pitch of 200 μm is connected to both ends of a transmission line composed of a signal line whose characteristic impedance is matched to 50Ω and a ground line on both sides thereof, According to the results of analysis using an electromagnetic simulator, an analysis model corresponding to the prior art in which a probe having a pitch of 200 μm is connected to one end of a transmission line and a probe having a pitch of 1000 μm is connected to the other end corresponds to the present invention. In this model, as compared with the model corresponding to the prior art, the radiation loss at 20 GHz between the probes at both ends of the transmission line is improved by about 5 dB, and the insertion loss is improved by about 0.1 dB.

なお本発明は、上述の実施形態例に限定されるものではなく、本発明の要旨を逸脱しない範囲であれば、種々の変更は可能であり、例えば上述の実施形態例では、配線基板10の上面に設けられた半導体素子接続パッド3S,3Gと配線基板10の下面に設けられた外部接続パッド4S,4Gとの間の伝送特性を測定する場合について説明したが、配線基板の上面側に設けられたパッド同士の間や配線基板の下面側に設けられたパッド同士の間の伝送特性を測定する場合に本発明を適用してもよい。   It should be noted that the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the gist of the present invention. For example, in the above-described embodiment, the wiring board 10 can be changed. Although the case where the transmission characteristics between the semiconductor element connection pads 3S, 3G provided on the upper surface and the external connection pads 4S, 4G provided on the lower surface of the wiring substrate 10 are measured has been described, it is provided on the upper surface side of the wiring substrate. The present invention may be applied when measuring transmission characteristics between pads provided between pads or pads provided on the lower surface side of the wiring board.

1 絶縁基板
2S 信号線路
2G 接地線路
3S 信号用半導体素子接続パッド(第一の信号パッド)
3G 接地用半導体素子接続パッド(第一の接地パッド)
4S 信号用外部接続パッド(第二の信号パッド)
4G 接地用外部接続パッド(第二の接地パッド)
5S 信号用プローブ接続パッド
5G 接地用プローブ接続パッド
6 プローブ(第一のプローブ)
7S 信号用接触端子(第一の信号用接触端子)
7G 接地用接触端子(第一の接地用接触端子)
8 プローブ(第二のプローブ)
9S 信号用接触端子(第二の信号用接触端子)
9G 接地用接触端子(第二の接地用接触端子)
10 配線基板
1 Insulating Substrate 2S Signal Line 2G Ground Line 3S Signal Semiconductor Device Connection Pad (First Signal Pad)
3G grounding semiconductor element connection pad (first grounding pad)
4S signal external connection pad (second signal pad)
External connection pad for 4G grounding (second grounding pad)
5S Signal probe connection pad 5G Ground probe connection pad 6 Probe (first probe)
7S Signal contact terminal (first signal contact terminal)
7G Grounding contact terminal (first grounding contact terminal)
8 Probe (second probe)
9S Signal contact terminal (second signal contact terminal)
9G contact terminal for grounding (second contact terminal for grounding)
10 Wiring board

Claims (6)

第一のピッチで設けられた第一の信号用パッドおよび第一の接地用パッドと、前記第一のピッチより広い第二のピッチで設けられた第二の信号用パッドおよび第二の接地用パッドと、前記第一の信号用パッドと前記第二の信号用パッドとの間を接続する信号線路および前記第一の接地用パッドと前記第二の接地用パッドとの間を接続する接地線路とを有する配線基板の前記第一の信号用パッドおよび前記第一の接地用パッドと前記第二の信号用パッドおよび前記第二の接地用パッドとの間における高周波信号伝送特性を、両者間に測定装置のプローブを接続して測定する配線基板の高周波信号伝送特性の測定方法であって、前記配線基板の表面に前記第二の信号用パッドに接続された信号用プローブ接続パッドおよび前記第二の接地用パッドに接続された接地用プローブ接続パッドを前記信号用プローブ接続パッドと前記接地用プローブ接続パッドとのピッチが前記第二のピッチより狭い第三のピッチに狭まるように設けるとともに、先端部が前記第一のピッチで配置された第一の信号用接触端子および第一の接地用接触端子を有する第一のプローブを、前記第一の信号用接触端子の先端部と前記第一の信号用パッドとを接触させるとともに前記第一の接地用接触端子の先端部と前記第一の接地用パッドとを接触させることにより前記第一の信号用パッドおよび前記第一の接地用パッドに接続するとともに、先端部が前記第三のピッチで配置された第二の信号用接触端子および第二の接地用接触端子を有する第二のプローブを、前記第二の信号用接触端子の先端部と前記信号用プローブ接続パッドとを接触させるとともに前記第二の接地用接触端子の先端部と前記接地用プローブ接続パッドとを接触させることにより前記第二の信号用パッドおよび前記第二の接地用パッドに接続して測定することを特徴とする配線基板の高周波信号伝送特性の測定方法。   A first signal pad and a first ground pad provided at a first pitch; a second signal pad and a second ground pad provided at a second pitch wider than the first pitch; A pad, a signal line connecting between the first signal pad and the second signal pad, and a ground line connecting between the first ground pad and the second ground pad A high-frequency signal transmission characteristic between the first signal pad and the first ground pad and the second signal pad and the second ground pad of the wiring board having A method of measuring a high-frequency signal transmission characteristic of a wiring board that is measured by connecting a probe of a measuring device, the signal probe connection pad connected to the second signal pad on the surface of the wiring board, and the second Grounding pads The connected grounding probe connection pad is provided so that the pitch between the signal probe connection pad and the grounding probe connection pad is narrowed to a third pitch that is narrower than the second pitch, and the tip portion is the first A first probe having a first signal contact terminal and a first ground contact terminal arranged at a pitch of the first signal contact terminal and the first signal pad. The front end portion of the first ground contact terminal and the first ground pad are brought into contact with each other to connect to the first signal pad and the first ground pad, and the front end portion A second probe having a second signal contact terminal and a second ground contact terminal arranged at the third pitch, the tip of the second signal contact terminal and the signal probe And connecting to the second signal pad and the second grounding pad by bringing the tip of the second grounding contact terminal into contact with the grounding probe connection pad. And measuring the high-frequency signal transmission characteristics of the wiring board. 前記第一のピッチが100〜200μmであり、前記第二のピッチが800〜1200μmであることを特徴とする請求項1に記載の配線基板の高周波信号伝送特性の測定方法。   2. The method for measuring high-frequency signal transmission characteristics of a wiring board according to claim 1, wherein the first pitch is 100 to 200 μm and the second pitch is 800 to 1200 μm. 前記第三のピッチが100〜200μmであることを特徴とする請求項1または2に記載の配線基板の高周波信号伝送特性の測定方法。   The method for measuring high-frequency signal transmission characteristics of a wiring board according to claim 1, wherein the third pitch is 100 to 200 μm. 第一のピッチで設けられた第一の信号用パッドおよび第一の接地用パッドと、前記第一のピッチより広い第二のピッチで設けられた第二の信号用パッドおよび第二の接地用パッドと、前記第一の信号用パッドと前記第二の信号用パッドとの間を接続する信号線路および前記第一の接地用パッドと前記第二の接地用パッドとの間を接続する接地線路とを有する配線基板であって、前記第二の信号用パッドに接続された信号用プローブ接続パッドおよび前記第二の接地用パッドに接続された接地用プローブ接続パッドを前記信号用プローブ接続パッドと前記接地用プローブ接続パッドとのピッチが前記第二のピッチより狭い第三のピッチに狭まるように設けたことを特徴とする配線基板。   A first signal pad and a first ground pad provided at a first pitch; a second signal pad and a second ground pad provided at a second pitch wider than the first pitch; A pad, a signal line connecting between the first signal pad and the second signal pad, and a ground line connecting between the first ground pad and the second ground pad A signal probe connection pad connected to the second signal pad and a ground probe connection pad connected to the second ground pad, and the signal probe connection pad. A wiring board provided so that a pitch with the ground probe connection pad is narrowed to a third pitch which is narrower than the second pitch. 前記第一のピッチが100〜200μmであり、前記第二のピッチが800〜1200μmであることを特徴とする請求項4に記載の配線基板。   The wiring board according to claim 4, wherein the first pitch is 100 to 200 μm, and the second pitch is 800 to 1200 μm. 前記第三のピッチが100〜200μmであることを特徴とする請求項4または5に記載の配線基板。   6. The wiring board according to claim 4, wherein the third pitch is 100 to 200 [mu] m.
JP2009251472A 2009-10-30 2009-10-30 Method for measuring high-frequency signal transmission characteristics of wiring board and wiring board used therefor Active JP5361023B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009251472A JP5361023B2 (en) 2009-10-30 2009-10-30 Method for measuring high-frequency signal transmission characteristics of wiring board and wiring board used therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009251472A JP5361023B2 (en) 2009-10-30 2009-10-30 Method for measuring high-frequency signal transmission characteristics of wiring board and wiring board used therefor

Publications (2)

Publication Number Publication Date
JP2011095191A JP2011095191A (en) 2011-05-12
JP5361023B2 true JP5361023B2 (en) 2013-12-04

Family

ID=44112253

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009251472A Active JP5361023B2 (en) 2009-10-30 2009-10-30 Method for measuring high-frequency signal transmission characteristics of wiring board and wiring board used therefor

Country Status (1)

Country Link
JP (1) JP5361023B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023210526A1 (en) * 2022-04-28 2023-11-02 京セラ株式会社 Wiring board and mounting structure

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3619398B2 (en) * 1999-08-11 2005-02-09 京セラ株式会社 High frequency wiring board and connection structure
JP2001264384A (en) * 2000-03-21 2001-09-26 Sumitomo Metal Electronics Devices Inc Substrate for measuring electric characteristics and measuring method thereof
JP2009004809A (en) * 2008-09-16 2009-01-08 Kyocera Corp Wiring substrate

Also Published As

Publication number Publication date
JP2011095191A (en) 2011-05-12

Similar Documents

Publication Publication Date Title
JP5257088B2 (en) package
TWI404945B (en) Method, apparatus and system for testing integrated circuit having load impedance
JP2007502429A (en) Probe for device testing
JPWO2010041376A1 (en) Interposer substrate and semiconductor device
KR20100056733A (en) A test point structure and the method for radio frequency calibration and radio frequency test on printed curcuit board
JPS60260861A (en) Probe
TWM504245U (en) Contactor assembly, in particular HF measurement tip
JP5572066B2 (en) Test board
TWI472773B (en) Semiconductor chip probe and the conducted eme measurement apparatus with the semiconductor chip probe
TW201142299A (en) Probe card
JP5361023B2 (en) Method for measuring high-frequency signal transmission characteristics of wiring board and wiring board used therefor
JP5361024B2 (en) Wiring board
JP2008045950A (en) Probe card
TWM549349U (en) Probe card
KR100227283B1 (en) Probe card for high frequency
JP2006214943A (en) Probe device
KR100850433B1 (en) A probe card available measurement of high frequency
CN114006661B (en) Detection device
JP7242613B2 (en) Inter-board connection structure and inter-board connection method
JP4418883B2 (en) Integrated circuit chip test and inspection apparatus, integrated circuit chip test and inspection contact structure, and mesh contact
JP2006308528A (en) Probe card
JP3827485B2 (en) Transmission line substrate for measurement
JP2007285980A (en) Probe device
JP2023144360A (en) Measuring jig
KR20050019420A (en) Apparatus and Method for testing of applying an electric current of Front end Module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120604

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130822

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130829

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130831

R150 Certificate of patent or registration of utility model

Ref document number: 5361023

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350