JP5360634B2 - Carbon dioxide containing sterilized water generating method and apparatus capable of controlling carbon dioxide containing concentration - Google Patents

Carbon dioxide containing sterilized water generating method and apparatus capable of controlling carbon dioxide containing concentration Download PDF

Info

Publication number
JP5360634B2
JP5360634B2 JP2006139507A JP2006139507A JP5360634B2 JP 5360634 B2 JP5360634 B2 JP 5360634B2 JP 2006139507 A JP2006139507 A JP 2006139507A JP 2006139507 A JP2006139507 A JP 2006139507A JP 5360634 B2 JP5360634 B2 JP 5360634B2
Authority
JP
Japan
Prior art keywords
water
pressure vessel
carbon dioxide
aqueous solution
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006139507A
Other languages
Japanese (ja)
Other versions
JP2006320899A (en
Inventor
龍夫 岡崎
好紀 太田
洋 寺西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Veeta Inc
Original Assignee
Veeta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Veeta Inc filed Critical Veeta Inc
Priority to JP2006139507A priority Critical patent/JP5360634B2/en
Publication of JP2006320899A publication Critical patent/JP2006320899A/en
Application granted granted Critical
Publication of JP5360634B2 publication Critical patent/JP5360634B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Accessories For Mixers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and apparatus for producing weakly acidic sterilizing water which consists mainly of hypochlorous acid or chlorous acid and has an appropriate dissolved carbon dioxide gas content by dissolving the carbon dioxide gas into the sterilizing water. <P>SOLUTION: The sterilizing water which is a diluted aqueous solution of the hypochlorous acid or the chlorous acid flows dividedly into at least two conduits. While through one conduit the sterilizing water is injected or sprinkled into a pressure vessel 13 filled with the carbon dioxide gas, through the other conduit the sterilizing water is calmly conveyed into the pressure vessel. The carbon dioxide gas content dissolved in the sterilizing water is controlled by controlling the amount of the sterilizing water flowing through each conduit. The method thus controls the dissolved carbon dioxide gas content by freely controlling the amount of the sterilizing water flow both in the conduit for injection and in the conduit for calm conveyance. The method thereby functions as an accumulator and, at the same time, dissolves the appropriate amount of the carbon dioxide gas required for stabilizing pH. <P>COPYRIGHT: (C)2007,JPO&amp;INPIT

Description

本発明は、次亜塩素酸または亜塩素酸を主成分とする殺菌水の生成方法および装置に関する。The present invention relates to a method and apparatus for producing sterilizing water containing hypochlorous acid or chlorous acid as a main component.

次亜塩素酸または亜塩素酸を主成分とする殺菌水は人体に無害であり、且つ殺菌効果の優れていることが、現在では広く知られている。次亜塩素酸は次亜塩素酸ナトリウムを水で希釈して遊離塩素濃度が200ppm程度でpH値が8.6程度にした次亜塩素酸ナトリウム水溶液に10%程度含まれている。次亜塩素酸の比率は、pH値を下げて弱酸にすることにより、増加しpH値が5近傍でほぼ100%となることは、以前から知られている。  At present, it is widely known that hypochlorous acid or sterilized water containing chlorous acid as a main component is harmless to the human body and has an excellent sterilizing effect. Hypochlorous acid is contained in a sodium hypochlorite aqueous solution in which sodium hypochlorite is diluted with water to have a free chlorine concentration of about 200 ppm and a pH value of about 8.6. It has been known for a long time that the ratio of hypochlorous acid increases by lowering the pH value to make it a weak acid and the pH value becomes almost 100% in the vicinity of 5.

次亜塩素酸や亜塩素酸を主成分とする殺菌水の生成方法の一例としては、次亜塩素酸ナトリウム水溶液や亜塩素酸ナトリウム水溶液と塩酸などの酸性水溶液とを混合する方法が知られている。  As an example of a method of producing sterilizing water mainly composed of hypochlorous acid or chlorous acid, a method of mixing an aqueous solution of sodium hypochlorite or an aqueous solution of sodium chlorite with an acidic aqueous solution such as hydrochloric acid is known. Yes.

次亜塩素酸を主成分とする殺菌水の生成方法の別の例としては、塩酸水溶液を直接電気分解する方法が知られている。さらには、プラス極とマイナス極の間に隔膜を有する電解槽に、塩化ナトリウム水溶液を注入して電気分解することにより、プラス極側に次亜塩素酸水溶液を生成する方法や、塩酸と塩化ナトリウムの混合水溶液を直接電気分解して、生成する方法も知られている。  As another example of a method for producing sterilizing water containing hypochlorous acid as a main component, a method of directly electrolyzing a hydrochloric acid aqueous solution is known. Furthermore, a method of generating a hypochlorous acid aqueous solution on the positive electrode side by injecting and electrolyzing a sodium chloride aqueous solution into an electrolytic cell having a diaphragm between the positive electrode and the negative electrode, and hydrochloric acid and sodium chloride There is also known a method of directly electrolyzing a mixed aqueous solution.

また、上記の方法で生成した殺菌水を使用する方法として、次亜塩素酸ナトリウム水溶液と酸性水溶液を専用の装置で混合して生成するか、専用の電気分解装置で殺菌水を生成し、その装置から吐出される殺菌水を先止めバルブや蛇口から取り出して使う方法が知られている。  In addition, as a method of using the sterilized water generated by the above method, it is generated by mixing a sodium hypochlorite aqueous solution and an acidic aqueous solution with a dedicated device, or generating sterilized water with a dedicated electrolyzer, A method is known in which sterilized water discharged from the apparatus is taken out from a stop valve or a faucet.

発明が解決しようとする課題Problems to be solved by the invention

次亜塩素酸ナトリウム水溶液や亜塩素酸ナトリウム水溶液を混合して殺菌水を生成する方法は、手軽に殺菌水を生成できるという利点があるが、混合する酸性水溶液の量のコントロールが難しく、酸性水溶液の量が少しでも多いと、急激にpH値が低下してガス化領域に入り、塩素ガスや二酸化塩素ガスを発生すると言う問題を抱えている。
このような問題があるため、一般的に市販されている次亜塩素酸ナトリウムを含む殺菌剤や漂白剤は、その容器に、酸と一緒に使用することを禁じる注意書きが付されている。
The method of producing sterilized water by mixing sodium hypochlorite aqueous solution or sodium chlorite aqueous solution has the advantage that it can easily produce sterilized water, but it is difficult to control the amount of acidic aqueous solution to be mixed. If the amount is too small, the pH value is suddenly lowered to enter the gasification region, and there is a problem that chlorine gas or chlorine dioxide gas is generated.
Because of these problems, disinfectants and bleaching agents containing sodium hypochlorite that are generally available on the market are marked with a caution that prohibits their use with acids.

たとえば、実用新案登録3058642は、希釈水を2つの管路に分岐して通水し、一方の管路に次亜塩素酸ナトリウム水溶液を強制的に注入し、他方の管路に希塩酸水溶液を強制的に注入した後に、2つの管路を合流させて次亜塩素酸水溶液を生成するものである。この方法にあっては、上述したように生成される次亜塩素酸水溶液のpH値が塩酸の添加量に敏感であり、塩酸が僅かでも多すぎるとpH値が3以下のガス化領域に入ってしまうため、安全上の観点から生成する次亜塩素酸水溶液のpH値が6.5〜7.5の範囲に収まるように希塩酸の添加量の制御が行われていた。  For example, in the utility model registration 3058642, diluting water is branched and passed through two pipes, a sodium hypochlorite aqueous solution is forcibly injected into one pipe, and a dilute hydrochloric acid aqueous solution is forced into the other pipe. After the injection, the two pipes are merged to produce a hypochlorous acid aqueous solution. In this method, the pH value of the hypochlorous acid aqueous solution generated as described above is sensitive to the amount of hydrochloric acid added, and even a slight amount of hydrochloric acid enters the gasification region where the pH value is 3 or less. Therefore, the amount of dilute hydrochloric acid added has been controlled so that the pH value of the hypochlorous acid aqueous solution generated from the viewpoint of safety is within the range of 6.5 to 7.5.

また、塩酸水溶液を直接電気分解する方法やプラス極とマイナス極の間に隔膜を有する電解槽に、塩化ナトリウム水溶液を注入して電気分解することにより、プラス極側に次亜塩素酸水溶液を生成する方法や、塩酸と塩化ナトリウムの混合水溶液を直接電気分解して、生成する方法においては、もっとも次亜塩素酸の含有比率が高いpH値5近傍で生成しようとすると、微妙な調整が必要となり、実際にはpH値を7程度として、電解条件に一定の幅を設けて制御しているのが実情である。  In addition, an aqueous solution of hypochlorous acid is generated on the positive electrode side by electrolyzing the aqueous hydrochloric acid solution or injecting and electrolyzing the aqueous solution of sodium chloride into an electrolytic cell with a diaphragm between the positive and negative electrodes. And a method of directly electrolyzing a mixed aqueous solution of hydrochloric acid and sodium chloride to produce it at a pH value of about 5 where the content ratio of hypochlorous acid is the highest, requires delicate adjustment. Actually, the pH value is about 7 and the electrolysis conditions are controlled with a certain range.

たとえば、特開平3−258392は、隔膜により分離された電解槽による次亜塩素酸含有殺菌水の生成方法を開示しており、陽極のみに塩化ナトリウム溶液を添加し、希釈水(水道水)を両極に供給しながら電気分解することによって、陽極側から次亜塩素酸水溶液を取り出すようになっている。この方法にあっては、両極に同量の希釈水を供給すると、弱い電解状態であればpH値が約6の次亜塩素酸含有殺菌水を得ることが出来るが、これでは高濃度の次亜塩素酸含有殺菌水を得ることが出来ない。そこで、高濃度の次亜塩素酸含有殺菌水を得るために、電解状態を強くしなければならないが、電解状態を強くするとpH値が3以下のガス化領域に入ってしまうという問題がある。  For example, JP-A-3-258392 discloses a method for producing hypochlorous acid-containing sterilizing water using an electrolytic cell separated by a diaphragm. A sodium chloride solution is added only to the anode, and diluted water (tap water) is used. By carrying out electrolysis while supplying both electrodes, a hypochlorous acid aqueous solution is taken out from the anode side. In this method, when the same amount of dilution water is supplied to both electrodes, a hypochlorous acid-containing sterilizing water having a pH value of about 6 can be obtained in a weakly electrolyzed state. It is not possible to obtain chlorous acid-containing sterilized water. Therefore, in order to obtain a high concentration hypochlorous acid-containing sterilizing water, the electrolysis state must be strengthened, but there is a problem that if the electrolysis state is strengthened, the pH value enters a gasification region of 3 or less.

また、特開平6−099174は、電解槽内のプラス極とマイナス極の間に分離膜を備えていない無隔膜電解槽での電気分解による殺菌水生成方法に関するものであり、電解槽の中で高濃度の次亜塩素酸ナトリウムを生成した後に、希釈水で希釈して次亜塩素酸を主成分とした殺菌水を生成する方法を開示している。この方法では、電解槽に塩化ナトリウム水溶液を加える物であるが、電気分解により次亜塩素酸ナトリウムが生成されるときにpH調整が自動的に出来るように、希塩酸を混入しておくことが、所望のpH値の殺菌水を生成しようとすると、希塩酸の濃度を所定の値にあわせる必要があり、他方、所望の濃度の殺菌水を生成しようとすると、希塩酸の量の変更が必要となるため調整が難しく、電解槽の制御に関するpH値の範囲を広く設定しているのが実情である。  JP-A-6-099174 relates to a method for producing sterilized water by electrolysis in a non-diaphragm electrolyzer having no separation membrane between a positive electrode and a negative electrode in the electrolyzer. It discloses a method for producing sterilized water containing hypochlorous acid as a main component by producing high concentration sodium hypochlorite and then diluting with diluted water. In this method, sodium chloride aqueous solution is added to the electrolytic cell, but dilute hydrochloric acid may be mixed so that pH adjustment can be automatically performed when sodium hypochlorite is generated by electrolysis, When trying to produce sterilized water with a desired pH value, it is necessary to adjust the concentration of dilute hydrochloric acid to a predetermined value. On the other hand, when producing sterilized water with a desired concentration, it is necessary to change the amount of dilute hydrochloric acid. The actual situation is that adjustment is difficult and the range of the pH value related to the control of the electrolytic cell is set wide.

一方、上記の方法で生成した殺菌水を使用する方法として、次亜塩素酸ナトリウム水溶液と酸性水溶液を専用の装置で混合して生成するか、専用の電気分解装置で殺菌水を生成し、その装置から吐出される殺菌水を所望の量だけ取り出すために、流量調整バルブや先止めバルブや蛇口を介して取り出して使う方法一般的である。  On the other hand, as a method of using the sterilized water generated by the above method, a sodium hypochlorite aqueous solution and an acidic aqueous solution are mixed by a dedicated device, or sterilized water is generated by a dedicated electrolyzer, In order to take out a desired amount of sterilized water discharged from the apparatus, it is common to take it out through a flow rate adjusting valve, a stop valve, or a faucet.

その場合、装置から吐出される殺菌水の量が常に変動したり、極端に少ない量になったり、さらには止められることもあり、装置における生成量がごく微量であったり、生成量を一定にすることが出来ず、生成される殺菌水の濃度やpH値が不安定になる問題がある。そこで、実用新案登録3058642で開示されているように、生成された殺菌水をアキュームレイターなどの貯水型タンクを設けなければならず、コスト的な問題や装置が大きくなると言う問題がある。  In that case, the amount of sterilizing water discharged from the device may fluctuate constantly, become extremely small, or even be stopped. There is a problem that the concentration and pH value of the generated sterilizing water become unstable. Therefore, as disclosed in the utility model registration 3058642, the generated sterilized water must be provided with a water storage tank such as an accumulator, which causes a problem of cost and equipment.

課題を解決するための手段Means for solving the problem

本発明の1つは、次亜塩素酸ナトリウム水溶液や亜塩素酸ナトリウム水溶液を水道水や井水や海水などで希釈して所定の塩素濃度の殺菌水を生成する方法および装置であり、該水道水や井水や海水を少なくとも2つ以上の管路に分岐供給する分岐工程および機構を有し、該分岐工程および機構の上流において水道水や井水や海水に次亜塩素酸ナトリウム水溶液や亜塩素酸ナトリウム水溶液を添加して殺菌水を生成する工程および機構を有し、あるいは、次亜塩素酸ナトリウム水溶液や亜塩素酸ナトリウム水溶液を水道水や井水や海水などで希釈した水溶液と、塩酸や硫酸あるいは酢酸などの酸性水溶液を水道水や井水や海水などで希釈した水溶液を混合して殺菌水を生成する工程および機構を有し、あるいは、塩化ナトリウム水溶液や海水を無隔膜電解槽あるいは有隔膜電解槽で電気分解して殺菌水を生成する工程および装置を有し、圧力容器に大気圧以上の所定の圧力で炭酸ガスを供給する工程および機構を有し、前記殺菌水を分岐されたそれぞれの管路を介して該圧力容器内に噴射および/または散水を行う工程および機構を有し、さらに、単なる送水を行う工程および機構を有し、該圧力容器から殺菌水を排水する排水工程および機構を有し、噴射および/または散水および送水された殺菌水が前記圧力容器の底部に所定の範囲の水位で貯留する水位維持工程および機構を有することを特徴とする殺菌水生成方法および装置を提供する物である。  One aspect of the present invention is a method and apparatus for producing a sterilized water having a predetermined chlorine concentration by diluting an aqueous sodium hypochlorite solution or an aqueous sodium chlorite solution with tap water, well water, seawater, or the like. It has a branching process and mechanism for branching and supplying water, well water and seawater to at least two or more pipelines, and an aqueous solution of sodium hypochlorite or sublimation is added to tap water, well water or seawater upstream of the branching process and mechanism. It has a process and mechanism for generating sterilized water by adding an aqueous sodium chlorate solution, or an aqueous solution obtained by diluting an aqueous sodium hypochlorite solution or an aqueous sodium chlorite solution with tap water, well water, seawater, etc., and hydrochloric acid Has a process and mechanism for producing sterilized water by mixing aqueous solutions diluted with tap water, well water, seawater, etc. A process and a device for generating sterilizing water by electrolysis in a diaphragm electrolytic cell or a diaphragm electrolytic cell, a process and a mechanism for supplying carbon dioxide gas to a pressure vessel at a predetermined pressure equal to or higher than atmospheric pressure, and the sterilization It has a process and a mechanism for spraying and / or sprinkling water into the pressure vessel through each of the branched pipes, and further has a process and a mechanism for simple water supply. Disinfection process and mechanism for draining water, and having a water level maintenance process and mechanism for storing sterilized water sprayed and / or sprinkled and sent at a predetermined range of water level at the bottom of the pressure vessel It provides a water generation method and apparatus.

本発明の2つ目は、次亜塩素酸ナトリウム水溶液や亜塩素酸ナトリウム水溶液を水道水や井水や海水などで希釈して所定の塩素濃度の殺菌水を生成する方法および装置であり、該水道水や井水や海水を少なくとも2つ以上の管路に分岐供給する分岐工程および機構を有し、該分岐工程により分岐した管路の1つにおいて水道水や井水や海水に次亜塩素酸ナトリウム水溶液や亜塩素酸ナトリウム水溶液を添加して殺菌水を生成する工程および機構を有し、あるいは、次亜塩素酸ナトリウム水溶液や亜塩素酸ナトリウム水溶液を水道水や井水や海水などで希釈した水溶液と、塩酸や硫酸あるいは酢酸などの酸性水溶液を水道水や井水や海水などで希釈した水溶液を混合して殺菌水を生成する工程および機構を有し、あるいは、塩化ナトリウム水溶液や海水を無隔膜電解槽あるいは有隔膜電解槽で電気分解して殺菌水を生成する工程および装置を有し、圧力容器に大気圧以上の所定の圧力で炭酸ガスを供給する工程を有し、前記殺菌水および水道水や井水や海水を分岐されたそれぞれの管路を介して該圧力容器内に噴射および/または散水を行う工程および機構を有し、さらに、単なる送水を行う工程および機構を有し、噴射および/または散水および送水された殺菌水と水道水や井水や海水が圧力容器内で混合する希釈混合工程および機構を有し、該圧力容器から希釈混合された殺菌水を排水する排水工程および機構を有し、噴射および/または散水および送水された殺菌水と水道水や井水や海水との希釈混合殺菌水が前記圧力容器の底部に所定の範囲の水位で貯留する水位維持工程および機構を有することを特徴とする殺菌水生成方法および装置を提供する物である。  The second aspect of the present invention is a method and apparatus for producing a sterilized water having a predetermined chlorine concentration by diluting a sodium hypochlorite aqueous solution or a sodium chlorite aqueous solution with tap water, well water, seawater, or the like. It has a branching process and mechanism for branching and supplying tap water, well water and seawater to at least two pipes, and hypochlorine is added to tap water, well water and seawater in one of the pipes branched by the branching process. It has a process and mechanism for generating sterilized water by adding aqueous sodium phosphate solution or aqueous sodium chlorite solution, or diluting aqueous sodium hypochlorite solution or aqueous sodium chlorite solution with tap water, well water, seawater, etc. A process and mechanism for producing sterilized water by mixing an aqueous solution prepared by mixing an aqueous solution obtained by diluting an acidic aqueous solution such as hydrochloric acid, sulfuric acid or acetic acid with tap water, well water, seawater, or the like. And a process and an apparatus for generating sterilized water by electrolyzing water or seawater in a diaphragm membrane electrolytic cell or a diaphragm membrane electrolytic cell, and having a step of supplying carbon dioxide gas to a pressure vessel at a predetermined pressure higher than atmospheric pressure, A step and a mechanism for spraying and / or sprinkling water into the pressure vessel through the respective pipelines branched from the sterilizing water, tap water, well water, and seawater; And having a dilution mixing step and mechanism for mixing the sterilized water jetted and / or sprinkled and delivered with tap water, well water or seawater in the pressure vessel, and the sterilized water diluted and mixed from the pressure vessel It has a drainage process and mechanism for draining, and the sterilized water that has been diluted and sprayed and / or sprinkled and sent with tap water, well water, or seawater is stored at a water level within a predetermined range at the bottom of the pressure vessel. Water level maintenance process There is provided a sterilizing water producing method and apparatus characterized by having a fine mechanism.

本発明の3つ目は、次亜塩素酸ナトリウム水溶液や亜塩素酸ナトリウム水溶液を水道水や井水や海水などで希釈して所定の塩素濃度の殺菌水を生成する方法および装置であり、該水道水や井水や海水を少なくとも2つ以上の管路に分岐供給する分岐工程および機構を有し、圧力容器に大気圧以上の所定の圧力で炭酸ガスを供給する工程および機構を有し、前記水道水や井水や海水を分岐されたそれぞれの管路を介して該圧力容器内に噴射および/または散水を行う工程および機構を有し、さらに、単なる送水を行う工程および機構を有し、該圧力容器から水道水や井水や海水を排水する排水工程および機構を有し、噴射および/または散水および送水された水道水や井水や海水が前記圧力容器の底部に所定の範囲の水位で貯留する水位維持工程および機構を有し、圧力容器から排水された水道水や井水や海水に次亜塩素酸ナトリウム水溶液や亜塩素酸ナトリウム水溶液を添加して殺菌水を生成する工程および機構を有し、あるいは、次亜塩素酸ナトリウム水溶液や亜塩素酸ナトリウム水溶液を水道水や井水や海水などで希釈した水溶液と、塩酸や硫酸あるいは酢酸などの酸性水溶液を水道水や井水や海水などで希釈した水溶液を混合して殺菌水を生成する工程および機構を有し、あるいは、塩化ナトリウム水溶液や海水を無隔膜電解槽あるいは有隔膜電解槽で電気分解して殺菌水を生成する工程および装置を有することを特徴とする殺菌水生成方法および装置を提供する物である。A third aspect of the present invention is a method and apparatus for producing a sterilized water having a predetermined chlorine concentration by diluting a sodium hypochlorite aqueous solution or a sodium chlorite aqueous solution with tap water, well water, seawater, or the like. Having a branching process and mechanism for branching and supplying tap water, well water and seawater to at least two or more pipelines, and having a process and mechanism for supplying carbon dioxide gas to the pressure vessel at a predetermined pressure of atmospheric pressure or higher, It has a process and mechanism for spraying and / or sprinkling water into the pressure vessel through the pipes branched from the tap water, well water, and seawater, and further has a process and mechanism for mere water supply And a drainage process and mechanism for draining tap water, well water, and seawater from the pressure vessel, and the tap water, well water, and seawater that has been jetted and / or sprinkled and sent are within a predetermined range at the bottom of the pressure vessel. Water level maintenance work stored at the water level And having a process and mechanism for generating sterilized water by adding sodium hypochlorite aqueous solution or sodium chlorite aqueous solution to tap water, well water or seawater drained from the pressure vessel, or An aqueous solution in which sodium hypochlorite aqueous solution or sodium chlorite aqueous solution is diluted with tap water, well water or seawater, and an aqueous solution in which acidic aqueous solution such as hydrochloric acid, sulfuric acid or acetic acid is diluted with tap water, well water or seawater, etc. It has a process and mechanism for producing sterilizing water by mixing, or has a process and apparatus for producing sterilizing water by electrolyzing a sodium chloride aqueous solution or seawater in a diaphragm electrolyzer or a diaphragm electrolyzer. And a sterilizing water generating method and apparatus.

以下に図面を参照して本発明の実施例を説明する。
図1は、本発明の代表的な構造を示す図である。水道水や井水や海水などの原水は管路1を通って供給され、逆止弁2を通り電動開閉バルブ3を通って、ポンプ4に給水される。
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is a diagram showing a typical structure of the present invention. Raw water such as tap water, well water, and seawater is supplied through the pipe line 1, passes through the check valve 2, passes through the electric on-off valve 3, and is supplied to the pump 4.

ポンプ4で加圧された原水は流量計5を通って管路6に送水される。一方タンク7に貯留された次亜塩素酸ナトリウム水溶液はポンプ8により加圧されて、流路切換えバルブ9により添加部10を介して管路6内の原水に添加される。次亜塩素酸ナトリウム水溶液が添加されて所定の塩素濃度となった殺菌水は管路12に設けられた分岐バルブ201により管路202と203にそれぞれ所定の比率で分岐送水され、管路203に送水された殺菌水は圧力容器13の上部にある空間14に送水さ、分岐管路202に送水された殺菌水は圧力容器13の空間40に送水される。このとき、分岐管路202から空間40に送水された殺菌水が空間40内で微細な水滴とならないように飛散防止部材204で飛散が抑制される。  The raw water pressurized by the pump 4 is sent to the pipe 6 through the flow meter 5. On the other hand, the sodium hypochlorite aqueous solution stored in the tank 7 is pressurized by the pump 8, and is added to the raw water in the pipe line 6 by the flow path switching valve 9 via the adding section 10. The sterilized water having a predetermined chlorine concentration by adding the sodium hypochlorite aqueous solution is branched and fed to the pipe lines 202 and 203 at a predetermined ratio by the branch valve 201 provided in the pipe line 12. The sterilized water sent is sent to the space 14 above the pressure vessel 13, and the sterilized water sent to the branch pipe 202 is sent to the space 40 of the pressure vessel 13. At this time, scattering is suppressed by the scattering preventing member 204 so that the sterilized water sent from the branch pipe 202 to the space 40 does not form fine water droplets in the space 40.

また、炭酸ガスボンベ16から手動バルブ17を介して管路39に送られた炭酸ガスは、2つの減圧弁18,19により減圧され電動開閉バルブ20と逆止弁21を通って、さらに分岐部23を通り圧力容器内の空間40へ供給される。このとき、電動開閉バルブ34は閉鎖状態にあり、分岐部23から管路33を通って管路35へ流れるのを防いでいる。また、管路39には圧力計22が設置されており、炭酸ガスが供給される空間40内の圧力を検出できるようになっている。  Further, the carbon dioxide gas sent from the carbon dioxide cylinder 16 to the pipe line 39 via the manual valve 17 is decompressed by the two pressure reducing valves 18 and 19, passes through the electric on-off valve 20 and the check valve 21, and is further branched. And is supplied to the space 40 in the pressure vessel. At this time, the electric opening / closing valve 34 is in a closed state, preventing the electric opening / closing valve 34 from flowing from the branching portion 23 through the conduit 33 to the conduit 35. A pressure gauge 22 is installed in the pipe line 39 so that the pressure in the space 40 to which carbon dioxide gas is supplied can be detected.

さらに圧力容器13内の空間40内にはマグネット26が設けられたフロート25を有し、圧力容器13の外側にはマグネット26に反応するリミットスイッチ27,28,29,30を有している。
圧力容器40内の空間14と40を隔てる隔壁41には噴射孔15が複数設けられ、少なくとも2つの噴射孔から噴射される噴射流が衝突するような位置関係を有している。
Further, a float 25 provided with a magnet 26 is provided in a space 40 in the pressure vessel 13, and limit switches 27, 28, 29, and 30 that react to the magnet 26 are provided outside the pressure vessel 13.
A plurality of injection holes 15 are provided in the partition wall 41 that separates the spaces 14 and 40 in the pressure vessel 40 and have a positional relationship such that the injection flows injected from at least two injection holes collide.

空間14に送られた殺菌水は、噴射孔15から互いに衝突するようにして空間40内に細かい水滴として噴射される。これにより、空間40内に充填されている炭酸ガスが前記の細かい水滴に吸収される。一方、管路202を介して空間40内に送水された殺菌水は空間40内の平気面を伝って静かに底部に貯留する。したがって、管路202から送水された殺菌水にはほとんど炭酸ガスは溶解しない。
炭酸ガスを吸収した細かい水滴と送水口207から送水された殺菌水は圧力容器13内の底部に貯留されて、お互いに混合される。
The sterilizing water sent to the space 14 is ejected as fine water droplets into the space 40 so as to collide with each other from the ejection holes 15. Thereby, the carbon dioxide gas filled in the space 40 is absorbed by the fine water droplets. On the other hand, the sterilized water sent into the space 40 through the pipe line 202 is gently stored in the bottom portion along the flat air surface in the space 40. Therefore, carbon dioxide gas hardly dissolves in the sterilized water sent from the pipe line 202.
Fine water droplets that have absorbed carbon dioxide gas and sterilized water fed from the water feed port 207 are stored at the bottom of the pressure vessel 13 and mixed with each other.

ここで、分岐バルブ201により管路202と203に送水される殺菌水の比率を変えると、圧力容器13の底部に貯留される殺菌水の炭酸ガスの溶存濃度が変化する。すなわち、管路202に送水される殺菌水の量を増やすと、圧力容器13の底部に貯留する殺菌水の炭酸ガス溶存濃度は減少し、逆に、管路203に送水される殺菌水の量を増やすと、圧力容器13の底部に貯留する殺菌水の炭酸ガス溶存濃度は増加する。これによって、生成される殺菌水のpHを所定の値に調整することが出来る。  Here, if the ratio of the sterilizing water sent to the pipes 202 and 203 by the branch valve 201 is changed, the dissolved concentration of carbon dioxide in the sterilizing water stored at the bottom of the pressure vessel 13 changes. That is, when the amount of the sterilizing water sent to the pipe line 202 is increased, the carbon dioxide dissolved concentration of the sterilizing water stored at the bottom of the pressure vessel 13 decreases, and conversely, the amount of the sterilizing water sent to the pipe line 203 Is increased, the carbon dioxide dissolved concentration of the sterilizing water stored at the bottom of the pressure vessel 13 increases. As a result, the pH of the produced sterilizing water can be adjusted to a predetermined value.

圧力容器13の底部には管路31が接続され、電動開閉バルブ34に接続された管路35と合流部32で合流している。合流部には管路36が接続されており、管路36には溶存炭酸ガス濃度計208が設けられており、圧力容器13から排水される殺菌水中の炭酸ガス濃度が測定される。また、溶存炭酸ガス濃度計208の代わりにpH計を設置して排水される殺菌水のpH値を測定するようにしても良い。さらにその下流に分岐部42が設けられており、分岐部42で管路43と45に分岐される。管路43には電動開閉バルブ44が設けられており、管路45には手動あるいは電動開閉バルブ37が設けられている。  A pipeline 31 is connected to the bottom of the pressure vessel 13, and merges at a junction 32 with a pipeline 35 connected to an electric opening / closing valve 34. A pipe 36 is connected to the junction, and a dissolved carbon dioxide concentration meter 208 is provided in the pipe 36 to measure the carbon dioxide concentration in the sterilized water drained from the pressure vessel 13. Further, instead of the dissolved carbon dioxide concentration meter 208, a pH meter may be installed to measure the pH value of the sterilized water to be drained. Further, a branching portion 42 is provided downstream thereof, and the branching portion 42 branches into pipes 43 and 45. An electric opening / closing valve 44 is provided in the pipe line 43, and a manual or electric opening / closing valve 37 is provided in the pipe line 45.

次に動作について詳細に説明する。まず、初期の準備動作を説明する。供給された水道水や井水や海水の原水はポンプ4により送水され、その流量は流量計5により計測される。その流量に応じて、予め決められた量の次亜塩素酸ナトリウム水溶液がポンプ8により添加部10に送られ原水に添加される。  Next, the operation will be described in detail. First, an initial preparation operation will be described. The supplied tap water, well water, or raw seawater is fed by a pump 4, and the flow rate is measured by a flow meter 5. In accordance with the flow rate, a predetermined amount of aqueous sodium hypochlorite solution is sent to the addition unit 10 by the pump 8 and added to the raw water.

次亜塩素酸ナトリウム水溶液が添加されて所定の塩素濃度となった殺菌水は、噴射孔15から互いに衝突する形で空間40内に噴射されるとともに、送水口207から静かに空間40内に送水される。このとき、電動開閉バルブ20および手動あるいは電動開閉バルブ37は閉鎖、電動開閉バルブ34および44は開放の状態となっている。また、電動開閉バルブ44を介して排水される流量が噴射孔15から噴射供給される殺菌水と送水口207から送水される殺菌水の合計量よりも少なくなるように、管路31を細くしておくか、管路31に絞り212などを設けておく。噴射された殺菌水は圧力容器13の空間40内に溜まってゆき、それに伴い空間40内の空気は管路24から管路23に入り、電動開閉バルブ34を介して管路35を通り、合流部32で排水と合流し管路43、電動開閉バルブ44を通って排出される。  The sterilizing water having a predetermined chlorine concentration by adding the sodium hypochlorite aqueous solution is jetted into the space 40 from the jet hole 15 so as to collide with each other, and the water is gently fed into the space 40 from the water feed port 207. Is done. At this time, the electric open / close valve 20 and the manual or electric open / close valve 37 are closed, and the electric open / close valves 34 and 44 are open. Further, the pipe line 31 is narrowed so that the flow rate drained through the electric opening / closing valve 44 is smaller than the total amount of the sterilizing water injected and supplied from the injection hole 15 and the sterilizing water supplied from the water supply port 207. Alternatively, a throttle 212 or the like is provided in the pipeline 31. The sprayed sterilizing water accumulates in the space 40 of the pressure vessel 13, and accordingly, the air in the space 40 enters the pipeline 23 from the pipeline 24, passes through the pipeline 35 through the electric opening / closing valve 34, and joins. In part 32, the wastewater is combined with drainage and discharged through a conduit 43 and an electric opening / closing valve 44.

空間40内の水位が上昇すると、フロート25も上昇してリミットスイッチ27、28,29,30が順番に反応する。リミットスイッチ30が反応した時点で電動開閉バルブ34を閉鎖すると共に、電動開閉バルブ20を開放する。これにより、炭酸ガスが減圧弁18,19で所定の圧に減圧されて管路24を介して炭酸ガスボンベ16から空間40内に供給される。これらの動作により、空間40内の空気が完全に排出され、空間40内の気体は炭酸ガスだけになる。  When the water level in the space 40 rises, the float 25 also rises and the limit switches 27, 28, 29, and 30 react in turn. When the limit switch 30 reacts, the electric opening / closing valve 34 is closed and the electric opening / closing valve 20 is opened. As a result, the carbon dioxide gas is depressurized to a predetermined pressure by the pressure reducing valves 18 and 19, and is supplied into the space 40 from the carbon dioxide gas cylinder 16 through the conduit 24. By these operations, the air in the space 40 is completely discharged, and the gas in the space 40 is only carbon dioxide.

供給された炭酸ガスの圧力により、管路31からの排水量が噴射孔15から噴射供給される殺菌水と送水口207から送水される殺菌水の合計量よりも多くなり、次第に空間40内の水位が下降する。水位が下降してリミットスイッチ28が反応すると、電動開閉バルブ20および44を閉鎖する。すると、水位は徐々に上昇し、それに伴い空間40内の圧力が上昇する。その圧力を圧力計22で検知し、設定された圧力を超えるかリミットスイッチ29が反応したらポンプ4を停止すると共に、電動開閉バルブ3を閉鎖して給水を停止し、準備完了の表示を行い、いつでも使える状態になったことを知らせる。  Due to the pressure of the supplied carbon dioxide gas, the amount of drainage from the pipe line 31 becomes larger than the total amount of sterilized water injected and supplied from the injection hole 15 and sterilized water supplied from the water supply port 207, and gradually the water level in the space 40. Descends. When the water level falls and the limit switch 28 reacts, the electric on-off valves 20 and 44 are closed. Then, the water level rises gradually, and the pressure in the space 40 rises accordingly. The pressure is detected by the pressure gauge 22, and when the set pressure is exceeded or the limit switch 29 reacts, the pump 4 is stopped, the electric on-off valve 3 is closed to stop the water supply, and the preparation completion is displayed. Inform them that they are ready to use.

以下は、通常の動作を説明する。上記の準備動作が完了した後に手動あるいは電動開閉バルブ37を開放して吐水すると、空間40内の水位が下がり、リミットスイッチ28が反応する。これに伴い電動開閉バルブ3を開放すると共にポンプ4を運転し、送水を開始する。すると、空間40内の水位は再び上昇し、リミットスイッチ29の位置まで上昇して、リミットスイッチ29が反応する。リミットスイッチ29が反応したら電動開閉バルブ20を開放し炭酸ガスの供給を開始する。すると空間40内の圧力が上昇し、今度は徐々に水位が下がり再びリミットスイッチ28の水位まで下降して、リミットスイッチ28が反応する。この信号により、電動開閉バルブ20を閉鎖して炭酸ガスの供給を停止する。すると、空間40内の炭酸ガスが噴射された殺菌水に吸収されて空間40内の圧力が減少し、徐々に水位が上昇し始める。この繰り返しにより空間40内の水位をリミットスイッチ28と29の間に保つことが出来る。  The following describes the normal operation. After the above preparatory operation is completed, if the water is discharged by opening the manual or electric opening / closing valve 37, the water level in the space 40 is lowered and the limit switch 28 reacts. Along with this, the electric on-off valve 3 is opened and the pump 4 is operated to start water supply. Then, the water level in the space 40 rises again, rises to the position of the limit switch 29, and the limit switch 29 reacts. When the limit switch 29 reacts, the electric opening / closing valve 20 is opened and the supply of carbon dioxide gas is started. Then, the pressure in the space 40 rises, this time the water level gradually decreases and again falls to the water level of the limit switch 28, and the limit switch 28 reacts. By this signal, the electric opening / closing valve 20 is closed to stop the supply of carbon dioxide gas. Then, the carbon dioxide gas in the space 40 is absorbed by the injected sterilizing water, the pressure in the space 40 decreases, and the water level starts to rise gradually. By repeating this, the water level in the space 40 can be maintained between the limit switches 28 and 29.

また、この通常動作の状態で手動あるいは電動開閉バルブ37を絞ったり閉鎖したりすると、吐水量が減少するため、空間40からの排水よりも噴射孔15から供給される殺菌水と送水口207から送水される殺菌水の合計量が常に多くなり、電動開閉バルブ20を開放して炭酸ガスを供給しても、空間40内の水位が上昇し、空間40内の圧力が上昇することになる。圧力が上昇して設定された圧力を超えた場合は、前記の通常動作時の水位制御の如何に関わらず、ポンプ4を停止すると共に、電動開閉バルブ3を閉鎖して給水を停止する。そして、吐水により空間40内の水位が再び下がり、リミットスイッチ28が反応したら、再びポンプ4を運転すると共に電動開閉バルブ3を開放して給水を開始して通常の動作に戻る。  In addition, if the manual operation or the electric opening / closing valve 37 is throttled or closed in this normal operation state, the amount of water discharged decreases, so the sterilized water supplied from the injection hole 15 and the water supply port 207 rather than the drainage from the space 40. The total amount of sterilized water to be sent always increases, and even if the electric on-off valve 20 is opened and carbon dioxide is supplied, the water level in the space 40 rises and the pressure in the space 40 rises. When the pressure rises and exceeds the set pressure, the pump 4 is stopped and the electric open / close valve 3 is closed to stop water supply regardless of the water level control during the normal operation. When the water level in the space 40 drops again due to water discharge and the limit switch 28 reacts, the pump 4 is operated again, the electric on-off valve 3 is opened, water supply is started, and normal operation is resumed.

この動作により、手動あるいは電動開閉バルブ37を介して吐水される殺菌水の量が微量であったり、変動したりする場合においても、新たにアキュームレイターのようなタンクを設けなくても、安定して炭酸ガス含有殺菌水を生成することができる。By this operation, even when the amount of sterilizing water discharged manually or through the electric open / close valve 37 is very small or fluctuates, it is stable without newly providing a tank such as an accumulator. Thus, sterilized water containing carbon dioxide can be generated.

さらに、圧力容器13内の水位が上昇してリミットスイッチ30が水位を検出しても、圧力容器13内の圧力が所定の圧を超えていない場合は、炭酸ガスの供給が不足していると言う警告を表示する機能も有している。  Furthermore, even if the water level in the pressure vessel 13 rises and the limit switch 30 detects the water level, if the pressure in the pressure vessel 13 does not exceed the predetermined pressure, the supply of carbon dioxide gas is insufficient. It also has a function to display a warning.

上記の説明では、圧力容器13内の圧力が所定の圧力を超えるとポンプ4を停止すると共に、電動開閉バルブ3を閉鎖して給水を止めるが、リミットスイッチ29と30の間にさらにもう1つリミットスイッチを設け、そのリミットスイッチが水位を検知したら、ポンプ4を停止すると共に、電動開閉バルブ3を閉鎖して給水を止めても良い。そして、前記リミットスイッチが水位を検知しても、圧力容器13内の圧力が所定の圧力を超えていない場合は、炭酸ガスの供給不足を検知して、警告を表示する。  In the above description, when the pressure in the pressure vessel 13 exceeds a predetermined pressure, the pump 4 is stopped and the electric opening / closing valve 3 is closed to stop the water supply, but another one is provided between the limit switches 29 and 30. When a limit switch is provided and the limit switch detects the water level, the pump 4 may be stopped and the electric opening / closing valve 3 may be closed to stop water supply. And even if the limit switch detects the water level, if the pressure in the pressure vessel 13 does not exceed a predetermined pressure, a shortage of carbon dioxide gas is detected and a warning is displayed.

次に図1において、もう一つの動作について詳細に説明する。まず、初期の準備動作を説明する。供給された水道水や井水や海水の原水はポンプにより送水され、その流量は流量計5により計測される。その流量に応じて、予め決められた量の次亜塩素酸ナトリウム水溶液がポンプ8により添加部10に送られ原水に添加される。  Next, another operation will be described in detail with reference to FIG. First, an initial preparation operation will be described. The supplied tap water, well water, or raw seawater is fed by a pump, and the flow rate is measured by a flow meter 5. In accordance with the flow rate, a predetermined amount of aqueous sodium hypochlorite solution is sent to the addition unit 10 by the pump 8 and added to the raw water.

次亜塩素酸ナトリウム水溶液が添加されて所定の塩素濃度となった殺菌水は、管路12に設けられた分岐バルブ201により管路202と203にそれぞれ所定の比率で分岐送水され、管路203に送水された殺菌水は圧力容器13の上部にある空間14に送水され、分岐管路202に送水された殺菌水は圧力容器13の空間40内に送水される。  The sterilized water having a predetermined chlorine concentration by adding the sodium hypochlorite aqueous solution is branched and fed to the pipes 202 and 203 at a predetermined ratio by the branch valve 201 provided in the pipe 12. The sterilized water sent to the pressure vessel 13 is sent to the space 14 above the pressure vessel 13, and the sterilized water sent to the branch pipe 202 is sent into the space 40 of the pressure vessel 13.

このとき、電動開閉バルブ20と手動あるいは電動開閉バルブ37は閉鎖、電動開閉バルブ34および44は開放の状態となっている。また、電動開閉バルブ44を介して排水される流量が噴射孔15から噴射供給される殺菌水と送水口207から送水される殺菌水の合計量よりも少なくなるように、管路31を細くしておくか、管路31に絞りなどを設けておく。噴射された殺菌水は圧力容器13の空間40内に溜まってゆき、それに伴い空間40内の空気は管路24から管路23に入り、電動開閉バルブ34を介して管路35を通り、合流部32で排水と合流し管路43、電動開閉バルブ44を通って排出される。  At this time, the electric open / close valve 20 and the manual or electric open / close valve 37 are closed, and the electric open / close valves 34 and 44 are open. Further, the pipe line 31 is narrowed so that the flow rate drained through the electric opening / closing valve 44 is smaller than the total amount of the sterilizing water injected and supplied from the injection hole 15 and the sterilizing water supplied from the water supply port 207. Alternatively, a restriction or the like is provided in the pipe 31. The sprayed sterilizing water accumulates in the space 40 of the pressure vessel 13, and accordingly, the air in the space 40 enters the pipeline 23 from the pipeline 24, passes through the pipeline 35 through the electric opening / closing valve 34, and joins. In part 32, the wastewater is combined with drainage and discharged through a conduit 43 and an electric opening / closing valve 44.

空間40内の水位が上昇すると、フロート25も上昇してリミットスイッチ27、28,29,30が順番に反応する。リミットスイッチ30が反応した時点で電動開閉バルブ3、34を閉鎖しポンプ4を停止すると共に、電動開閉バルブ20を開放する。これにより、炭酸ガスが減圧弁18,19で所定の圧に減圧されて管路24を介して炭酸ガスボンベ16から空間40内に供給される。これらの動作により、空間40内の空気が完全に排出され、空間40内の気体は炭酸ガスだけになる。  When the water level in the space 40 rises, the float 25 also rises and the limit switches 27, 28, 29, and 30 react in turn. When the limit switch 30 reacts, the electric open / close valves 3 and 34 are closed to stop the pump 4 and the electric open / close valve 20 is opened. As a result, the carbon dioxide gas is depressurized to a predetermined pressure by the pressure reducing valves 18 and 19, and is supplied into the space 40 from the carbon dioxide gas cylinder 16 through the conduit 24. By these operations, the air in the space 40 is completely discharged, and the gas in the space 40 is only carbon dioxide.

供給された炭酸ガスの圧力により、空間40内の殺菌水が管路31から排水され、次第に空間40内の水位が下降する。水位が下降してリミットスイッチ29が反応すると、電動開閉バルブ44を閉鎖し、準備完了の表示を行い、いつでも使える状態になったことを知らせる。  The sterilized water in the space 40 is drained from the pipe line 31 by the pressure of the supplied carbon dioxide gas, and the water level in the space 40 gradually falls. When the water level falls and the limit switch 29 reacts, the electric on-off valve 44 is closed and a ready indication is displayed to notify that it is ready for use.

以下は、通常の動作を説明する。上記の準備動作が完了した後に手動あるいは電動開閉バルブ37を開放して吐水すると、空間40内の水位が下がり、リミットスイッチ28が反応する。これに伴い電動開閉バルブ3を開放すると共にポンプ4を運転し、送水を開始する。すると、空間40内の水位は再び上昇し、リミットスイッチ29の位置まで上昇して、リミットスイッチ29が反応する。リミットスイッチ29が反応したら電動開閉バルブ3を閉鎖すると共にポンプ4を停止して送水を停止する。今度は徐々に水位が下がり再びリミットスイッチ28の水位まで下降して、リミットスイッチ28が反応する。この繰り返しにより空間40内の水位をリミットスイッチ28と29の間に保つことが出来る。  The following describes the normal operation. After the above preparatory operation is completed, if the water is discharged by opening the manual or electric opening / closing valve 37, the water level in the space 40 is lowered and the limit switch 28 reacts. Along with this, the electric on-off valve 3 is opened and the pump 4 is operated to start water supply. Then, the water level in the space 40 rises again, rises to the position of the limit switch 29, and the limit switch 29 reacts. When the limit switch 29 reacts, the electric on-off valve 3 is closed and the pump 4 is stopped to stop water supply. This time, the water level gradually decreases and again falls to the water level of the limit switch 28, and the limit switch 28 reacts. By repeating this, the water level in the space 40 can be maintained between the limit switches 28 and 29.

また、このポンプにより送水している状態で手動あるいは電動開閉バルブ37を絞ったり閉鎖したりすると、吐水量が減少するため、空間40内の水位が急激に上昇し、空間40内の圧力が上昇することになる。この場合は、圧力が上昇して設定された圧力を超えた場合は、前記の通常動作時の水位制御の如何に関わらず、ポンプ4を停止すると共に、電動開閉バルブ3を閉鎖して送水を停止する。そして、吐水により空間40内の水位が再び下がり、リミットスイッチ28が反応したら、再びポンプ4を運転すると共に電動開閉バルブ3を開放して送水を開始して通常の動作に戻る。  Moreover, if the electric or open / close valve 37 is manually throttled or closed while water is being supplied by the pump, the water discharge amount decreases, so that the water level in the space 40 increases rapidly and the pressure in the space 40 increases. Will do. In this case, when the pressure rises and exceeds the set pressure, the pump 4 is stopped and the electric on-off valve 3 is closed to supply water regardless of the water level control during the normal operation. Stop. When the water level in the space 40 drops again due to water discharge and the limit switch 28 reacts, the pump 4 is operated again, and the electric on-off valve 3 is opened to start water supply to return to normal operation.

また、上記いずれの動作においても、管路36に設けられた溶存炭酸ガス濃度計により殺菌水中に溶けている炭酸ガスの濃度を測定し、予め設定された値よりも濃度が高い場合は、分岐バルブ201で噴射孔15への送水を減らし、送水口207への送水を増やす。これにより、空間40内への噴射孔15からの噴射が少なくなり、炭酸ガスの溶解量を少なくすることができる。逆に溶存炭酸ガス濃度計による値が所定の濃度よりも低い場合は、噴射孔15への送水を増やし、送水口207への送水を減らして、炭酸ガスの溶解量を増加させる。  In any of the above operations, the concentration of carbon dioxide dissolved in the sterilized water is measured by the dissolved carbon dioxide concentration meter provided in the pipe 36, and if the concentration is higher than a preset value, the branching is performed. The valve 201 reduces the water supply to the injection hole 15 and increases the water supply to the water supply port 207. Thereby, the injection from the injection holes 15 into the space 40 is reduced, and the amount of carbon dioxide dissolved can be reduced. Conversely, when the value by the dissolved carbon dioxide concentration meter is lower than the predetermined concentration, the amount of water supplied to the injection holes 15 is increased, the amount of water supplied to the water supply ports 207 is decreased, and the amount of carbon dioxide dissolved is increased.

さらに、本装置には、次亜塩素酸ナトリウム水溶液を供給する管路に発生する気泡を除去するための気泡抜き機構を有している。すなわち、次亜塩素酸ナトリウム水溶液が貯留しているタンク7から次亜塩素酸ナトリウム水溶液をポンプ8で吸い上げて流路切換えバルブに送り、その流路切換えバルブを切り替えて添加部10ではなく、戻り管路11に送り再びタンク7に戻すようになっている。この循環送りを所定の時間行う事により、管路内の気泡をタンク7に送り込んで管路から除去することが出来る。  Further, this apparatus has a bubble removing mechanism for removing bubbles generated in a pipe for supplying the sodium hypochlorite aqueous solution. That is, the sodium hypochlorite aqueous solution is sucked up by the pump 8 from the tank 7 in which the sodium hypochlorite aqueous solution is stored and sent to the flow path switching valve. It is sent to the pipeline 11 and returned to the tank 7 again. By performing this circulating feed for a predetermined time, bubbles in the pipeline can be sent to the tank 7 and removed from the pipeline.

また、本装置は添加部10で添加する次亜塩素酸ナトリウム水溶液の量を制御して、殺菌水の塩素濃度を変更する制御を有しており(図示せず)、この塩素濃度を変更する操作を行った場合は、空間40内に貯留する殺菌水の塩素濃度の影響を出来る限り少なくするため、電動開閉バルブ44を開放して所定の時間だけ自動運転を行い、電動開閉バルブ44を閉鎖すると共に、ポンプ4を停止し、電動開閉バルブ3を閉鎖して完了表示を行う。このように、空間40内に貯留された殺菌水を排出して、新たに設定された塩素濃度の殺菌水に入れ替える運転を行う機能も有している。  Moreover, this apparatus has a control (not shown) which controls the quantity of the sodium hypochlorite aqueous solution added in the addition part 10, and changes the chlorine concentration of sterilization water, and changes this chlorine concentration. When the operation is performed, in order to reduce the influence of the chlorine concentration of the sterilizing water stored in the space 40 as much as possible, the electric open / close valve 44 is opened and the automatic operation is performed for a predetermined time, and the electric open / close valve 44 is closed. At the same time, the pump 4 is stopped and the electric on-off valve 3 is closed to display completion. Thus, it also has a function of discharging the sterilized water stored in the space 40 and replacing it with sterilized water having a newly set chlorine concentration.

さらに、圧力容器内の圧力が、所定の値よりも低くなった場合は、炭酸ガスの供給が不足していることを表示する機能も有している。  Furthermore, when the pressure in a pressure vessel becomes lower than a predetermined value, it also has a function to display that the supply of carbon dioxide gas is insufficient.

図2〜12を用いて本発明による装置の構成を説明する。
また、図2〜12における動作は、基本的には図1で説明した動作と同様であり、異なるのは殺菌水の生成方法と管路の接続パターンである。
The configuration of the apparatus according to the present invention will be described with reference to FIGS.
Moreover, the operation | movement in FIGS. 2-12 is the same as that of the operation | movement demonstrated in FIG. 1 fundamentally, and the difference is the production | generation methods of a sterilization water, and the connection pattern of a pipe line.

図2は次亜塩素酸ナトリウム水溶液だけを水道水や井水や海水などの原水に添加して殺菌水を生成する場合の説明図で、図1を模式的に表した図である。図1では分岐バルブ201で分岐された管路202が圧力容器13の上部に接続されているが、図2に示すように圧力容器の下部に接続され、送水された殺菌水を圧力容器13内に貯留する殺菌水内に直接送水しても良い。  FIG. 2 is an explanatory diagram of the case where sterilized water is generated by adding only an aqueous sodium hypochlorite solution to raw water such as tap water, well water, and seawater, and is a diagram schematically showing FIG. In FIG. 1, the pipe line 202 branched by the branch valve 201 is connected to the upper part of the pressure vessel 13, but as shown in FIG. Water may be directly fed into the sterilized water stored in the tank.

図3は次亜塩素酸ナトリウム水溶液と希塩酸などの酸性水溶液を原水に添加して殺菌水を生成する場合の実施例で、次亜塩素酸ナトリウム水溶液を炭酸以外の酸(好ましくは塩酸)でpHを一時調整する実施例である。管路1に供給された原水は逆止弁2と電動開閉バルブ3を通り、ポンプ4に供給される。ポンプ4で加圧されて流量計5で流量を計測されて管路6に送水される。  FIG. 3 shows an example in which an aqueous solution of sodium hypochlorite and an acidic aqueous solution such as dilute hydrochloric acid are added to raw water to produce sterilized water. The aqueous solution of sodium hypochlorite is adjusted to pH with an acid other than carbonic acid (preferably hydrochloric acid). This is an embodiment for temporarily adjusting. The raw water supplied to the pipe line 1 is supplied to the pump 4 through the check valve 2 and the electric opening / closing valve 3. The pressure is applied by the pump 4, the flow rate is measured by the flow meter 5, and the water is sent to the pipe 6.

一方、その流量に応じて、ポンプ8と50により次亜塩素酸ナトリウム水溶液と希塩酸がタンク7および51から吸い上げられ、まず添加部10で原水に次亜塩素酸ナトリウム水溶液が添加され管路47へ送られ、次に添加部46で希塩酸が添加され管路48に送られる。これにより、次亜塩素酸ナトリウム水溶液は希塩酸により弱アルカリあるいは中性に一時調整されるか、所望のpH値近くまで一時調整される。その後、分岐バルブ201により分岐されて、それぞれ管路202と203に送られ、圧力容器13内に噴射および送水される。炭酸ガスは図1同様に、炭酸ガスボンベ16から手動バルブ17、減圧弁18,19、電動開閉バルブ20、逆止弁21を介して圧力容器13に供給される。圧力容器13内で炭酸ガスが溶解した殺菌水は圧力容器13の底部近傍から管路31を介して排水され、手動あるいは電動開閉バルブ37を開放することにより吐水される。  On the other hand, the sodium hypochlorite aqueous solution and dilute hydrochloric acid are sucked up from the tanks 7 and 51 by the pumps 8 and 50 according to the flow rate, and first, the sodium hypochlorite aqueous solution is added to the raw water in the addition unit 10 to the pipe 47. Next, dilute hydrochloric acid is added at the addition section 46 and sent to the pipe 48. As a result, the sodium hypochlorite aqueous solution is temporarily adjusted to a weak alkali or neutral with dilute hydrochloric acid, or temporarily adjusted to a desired pH value. Thereafter, the water is branched by the branch valve 201 and sent to the pipes 202 and 203, respectively, and injected into the pressure vessel 13 and supplied with water. As in FIG. 1, the carbon dioxide gas is supplied from the carbon dioxide gas cylinder 16 to the pressure vessel 13 through the manual valve 17, the pressure reducing valves 18 and 19, the electric opening / closing valve 20, and the check valve 21. The sterilized water in which the carbon dioxide gas is dissolved in the pressure vessel 13 is drained from the vicinity of the bottom of the pressure vessel 13 through the conduit 31 and discharged by opening the manual or electric opening / closing valve 37.

図4は次亜塩素酸ナトリウム水溶液と希塩酸をそれぞれ別々の管路で原水に添加し、その後で各添加された水溶液を混合して殺菌水を生成する方法を示した実施例である。供給された原水は流量計5の下流で管路53と54に分岐供給され、管路53で次亜塩素酸ナトリウム水溶液を添加し、管路54で希塩酸を添加する。それぞれの水溶液は合流して管路55に送られる。この場合、図示はしていないが、管路53と54の合流部に、混合を促進する混合機構を設けても良い。この場合も希塩酸により次亜塩素酸ナトリウム水溶液のpHが一時調整されている。そのほかの内容は図3と同一なので省略する。  FIG. 4 is an example showing a method of adding a sodium hypochlorite aqueous solution and dilute hydrochloric acid to raw water through separate pipes, and then mixing each added aqueous solution to produce sterilizing water. The supplied raw water is branched and supplied to the pipes 53 and 54 downstream of the flow meter 5, an aqueous sodium hypochlorite solution is added through the pipe 53, and dilute hydrochloric acid is added through the pipe 54. The aqueous solutions join together and are sent to the pipe 55. In this case, although not shown, a mixing mechanism for promoting mixing may be provided at the junction of the pipes 53 and 54. Also in this case, the pH of the aqueous sodium hypochlorite solution is temporarily adjusted with dilute hydrochloric acid. The other contents are the same as in FIG.

図5は図2において、タンク7から次亜塩素酸ナトリウム水溶液を供給する代わりに、原水の一部に塩化ナトリウム水溶液を添加して、無隔膜電解槽で電気分解することにより次亜塩素酸ナトリウム水溶液を生成する実施例を示している。すなわち、流量計5の下流で原水を管路58と59に分岐供給し、管路59において原水に塩化ナトリウム水溶液をタンク60からポンプ61で圧力供給して添加部62により添加する。その塩化ナトリウム水溶液が添加された原水を無隔膜電解槽63に供給して電気分解して次亜塩素酸ナトリウム水溶液を生成する。生成された次亜塩素酸ナトリウム水溶液は管路64を通り、添加部65により管路58を流れる原水に添加される。  FIG. 5 shows the sodium hypochlorite solution in FIG. 2 by adding a sodium chloride aqueous solution to a part of the raw water instead of supplying the sodium hypochlorite aqueous solution from the tank 7 and electrolyzing it in a non-diaphragm electrolytic cell. 3 shows an example of producing an aqueous solution. That is, the raw water is branched and supplied to the pipes 58 and 59 downstream of the flow meter 5, and the sodium chloride aqueous solution is pressure-supplied to the raw water from the tank 60 by the pump 61 in the pipe 59 and added by the adding unit 62. The raw water to which the aqueous sodium chloride solution has been added is supplied to the diaphragm electrolyzer 63 and electrolyzed to produce a sodium hypochlorite aqueous solution. The generated sodium hypochlorite aqueous solution passes through the pipe line 64 and is added to the raw water flowing through the pipe line 58 by the addition unit 65.

図6は図7における無隔膜電解槽の代わりに隔膜を有する電解槽71を用いた実施例である。すなわち、管路58と59に分岐供給された原水のうち、管路59に供給された原水に塩化ナトリウム水溶液を添加し、その原水を管路66と67に分岐供給し、隔膜を有する電解槽71の陽極側と陰極側にそれぞれ供給して電気分解し、陽極から排出される電解水と陰極から排出される電解水を再び合流して管路70に送り、添加部65により管路58を流れる原水に添加する。このとき、陰極から排出される電解水の全てを使用せずに一部を使用して、残りの電解水を捨てても良い。  FIG. 6 shows an embodiment in which an electrolytic cell 71 having a diaphragm is used instead of the non-diaphragm electrolytic cell in FIG. That is, of the raw water branched and supplied to the pipes 58 and 59, an aqueous sodium chloride solution is added to the raw water supplied to the pipe 59, and the raw water is branched and supplied to the pipes 66 and 67. 71 is supplied to the anode side and the cathode side, respectively, and electrolyzed, and the electrolyzed water discharged from the anode and the electrolyzed water discharged from the cathode are merged again and sent to the pipe line 70. Add to flowing raw water. At this time, a part of the electrolyzed water discharged from the cathode may be used without being used, and the remaining electrolyzed water may be discarded.

また、図5および6では無隔膜電解槽と隔膜を有する電解槽への原水の供給は、流量計5の下流で原水を分岐供給し原水の一部を電解槽に供給しているが、流量計5の下流で分岐せずに原水のすべてを電解槽に供給しても良い。
その場合は、流量計5により計測した流量に応じて、予め決められ電圧を印加する。
In FIGS. 5 and 6, the raw water is supplied to the electrolyzer having the diaphragm electrolyzer and the diaphragm, the raw water is branched and supplied downstream of the flow meter 5 and a part of the raw water is supplied to the electrolyzer. All of the raw water may be supplied to the electrolytic cell without branching downstream of the total 5.
In that case, a predetermined voltage is applied according to the flow rate measured by the flow meter 5.

図7は図2が殺菌水を生成してから、分岐バルブ201で管路を分岐しているのに対して、原水を分岐してから次亜塩素酸ナトリウム水溶液を添加水実施例である。すなわち、流量計5の直後で分岐バルブ206により管路210と211に分岐し、管路211に送られた原水に添加部10を介して次亜塩素酸ナトリウムを添加した後、圧力容器13内に噴射し、もう一方の管路210に送られた原水は直接圧力容器13内に送水される。  FIG. 7 shows an embodiment in which a sodium hypochlorite aqueous solution is added after the raw water is branched while the pipe is branched by the branch valve 201 after FIG. 2 generates sterilizing water. That is, immediately after the flow meter 5, the branch valve 206 branches to the pipes 210 and 211, and sodium hypochlorite is added to the raw water sent to the pipe 211 via the addition unit 10, and then inside the pressure vessel 13. The raw water jetted to the other pipe 210 is directly fed into the pressure vessel 13.

図7では原水に次亜塩素酸ナトリウム水溶液がタンク7からポンプ8により添加されているが、図3〜6に示すように、次亜塩素酸ナトリウム水溶液と希塩酸を添加しても良いし、無隔膜電解槽あるいは隔膜を有する電解槽で電気分解した電解水を添加しても良い。
さらに、図7においては、殺菌水を圧力容器13内に噴射し、原水を圧力容器13内に送水しているが、原水を圧力容器13内に噴射し、殺菌水を圧力容器13内に送水しても良い。
In FIG. 7, the sodium hypochlorite aqueous solution is added to the raw water by the pump 8 from the tank 7. However, as shown in FIGS. 3 to 6, the sodium hypochlorite aqueous solution and dilute hydrochloric acid may be added. Electrolyzed water electrolyzed in a diaphragm electrolytic cell or an electrolytic cell having a diaphragm may be added.
Further, in FIG. 7, sterilizing water is injected into the pressure vessel 13 and raw water is supplied into the pressure vessel 13, but raw water is injected into the pressure vessel 13 and sterilizing water is supplied into the pressure vessel 13. You may do it.

図8は原水を管路53と54と205に分岐供給し、管路53で次亜塩素酸ナトリウム水溶液を原水に添加し、管路54で希塩酸を原水に添加した後、次亜塩素酸ナトリウム水溶液が添加された原水は管路57を介して圧力容器13に供給され、希塩酸が添加された原水は管路56を介して圧力容器13にそれぞれ別々に供給され、望ましくは圧力容器13に設けられた噴射孔からお互いに衝突するように噴射される構造となっている。また、管路205に送られた原水は直接圧力容器13に送水される。この噴射流の衝突により、次亜塩素酸ナトリウム水溶液が添加された原水と希塩酸が添加された原水の混合と炭酸ガスの溶解を同時に且つ効率よく行う事が出来る。図示していないが、次亜塩素酸ナトリウム水溶液と塩酸は衝突噴射させずにそれぞれ圧力容器13に噴射しても良いし、どちらか一方を圧力容器13内の水面かに送水しても良い。  In FIG. 8, the raw water is branched and supplied to the pipes 53, 54 and 205, the sodium hypochlorite aqueous solution is added to the raw water in the pipe 53, and dilute hydrochloric acid is added to the raw water in the pipe 54, and then sodium hypochlorite is added. The raw water to which the aqueous solution has been added is supplied to the pressure vessel 13 via the conduit 57, and the raw water to which dilute hydrochloric acid has been added is separately supplied to the pressure vessel 13 via the conduit 56, preferably provided in the pressure vessel 13. It has the structure where it injects so that it may collide with each other from the injected injection hole. The raw water sent to the pipe 205 is directly sent to the pressure vessel 13. By the collision of the jet flow, the raw water to which the sodium hypochlorite aqueous solution is added and the raw water to which dilute hydrochloric acid is added and the carbon dioxide gas can be dissolved simultaneously and efficiently. Although not shown, the sodium hypochlorite aqueous solution and hydrochloric acid may be sprayed to the pressure vessel 13 without being collided, or one of them may be fed to the water surface in the pressure vessel 13.

図9は図2が、圧力容器13の上流で次亜塩素酸ナトリウム水溶液を添加しているのに対して、圧力容器の下流で次亜塩素酸ナトリウム水溶液を添加する実施例を示す。すなわち、ポンプ4により加圧供給された原水は分岐バルブ201で管路202と203に分岐され、それぞれ圧力容器13内に噴射および送水され、炭酸ガスが溶解される。圧力容器13から排出された炭酸ガス含有原水は管路36において、添加部10を介して次亜塩素酸ナトリウム水溶液が添加されて、さらに、溶存炭酸ガス濃度あるいはpHを測定した後、分岐部42を通り手動あるいは電動開閉バルブ37に送られる。  FIG. 9 shows an embodiment in which the sodium hypochlorite aqueous solution is added downstream of the pressure vessel, whereas FIG. 2 shows the addition of the sodium hypochlorite aqueous solution upstream of the pressure vessel 13. That is, the raw water pressurized and supplied by the pump 4 is branched into the pipelines 202 and 203 by the branch valve 201, and injected and fed into the pressure vessel 13, respectively, so that the carbon dioxide gas is dissolved. The carbon dioxide-containing raw water discharged from the pressure vessel 13 is added with sodium hypochlorite aqueous solution via the addition unit 10 in the pipe 36, and after measuring the dissolved carbon dioxide concentration or pH, the branching unit 42 is added. And is sent to the manual or electric open / close valve 37.

図9では次亜塩素酸ナトリウム水溶液がタンク7からポンプ8により添加されているが、図3〜6に示すように、次亜塩素酸ナトリウムと希塩酸を添加しても良いし、無隔膜電解槽あるいは隔膜を有する電解槽で電気分解した電解水を添加しても良い。また、希塩酸の添加はタンク上流で行っても良いことは言うまでもない。  In FIG. 9, the sodium hypochlorite aqueous solution is added from the tank 7 by the pump 8. However, as shown in FIGS. 3 to 6, sodium hypochlorite and dilute hydrochloric acid may be added. Alternatively, electrolyzed water electrolyzed in an electrolytic cell having a diaphragm may be added. Needless to say, dilute hydrochloric acid may be added upstream of the tank.

図10は図2が分岐バルブ201で分岐された管路202が圧力容器13に接続されているのに対して、管路202が圧力容器の排水管路31の下流の管路36に接続されている実施例を示す。すなわち、添加部10で原水に次亜塩素酸ナトリウム水溶液を添加した後、分岐バルブ201で管路202と203に分岐供給され、管路203に送水された殺菌水は圧力容器13内に噴射され、一方の管路202は、圧力容器13の排水管路31の下流に位置する管路36に接続され、管路202に送水された殺菌水は、圧力容器13に噴射され炭酸ガスを含有した殺菌水と合流部209で混合され、溶存炭酸ガス濃度計を通って手動あるいは電動開閉バルブへ送られる。  In FIG. 10, the pipe line 202 branched from the branch valve 201 in FIG. 2 is connected to the pressure vessel 13, whereas the pipe line 202 is connected to the pipe line 36 downstream of the drainage pipe 31 of the pressure vessel. An embodiment is shown. That is, after adding the sodium hypochlorite aqueous solution to the raw water at the addition unit 10, the sterilizing water that is branched and supplied to the pipes 202 and 203 by the branch valve 201 and is sent to the pipe 203 is injected into the pressure vessel 13. One pipe line 202 is connected to a pipe line 36 located downstream of the drain line 31 of the pressure vessel 13, and the sterilized water sent to the pipe line 202 is injected into the pressure vessel 13 and contains carbon dioxide gas. It is mixed with sterilizing water at the junction 209 and sent to a manual or electric open / close valve through a dissolved carbon dioxide concentration meter.

図10では原水に次亜塩素酸ナトリウム水溶液がタンク7からポンプ8により添加されているが、図3〜6に示すように、次亜塩素酸ナトリウムと塩酸を添加しても良いし、無隔膜電解槽あるいは隔膜を有する電解槽で電気分解した電解水を添加しても良い。  In FIG. 10, the sodium hypochlorite aqueous solution is added to the raw water by the pump 8 from the tank 7. However, as shown in FIGS. 3 to 6, sodium hypochlorite and hydrochloric acid may be added. Electrolyzed water electrolyzed in an electrolytic cell or an electrolytic cell having a diaphragm may be added.

図11は図7が分岐バルブ206により分岐された管路210が圧力容器13に接続されていのに対して、管路210が圧力容器13の排水管路31の下流に位置する管路36に接続されている実施例を示す。すなわち、流量計5の直後で分岐バルブ206により管路210と211に分岐され、管路211に送水された原水には添加部10により次亜塩素酸ナトリウム水溶液が添加されて、圧力容器13に噴射されて炭酸ガスを溶解した後、配水管路31を通り、管路36に送水される。一方、管路210に送水された原水は管路36に設けられた合流部209に送られて、圧力容器13から排出された殺菌水と混合される。混合された殺菌水は溶存炭酸ガス濃度計を通って手動あるいは電動開閉バルブへ送水される。  In FIG. 11, the pipe 210 branched from the branch valve 206 in FIG. 7 is connected to the pressure vessel 13, whereas the pipe 210 is connected to the pipe 36 located downstream of the drainage pipe 31 of the pressure vessel 13. The connected embodiment is shown. That is, the sodium hypochlorite aqueous solution is added by the addition unit 10 to the raw water branched into the pipes 210 and 211 by the branch valve 206 immediately after the flow meter 5 and sent to the pipe 211, and is supplied to the pressure vessel 13. After being injected to dissolve the carbon dioxide gas, the water passes through the water distribution pipe 31 and is fed to the pipe 36. On the other hand, the raw water sent to the pipe line 210 is sent to the junction 209 provided in the pipe line 36 and mixed with the sterilized water discharged from the pressure vessel 13. The mixed sterilizing water is sent to a manual or electric open / close valve through a dissolved carbon dioxide concentration meter.

図11では原水に次亜塩素酸ナトリウム水溶液がタンク7からポンプ8により添加されているが、図3〜6に示すように、次亜塩素酸ナトリウムと塩酸を添加しても良いし、無隔膜電解槽あるいは隔膜を有する電解槽で電気分解した電解水を添加しても良い。  In FIG. 11, the sodium hypochlorite aqueous solution is added to the raw water by the pump 8 from the tank 7, but as shown in FIGS. 3 to 6, sodium hypochlorite and hydrochloric acid may be added. Electrolyzed water electrolyzed in an electrolytic cell or an electrolytic cell having a diaphragm may be added.

図12は図8が3つに分岐された管路53,54,205の1つの管路である管路205が圧力容器13に接続されているのに対して、管路205が流量計5の直後で分岐バルブ206で管路205に分岐され圧力容器13の排水管路31の下流に位置する管路36に接続されている実施例を示す。すなわち、流量計5の直後で管路205が分岐された後、さらに管路53,54に分岐供給された原水は、管路53において添加部10を介して次亜塩素酸ナトリウム水溶液が添加され、管路54においては添加部46を介して希塩酸が添加され、それぞれの水溶液は別々に圧力容器13に供給され、圧力容器13に設けられた噴射孔からお互いに衝突するように噴射される。そして、圧力容器13の排水管路31を通って管路36に送られる。一方、管路205に送水された原水は管路36に設けられた合流部に送られ、圧力容器から排出された殺菌水と合流して混合され、溶存炭酸ガス濃度計を通って手動あるいは電動開閉バルブへ送られる。  In FIG. 12, the pipe 205, which is one of the pipes 53, 54 and 205 branched into three in FIG. 8, is connected to the pressure vessel 13, whereas the pipe 205 is connected to the flow meter 5. An embodiment is shown in which a branch valve 206 is branched into a pipe line 205 immediately after and is connected to a pipe line 36 located downstream of the drain pipe 31 of the pressure vessel 13. That is, after the pipe 205 is branched immediately after the flow meter 5, the raw water branched and supplied to the pipes 53 and 54 is added with the sodium hypochlorite aqueous solution through the addition unit 10 in the pipe 53. In the pipe line 54, dilute hydrochloric acid is added through the adding section 46, and the respective aqueous solutions are separately supplied to the pressure vessel 13 and injected from the injection holes provided in the pressure vessel 13 so as to collide with each other. And it is sent to the pipe line 36 through the drain pipe line 31 of the pressure vessel 13. On the other hand, the raw water sent to the pipe 205 is sent to a merging section provided in the pipe 36, merged with sterilized water discharged from the pressure vessel, mixed, and manually or electrically passed through a dissolved carbon dioxide concentration meter. Sent to the open / close valve.

図13〜15を用いて、圧力容器13内に殺菌水を噴射あるいは散水する方法を説明する。図13は図1に示す隔壁41に噴射孔15が対面して設けられている状態を示す。図1の空間14に供給された殺菌水は隔壁41に設けられた噴射孔15から勢い良く噴射され、お互いに衝突して微細な水滴となり炭酸ガスが充填された空間40内で炭酸ガスを効率よく溶解することが出来る。  A method for spraying or sprinkling sterilizing water into the pressure vessel 13 will be described with reference to FIGS. FIG. 13 shows a state in which the injection hole 15 is provided facing the partition wall 41 shown in FIG. The sterilizing water supplied to the space 14 in FIG. 1 is ejected vigorously from the injection holes 15 provided in the partition wall 41 and collides with each other to form fine water droplets, and the carbon dioxide gas is efficiently used in the space 40 filled with carbon dioxide gas. Can dissolve well.

図14は隔壁41に設けられた噴射孔15がそれぞれ近傍に位置し、それぞれの噴射孔から噴射された殺菌水が噴射直後にお互いに衝突するようになされている。これにより、噴射された殺菌水が微細な水滴になり炭酸ガスが充填された空間40内で炭酸ガスを効率よく溶解することが出来る。  In FIG. 14, the injection holes 15 provided in the partition wall 41 are located in the vicinity, and the sterilizing water injected from the respective injection holes collides with each other immediately after the injection. Thereby, the injected sterilized water becomes fine water droplets, and the carbon dioxide can be efficiently dissolved in the space 40 filled with the carbon dioxide.

図15はノズルから噴射される殺菌水が霧状になる噴霧ノズルが隔壁41に設けられている状態を示す。このノズルはノズル単体で噴霧された殺菌水を微細な水滴にするため、それぞれ衝突するように配置する必要はなく、1つだけ用いても2つ以上を用いてもかまわない。  FIG. 15 shows a state where a spray nozzle in which the sterilizing water sprayed from the nozzle is mist-like is provided in the partition wall 41. In order to make the sterilized water sprayed by the nozzle unit into fine water droplets, the nozzles do not need to be arranged so as to collide with each other, and only one nozzle or two or more nozzles may be used.

また、図13〜15においては、図1に示す隔壁41に噴射孔が設けられている説明をしているが、噴射孔が圧力容器に直接設けられ、それぞれの噴射孔に管路により殺菌水が供給される構造でも良いし、噴射孔の位置は圧力容器の側面でも頂上部でも良く、特に規制されない。  13 to 15, the injection holes are provided in the partition wall 41 shown in FIG. 1. However, the injection holes are directly provided in the pressure vessel, and the sterilizing water is connected to each injection hole by a pipe line. The position of the injection hole may be on the side surface or the top of the pressure vessel, and is not particularly restricted.

図16は圧力容器13内に貯留する殺菌水の水位を所定の範囲で維持する手段が、ポンプ4の下流に設けられた電動式流量調整バルブ103と圧力容器13からの排水管路31と圧力容器上部に接続された空気抜き用の管路33,35が合流する合流部32の下流で、さらに合流部209を有する場合は合流部209の下流に設けられた電動式流量調整バルブ102により行われる実施例を示す。図1においては、圧力容器13内の水位を維持する方法が、炭酸ガスの供給を行うか止めるかにより行われるか、ポンプ4を停止すると共に電動開閉バルブ3を閉鎖して送水を停止することにより行われていたが、本実施例においては、水位が下がりリミットスイッチ28が水位を検知すると、電動式流量調整バルブ102が作動し流量を絞り、圧力容器13からの排水量を少なくする。また、水位が上昇してリミットスイッチ29が水位を検知すると、電動式流量調整バルブ102は元に戻り、電動式流量調整バルブ103が作動して流量を絞り、圧力容器13への送水量を少なくする。これにより圧力容器13内の水位がリミットスイッチ28と29の間で保たれることになる。  FIG. 16 shows that the means for maintaining the level of the sterilizing water stored in the pressure vessel 13 within a predetermined range is the electric flow control valve 103 provided downstream of the pump 4, the drain line 31 from the pressure vessel 13, and the pressure If the air vent pipes 33 and 35 connected to the upper part of the container are joined downstream of the joining part 32 where the air venting pipes 33 and 35 join, and further provided with the joining part 209, it is performed by an electric flow rate adjusting valve 102 provided downstream of the joining part 209. An example is shown. In FIG. 1, the method for maintaining the water level in the pressure vessel 13 is performed depending on whether carbon dioxide gas is supplied or stopped, or the pump 4 is stopped and the electric on-off valve 3 is closed to stop water supply. However, in this embodiment, when the water level falls and the limit switch 28 detects the water level, the electric flow rate adjusting valve 102 is operated to reduce the flow rate and reduce the amount of drainage from the pressure vessel 13. Further, when the water level rises and the limit switch 29 detects the water level, the electric flow rate adjusting valve 102 returns to its original state, the electric flow rate adjusting valve 103 is activated to reduce the flow rate, and the amount of water supplied to the pressure vessel 13 is reduced. To do. As a result, the water level in the pressure vessel 13 is maintained between the limit switches 28 and 29.

ここで、双方の電動式流量調整バルブ102,103が完全に開放している状態で、圧力容器13内の水位が下降するようになされていれば、電動式流量調整バルブ102だけでも良く、逆に水位が上昇するようになされていれば電動式流量調整バルブ103だけでも水位を維持することが可能である。  Here, if the water level in the pressure vessel 13 is lowered while both the electric flow rate adjusting valves 102 and 103 are completely open, only the electric flow rate adjusting valve 102 may be used. If the water level rises at the same time, the water level can be maintained only by the electric flow rate adjusting valve 103.

図16では原水に次亜塩素酸ナトリウム水溶液がタンク7からポンプ8により添加されているが、図3〜6に示すように、次亜塩素酸ナトリウムと塩酸を添加しても良いし、無隔膜電解槽あるいは隔膜を有する電解槽で電気分解した電解水を添加しても良いし、図7、8に示すように殺菌水の生成が原水の分岐後でも良いし、図9に示すように殺菌水の生成が圧力容器13の下流でも良いし、図10,11,12に示すように原水の分岐管路の少なくとも1本が圧力容器13の下流に接続されていても良い。    In FIG. 16, sodium hypochlorite aqueous solution is added to the raw water by the pump 8 from the tank 7, but as shown in FIGS. 3 to 6, sodium hypochlorite and hydrochloric acid may be added. Electrolyzed water electrolyzed in an electrolytic cell or an electrolytic cell having a diaphragm may be added, or sterilizing water may be generated after branching of raw water as shown in FIGS. 7 and 8, or sterilized as shown in FIG. The generation of water may be downstream of the pressure vessel 13, or at least one of the branch lines of raw water may be connected downstream of the pressure vessel 13 as shown in FIGS. 10, 11, and 12.

さらに、上記の実施例では電動開閉バルブ44が分岐部42を介して設けられているが、分岐部42に電動式流路切換えバルブを設けても良い。  Further, in the above embodiment, the electric opening / closing valve 44 is provided via the branch portion 42, but an electric channel switching valve may be provided in the branch portion 42.

図1では、圧力容器13内の圧力が所定の圧力を超えると、ポンプ4を停止すると共に、電動開閉バルブ3を閉鎖して給水を停止するが、電動開閉バルブ3の代わりに分岐後の各管路に電動開閉バルブを設け(図示せず)、ポンプ停止と共にそれらの電動開閉バルブを閉鎖しても良い。  In FIG. 1, when the pressure in the pressure vessel 13 exceeds a predetermined pressure, the pump 4 is stopped and the electric on-off valve 3 is closed to stop water supply. Electric open / close valves may be provided in the pipeline (not shown), and the electric open / close valves may be closed when the pump is stopped.

また、図1では分岐後の各管路に流れる流量比率は、分岐バルブにより調整するが、各管路にそれぞれ流量調整バルブを設けて(図示せず)、それぞれの流量を調整しても良い。  Further, in FIG. 1, the ratio of the flow rate flowing through each branch line after branching is adjusted by a branch valve. However, a flow rate adjustment valve may be provided in each pipe line (not shown) to adjust each flow rate. .

さらに、図1では分岐管路は2本であるが、3本以上設けて、それぞれの管路に電動開閉バルブを設置し(図示せず)、それぞれの電動開閉バルブの開閉を選択して、送水する管路の組合せにより、噴射と送水される水量比率を調整するか、それらの管路の分岐部に各管路に流れる流量を個々に調整できる流量調整機構を設け(図示せず)、各管路を流れる流量を調整して、噴射と送水されるそれぞれの水量を調整しても良い。  Furthermore, although there are two branch pipes in FIG. 1, three or more branch pipes are provided, electric open / close valves are installed in the respective pipe lines (not shown), and the open / close of each electric open / close valve is selected, Depending on the combination of pipes to feed water, the flow rate adjustment mechanism that can adjust the flow rate of water to be jetted and fed, or that can individually adjust the flow rate flowing through each pipe at the branch of those pipes (not shown), You may adjust the flow volume which flows through each pipe line, and may adjust each amount of water sent and injected.

また、上述の全ての実施例では次亜塩素酸ナトリウム水溶液を例に取っているが、もちろん亜塩素酸ナトリウム水溶液でも良い。  Moreover, in all the above-mentioned Examples, sodium hypochlorite aqueous solution is taken as an example, but of course, sodium chlorite aqueous solution may be used.

上述の全ての実施例では、水道水や井水や海水の送水にポンプ4を用いているが、水道水において十分供給圧力が高い場合、あるいは、井水や海水において別の送水ポンプなどから加圧供給されている場合は、ポンプ4は無くても良い。  In all the above-described embodiments, the pump 4 is used for water supply of tap water, well water, and seawater. However, when the supply pressure is sufficiently high in tap water, or from another water supply pump or the like in well water or seawater. When pressure is supplied, the pump 4 may be omitted.

さらに、上述の全ての実施例において、圧力容器13内の水位の検出は、マグネット26を有したフロート25とリミットスイッチ27〜30により検出されているが、液面を直接検出できるセンサーなどの他の検出器を用いてもかまわない。また、上述の添加部10、46、62、65は全て逆止弁を備えている。  Furthermore, in all the embodiments described above, the detection of the water level in the pressure vessel 13 is detected by the float 25 having the magnet 26 and the limit switches 27 to 30, but other sensors such as a sensor that can directly detect the liquid level are used. The detector may be used. Moreover, all the above-mentioned addition parts 10, 46, 62, and 65 are equipped with the check valve.

発明の効果Effect of the invention

本発明を実施することにより、アルカリ性である次亜塩素酸ナトリウム水溶液や亜塩素酸ナトリウム水溶液が炭酸ガスのpH調整作用により、弱酸性の次亜塩素酸を主成分とする殺菌水や二酸化塩素を主成分とする殺菌水になり、酸性水溶液を添加することなく殺菌効果を飛躍的に上げることが出来る。また、次亜塩素酸ナトリウム水溶液や亜塩素酸ナトリウム水溶液に塩酸などの酸性水溶液を混ぜて殺菌水を生成する場合においても、炭酸ガスのpH調整作用によりpHの安定性を確保でき、酸性水溶液の添加量に対するpH値変動が鈍感になり、酸性水溶液と次亜塩素酸ナトリウム水溶液あるいは亜塩素酸ナトリウム水溶液の添加量の比率が若干変化しても塩素ガスが発生することがなくなり、従来から問題にされている危険性も排除できる。  By carrying out the present invention, alkaline sodium hypochlorite aqueous solution or sodium chlorite aqueous solution is used to adjust sterilized water or chlorine dioxide mainly composed of weakly acidic hypochlorous acid by adjusting the pH of carbon dioxide gas. It becomes sterilizing water having a main component, and the sterilizing effect can be dramatically increased without adding an acidic aqueous solution. In addition, even when an aqueous solution of sodium hypochlorite or an aqueous solution of sodium chlorite is mixed with an acidic aqueous solution such as hydrochloric acid to produce sterilized water, the pH stability of the carbon dioxide gas can be ensured, and the stability of the acidic aqueous solution can be secured. Changes in the pH value with respect to the added amount become insensitive, and even if the ratio of the added amount of acidic aqueous solution and sodium hypochlorite aqueous solution or sodium chlorite aqueous solution changes slightly, chlorine gas will not be generated, which has been a problem in the past. The danger that has been done can also be eliminated.

さらに、殺菌水に炭酸ガスを溶解するための圧力容器への噴射や送水が、次亜塩素酸ナトリウム水溶液や亜塩素酸ナトリウム水溶液と原水との混合および酸性水溶液との混合に効果的であると共に、アキュームレイターなどの貯水型タンクの役目を果たし、使用する殺菌水の量が常に変動したり、極端に少ない量だったり、さらには止められることがあっても、新たにアキュームレイターを設置しなくても、生成される殺菌水の濃度やpH値を安定させることができる。  Furthermore, injection and water supply to a pressure vessel for dissolving carbon dioxide gas in sterilized water are effective for mixing sodium hypochlorite aqueous solution, sodium chlorite aqueous solution and raw water, and acidic aqueous solution. It acts as a storage tank such as an accumulator, and even if the amount of sterilizing water used is constantly changing, extremely small, or even stopped, there is no need to install a new accumulator However, the concentration and pH value of the produced sterilizing water can be stabilized.

また、アキュームレイターとして使用する場合、アキュームレイターとしての圧力容器13の下流に設置する吐水用のバルブや蛇口まで殺菌水を送水するために、圧力容器内13の圧力は少なくとも0.2Mpa程度は必要である。すると、溶解する炭酸ガスの量が増えて、炭酸ガスの消費量が増大する。本発明による方法を用いることにより、圧力容器で溶解される炭酸ガスの量を制御できるため、生成される殺菌水のpH値を所定の値に制御することが出来ると共に、炭酸ガスの消費を抑えられ、ランニングコストを低くすることが出来る。  Further, when used as an accumulator, in order to send sterilizing water to a water discharge valve or faucet installed downstream of the pressure vessel 13 as an accumulator, the pressure in the pressure vessel 13 needs to be at least about 0.2 MPa. It is. Then, the amount of dissolved carbon dioxide increases and the consumption of carbon dioxide increases. By using the method according to the present invention, the amount of carbon dioxide dissolved in the pressure vessel can be controlled, so that the pH value of the produced sterilizing water can be controlled to a predetermined value and the consumption of carbon dioxide can be suppressed. Running costs can be reduced.

本発明の代表的な実施例を示すShown is a representative embodiment of the present invention. 次亜塩素酸水溶液を原水に添加して殺菌水を生成する実施例を示すAn example in which a hypochlorous acid aqueous solution is added to raw water to produce sterilized water is shown. 次亜塩素酸水溶液と希塩酸を原水に添加して殺菌水を生成する実施例を示すAn example of producing sterilized water by adding hypochlorous acid aqueous solution and dilute hydrochloric acid to raw water is shown. 次亜塩素酸水溶液と希塩酸を原水に添加して殺菌水を生成するもう一つの実施例を示すAnother embodiment for producing sterilized water by adding hypochlorous acid aqueous solution and dilute hydrochloric acid to raw water is shown. 塩化ナトリウム水溶液を無隔膜電解槽で電解して生成した次亜塩素酸ナトリウム水溶液を原水に添加して殺菌水を生成する実施例を示すAn example is shown in which a sodium hypochlorite aqueous solution generated by electrolyzing a sodium chloride aqueous solution in a non-diaphragm electrolytic cell is added to raw water to produce sterilized water. 塩化ナトリウム水溶液を隔膜を有する電解槽で電解して、陽極側と陰極側で生成された電解水を混合して生成した水溶液を原水に添加して殺菌水を生成する実施例を示すAn example is shown in which a sodium chloride aqueous solution is electrolyzed in an electrolytic cell having a diaphragm, and an aqueous solution produced by mixing electrolyzed water produced on the anode side and the cathode side is added to the raw water to produce sterilized water. 次亜塩素酸ナトリウム水溶液を分岐後の原水に添加して殺菌水を生成する実施例を示すAn example in which a sodium hypochlorite aqueous solution is added to the branched raw water to produce sterilized water is shown. 次亜塩素酸水溶液と希塩酸を原水に添加し、それぞれを圧力容器内で衝突噴射することにより殺菌水を生成する実施例を示すAn example of producing sterilizing water by adding hypochlorous acid aqueous solution and dilute hydrochloric acid to raw water and then injecting each of them in a pressure vessel by collision is shown. 次亜塩素酸ナトリウム水溶液を圧力容器の下流で添加して殺菌水を生成する実施例を示すAn example in which an aqueous sodium hypochlorite solution is added downstream of a pressure vessel to produce sterilized water is shown. 次亜塩素酸ナトリウム水溶液を原水に添加して殺菌水を生成した後に分岐された管路の1つが圧力容器の下流に接続されている実施例を示すAn embodiment is shown in which one of the branches branched after adding sodium hypochlorite aqueous solution to raw water to produce sterilizing water is connected downstream of the pressure vessel. 次亜塩素酸ナトリウム水溶液を分岐後の原水に添加して殺菌水を生成する実施例で、分岐された管路の1つが圧力容器の下流に接続されている実施例を示すAn example in which a sodium hypochlorite aqueous solution is added to the raw water after branching to generate sterilizing water, and one of the branched pipes is connected downstream of the pressure vessel. 原水を3つの管路に分岐し、1つの管路に次亜塩素酸ナトリウム水溶液を添加し、2つ目の管路に希塩酸を添加して、それぞれを圧力容器内で衝突噴射することにより殺菌水を生成し、3つ目の管路が圧力容器13の下流に接続されている実施例を示すSterilize by splitting the raw water into three pipes, adding sodium hypochlorite aqueous solution to one pipe, adding dilute hydrochloric acid to the second pipe, and injecting each in a pressure vessel. An example is shown in which water is generated and a third conduit is connected downstream of the pressure vessel 13. 噴射孔が互いに対面して配置され、噴射流が互いに衝突するようになされている実施例を示すAn embodiment is shown in which the injection holes are arranged facing each other and the injection flows collide with each other. 噴射孔が隣接して配置され、噴射流が互いに衝突するようになされている実施例を示すAn embodiment is shown in which the injection holes are arranged adjacent to each other so that the injection flows collide with each other 噴射孔が噴霧ノズルである実施例を示すAn embodiment in which the injection hole is a spray nozzle is shown. 圧力容器内の水位を維持する方法が、給水側と吐水側に設けられた電動式流量調整バルブである実施例を示すAn embodiment is shown in which the method for maintaining the water level in the pressure vessel is an electric flow rate adjusting valve provided on the water supply side and the water discharge side.

符号の説明Explanation of symbols

1 管路 、2 逆止弁 、3 電動開閉バルブ 、4 ポンプ 、5 流量計
6 管路 、7 タンク 、8 ポンプ 、9 流路切換えバルブ
10 添加部 、11 戻り管路 、12 管路 、13 圧力容器
14 空間 、15 噴射孔 、16 炭酸ガスボンベ 、17 手動バルブ
18 減圧弁 、19 減圧弁 、20 電動開閉バルブ 、21 逆止弁
22 圧力計 、23 分岐部 、24 管路 、25 フロート
26 マグネット 、27 リミットスイッチ 、28 リミットスイッチ
29 リミットスイッチ 、30 リミットスイッチ 、31 管路
32 合流部 、33 管路 、34 電動開閉バルブ 、35 管路
36 管路 、37 手動あるいは電動開閉バルブ 、38 管路
39 管路 、40 空間 、41 隔壁 、42 分岐部 、43 管路
44 電動開閉バルブ 、45 管路 、46 添加部 、47 管路
48 管路 、49 流路切換えバルブ 、50 ポンプ 、51 タンク
52 戻り管路 、53 管路 、54 管路 、55 管路 、56 管路
57 管路 、管路 、58 管路 、59 管路 、60 タンク
61 ポンプ 、62 添加部 、63 無隔膜電解槽 、64 管路
65 添加部 、66 管路 、67 管路 、68 管路 、69 管路
70 管路 、71 隔膜を有する電解槽 、72 逆止弁
102 電動式流量調整バルブ 、103 電動式流量調整バルブ
201 分岐バルブ 、202 管路 、203 管路 、204 飛散防止部材
205 管路 、206 分岐バルブ 、207 送水口
208 溶存炭酸ガス濃度計 、209 合流部 、210 管路
211 管路 、212 絞り
DESCRIPTION OF SYMBOLS 1 Pipe line, 2 Check valve, 3 Electric open / close valve, 4 Pump, 5 Flowmeter 6 Pipe line, 7 Tank, 8 Pump, 9 Flow path switching valve 10 Addition part, 11 Return line, 12 Pipe line, 13 Pressure Container 14 Space, 15 Injection hole, 16 Carbon dioxide cylinder, 17 Manual valve 18 Pressure reducing valve, 19 Pressure reducing valve, 20 Electric on-off valve, 21 Check valve 22 Pressure gauge, 23 Branching part, 24 Pipe line, 25 Float 26 Magnet, 27 Limit switch, 28 Limit switch 29 Limit switch, 30 Limit switch, 31 Pipe line 32 Junction section, 33 Pipe line, 34 Electric open / close valve, 35 Pipe line 36 Pipe line, 37 Manual or electric open / close valve, 38 Pipe line 39 Pipe line , 40 space, 41 partition wall, 42 branch part, 43 pipe line 44 electric opening and closing valve, 45 pipe line, 46 addition part, 47 pipe Line 48 Pipe line, 49 Flow path switching valve, 50 Pump, 51 Tank 52 Return line, 53 Pipe line, 54 Pipe line, 55 Pipe line, 56 Pipe line 57 Pipe line, Pipe line, 58 Pipe line, 59 Pipe line , 60 tank 61 pump, 62 addition part, 63 non-diaphragm electrolytic cell, 64 pipe 65 addition part, 66 pipe, 67 pipe, 68 pipe, 69 pipe 70 pipe, 71 electrolytic tank having a diaphragm, 72 Check valve 102 Electric flow rate adjustment valve 103 Electric flow rate adjustment valve 201 Branch valve 202 Pipe line 203 Pipe 204 Anti-scattering member 205 Pipe 206 Branch valve 207 Water inlet 208 Dissolved carbon dioxide concentration meter 209 Junction part, 210 Pipe line 211 Pipe line, 212 Restriction

Claims (4)

圧力容器を有し該圧力容器内に炭酸ガスを供給する機構と前記圧力容器内の圧力より高い圧力で前記圧力容器内に水道水や井水や海水を供給し、水道水や井水や海水に次亜塩素酸ナトリウム水溶液や亜塩素酸ナトリウム水溶液を添加し水道水や井水や海水を所定の塩素濃度およびpHの殺菌水を生成する方法において、圧力容器に大気圧以上の所定の圧力で炭酸ガスを供給する工程を有し、該圧力容器に該水道水や井水や海水を少なくとも2つ以上の管路に分岐して供給する分岐工程を有し、該圧力容器の底部より排水する排水工程を有し、該分岐工程の上流において水道水や井水や海水に次亜塩素酸ナトリウム水溶液や亜塩素酸ナトリウム水溶液を添加して殺菌水を生成する工程を有し、前記殺菌水が分岐された一方の管路を介して該圧力容器内の炭酸ガス空間に噴射および/または散水される炭酸ガスの吸収工程を有し、分岐された他の管路を介して水道水や井水や海水を圧力容器下部に送水を行うか、又は排水工程に送水を行う希釈工程を有し、該圧力容器内の殺菌水が前記圧力容器の底部に所定の範囲の水位で貯留する水位維持工程を有し、該圧力容器の排水管路から排水される殺菌水を所定のpHに調整することを特徴とする殺菌水生成方法。  A mechanism having a pressure vessel and supplying carbon dioxide gas into the pressure vessel and supplying tap water, well water and seawater into the pressure vessel at a pressure higher than the pressure in the pressure vessel, In a method of adding a sodium hypochlorite aqueous solution or a sodium chlorite aqueous solution to produce sterilized water having a predetermined chlorine concentration and pH from tap water, well water or seawater, the pressure vessel is subjected to a predetermined pressure higher than atmospheric pressure. A step of supplying carbon dioxide gas, and a branching step of supplying the tap water, well water or seawater to the pressure vessel by branching into at least two pipes, and draining from the bottom of the pressure vessel A drainage step, and a step of adding a sodium hypochlorite aqueous solution or a sodium chlorite aqueous solution to tap water, well water or seawater upstream of the branching step to generate sterilized water, The pressure through one of the branched lines It has a carbon dioxide absorption process that is injected and / or sprinkled into the carbon dioxide space in the vessel, and tap water, well water or seawater is sent to the lower part of the pressure vessel through other branched pipes, Alternatively, it has a dilution step in which water is supplied to the drainage step, and has a water level maintaining step in which the sterilized water in the pressure vessel is stored at a water level within a predetermined range at the bottom of the pressure vessel. A method for producing sterilized water, characterized in that sterilized water to be drained is adjusted to a predetermined pH. 圧力容器を有し該圧力容器内に炭酸ガスを供給する機構と前記圧力容器内の圧力より高い圧力で前記圧力容器内に水道水や井水や海水を供給し、該供給水に次亜塩素酸ナトリウム水溶液や亜塩素酸ナトリウム水溶液を添加し水道水や井水や海水を所定の塩素濃度およびpHの殺菌水を生成する方法において、圧力容器を有し、該圧力容器から排水する排水工程を有し、該圧力容器の上流において水道水や井水や海水に次亜塩素酸ナトリウム水溶液や亜塩素酸ナトリウム水溶液を添加して殺菌水を生成する工程を有し、さらに、その前後いずれかで塩酸や硫酸あるいは酢酸の酸性水溶液を添加して混合殺菌水を生成するか、又は次亜塩素酸ナトリウム水溶液や亜塩素酸ナトリウム水溶液を添加する管路とは別の管路で水道水や井水や海水に塩酸や硫酸あるいは酢酸の酸性水溶液を添加して酸性希釈水を生成して前記殺菌水と酸性希釈水を混合して混合殺菌水を生成する工程を有し、該圧力容器に前記混合殺菌水を2つ以上の管路に分岐して供給する工程を有し、分岐された一方の管路を介して該圧力容器内の炭酸ガス空間に噴射および/または散水行う炭酸ガスの吸収工程を有し、分岐された他方の管路を介して混合殺菌水を該圧力容器下部、又は圧力容器からの排水管路に送水を行う希釈工程を有し、該圧力容器内の混合殺菌水が前記圧力容器の底部に所定の範囲の水位で貯留する水位維持工程を有し、該圧力容器の排水管路から排水される混合殺菌水を所定のpHに調整することを特徴とする殺菌水生成方法。  A mechanism having a pressure vessel and supplying carbon dioxide gas into the pressure vessel and supplying tap water, well water and seawater into the pressure vessel at a pressure higher than the pressure in the pressure vessel, and hypochlorous acid in the supply water In a method for generating sterilized water having a predetermined chlorine concentration and pH from tap water, well water, or seawater by adding a sodium acid aqueous solution or a sodium chlorite aqueous solution, a drainage step of having a pressure vessel and draining from the pressure vessel Having a step of adding an aqueous sodium hypochlorite solution or an aqueous sodium chlorite solution to tap water, well water or seawater upstream of the pressure vessel to produce sterilizing water, Tap water or well water in a pipe separate from the pipe to which an aqueous solution of hydrochloric acid, sulfuric acid, or acetic acid is added to produce mixed sterilized water, or an aqueous solution of sodium hypochlorite or sodium chlorite is added And hydrochloric acid in seawater A step of generating acidic diluted water by adding an acidic aqueous solution of sulfuric acid or acetic acid and mixing the sterilized water and acidic diluted water to generate mixed sterilized water; A branching and supplying step to the above pipe line, and a carbon dioxide absorption step for spraying and / or sprinkling water into the carbon dioxide space in the pressure vessel through one branched pipe. A dilution step of feeding the mixed sterilized water to the lower part of the pressure vessel or the drainage line from the pressure vessel through the other pipe line, and the mixed sterilized water in the pressure vessel is at the bottom of the pressure vessel And a water level maintaining step for storing the water in a predetermined range, and the mixed sterilized water drained from the drain line of the pressure vessel is adjusted to a predetermined pH. 圧力容器を有し該圧力容器内に炭酸ガスを供給する機構と前記圧力容器内の圧力より高い圧力で前記圧力容器内に水道水や井水や海水を供給し、該供給水に次亜塩素酸ナトリウム水溶液や亜塩素酸ナトリウム水溶液を添加し水道水や井水や海水を所定の塩素濃度およびpHの殺菌水を生成する方法において、該水道水や井水や海水を少なくとも3つ以上の管路に分岐する分岐工程を有し、該分岐工程により分岐した管路の1つを介して水道水や井水や海水に次亜塩素酸ナトリウム水溶液や亜塩素酸ナトリウム水溶液を添加して殺菌水を生成する工程を有し、もう1つの分岐管路において塩酸や硫酸あるいは酢酸の酸性水溶液を添加して酸性希釈水を生成する工程を有し、該圧力容器に大気圧以上の所定の圧力で炭酸ガスを供給する工程を有し、前記殺菌水と前記酸性水溶液を別々の管路を介して該圧力容器の炭酸ガス空間に噴射および/または散水を行う炭酸ガスの吸収工程を有し、該圧力容器内で混合された混合殺菌水を該圧力容器の排水管路から排水する排水工程を有し、3つ目の分岐管路により該圧力容器下部又は圧力容器からの排水管路に何も添加されていない水道水や井水や海水を送水して希釈する希釈工程を有し、該混合殺菌水が前記圧力容器の底部に所定の範囲の水位で貯留する水位維持工程を有し、該圧力容器の排水管路から排水される混合殺菌水を所定のpHに調整することを特徴とする殺菌水生成方法。  A mechanism having a pressure vessel and supplying carbon dioxide gas into the pressure vessel and supplying tap water, well water and seawater into the pressure vessel at a pressure higher than the pressure in the pressure vessel, and hypochlorous acid in the supply water In a method for producing sterilized water having a predetermined chlorine concentration and pH from tap water, well water, or seawater by adding a sodium acid aqueous solution or a sodium chlorite aqueous solution, the tap water, well water, or seawater includes at least three pipes. Having a branching process branching to a road, and adding a sodium hypochlorite aqueous solution or a sodium chlorite aqueous solution to tap water, well water or seawater through one of the pipes branched by the branching process, A step of generating acidic diluted water by adding an acidic aqueous solution of hydrochloric acid, sulfuric acid or acetic acid in another branch pipe, and the pressure vessel is subjected to a predetermined pressure higher than atmospheric pressure. Having a step of supplying carbon dioxide gas A mixed sterilized water having a carbon dioxide absorption step of spraying and / or sprinkling the sterilized water and the acidic aqueous solution into the carbon dioxide space of the pressure vessel through separate pipes, and mixed in the pressure vessel A drainage process for draining the pressure vessel from the drainage pipe of the pressure vessel, and a third branch pipe to which no water is added to the lower part of the pressure vessel or the drainage pipe from the pressure vessel. A dilution step of diluting by sending seawater, and having a water level maintaining step in which the mixed sterilized water is stored at a predetermined level in the bottom of the pressure vessel, and is drained from a drain line of the pressure vessel A method for producing sterilized water, comprising adjusting mixed sterilized water to a predetermined pH. 圧力容器を有し該圧力容器内に炭酸ガスを供給する機構と前記圧力容器内の圧力より高い圧力で前記圧力容器内に水道水や井水や海水を供給し、該水道水や井水や海水に炭酸ガスを溶解させて所定のpH濃度の炭酸水にしてから次亜塩素酸ソーダや亜塩素酸ソーダを添加して所定の塩素濃度とpHの殺菌水を生成する方法において、該水道水や井水や海水を少なくとも2つ以上の管路に分岐供給する分岐工程を有し、圧力容器に大気圧以上の所定の圧力で炭酸ガスを供給する工程を有し、前記水道水や井水や海水を分岐された一方の管路を介して該圧力容器内の炭酸ガス空間に噴射および/または散水を行う炭酸ガスの吸収工程を有し、水道水や井水や海水に炭酸ガスが溶解した炭酸水を該圧力容器から排水する排水工程を有し、分岐された他方の管路から該圧力容器下部又は排水管路に送水を行い炭酸濃度を希釈する希釈工程を有し、噴射および/または散水および送水された水道水や井水や海水が前記圧力容器の底部に所定の範囲の水位で貯留する水位維持工程を有し、圧力容器から排水されるか、又は前記分岐された他方の管路が接続された位置より下流から排水される該炭酸水に次亜塩素酸ナトリウム水溶液や亜塩素酸ナトリウム水溶液を添加して生成された殺菌水を所定のpHに調整することを特徴とする殺菌水生成方法。  A mechanism having a pressure vessel and supplying carbon dioxide gas into the pressure vessel and supplying tap water, well water, or seawater into the pressure vessel at a pressure higher than the pressure in the pressure vessel, In a method for producing sterilized water having a predetermined chlorine concentration and pH by dissolving carbon dioxide in seawater to obtain carbonated water having a predetermined pH concentration and then adding sodium hypochlorite or sodium chlorite, And a branching step of branching and supplying well water or seawater to at least two pipes, and supplying a carbon dioxide gas to the pressure vessel at a predetermined pressure equal to or higher than atmospheric pressure. And a carbon dioxide absorption process that sprays and / or sprinkles water into the carbon dioxide space in the pressure vessel through one of the branched pipes. Carbon dioxide dissolves in tap water, well water, and seawater. A drainage step of draining the carbonated water from the pressure vessel and branching A diluting step of diluting the carbonic acid concentration by feeding water from the other pipe to the lower part of the pressure vessel or the drainage pipe, and sprayed and / or sprinkled and sent tap water, well water or seawater is the bottom of the pressure vessel A water level maintaining step for storing the water level within a predetermined range, and the carbonated water drained from the pressure vessel or drained downstream from the position where the other branched pipe is connected is sub- A method for producing sterilized water, comprising adjusting sterilized water generated by adding a sodium chlorate aqueous solution or a sodium chlorite aqueous solution to a predetermined pH.
JP2006139507A 2005-04-21 2006-04-18 Carbon dioxide containing sterilized water generating method and apparatus capable of controlling carbon dioxide containing concentration Expired - Fee Related JP5360634B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006139507A JP5360634B2 (en) 2005-04-21 2006-04-18 Carbon dioxide containing sterilized water generating method and apparatus capable of controlling carbon dioxide containing concentration

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005151538 2005-04-21
JP2005151538 2005-04-21
JP2006139507A JP5360634B2 (en) 2005-04-21 2006-04-18 Carbon dioxide containing sterilized water generating method and apparatus capable of controlling carbon dioxide containing concentration

Publications (2)

Publication Number Publication Date
JP2006320899A JP2006320899A (en) 2006-11-30
JP5360634B2 true JP5360634B2 (en) 2013-12-04

Family

ID=37540944

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006139507A Expired - Fee Related JP5360634B2 (en) 2005-04-21 2006-04-18 Carbon dioxide containing sterilized water generating method and apparatus capable of controlling carbon dioxide containing concentration

Country Status (1)

Country Link
JP (1) JP5360634B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006263701A (en) * 2005-02-23 2006-10-05 Tatsuo Okazaki Method and apparatus for producing sterile water containing carbon dioxide, slight amount of which can be discharged
FR2932685B1 (en) * 2008-06-23 2010-06-18 Jean Michel Storione ANTI-LEGIONELLOSE TREATMENT OF HYDRAULIC HEATING NETWORKS UNDER CHLORINATION WITH AUTOMATED CONTINUOUS TRACEABILITY ON COMPUTER SYSTEMS.
JP2010115639A (en) * 2008-10-18 2010-05-27 Viita Kk Method and apparatus for adjusting ph
JP2012011313A (en) * 2010-06-30 2012-01-19 Nagoya Univ Apparatus and method for treating liquid
JP5854668B2 (en) * 2011-07-07 2016-02-09 芝浦メカトロニクス株式会社 Gas-liquid mixed fluid generating apparatus, gas-liquid mixed fluid generating method, processing apparatus, and processing method
JP2014148526A (en) * 2014-04-14 2014-08-21 Sutakku System:Kk Method for producing disinfectant antiseptic solution
JP6240632B2 (en) * 2015-04-03 2017-11-29 株式会社スタックシステム Manufacturing method of disinfectant
JP6794205B2 (en) * 2016-09-28 2020-12-02 義久 石井 Hypochlorous acid vaporizer

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3728018B2 (en) * 1996-05-10 2005-12-21 ホシザキ電機株式会社 Weakly acidic chlorinated water, method and apparatus for producing the same
JP2004337582A (en) * 2003-10-27 2004-12-02 Tatsuo Okazaki Sterilizing liquid preserving method, container for sterilization and nozzle with opening/closing valve used for this

Also Published As

Publication number Publication date
JP2006320899A (en) 2006-11-30

Similar Documents

Publication Publication Date Title
JP5360634B2 (en) Carbon dioxide containing sterilized water generating method and apparatus capable of controlling carbon dioxide containing concentration
WO2006090869A1 (en) Process for producing sterile water containing hypochlorous acid or chlorous acid as its main component and apparatus therefor
JPH1099864A (en) Method for producing sterilizing solution and apparatus therefor
JP2011529391A (en) Electrochemical equipment
JP2010115639A (en) Method and apparatus for adjusting ph
JP2006263701A (en) Method and apparatus for producing sterile water containing carbon dioxide, slight amount of which can be discharged
KR101162535B1 (en) Manufacturing apparatus of aqueous solution of chlorine dioxide
KR101139917B1 (en) Sterile water producing apparatus and method
JP5410767B2 (en) Continuous automatic generator of hypochlorous acid aqueous solution
CN101124169A (en) Process for producing sterile water containing hypochlorous acid or chlorous acid as its main component and apparatus therefor
JP2005349382A (en) Method and apparatus for producing high concentration sterilization water using carbon dioxide filled tank
RU45378U1 (en) PLANT FOR PRODUCTION OF CHLORINE DIOXIDE
JP2005161142A (en) Apparatus for producing sterilizing water continuously
KR101371616B1 (en) Naocl dilution structure of generation-system for antiseptic solution including chlorine
CN202913060U (en) Sterilization water production device
JPH0523674A (en) Neutralization device for carbon dioxide gas
JP4594788B2 (en) Disinfection water production equipment
KR20150012656A (en) A counteragent-supplier to prevent clopping counteragent pipe and a ballast water treatment system using it
JP5802623B2 (en) PH treatment equipment for alkaline raw water
JP2006297174A5 (en)
JP3144278U (en) Liquid mixing device
WO2021182391A1 (en) Device for producing sterile water, and method for producing sterile water
KR20070088412A (en) Sterilization and washing system
JP2011005424A (en) Electrolytic water pouring-out device
KR102565677B1 (en) System and method for producing an aqueous chlorine dioxide solution using reactor and dissolver under atmospheric pressure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090416

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110915

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111101

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120321

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130806

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130823

R150 Certificate of patent or registration of utility model

Ref document number: 5360634

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees