WO2021182391A1 - Device for producing sterile water, and method for producing sterile water - Google Patents

Device for producing sterile water, and method for producing sterile water Download PDF

Info

Publication number
WO2021182391A1
WO2021182391A1 PCT/JP2021/008977 JP2021008977W WO2021182391A1 WO 2021182391 A1 WO2021182391 A1 WO 2021182391A1 JP 2021008977 W JP2021008977 W JP 2021008977W WO 2021182391 A1 WO2021182391 A1 WO 2021182391A1
Authority
WO
WIPO (PCT)
Prior art keywords
aqueous solution
pipe
carbon dioxide
water
dioxide gas
Prior art date
Application number
PCT/JP2021/008977
Other languages
French (fr)
Japanese (ja)
Inventor
利久 太斎
Original Assignee
株式会社マツバラ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社マツバラ filed Critical 株式会社マツバラ
Priority to JP2022507176A priority Critical patent/JPWO2021182391A1/ja
Publication of WO2021182391A1 publication Critical patent/WO2021182391A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N25/00Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests
    • A01N25/22Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests containing ingredients stabilising the active ingredients
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N59/00Biocides, pest repellants or attractants, or plant growth regulators containing elements or inorganic compounds
    • A01N59/08Alkali metal chlorides; Alkaline earth metal chlorides
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01PBIOCIDAL, PEST REPELLANT, PEST ATTRACTANT OR PLANT GROWTH REGULATORY ACTIVITY OF CHEMICAL COMPOUNDS OR PREPARATIONS
    • A01P3/00Fungicides
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/50Treatment of water, waste water, or sewage by addition or application of a germicide or by oligodynamic treatment

Definitions

  • the present invention relates to a production apparatus and a production method for sterilizing water containing hypochlorous acid or chlorous acid.
  • hypochlorous acid or chlorous acid as a main component is harmless to the human body and has an excellent sterilizing effect.
  • About 10% of hypochlorous acid is contained in an aqueous solution of sodium hypochlorite having an advantageous chlorine concentration of about 200 ppm and a pH value of about 8.6 by diluting sodium hypochlorite with water. It has long been known that the ratio of hypochlorous acid increases by lowering the pH value to make it a weak acid, and the pH value becomes almost 100% in the vicinity of 5.
  • a method for producing sterilizing water containing hypochlorite or chloric acid as a main component a method of mixing an aqueous solution of sodium hypochlorite or an aqueous solution of sodium chlorite with an acidic aqueous solution such as hydrochloric acid is known.
  • FIG. 5 shows the abundance ratios of chlorine molecules, hypochlorous acid, and hypochlorite ions at each pH when they are in an equilibrium state.
  • 501 of FIG. 5 shows the abundance ratio of hypochlorous acid, and the abundance ratio of hypochlorous acid exceeds 80% in the range of about pH 4 to pH 7. From this, it can be said that it is necessary to keep the pH stable in the range of 4 to 7 in order for hypochlorous acid to exist stably.
  • FIG. 4 shows the abundance ratios of carbonic acid, bicarbonate ion, and carbonate ion at each pH when they are in an equilibrium state.
  • 401 of FIG. 4 shows the abundance ratio of hydrogen carbonate ion, and the abundance ratio increases from pH 6 to pH 10. Since hydrogen carbonate ion having a buffering action against a change in pH exists in this pH range, the pH of the solution is less likely to change.
  • a method of electrolyzing an aqueous hydrochloric acid solution is known. Furthermore, a method of producing a hypochlorite aqueous solution on the anode side by injecting an aqueous sodium chloride solution into an electrolytic cell having a diaphragm between the anode and the cathode and electrolyzing it, or a mixed aqueous solution of hydrochloric acid and sodium chloride. Is known to be manufactured by directly electrolyzing.
  • a sodium hypochlorite aqueous solution and an acidic aqueous solution are mixed and produced by a dedicated device, or sterilized water is generated by a dedicated electrolysis device and the like.
  • sterilized water is generated by a dedicated electrolysis device and the like.
  • the method of producing sterilized water by mixing an aqueous solution of sodium hypochlorite or an aqueous solution of sodium chlorite with an acidic aqueous solution has an advantage that sterilized water can be easily generated, but it is difficult to control the amount of the acidic aqueous solution to be mixed. If the amount of the acidic aqueous solution is as large as possible, the pH drops sharply and enters the gasification region, which causes a problem of generating chlorine gas or chlorine dioxide gas.
  • a sodium hypochlorite aqueous solution or a sodium chlorite aqueous solution is mixed with carbon dioxide gas.
  • An apparatus for producing sterilizing water see Patent Document 1.
  • Patent Document 1 describes a method and apparatus for producing sterilized water having a predetermined chlorine concentration by diluting an aqueous solution of sodium hypochlorite or an aqueous solution of sodium chlorite with tap water, well water, seawater, or the like. It has a branching process and mechanism that branches and supplies water, well water, and seawater to at least two or more pipelines, and sodium hypochlorite aqueous solution and subchlorite are added to tap water, well water, and seawater upstream of the branching process and mechanism.
  • It has a process and mechanism to generate sterilized water by adding sodium chlorite aqueous solution, or an aqueous solution obtained by diluting sodium hypochlorite aqueous solution or sodium chlorite aqueous solution with tap water, well water, seawater, etc., and hydrochloric acid. It has a process and mechanism to generate sterilizing water by mixing an acidic aqueous solution such as sulfuric acid or acetic acid diluted with tap water, well water, seawater, etc.
  • an acidic aqueous solution such as sulfuric acid or acetic acid diluted with tap water, well water, seawater, etc.
  • It has a process and an apparatus for generating sterilizing water by electrolysis in a diaphragm electrolysis tank, and has a process and a mechanism for supplying carbon dioxide gas to a pressure vessel at a predetermined pressure of atmospheric pressure or higher, and the sterilizing water is branched. It has a process and mechanism for injecting and / or sprinkling water into the pressure vessel through each conduit, and further has a process and mechanism for simply sending water, and drains sterilized water from the pressure vessel.
  • a sterilizing water generation method and a mechanism having a process and a mechanism, and having a water level maintaining step and a mechanism in which the jetted and / or sprinkled and sent sterilized water is stored in the bottom of the pressure vessel at a water level within a predetermined range.
  • "Device” paragraph [0013]
  • Patent Document 1 when an aqueous solution of sodium hypochlorite or an aqueous solution of sodium chlorite is injected into a pressure vessel filled with carbon dioxide gas, the ejected droplets are sterilized water collected at the bottom of the pressure vessel. Hypochlorous acid and chlorite are generated by reacting with carbon dioxide gas before landing on the liquid surface of.
  • the above device is manufactured by stabilizing the pH of the sterilized water by changing the water level of the sterilized water due to the malfunction of the water level maintenance mechanism (float), changing the flight time of the sprayed sterilized water in the carbon dioxide gas, and stabilizing the pH of the sterilized water. There is a problem that it cannot be done.
  • Patent Document 2 describes a carbon dioxide gas-containing sterilizing water generator that mixes an aqueous solution of sodium hypochlorite or an aqueous solution of sodium chlorite with carbon dioxide gas and stirs it with a static mixer or the like (claims 5 and 6).
  • a static mixer or the like a carbon dioxide gas-containing sterilizing water generator that mixes an aqueous solution of sodium hypochlorite or an aqueous solution of sodium chlorite with carbon dioxide gas and stirs it with a static mixer or the like.
  • the structure of the stirrer does not matter (paragraph [0031]), and since sodium hypochlorite is mixed and then carbon dioxide gas is mixed (paragraph [0030]), both are mixed.
  • the effect of stirring the mixture in a different order with a static mixer is not clear.
  • Patent Document 3 states that a device that produces sterilizing water by mixing sodium hypochlorite or sodium chlorite (sterilizing agent) with carbon dioxide gas has a mixing part such as a static mixer in the middle of a water supply pipe. Although described (claims 2 and 6), it has a special structure for sucking up the disinfectant using negative pressure and mixing it with the raw water, and the mixing part may be omitted (paragraph [paragraph [paragraph]]. 0034]), there is no specific description about the static mixer, and the action and effect of using the static mixer are not clear.
  • the pH of sterilized water produced by the conventional device as described above begins to change to the neutral range from about one week, and the pH changes to the range where hypochlorous acid cannot stably exist. There is also a problem.
  • the present invention is intended to solve such a conventional problem, and an object of the present invention is to provide an apparatus for producing sterilized water containing hypochlorous acid or chlorous acid by making the pH more stable.
  • a sterilizing water production device containing hypochlorite or chlorite which has a carbon dioxide gas injection pipe having a check valve between the raw material water inlet and the sterilizing water outlet, and hypochlorite having a check valve. It is equipped with a pipe for injecting an aqueous solution of sodium chlorite or an aqueous solution of sodium chlorite, and a stirring tank having a static mixer in which a stirring blade is inserted into the pipe, and has a pumping part for sending raw water upward from the raw water inlet.
  • the carbon dioxide gas injection pipe, the sodium hypochlorite aqueous solution or the sodium chlorite aqueous solution injection pipe in this order, the sodium hypochlorite aqueous solution or the sodium chlorite aqueous solution injection pipe.
  • the main pipe is connected to the inlet of the stirring tank, and carbon dioxide gas and sodium hypochlorite aqueous solution or sodium chlorite aqueous solution are placed in the lower part of the static mixer tube in the stirring tank. It has a hole that serves as an inlet for the added raw material water, and a discharge pipe that discharges sterilizing water containing hypochlorite or chlorite from the sterilizing water outlet is connected to the outlet of the static mixer pipe.
  • the injection tee joint is connected to the carbon dioxide gas injection pipe, and the sodium hypochlorite aqueous solution or sodium chlorite aqueous solution injection tee joint is connected to the sodium hypochlorite aqueous solution or sodium chlorite aqueous solution injection pipe.
  • the sterilized water production apparatus according to any one of (1) to (3) above.
  • the representative length (diameter) of water in the flow path from the connection position of the carbon dioxide injection pipe in the main pipe to the sterilizing water outlet through the stirring tank, which is calculated by the following formula (1), is 0.3 mm.
  • the sterilizing water production apparatus according to any one of (1) to (4) above, wherein the Reynolds number of particles with respect to the carbon dioxide gas bubbles is 500 or less.
  • the flow rate of water in the flow path from the raw material water inlet to the sterilizing water outlet via the stirring tank is 500 L or less per hour, and the diameters of the main pipe, the static mixer pipe and the discharge pipe are 11 mm or more.
  • the sterilizing water production apparatus according to any one of (1) to (5) above, wherein the static mixer pipe is provided with 1 to 8 holes having a diameter of 4 mm or more.
  • the static mixer of the stirring tank constitutes a hydrocyclone that separates coarse bubbles and fine bubbles of carbon dioxide gas of the raw material water to which the carbon dioxide gas and the sodium hypochlorite aqueous solution or the sodium chlorite aqueous solution are added.
  • the sterilizing water production apparatus according to any one of (1) to (6) above.
  • Device is a member that separates excess carbon dioxide gas and sterilizing water that have not been dissolved in the stirring tank and releases the excess carbon dioxide gas to the atmosphere.
  • a method for producing sterilized water containing hypochlorite or chloronic acid in which a pipe for injecting carbon dioxide gas, an aqueous solution of sodium hypochlorite or sodium chlorite is located between the raw material water inlet and the sterilized water outlet.
  • a sterilizing water production device equipped with a pipe for injecting an aqueous solution and a stirring tank having a static mixer in which a stirring blade is inserted into the pipe, it has a pumping part for sending raw water upward and is stirred from the raw water inlet.
  • Carbon dioxide gas is injected into the main pipe leading to the tank inlet from the carbon dioxide gas injection pipe, and then sodium hypochlorite aqueous solution or chlorite is injected from the sodium hypochlorite aqueous solution or sodium hypochlorite aqueous solution injection pipe.
  • An aqueous sodium acid solution is injected, and raw material water to which carbon dioxide gas and an aqueous solution of sodium hypochlorite or an aqueous solution of sodium hypochlorite is added is supplied from the main pipe to the stirring tank, and the tube of the static mixer in the stirring tank.
  • a method for producing sterilizing water which discharges sterilizing water containing hypochlorite or chlorite from the sterilizing water outlet of a discharge pipe connected to. (10) Typical length (diameter) of 0.3 mm of water in the flow path from the connection position of the carbon dioxide injection pipe in the main pipe to the sterilizing water outlet through the stirring tank, calculated by the following formula (1).
  • the method for producing sterilized water according to (9) above, wherein the Reynolds number of particles with respect to the carbon dioxide gas bubbles is 500 or less.
  • Number of particle Reynolds (flow rate * carbon dioxide bubble diameter) / (hydraulic viscosity * pipe cross-sectional area) ... (1) (11)
  • the flow rate of water in the flow path from the raw material water inlet to the sterilizing water outlet via the stirring tank is 500 L or less per hour, and the diameters of the main pipe, the static mixer pipe and the discharge pipe are 11 mm or more.
  • sterilizing water containing hypochlorous acid and chlorine dioxide can be obtained from an aqueous solution of sodium hypochlorite or an aqueous solution of sodium chlorite by a stable pH adjusting action of carbon dioxide gas.
  • the sterilizing water produced by the apparatus of the present invention can maintain a pH of pH 5.6 to pH 5.8 in which hypochlorous acid can stably exist for 6 months or more.
  • FIG. 1 is a diagram showing a structure of a typical sterilizing water production apparatus of the present invention.
  • the raw material water 14 such as tap water, well water, and seawater is supplied to the main pipe 9 from the raw material water inlet 1.
  • a decompressor regulator
  • the main pipe 9 from the raw material water inlet 1 to the stirring tank 7 inlet has a pumping portion for sending the raw material water 14 upward.
  • a tee joint 10 for injecting carbon dioxide gas is connected to the pumping portion of the main pipe 9, and carbon dioxide gas 16 passing through the pipe 4 for injecting carbon dioxide gas and the check valve 3 for injecting carbon dioxide gas is added to the raw material water. Will be done.
  • sodium hypochlorite aqueous solution sodium chlorite aqueous solution when producing sterilizing water containing chlorite
  • injection tee joint 11 is connected.
  • Sodium hypochlorite aqueous solution 17 transported from there by the tube pump 12 passes through the sodium hypochlorite aqueous solution injection pipe 6 and the sodium hypochlorite injection check valve 5 and is added to the raw water. Will be done.
  • the carbon dioxide gas is faster than the flow of tap water supplied from the raw material water inlet 1 due to buoyancy. It floats between the tee joint 10 and the tee joint 11 to promote melting.
  • the raw material water to which carbon dioxide gas and the sodium hypochlorite aqueous solution are added enters the stirring tank 7 through the main pipe 9.
  • the raw material water that has entered the stirring tank 7 passes through the static mixer inlet 13 and enters the static mixer 8 to be stirred.
  • Sterilized water containing hypochlorous acid is produced by stirring the raw material water to which the carbon dioxide gas and the sodium hypochlorite aqueous solution are added with the static mixer 8.
  • the static mixer 8 has a stirring blade having a structure in which a plurality of twisted blades arranged in series at different angles as shown in FIG. 2 are inserted into a pipe. Stirring is performed by passing the raw material water there through the path indicated by the arrow in FIG. Since the static mixer is a part that comes into direct contact with the raw material water, it is necessary to use a material that does not have a risk of corrosion, and in this embodiment, it is made of resin. Polyvinyl chloride, polyacetal, polypropylene and the like can be used.
  • the stirring tank 7 is a hydrocyclone that separates the coarse bubbles and the fine bubbles of the carbon dioxide gas bubbles of the raw material water to which the carbon dioxide gas and the sodium hypochlorite aqueous solution are added, and is effective in stabilizing the pH.
  • the main pipe 9 is connected to the upper part of the stirring tank 7, the static mixer inlet (hole) 13 is provided at the lower part, and the raw material water containing carbon dioxide gas is separated into the upper part in the process of moving from the lower part to the upper part of the static mixer 8. Hydrogen carbonate ions are efficiently generated by the generated fine bubbles of carbon dioxide gas.
  • the residence time of the fine bubbles of carbon dioxide gas in the static mixer 8 is also lengthened. Since the static mixer 8 agitates in principle without destroying the structure of the laminar flow, it is considered that hydrogen carbonate ions are efficiently generated by the fine bubbles of carbon dioxide gas. Further, in order to lengthen the residence time, it is preferable to provide the static mixer inlet 13 as close to the bottom as possible.
  • the stirring tank 7 is essentially a continuous reactor, and is a hybrid of a tubular reactor (static mixer 8) and a tank reactor. To stabilize the quality of the sterilized water 15 produced, it is preferable to monitor the temperature and pressure. Therefore, it is preferable to provide a temperature sensor and a pressure sensor in the main pipe 9 and the stirring tank 7 which are the flow paths. A microphone may be attached to the flow path and its impedance may be analyzed. As a result, it is possible to monitor the generation status of carbon dioxide fine bubbles, and by analyzing the sound, it is possible to determine the condition of the sterilized water, which is useful for stabilizing the quality of the sterilized water.
  • a discharge pipe 18 is connected to the outlet of the static mixer 8 in the stirring tank 7, and the sterilizing water 15 containing hypochlorous acid is discharged from the sterilizing water outlet 2 of the discharge pipe 18. It is preferable to have a member that separates the excess carbon dioxide gas that has not been dissolved and the sterilizing water 15 in the stirring tank 7 and releases the excess carbon dioxide gas to the atmosphere.
  • the flow rate of water in the flow path from the raw material water inlet 1 to the sterilizing water outlet 2 via the stirring tank 7 is 500 L or less per hour, and the main pipe 9 from the raw material water inlet 1 to the stirring tank 7 inlet, the pipe of the static mixer 8 and the pipe
  • the discharge pipe 18 connected to the outlet of the static mixer 8 has a diameter of 11 mm or more, and by providing 1 to 8 holes having a diameter of 4 mm or more in the pipe of the static mixer 8, a representative length of 0.3 mm in diameter is provided. It is preferable that the Reynolds number of particles with respect to the carbon dioxide gas bubbles is 500 or less so that the laminar flow is formed.
  • the flow path from the raw material water inlet 1 to the sterilizing water outlet 2 via the stirring tank 7 is the flow path of the main pipe 9 from the raw material water inlet 1 to the stirring tank 7 inlet, and the main pipe 9 outlet in the stirring tank 7 ( It consists of a flow path from the stirring tank 7 inlet) to the static mixer inlet 13, a flow path in the static mixer 8, and a flow path of the discharge pipe 18 from the outlet of the static mixer 8 to the sterilizing water outlet 2.
  • the flow rate of water (raw material water and sterilizing water) is preferably 500 L or less per hour, and more preferably 300 L or less per hour.
  • the diameter of the main pipe 9 and the discharge pipe 18 is preferably 11 mm or more, and more preferably 13 mm or more.
  • the upper limit of the diameters of the main pipe 9 and the discharge pipe 18 is preferably 20 mm, more preferably 15 mm, in order to obtain a stable laminar flow with little change in the Reynolds number.
  • the diameter of the tube of the static mixer 8 is preferably 15 mm or more, and more preferably 20 mm or more.
  • the diameter of this tube is preferably 65 mm or less, more preferably 30 mm or less.
  • the outer circumference of the tube of the static mixer 8 is preferably provided with 1 to 8 holes having a diameter of 4 mm or more, and more preferably 2 to 4 holes having a diameter of 6 mm or more.
  • the upper limit of the diameter of this hole is preferably 20 mm, more preferably 15 mm.
  • the particle Reynolds number is 500 or less for laminar flow, but more preferably 300 or less, and even more preferably 250 or less.
  • Table 1 shows the results of calculating the particle Reynolds number for carbon dioxide bubbles with a diameter of 0.3 mm as a representative length.
  • the Reynolds number of particles for carbon dioxide bubbles having a diameter of 0.3 mm is 211.
  • the particle Reynolds number is 491, which is 500 or less. Therefore, it is preferable that the diameters of the main pipe and the discharge pipe are 11 mm or more. Since the diameter of the pipe (corresponding to the pipe) of the static mixer is usually about 20 mm, the particle Reynolds number of the raw water (sterilized water) in the static mixer is smaller than the particle Reynolds number of the raw water flowing through the main pipe. ..
  • the true pipe cross-sectional area through which the raw material water flows in the stirring tank is quadrupled.
  • the particle Reynolds number is 149 when the flow rate of water is 500 L / h.
  • the Reynolds number of particles will be 500 or less in the stirring tank. Therefore, the number of particle Reynolds in the flow path from the connection position of the carbon dioxide gas injection pipe in the main pipe to the sterilizing water outlet through the stirring tank is 500 or less.
  • the raw material water to which carbon dioxide gas and sodium hypochlorite aqueous solution are added and stirred by the static mixer 8 increases the ratio of hypochlorous acid, lowers the pH value, and becomes sterilizing water having a pH of 5.6 to 5.8. ..
  • the produced sterilized water can maintain a pH of pH 5.6 to pH 5.8 in which hypochlorous acid can stably exist for 6 months or more.
  • chlorine gas 102 chloride ion vs. chlorine gas, 103 hypochlorite ion vs. chloride Object ion, 104 chlorite ion vs. hypochlorite ion, 400 abundance ratio of carbon dioxide, 401 abundance ratio of hydrogen carbonate ion, 402 abundance ratio of carbonate ion, 500 abundance ratio of chlorine molecule, 501 abundance ratio of hypochlorous acid , 502 Absence ratio of hypochlorite ion

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Plant Pathology (AREA)
  • Environmental Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Pest Control & Pesticides (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Dentistry (AREA)
  • Agronomy & Crop Science (AREA)
  • Inorganic Chemistry (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Organic Chemistry (AREA)
  • Water Supply & Treatment (AREA)
  • Microbiology (AREA)
  • Mycology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Toxicology (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

[Problem] To provide a device for producing sterile water containing hypochlorous acid or chlorous acid as a main component by making the pH more stable. [Solution] This device for producing sterile water containing hypochlorous acid or chlorous acid comprises, between a raw material water inlet 1 and a sterile water outlet 2: a carbonic acid gas-injecting pipe 4 having a check valve 3; a sodium hypochlorite aqueous solution- or sodium chlorite aqueous solution-injecting pipe 6 having a check valve 5; and a stirring tank 7 having a static mixer 8 in which stirring blades are inserted into a pipe. A main pipe 9, which has a water pumping part for sending raw material water 14 upward and extends from the raw material water inlet 1 to the inlet of the stirring tank 7, is connected to the carbonic acid gas-injecting pipe 4 and the sodium hypochlorite aqueous solution- or sodium chlorite aqueous solution-injecting pipe 6 in this order in a state where the sodium hypochlorite aqueous solution- or sodium chlorite aqueous solution-injecting pipe 6 is placed on the upper side, so that the main pipe 9 is connected to the inlet of the stirring tank 7. The lower part of the pipe of the static mixer 8 in the stirring tank 7 has a hole serving as an inlet 13 for the raw material water to which carbonic acid gas and a sodium hypochlorite aqueous solution or a sodium chlorite aqueous solution are added, and a discharge pipe 18 for discharging sterile water 15 containing hypochlorous acid or chlorous acid from the sterile water outlet 2 is connected to the outlet of the pipe of the static mixer 8.

Description

殺菌水製造装置及び殺菌水製造方法Sterilized water production equipment and sterilized water production method
 本発明は次亜塩素酸又は亜塩素酸を含む殺菌水の製造装置及び製造方法に関する。 The present invention relates to a production apparatus and a production method for sterilizing water containing hypochlorous acid or chlorous acid.
 次亜塩素酸又は亜塩素酸を主成分とする殺菌水は人体に無害であり、かつ殺菌効果が優れていることが、広く知られている。次亜塩素酸は次亜塩素酸ナトリウムを水で希釈して有利塩素濃度が200ppm程度でpH値が8.6程度にした次亜塩素酸ナトリウム水溶液に10%程度含まれている。次亜塩素酸の比率は、pH値を下げて弱酸にすることにより増加し、pH値が5近傍でほぼ100%となることは以前から知られている。 It is widely known that sterilizing water containing hypochlorous acid or chlorous acid as a main component is harmless to the human body and has an excellent sterilizing effect. About 10% of hypochlorous acid is contained in an aqueous solution of sodium hypochlorite having an advantageous chlorine concentration of about 200 ppm and a pH value of about 8.6 by diluting sodium hypochlorite with water. It has long been known that the ratio of hypochlorous acid increases by lowering the pH value to make it a weak acid, and the pH value becomes almost 100% in the vicinity of 5.
 次亜塩素酸や亜塩素酸を主成分とする殺菌水の製造方法としては、次亜塩素酸ナトリウム水溶液や亜塩素酸ナトリウム水溶液と塩酸などの酸性水溶液とを混合する方法が知られている。 As a method for producing sterilizing water containing hypochlorite or chloric acid as a main component, a method of mixing an aqueous solution of sodium hypochlorite or an aqueous solution of sodium chlorite with an acidic aqueous solution such as hydrochloric acid is known.
 図5は各pHにおける、塩素分子、次亜塩素酸、次亜塩素酸イオンが平衡状態となっている時のそれぞれの存在比率を示している。図5の501は次亜塩素酸の存在比率を示しているが、およそpH4からpH7の範囲で次亜塩素酸の存在比率が80%を超えている。このことから次亜塩素酸を安定して存在させるためにはpHを4から7の範囲に安定して保つ必要があると言える。 FIG. 5 shows the abundance ratios of chlorine molecules, hypochlorous acid, and hypochlorite ions at each pH when they are in an equilibrium state. 501 of FIG. 5 shows the abundance ratio of hypochlorous acid, and the abundance ratio of hypochlorous acid exceeds 80% in the range of about pH 4 to pH 7. From this, it can be said that it is necessary to keep the pH stable in the range of 4 to 7 in order for hypochlorous acid to exist stably.
 図4は、各pHにおける、炭酸、炭酸水素イオン、炭酸イオンが平衡状態となっている時のそれぞれの存在比率を示している。図4の401は炭酸水素イオンの存在比率を示しているが、その存在比率は、pH6からpH10で高くなっている。このpHの範囲ではpHの変化に対する緩衝作用を持つ炭酸水素イオンが存在するため、溶液のpHが変化しにくくなる。 FIG. 4 shows the abundance ratios of carbonic acid, bicarbonate ion, and carbonate ion at each pH when they are in an equilibrium state. 401 of FIG. 4 shows the abundance ratio of hydrogen carbonate ion, and the abundance ratio increases from pH 6 to pH 10. Since hydrogen carbonate ion having a buffering action against a change in pH exists in this pH range, the pH of the solution is less likely to change.
 殺菌水を安定して製造するためには、緩衝作用のある炭酸水素イオンを効率的かつ安定して生成させ、殺菌水を次亜塩素酸が安定して存在できるpH6からpH7の弱酸性に保ち続けることが重要である。 In order to stably produce sterilized water, hydrogen carbonate ion having a buffering action is efficiently and stably generated, and the sterilized water is kept at a weak acidity of pH 6 to pH 7 where hypochlorous acid can stably exist. It is important to continue.
 次亜塩素酸を主成分とする殺菌水の製造方法の別例としては、塩酸水溶液を電気分解する方法が知られている。さらには、陽極と陰極の間に隔膜を有する電解槽に、塩化ナトリウム水溶液を注入して電気分解することにより、陽極側に次亜塩素酸水溶液を生成する方法や、塩酸と塩化ナトリウムの混合水溶液を直接電気分解して、製造する方法が知られている。 As another example of the method for producing sterilizing water containing hypochlorous acid as a main component, a method of electrolyzing an aqueous hydrochloric acid solution is known. Furthermore, a method of producing a hypochlorite aqueous solution on the anode side by injecting an aqueous sodium chloride solution into an electrolytic cell having a diaphragm between the anode and the cathode and electrolyzing it, or a mixed aqueous solution of hydrochloric acid and sodium chloride. Is known to be manufactured by directly electrolyzing.
 また、上記の方法で製造した殺菌水を使用する方法として、次亜塩素酸ナトリウム水溶液と酸性水溶液を専用の装置で混合して生成するか、専用の電気分解装置で殺菌水を生成し、その装置から吐出される殺菌水を先止めバルブや蛇口から取り出して使用する方法がある。 In addition, as a method of using the sterilizing water produced by the above method, a sodium hypochlorite aqueous solution and an acidic aqueous solution are mixed and produced by a dedicated device, or sterilized water is generated by a dedicated electrolysis device and the like. There is a method of taking out the sterilizing water discharged from the device from the pre-stop valve or the faucet and using it.
 次亜塩素酸ナトリウム水溶液や亜塩素酸ナトリウム水溶液を酸性水溶液と混合して殺菌水を製造する方法は、手軽に殺菌水を生成できるという利点があるが、混合する酸性水溶液の量のコントロールが難しく、酸性水溶液の量が少しでも多いと急激にpHが低下してガス化領域に入り、塩素ガスや二酸化塩素ガスを発生するという問題を抱えている。 The method of producing sterilized water by mixing an aqueous solution of sodium hypochlorite or an aqueous solution of sodium chlorite with an acidic aqueous solution has an advantage that sterilized water can be easily generated, but it is difficult to control the amount of the acidic aqueous solution to be mixed. If the amount of the acidic aqueous solution is as large as possible, the pH drops sharply and enters the gasification region, which causes a problem of generating chlorine gas or chlorine dioxide gas.
 酸性水溶液との反応をコントロールし、次亜塩素酸や亜塩素酸を含む殺菌水を安定して製造する装置としては、次亜塩素酸ナトリウム水溶液や亜塩素酸ナトリウム水溶液を炭酸ガスと混合して殺菌水を生成する装置がある(特許文献1参照)。 As a device for controlling the reaction with an acidic aqueous solution and stably producing sterilized water containing hypochlorite or chlorite, a sodium hypochlorite aqueous solution or a sodium chlorite aqueous solution is mixed with carbon dioxide gas. There is an apparatus for producing sterilizing water (see Patent Document 1).
 特許文献1には、「次亜塩素酸ナトリウム水溶液や亜塩素酸ナトリウム水溶液を水道水や井水や海水などで希釈して所定の塩素濃度の殺菌水を生成する方法および装置であり、該水道水や井水や海水を少なくとも2つ以上の管路に分岐供給する分岐工程および機構を有し、該分岐工程および機構の上流において水道水や井水や海水に次亜塩素酸ナトリウム水溶液や亜塩素酸ナトリウム水溶液を添加して殺菌水を生成する工程および機構を有し、あるいは、次亜塩素酸ナトリウム水溶液や亜塩素酸ナトリウム水溶液を水道水や井水や海水などで希釈した水溶液と、塩酸や硫酸あるいは酢酸などの酸性水溶液を水道水や井水や海水などで希釈した水溶液を混合して殺菌水を生成する工程および機構を有し、あるいは、塩化ナトリウム水溶液や海水を無隔膜電解槽あるいは有隔膜電解槽で電気分解して殺菌水を生成する工程および装置を有し、圧力容器に大気圧以上の所定の圧力で炭酸ガスを供給する工程および機構を有し、前記殺菌水を分岐されたそれぞれの管路を介して該圧力容器内に噴射および/または散水を行う工程および機構を有し、さらに、単なる送水を行う工程および機構を有し、該圧力容器から殺菌水を排水する排水工程および機構を有し、噴射および/または散水および送水された殺菌水が前記圧力容器の底部に所定の範囲の水位で貯留する水位維持工程および機構を有することを特徴とする殺菌水生成方法および装置」(段落[0013])が記載されている。 Patent Document 1 describes a method and apparatus for producing sterilized water having a predetermined chlorine concentration by diluting an aqueous solution of sodium hypochlorite or an aqueous solution of sodium chlorite with tap water, well water, seawater, or the like. It has a branching process and mechanism that branches and supplies water, well water, and seawater to at least two or more pipelines, and sodium hypochlorite aqueous solution and subchlorite are added to tap water, well water, and seawater upstream of the branching process and mechanism. It has a process and mechanism to generate sterilized water by adding sodium chlorite aqueous solution, or an aqueous solution obtained by diluting sodium hypochlorite aqueous solution or sodium chlorite aqueous solution with tap water, well water, seawater, etc., and hydrochloric acid. It has a process and mechanism to generate sterilizing water by mixing an acidic aqueous solution such as sulfuric acid or acetic acid diluted with tap water, well water, seawater, etc. It has a process and an apparatus for generating sterilizing water by electrolysis in a diaphragm electrolysis tank, and has a process and a mechanism for supplying carbon dioxide gas to a pressure vessel at a predetermined pressure of atmospheric pressure or higher, and the sterilizing water is branched. It has a process and mechanism for injecting and / or sprinkling water into the pressure vessel through each conduit, and further has a process and mechanism for simply sending water, and drains sterilized water from the pressure vessel. A sterilizing water generation method and a mechanism having a process and a mechanism, and having a water level maintaining step and a mechanism in which the jetted and / or sprinkled and sent sterilized water is stored in the bottom of the pressure vessel at a water level within a predetermined range. "Device" (paragraph [0013]) is described.
 また、次亜塩素酸ナトリウム水溶液や亜塩素酸ナトリウム水溶液を炭酸ガスと混合して殺菌水を生成する場合に、スタティックミキサーで混合又は攪拌することも公知である(特許文献2及び3参照)。 It is also known that when an aqueous solution of sodium hypochlorite or an aqueous solution of sodium chlorite is mixed with carbon dioxide gas to generate sterilizing water, it is mixed or stirred with a static mixer (see Patent Documents 2 and 3).
特開2006-320899号公報Japanese Unexamined Patent Publication No. 2006-320899 特開2009-297696号公報JP-A-2009-297696 特開2014-50828号公報Japanese Unexamined Patent Publication No. 2014-50828
 特許文献1に記載の装置においては、次亜塩素酸ナトリウム水溶液や亜塩素酸ナトリウム水溶液を炭酸ガスの充填された圧力容器内に噴射すると、噴射した液滴が圧力容器の底部に溜まった殺菌水の液面に着地するまでの間に炭酸ガスと反応し、次亜塩素酸や亜塩素酸が生じる。しかしながら、上記の装置は、水位維持機構(フロート)の動作不良によって殺菌水の水位が変わり、噴霧した殺菌水の炭酸ガス中での飛行時間が変わり、殺菌水のpHを安定させて製造することができないという問題点がある。 In the apparatus described in Patent Document 1, when an aqueous solution of sodium hypochlorite or an aqueous solution of sodium chlorite is injected into a pressure vessel filled with carbon dioxide gas, the ejected droplets are sterilized water collected at the bottom of the pressure vessel. Hypochlorous acid and chlorite are generated by reacting with carbon dioxide gas before landing on the liquid surface of. However, the above device is manufactured by stabilizing the pH of the sterilized water by changing the water level of the sterilized water due to the malfunction of the water level maintenance mechanism (float), changing the flight time of the sprayed sterilized water in the carbon dioxide gas, and stabilizing the pH of the sterilized water. There is a problem that it cannot be done.
 特許文献2には、次亜塩素酸ナトリウム水溶液あるいは亜塩素酸ナトリウム水溶液を炭酸ガスと混合してスタティックミキサーなどで攪拌する炭酸ガス含有殺菌水生成装置が記載されている(請求項5及び6)が、攪拌器の構造は問わない(段落[0031])と記載されており、また、次亜塩素酸ナトリウムを混合してから炭酸ガスを混合している(段落[0030])から、両者を別の順序で混合したものをスタティックミキサーで攪拌することによる作用効果は明らかではない。 Patent Document 2 describes a carbon dioxide gas-containing sterilizing water generator that mixes an aqueous solution of sodium hypochlorite or an aqueous solution of sodium chlorite with carbon dioxide gas and stirs it with a static mixer or the like (claims 5 and 6). However, it is described that the structure of the stirrer does not matter (paragraph [0031]), and since sodium hypochlorite is mixed and then carbon dioxide gas is mixed (paragraph [0030]), both are mixed. The effect of stirring the mixture in a different order with a static mixer is not clear.
 特許文献3には、次亜塩素酸ナトリウムあるいは亜塩素酸ナトリウム(殺菌剤)と炭酸ガスを混合して殺菌水を生成する装置に、送水管の途中にスタティックミキサーなどの混合部を有することが記載されている(請求項2及び6)が、負圧を利用して殺菌剤を吸い上げて原水に混合するために、特殊な構造を有し、また、混合部は無くても良い(段落[0034])と記載されており、スタティックミキサーについての具体的な記載はなく、スタティックミキサーを用いることによる作用効果も明らかでない。 Patent Document 3 states that a device that produces sterilizing water by mixing sodium hypochlorite or sodium chlorite (sterilizing agent) with carbon dioxide gas has a mixing part such as a static mixer in the middle of a water supply pipe. Although described (claims 2 and 6), it has a special structure for sucking up the disinfectant using negative pressure and mixing it with the raw water, and the mixing part may be omitted (paragraph [paragraph [paragraph]]. 0034]), there is no specific description about the static mixer, and the action and effect of using the static mixer are not clear.
 また、上記のような従来の装置で製造された殺菌水は、約1週間程度からpHが中性域に変化し始め、次亜塩素酸が安定して存在できない領域にpHが変わってしまうという問題もある。 In addition, the pH of sterilized water produced by the conventional device as described above begins to change to the neutral range from about one week, and the pH changes to the range where hypochlorous acid cannot stably exist. There is also a problem.
 本発明は、このような従来の問題を解決しようとするもので、pHをより安定させて次亜塩素酸や亜塩素酸を含む殺菌水を製造する装置を提供することを目的とする。 The present invention is intended to solve such a conventional problem, and an object of the present invention is to provide an apparatus for producing sterilized water containing hypochlorous acid or chlorous acid by making the pH more stable.
 本発明は、上記の課題を解決するために以下の手段を採用する。
(1)次亜塩素酸又は亜塩素酸を含む殺菌水製造装置であって、原料水入口と殺菌水出口の間に、逆止弁を有する炭酸ガス注入用配管、逆止弁を有する次亜塩素酸ナトリウム水溶液又は亜塩素酸ナトリウム水溶液注入用配管、及び、攪拌羽根が管に挿入されたスタティックミキサーを有する攪拌槽を備え、原料水を上方へと送る揚水部を有し前記原料水入口から撹拌槽入口に至る主配管に、前記炭酸ガス注入用配管、前記次亜塩素酸ナトリウム水溶液又は亜塩素酸ナトリウム水溶液注入用配管の順に、次亜塩素酸ナトリウム水溶液又は亜塩素酸ナトリウム水溶液注入用配管を上側にして接続され、前記主配管が前記攪拌槽の入口に接続され、撹拌槽内の前記スタティックミキサーの管の下部には、炭酸ガスと次亜塩素酸ナトリウム水溶液又は亜塩素酸ナトリウム水溶液が添加された原料水の入口となる穴を有し、前記スタティックミキサーの管の出口には、次亜塩素酸又は亜塩素酸を含む殺菌水を前記殺菌水出口より排出する排出管が接続されている、殺菌水製造装置。
(2)前記次亜塩素酸ナトリウム水溶液又は亜塩素酸ナトリウム水溶液がチューブポンプで輸送される、前記(1)の殺菌水製造装置。
(3)前記スタティックミキサーが樹脂製である、前記(1)又は(2)の殺菌水製造装置。
(4)主配管には、炭酸ガス注入用ティー継手が接続され、前記炭酸ガス注入用ティー継手の直後に次亜塩素酸ナトリウム水溶液又は亜塩素酸ナトリウム水溶液注入用ティー継手が接続され、炭酸ガス注入用ティー継手は、炭酸ガス注入用配管に接続され、次亜塩素酸ナトリウム水溶液又は亜塩素酸ナトリウム水溶液注入用ティー継手は、次亜塩素酸ナトリウム水溶液又は亜塩素酸ナトリウム水溶液注入用配管に接続されている、前記(1)~(3)のいずれかに記載の殺菌水製造装置。
(5)前記主配管における炭酸ガス注入用配管の接続位置から撹拌槽を経て殺菌水出口に至る流路中の水の、下記(1)式で算出される代表長さ(直径)0.3mmの炭酸ガス泡に対する粒子レイノルズ数を500以下とする、前記(1)~(4)のいずれかの殺菌水製造装置。
粒子レイノルズ数=(流量*炭酸ガス泡直径)/(水動粘度*配管断面積)・・・(1)
(6)原料水入口から撹拌槽を経て殺菌水出口に至る流路における水の流量が毎時500L以下、かつ、前記主配管、前記スタティックミキサーの管及び前記排出管の直径が11mm以上であり、前記スタティックミキサーの管に直径4mm以上の穴を1~8個設ける、前記(1)~(5)のいずれかの殺菌水製造装置。
(7)前記攪拌槽のスタティックミキサーは、前記炭酸ガスと次亜塩素酸ナトリウム水溶液又は亜塩素酸ナトリウム水溶液が添加された原料水の炭酸ガスの粗泡と微泡を分離するハイドロサイクロンを構成する、前記(1)~(6)のいずれかの殺菌水製造装置。
(8)前記攪拌槽において溶解しなかった余剰の炭酸ガスと殺菌水を分離し、余剰の炭酸ガスを大気に放出する部材を有する、前記(1)~(7)のいずれかの殺菌水製造装置。
(9)次亜塩素酸又は亜塩素酸を含む殺菌水の製造方法であって、原料水入口と殺菌水出口の間に、炭酸ガス注入用配管、次亜塩素酸ナトリウム水溶液又は亜塩素酸ナトリウム水溶液注入用配管、及び、攪拌羽根が管に挿入されたスタティックミキサーを有する攪拌槽を備えた殺菌水製造装置を用いて、原料水を上方へと送る揚水部を有し前記原料水入口から撹拌槽入口に至る主配管に、前記炭酸ガス注入用配管から炭酸ガスを注入し、次に、前記次亜塩素酸ナトリウム水溶液又は亜塩素酸ナトリウム水溶液注入用配管から次亜塩素酸ナトリウム水溶液又は亜塩素酸ナトリウム水溶液を注入し、前記主配管から前記攪拌槽に、炭酸ガスと次亜塩素酸ナトリウム水溶液又は亜塩素酸ナトリウム水溶液が添加された原料水を供給し、撹拌槽内の前記スタティックミキサーの管の下部に設けた入口(穴)から、前記原料水を流入させ、前記スタティックミキサーで撹拌することにより、次亜塩素酸又は亜塩素酸を含む殺菌水を製造し、前記スタティックミキサーの管の出口に接続された排出管の殺菌水出口より、前記次亜塩素酸又は亜塩素酸を含む殺菌水を排出する、殺菌水製造方法。
(10)前記主配管における炭酸ガス注入用配管の接続位置から撹拌槽を経て殺菌水出口に至る流路中の水の、下記(1)式で算出される代表長さ(直径)0.3mmの炭酸ガス泡に対する粒子レイノルズ数を500以下とする、前記(9)の殺菌水製造方法。
粒子レイノルズ数=(流量*炭酸ガス泡直径)/(水動粘度*配管断面積)・・・(1)
(11)原料水入口から撹拌槽を経て殺菌水出口に至る流路における水の流量が毎時500L以下、かつ、前記主配管、前記スタティックミキサーの管及び前記排出管の直径が11mm以上であり、前記スタティックミキサーの管に直径4mm以上の穴を1~8個設ける、前記(9)又は(10)の殺菌水製造方法。
The present invention employs the following means to solve the above problems.
(1) A sterilizing water production device containing hypochlorite or chlorite, which has a carbon dioxide gas injection pipe having a check valve between the raw material water inlet and the sterilizing water outlet, and hypochlorite having a check valve. It is equipped with a pipe for injecting an aqueous solution of sodium chlorite or an aqueous solution of sodium chlorite, and a stirring tank having a static mixer in which a stirring blade is inserted into the pipe, and has a pumping part for sending raw water upward from the raw water inlet. In the main pipe leading to the agitator inlet, the carbon dioxide gas injection pipe, the sodium hypochlorite aqueous solution or the sodium chlorite aqueous solution injection pipe, in this order, the sodium hypochlorite aqueous solution or the sodium chlorite aqueous solution injection pipe. The main pipe is connected to the inlet of the stirring tank, and carbon dioxide gas and sodium hypochlorite aqueous solution or sodium chlorite aqueous solution are placed in the lower part of the static mixer tube in the stirring tank. It has a hole that serves as an inlet for the added raw material water, and a discharge pipe that discharges sterilizing water containing hypochlorite or chlorite from the sterilizing water outlet is connected to the outlet of the static mixer pipe. Yes, sterilized water production equipment.
(2) The sterilizing water production apparatus according to (1), wherein the sodium hypochlorite aqueous solution or the sodium chlorite aqueous solution is transported by a tube pump.
(3) The sterilized water production apparatus according to (1) or (2), wherein the static mixer is made of resin.
(4) A tee joint for injecting carbon dioxide gas is connected to the main pipe, and a tee joint for injecting an aqueous solution of sodium hypochlorite or an aqueous solution of sodium chlorite is connected immediately after the tee joint for injecting carbon dioxide gas. The injection tee joint is connected to the carbon dioxide gas injection pipe, and the sodium hypochlorite aqueous solution or sodium chlorite aqueous solution injection tee joint is connected to the sodium hypochlorite aqueous solution or sodium chlorite aqueous solution injection pipe. The sterilized water production apparatus according to any one of (1) to (3) above.
(5) The representative length (diameter) of water in the flow path from the connection position of the carbon dioxide injection pipe in the main pipe to the sterilizing water outlet through the stirring tank, which is calculated by the following formula (1), is 0.3 mm. The sterilizing water production apparatus according to any one of (1) to (4) above, wherein the Reynolds number of particles with respect to the carbon dioxide gas bubbles is 500 or less.
Number of particle Reynolds = (flow rate * carbon dioxide bubble diameter) / (hydraulic viscosity * pipe cross-sectional area) ... (1)
(6) The flow rate of water in the flow path from the raw material water inlet to the sterilizing water outlet via the stirring tank is 500 L or less per hour, and the diameters of the main pipe, the static mixer pipe and the discharge pipe are 11 mm or more. The sterilizing water production apparatus according to any one of (1) to (5) above, wherein the static mixer pipe is provided with 1 to 8 holes having a diameter of 4 mm or more.
(7) The static mixer of the stirring tank constitutes a hydrocyclone that separates coarse bubbles and fine bubbles of carbon dioxide gas of the raw material water to which the carbon dioxide gas and the sodium hypochlorite aqueous solution or the sodium chlorite aqueous solution are added. , The sterilizing water production apparatus according to any one of (1) to (6) above.
(8) Production of sterilizing water according to any one of (1) to (7) above, which has a member that separates excess carbon dioxide gas and sterilizing water that have not been dissolved in the stirring tank and releases the excess carbon dioxide gas to the atmosphere. Device.
(9) A method for producing sterilized water containing hypochlorite or chloronic acid, in which a pipe for injecting carbon dioxide gas, an aqueous solution of sodium hypochlorite or sodium chlorite is located between the raw material water inlet and the sterilized water outlet. Using a sterilizing water production device equipped with a pipe for injecting an aqueous solution and a stirring tank having a static mixer in which a stirring blade is inserted into the pipe, it has a pumping part for sending raw water upward and is stirred from the raw water inlet. Carbon dioxide gas is injected into the main pipe leading to the tank inlet from the carbon dioxide gas injection pipe, and then sodium hypochlorite aqueous solution or chlorite is injected from the sodium hypochlorite aqueous solution or sodium hypochlorite aqueous solution injection pipe. An aqueous sodium acid solution is injected, and raw material water to which carbon dioxide gas and an aqueous solution of sodium hypochlorite or an aqueous solution of sodium hypochlorite is added is supplied from the main pipe to the stirring tank, and the tube of the static mixer in the stirring tank. By flowing the raw material water from the inlet (hole) provided at the lower part of the water and stirring it with the static mixer, sterilizing water containing hypochlorite or chlorite is produced, and the outlet of the pipe of the static mixer. A method for producing sterilizing water, which discharges sterilizing water containing hypochlorite or chlorite from the sterilizing water outlet of a discharge pipe connected to.
(10) Typical length (diameter) of 0.3 mm of water in the flow path from the connection position of the carbon dioxide injection pipe in the main pipe to the sterilizing water outlet through the stirring tank, calculated by the following formula (1). The method for producing sterilized water according to (9) above, wherein the Reynolds number of particles with respect to the carbon dioxide gas bubbles is 500 or less.
Number of particle Reynolds = (flow rate * carbon dioxide bubble diameter) / (hydraulic viscosity * pipe cross-sectional area) ... (1)
(11) The flow rate of water in the flow path from the raw material water inlet to the sterilizing water outlet via the stirring tank is 500 L or less per hour, and the diameters of the main pipe, the static mixer pipe and the discharge pipe are 11 mm or more. The method for producing sterilized water according to (9) or (10), wherein 1 to 8 holes having a diameter of 4 mm or more are provided in the pipe of the static mixer.
 本発明により、次亜塩素酸ナトリウム水溶液や亜塩素酸ナトリウム水溶液から炭酸ガスの安定したpH調整作用によって次亜塩素酸や二酸化塩素を含む殺菌水を得ることができる。 According to the present invention, sterilizing water containing hypochlorous acid and chlorine dioxide can be obtained from an aqueous solution of sodium hypochlorite or an aqueous solution of sodium chlorite by a stable pH adjusting action of carbon dioxide gas.
 また、配管中における原料水への炭酸ガスと次亜塩素酸ナトリウム水溶液や亜塩素酸ナトリウム水溶液の混合、混合後の攪拌槽でのスタティックミキサーによる撹拌が生成する殺菌水のpHの安定化に効果的である。 In addition, it is effective in stabilizing the pH of sterilizing water generated by mixing carbon dioxide gas with raw water in piping and an aqueous solution of sodium hypochlorite or an aqueous solution of sodium chlorite, and stirring with a static mixer in a stirring tank after mixing. Is the target.
 本発明の装置により製造された殺菌水は、次亜塩素酸が安定して存在できるpH5.6からpH5.8のpHを6か月以上維持することができる。 The sterilizing water produced by the apparatus of the present invention can maintain a pH of pH 5.6 to pH 5.8 in which hypochlorous acid can stably exist for 6 months or more.
本発明の代表的な実施例を示す図The figure which shows the typical example of this invention スタティックミキサーの混合の原理図Principle diagram of mixing of static mixer 塩素の解離種のpHと酸化還元電位(ORP)の関係を示す図The figure which shows the relationship between the pH of the dissociated species of chlorine, and the redox potential (ORP). 炭酸の解離種の存在比率を示す図The figure which shows the abundance ratio of the dissociated species of carbonic acid 塩素の解離種の存在比率を示す図The figure which shows the abundance ratio of the dissociated species of chlorine
 以下に図面を参照して、次亜塩素酸又は亜塩素酸を含む殺菌水を製造する本発明の一実施態様を説明する。
 図1は本発明の代表的な殺菌水製造装置の構造を示す図である。水道水や井水や海水などの原料水14は、原料水入口1より主配管9に供給される。
 原料水入口1に原料水14を供給する前工程として、水道水(原料水)の圧力を一定にする減圧器(レギュレータ)を設けることが好ましい。
 原料水入口1から撹拌槽7入口に至る主配管9は、原料水14を上方へと送る揚水部を有する。
An embodiment of the present invention for producing sterilized water containing hypochlorous acid or chlorous acid will be described below with reference to the drawings.
FIG. 1 is a diagram showing a structure of a typical sterilizing water production apparatus of the present invention. The raw material water 14 such as tap water, well water, and seawater is supplied to the main pipe 9 from the raw material water inlet 1.
As a pre-process for supplying the raw material water 14 to the raw material water inlet 1, it is preferable to provide a decompressor (regulator) that keeps the pressure of tap water (raw material water) constant.
The main pipe 9 from the raw material water inlet 1 to the stirring tank 7 inlet has a pumping portion for sending the raw material water 14 upward.
 主配管9の揚水部には、炭酸ガス注入用ティー継手10が接続されており、そこから炭酸ガス注入用配管4及び炭酸ガス注入用逆止弁3を通った炭酸ガス16が原料水に添加される。 A tee joint 10 for injecting carbon dioxide gas is connected to the pumping portion of the main pipe 9, and carbon dioxide gas 16 passing through the pipe 4 for injecting carbon dioxide gas and the check valve 3 for injecting carbon dioxide gas is added to the raw material water. Will be done.
 主配管9の揚水部の炭酸ガス注入用ティー継手10の直後に、次亜塩素酸ナトリウム水溶液(亜塩素酸を含む殺菌水を製造する場合は亜塩素酸ナトリウム水溶液)注入用ティー継手11が接続されており、そこからチューブポンプ12で輸送される次亜塩素酸ナトリウム水溶液17が次亜塩素酸ナトリウム水溶液注入用配管6と次亜塩素酸ナトリウム注入用逆止弁5を通り、原料水に添加される。 Immediately after the carbon dioxide gas injection tee joint 10 in the pumping portion of the main pipe 9, the sodium hypochlorite aqueous solution (sodium chlorite aqueous solution when producing sterilizing water containing chlorite) injection tee joint 11 is connected. Sodium hypochlorite aqueous solution 17 transported from there by the tube pump 12 passes through the sodium hypochlorite aqueous solution injection pipe 6 and the sodium hypochlorite injection check valve 5 and is added to the raw water. Will be done.
 次亜塩素酸ナトリウム水溶液を供給するティー継手11は、炭酸ガスを注入するティー継手10の上部にあることで、炭酸ガスは浮力によって、原料水入口1より供給される水道水の流れよりも速くティー継手10とティー継手11の間に浮遊し溶解が促進される。
 炭酸ガスと次亜塩素酸ナトリウム水溶液が添加された原料水は、主配管9を通って攪拌槽7に入る。
Since the tee joint 11 that supplies the sodium hypochlorite aqueous solution is located above the tee joint 10 that injects carbon dioxide gas, the carbon dioxide gas is faster than the flow of tap water supplied from the raw material water inlet 1 due to buoyancy. It floats between the tee joint 10 and the tee joint 11 to promote melting.
The raw material water to which carbon dioxide gas and the sodium hypochlorite aqueous solution are added enters the stirring tank 7 through the main pipe 9.
 攪拌槽7に入った原料水は、スタティックミキサー入口13を通り、スタティックミキサー8に入って攪拌される。
 炭酸ガスと次亜塩素酸ナトリウム水溶液が添加された原料水を、スタティックミキサー8で撹拌することにより、次亜塩素酸を含む殺菌水が製造される。
 スタティックミキサー8は、図2に示すような捻じれた羽根が角度を変えて複数個直列に並んだ構造の攪拌羽根が管に挿入されたものである。そこを原料水が、図2の矢印の経路で通ることで撹拌が行われる。スタティックミキサーは、原料水に直接接触する部分であるため、腐食の恐れの無い材料を使用する必要があり、本実施形態においては樹脂製とした。ポリ塩化ビニル、ポリアセタール、ポリプロピレン等を使用することができる。
The raw material water that has entered the stirring tank 7 passes through the static mixer inlet 13 and enters the static mixer 8 to be stirred.
Sterilized water containing hypochlorous acid is produced by stirring the raw material water to which the carbon dioxide gas and the sodium hypochlorite aqueous solution are added with the static mixer 8.
The static mixer 8 has a stirring blade having a structure in which a plurality of twisted blades arranged in series at different angles as shown in FIG. 2 are inserted into a pipe. Stirring is performed by passing the raw material water there through the path indicated by the arrow in FIG. Since the static mixer is a part that comes into direct contact with the raw material water, it is necessary to use a material that does not have a risk of corrosion, and in this embodiment, it is made of resin. Polyvinyl chloride, polyacetal, polypropylene and the like can be used.
 撹拌槽7は、炭酸ガスと次亜塩素酸ナトリウム水溶液が添加された原料水の炭酸ガス泡の粗泡と微泡を分離するハイドロサイクロンになっており、pHの安定化に効果がある。
 主配管9を撹拌槽7の上部に接続し、スタティックミキサー入口(穴)13を下部に設け、炭酸ガスを含有する原料水をスタティックミキサー8の下部から上部に移動させる過程で、上部へと分離された炭酸ガスの微泡により、炭酸水素イオンが効率よく生成される。
 後述するように主配管9における原料水の流量を小さくすることにより、スタティックミキサー8における炭酸ガスの微泡の滞留時間も長くなる。スタティックミキサー8は、原理的に層流の構造を壊すことなく攪拌するので、炭酸ガスの微泡により、炭酸水素イオンが効率よく生成すると考えられる。
 また、滞留時間を長くするためには、スタティックミキサー入口13をできるだけ底部の近くに設けることが好ましい。
The stirring tank 7 is a hydrocyclone that separates the coarse bubbles and the fine bubbles of the carbon dioxide gas bubbles of the raw material water to which the carbon dioxide gas and the sodium hypochlorite aqueous solution are added, and is effective in stabilizing the pH.
The main pipe 9 is connected to the upper part of the stirring tank 7, the static mixer inlet (hole) 13 is provided at the lower part, and the raw material water containing carbon dioxide gas is separated into the upper part in the process of moving from the lower part to the upper part of the static mixer 8. Hydrogen carbonate ions are efficiently generated by the generated fine bubbles of carbon dioxide gas.
As will be described later, by reducing the flow rate of the raw material water in the main pipe 9, the residence time of the fine bubbles of carbon dioxide gas in the static mixer 8 is also lengthened. Since the static mixer 8 agitates in principle without destroying the structure of the laminar flow, it is considered that hydrogen carbonate ions are efficiently generated by the fine bubbles of carbon dioxide gas.
Further, in order to lengthen the residence time, it is preferable to provide the static mixer inlet 13 as close to the bottom as possible.
 撹拌槽7は、本質的に連続反応器であって、管型反応器(スタティックミキサー8)と槽型反応器のハイブリッドになっている。製造される殺菌水15の品質安定には温度と圧力のモニタリングをすることが好ましい。このため、流路である主配管9及び撹拌槽7に温度センサーと圧力センサーを設けることが好ましい。
 流路にマイクを取り付けて、そのインピーダンスを解析してもよい。これにより炭酸ガス微泡の発生状況をモニタリングすることができ、その音を解析することにより、殺菌水の出来具合を判定することができ、殺菌水の品質安定に役立つ。
The stirring tank 7 is essentially a continuous reactor, and is a hybrid of a tubular reactor (static mixer 8) and a tank reactor. To stabilize the quality of the sterilized water 15 produced, it is preferable to monitor the temperature and pressure. Therefore, it is preferable to provide a temperature sensor and a pressure sensor in the main pipe 9 and the stirring tank 7 which are the flow paths.
A microphone may be attached to the flow path and its impedance may be analyzed. As a result, it is possible to monitor the generation status of carbon dioxide fine bubbles, and by analyzing the sound, it is possible to determine the condition of the sterilized water, which is useful for stabilizing the quality of the sterilized water.
 撹拌槽7内のスタティックミキサー8の管の出口には、排出管18が接続され、次亜塩素酸を含む殺菌水15は排出管18の殺菌水出口2より、排出される。
 攪拌槽7において溶解しなかった余剰の炭酸ガスと殺菌水15を分離し、余剰の炭酸ガスを大気に放出する部材を有することが好ましい。
A discharge pipe 18 is connected to the outlet of the static mixer 8 in the stirring tank 7, and the sterilizing water 15 containing hypochlorous acid is discharged from the sterilizing water outlet 2 of the discharge pipe 18.
It is preferable to have a member that separates the excess carbon dioxide gas that has not been dissolved and the sterilizing water 15 in the stirring tank 7 and releases the excess carbon dioxide gas to the atmosphere.
 原料水入口1から撹拌槽7を経て殺菌水出口2に至る流路における水の流量を毎時500L以下、かつ、原料水入口1から撹拌槽7入口に至る主配管9、スタティックミキサー8の管及びスタティックミキサー8の出口に接続される排出管18の直径が11mm以上であり、前記スタティックミキサー8の管に直径4mm以上の穴を1~8個設けることで、代表長さとして直径0.3mmの炭酸ガス泡に対する粒子レイノルズ数を500以下として層流が構成されるようにすることが好ましい。
 ここで、原料水入口1から撹拌槽7を経て殺菌水出口2に至る流路は、原料水入口1から撹拌槽7入口に至る主配管9の流路、撹拌槽7における主配管9出口(撹拌槽7入口)からスタティックミキサー入口13に至る流路、スタティックミキサー8内の流路、スタティックミキサー8の出口から殺菌水出口2に至る排出管18の流路からなる。
The flow rate of water in the flow path from the raw material water inlet 1 to the sterilizing water outlet 2 via the stirring tank 7 is 500 L or less per hour, and the main pipe 9 from the raw material water inlet 1 to the stirring tank 7 inlet, the pipe of the static mixer 8 and the pipe The discharge pipe 18 connected to the outlet of the static mixer 8 has a diameter of 11 mm or more, and by providing 1 to 8 holes having a diameter of 4 mm or more in the pipe of the static mixer 8, a representative length of 0.3 mm in diameter is provided. It is preferable that the Reynolds number of particles with respect to the carbon dioxide gas bubbles is 500 or less so that the laminar flow is formed.
Here, the flow path from the raw material water inlet 1 to the sterilizing water outlet 2 via the stirring tank 7 is the flow path of the main pipe 9 from the raw material water inlet 1 to the stirring tank 7 inlet, and the main pipe 9 outlet in the stirring tank 7 ( It consists of a flow path from the stirring tank 7 inlet) to the static mixer inlet 13, a flow path in the static mixer 8, and a flow path of the discharge pipe 18 from the outlet of the static mixer 8 to the sterilizing water outlet 2.
 粒子レイノルズ数=(流量*炭酸ガス泡直径)/(水動粘度*配管断面積)で計算する。炭酸ガス泡直径、水動粘度は一定であるから、流量が小さい程及び/又は配管断面積が大きい程、すなわち、配管直径が大きいほど、粒子レイノルズ数は小さくなる。本発明においては、水の流量が小さいので、配管直径を小さくしても、粒子レイノルズ数が小さい安定した層流が得られる。
 水(原料水及び殺菌水)の流量は、毎時500L以下とすることが好ましく、毎時300L以下にすることがより好ましい。
 主配管9及び排出管18の直径は、11mm以上にすることが好ましく、13mm以上にすることがより好ましい。主配管9及び排出管18の直径の上限は、レイノルズ数の変化が少ない安定した層流を得るために20mmにすることが好ましく、15mmにすることがより好ましい。また、スタティックミキサー8の管の直径は、15mm以上にすることが好ましく、20mm以上にすることがより好ましい。この管の直径は、65mm以下にすることが好ましく、30mm以下にすることがより好ましい。スタティックミキサー8の管の外周には、直径4mm以上の穴を1~8個設けることが好ましく、直径6mm以上の穴を2~4個設けることがより好ましい。この穴の直径の上限は、20mmにすることが好ましく、15mmにすることがより好ましい。
 粒子レイノルズ数は、500以下で層流となるが、300以下とすることがより好ましく、250以下とすることがさらに好ましい。
 上記のような粒子レイノルズ数とすることにより、流路中での炭酸ガス泡の滞留時間を長くし、次亜塩素酸ナトリウムの混合された原料水と炭酸ガスの触れる時間を長くすることができ、pHの緩衝作用をもつ炭酸水素イオンが効率よく生成できる。
Calculated by the number of particle Reynolds = (flow rate * carbon dioxide bubble diameter) / (hydraulic viscosity * pipe cross-sectional area). Since the carbon dioxide bubble diameter and the hydraulic viscosity are constant, the smaller the flow rate and / or the larger the pipe cross-sectional area, that is, the larger the pipe diameter, the smaller the particle Reynolds number. In the present invention, since the flow rate of water is small, a stable laminar flow having a small particle Reynolds number can be obtained even if the pipe diameter is reduced.
The flow rate of water (raw material water and sterilizing water) is preferably 500 L or less per hour, and more preferably 300 L or less per hour.
The diameter of the main pipe 9 and the discharge pipe 18 is preferably 11 mm or more, and more preferably 13 mm or more. The upper limit of the diameters of the main pipe 9 and the discharge pipe 18 is preferably 20 mm, more preferably 15 mm, in order to obtain a stable laminar flow with little change in the Reynolds number. The diameter of the tube of the static mixer 8 is preferably 15 mm or more, and more preferably 20 mm or more. The diameter of this tube is preferably 65 mm or less, more preferably 30 mm or less. The outer circumference of the tube of the static mixer 8 is preferably provided with 1 to 8 holes having a diameter of 4 mm or more, and more preferably 2 to 4 holes having a diameter of 6 mm or more. The upper limit of the diameter of this hole is preferably 20 mm, more preferably 15 mm.
The particle Reynolds number is 500 or less for laminar flow, but more preferably 300 or less, and even more preferably 250 or less.
By setting the particle Reynolds number as described above, the residence time of carbon dioxide bubbles in the flow path can be lengthened, and the contact time between the raw material water mixed with sodium hypochlorite and carbon dioxide gas can be lengthened. , Hydrogen carbonate ion having a pH buffering action can be efficiently generated.
 代表長さとして直径0.3mmの炭酸ガス泡に対する粒子レイノルズ数を計算した結果を表1に示す。 Table 1 shows the results of calculating the particle Reynolds number for carbon dioxide bubbles with a diameter of 0.3 mm as a representative length.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 上記のように、水の流量を300L/h、配管の直径を13mmとすることにより、直径0.3mmの炭酸ガス泡に対する粒子レイノルズ数は211となる。
 水の流量が500L/hのときに、配管の直径を11mmにすると、粒子レイノルズ数は491で、500以下となるので、主配管及び排出管の直径は11mm以上にすることが好ましい。
 スタティックミキサーの管(配管に相当)の直径は、通常20mm程度であるから、スタティックミキサー内の原料水(殺菌水)の粒子レイノルズ数は、主配管を流れる原料水の粒子レイノルズ数よりも小さくなる。
 また、スタティックミキサーの管の外周に直径10mmの穴(穴の直径は配管の直径に相当)を4個設けた場合、撹拌槽において原料水が流れる真の配管断面積は4倍になるから、この配管断面積を用いれば、水の流量が500L/hのときに、粒子レイノルズ数は149となる。直径6mmの穴であっても、4個設ければ、撹拌槽において粒子レイノルズ数は500以下となる。したがって、前記主配管における炭酸ガス注入用配管の接続位置から撹拌槽を経て殺菌水出口に至る流路における粒子レイノルズ数は500以下になる。
As described above, by setting the flow rate of water to 300 L / h and the diameter of the pipe to 13 mm, the Reynolds number of particles for carbon dioxide bubbles having a diameter of 0.3 mm is 211.
When the flow rate of water is 500 L / h and the diameter of the pipe is 11 mm, the particle Reynolds number is 491, which is 500 or less. Therefore, it is preferable that the diameters of the main pipe and the discharge pipe are 11 mm or more.
Since the diameter of the pipe (corresponding to the pipe) of the static mixer is usually about 20 mm, the particle Reynolds number of the raw water (sterilized water) in the static mixer is smaller than the particle Reynolds number of the raw water flowing through the main pipe. ..
Also, if four holes with a diameter of 10 mm (the diameter of the hole corresponds to the diameter of the pipe) are provided on the outer circumference of the pipe of the static mixer, the true pipe cross-sectional area through which the raw material water flows in the stirring tank is quadrupled. Using this pipe cross-sectional area, the particle Reynolds number is 149 when the flow rate of water is 500 L / h. Even if the holes have a diameter of 6 mm, if four holes are provided, the Reynolds number of particles will be 500 or less in the stirring tank. Therefore, the number of particle Reynolds in the flow path from the connection position of the carbon dioxide gas injection pipe in the main pipe to the sterilizing water outlet through the stirring tank is 500 or less.
 炭酸ガスと次亜塩素酸ナトリウム水溶液が添加され、スタティックミキサー8により撹拌された原料水は、次亜塩素酸の比率が増加し、pH値が下がりpH5.6からpH5.8の殺菌水となる。
 製造された殺菌水は、次亜塩素酸が安定して存在できるpH5.6からpH5.8のpHを6か月以上維持することができる。
The raw material water to which carbon dioxide gas and sodium hypochlorite aqueous solution are added and stirred by the static mixer 8 increases the ratio of hypochlorous acid, lowers the pH value, and becomes sterilizing water having a pH of 5.6 to 5.8. ..
The produced sterilized water can maintain a pH of pH 5.6 to pH 5.8 in which hypochlorous acid can stably exist for 6 months or more.
 本実施形態において製造した殺菌水のpHと酸化還元電位(ORP)の関係を図3に示す。
 図3より、pH7より高い領域において存在するのは、102で示すCl2(g)+2e-=2Cl-(塩化物イオン対塩素ガス)、103で示すClO-+H2O+2e-=Cl-+2OH-(次亜塩素酸イオン対塩化物イオン)、104で示すClO2 -+H2O+2e-=ClO-+2OH-(塩素酸イオン対次亜塩素酸イオン)のような平衡反応であり、次亜塩素酸は存在しないことが分かる。殺菌水のpHであるpH5.6からpH5.8の領域では、101で示すHClO+H++e-=1/2Cl2(g)+H2O(次亜塩素酸対塩素ガス)、100で示すHClO+H++2e-=Cl-+H2O(次亜塩素酸対塩化物イオン)の平衡反応が存在しており、次亜塩素酸分子が存在することが分かる。
 
The relationship between the pH of the sterilizing water produced in the present embodiment and the redox potential (ORP) is shown in FIG.
Than 3, it is to present in higher than pH7 region, Cl 2 indicated by 102 (g) + 2e - = 2Cl - ( chloride ion to chlorine gas), ClO shown in 103 - + H 2 O + 2e - = Cl - + 2OH - (hypochlorite ions to chloride ions), ClO indicated by 104 2 - + H 2 O + 2e - = ClO - + 2OH - such as (chlorate ions TaitsugiA chlorate ions) It is an equilibrium reaction, and it can be seen that hypochlorite does not exist. In the area of pH5.8 from a pH of sterile water pH5.6, HClO + H + + e indicated by 101 - = 1 / 2Cl 2 ( g) + H 2 O ( hypochlorous acid to chlorine gas), 100 indicated by HClO + H + + 2e- = Cl - + H 2 O are equilibrium reactions (hypochlorous acid to chloride ions) is present, it can be seen that there is a hypochlorite molecule.
1 原料水入口、2 殺菌水出口、3 炭酸ガス注入用逆止弁、4 炭酸ガス注入用配管、5 次亜塩素酸ナトリウム水溶液注入用逆止弁、6 次亜塩素酸ナトリウム水溶液注入用配管、7 攪拌槽、8 スタティックミキサー、9 主配管、10 炭酸ガス注入用ティー継手、11 次亜塩素酸ナトリウム水溶液注入用ティー継手、12 チューブポンプ、13 スタティックミキサー入口、14 原料水、15 殺菌水、16 炭酸ガス、17 次亜塩素酸ナトリウム水溶液、18 排出管、100 次亜塩素酸対塩化物イオン、101 次亜塩素酸対塩素ガス、102 塩化物イオン対塩素ガス、103 次亜塩素酸イオン対塩化物イオン、104 塩素酸イオン対次亜塩素酸イオン、400 炭酸の存在比率、401 炭酸水素イオンの存在比率、402 炭酸イオンの存在比率、500 塩素分子の存在比率、501 次亜塩素酸の存在比率、502 次亜塩素酸イオンの存在比率 1 Raw material water inlet, 2 Sterilized water outlet, 3 Carbon dioxide gas injection check valve, 4 Carbon dioxide gas injection piping, 5 Sodium hypochlorite aqueous solution injection check valve, 6 Sodium hypochlorite aqueous solution injection piping, 7 Stirring tank, 8 Static mixer, 9 Main piping, 10 Carbon dioxide gas injection tee joint, 11 Sodium hypochlorite aqueous solution injection tee joint, 12 Tube pump, 13 Static mixer inlet, 14 Raw material water, 15 Sterilized water, 16 Carbon dioxide gas, 17 sodium hypochlorite aqueous solution, 18 discharge pipe, 100 hypochlorous acid vs. chloride ion, 101 hypochlorous acid vs. chlorine gas, 102 chloride ion vs. chlorine gas, 103 hypochlorite ion vs. chloride Object ion, 104 chlorite ion vs. hypochlorite ion, 400 abundance ratio of carbon dioxide, 401 abundance ratio of hydrogen carbonate ion, 402 abundance ratio of carbonate ion, 500 abundance ratio of chlorine molecule, 501 abundance ratio of hypochlorous acid , 502 Absence ratio of hypochlorite ion

Claims (11)

  1.  次亜塩素酸又は亜塩素酸を含む殺菌水製造装置であって、原料水入口と殺菌水出口の間に、逆止弁を有する炭酸ガス注入用配管、逆止弁を有する次亜塩素酸ナトリウム水溶液又は亜塩素酸ナトリウム水溶液注入用配管、及び、攪拌羽根が管に挿入されたスタティックミキサーを有する攪拌槽を備え、原料水を上方へと送る揚水部を有し前記原料水入口から撹拌槽入口に至る主配管に、前記炭酸ガス注入用配管、前記次亜塩素酸ナトリウム水溶液又は亜塩素酸ナトリウム水溶液注入用配管の順に、次亜塩素酸ナトリウム水溶液又は亜塩素酸ナトリウム水溶液注入用配管を上側にして接続され、前記主配管が前記攪拌槽の入口に接続され、撹拌槽内の前記スタティックミキサーの管の下部には、炭酸ガスと次亜塩素酸ナトリウム水溶液又は亜塩素酸ナトリウム水溶液が添加された原料水の入口となる穴を有し、前記スタティックミキサーの管の出口には、次亜塩素酸又は亜塩素酸を含む殺菌水を前記殺菌水出口より排出する排出管が接続されている、殺菌水製造装置。 A sterilizing water production device containing hypochlorite or chlorite, and a carbon dioxide gas injection pipe having a check valve between the raw material water inlet and the sterilizing water outlet, and sodium hypochlorite having a check valve. It is equipped with a pipe for injecting an aqueous solution or an aqueous solution of sodium chlorite, and a stirring tank having a static mixer in which a stirring blade is inserted into the pipe, and has a pumping part for sending raw material water upward, and is provided from the raw material water inlet to the stirring tank inlet. In the main pipe leading to, the sodium hypochlorite aqueous solution or sodium chlorite aqueous solution injection pipe is placed on the upper side in the order of the carbon dioxide gas injection pipe and the sodium hypochlorite aqueous solution or sodium chlorite aqueous solution injection pipe. The main pipe was connected to the inlet of the stirring tank, and carbon dioxide gas and sodium hypochlorite aqueous solution or sodium chlorite aqueous solution were added to the lower part of the static mixer tube in the stirring tank. Sterilization, which has a hole serving as an inlet for raw material water, and a discharge pipe for discharging sterilizing water containing hypochlorite or chlorite from the sterilizing water outlet is connected to the outlet of the static mixer pipe. Water production equipment.
  2.  前記次亜塩素酸ナトリウム水溶液又は亜塩素酸ナトリウム水溶液がチューブポンプで輸送される、請求項1に記載の殺菌水製造装置。 The sterilizing water production apparatus according to claim 1, wherein the sodium hypochlorite aqueous solution or the sodium chlorite aqueous solution is transported by a tube pump.
  3.  前記スタティックミキサーが樹脂製である、請求項1又は2に記載の殺菌水製造装置。 The sterilizing water production apparatus according to claim 1 or 2, wherein the static mixer is made of resin.
  4.  前記主配管には、炭酸ガス注入用ティー継手が接続され、前記炭酸ガス注入用ティー継手の直後に次亜塩素酸ナトリウム水溶液又は亜塩素酸ナトリウム水溶液注入用ティー継手が接続され、炭酸ガス注入用ティー継手は、炭酸ガス注入用配管に接続され、次亜塩素酸ナトリウム水溶液又は亜塩素酸ナトリウム水溶液注入用ティー継手は、次亜塩素酸ナトリウム水溶液又は亜塩素酸ナトリウム水溶液注入用配管に接続されている、請求項1~3のいずれか1項に記載の殺菌水製造装置。 A tee joint for injecting carbon dioxide gas is connected to the main pipe, and a tee joint for injecting an aqueous solution of sodium hypochlorite or an aqueous solution of sodium chlorite is connected immediately after the tee joint for injecting carbon dioxide gas. The tee joint is connected to the carbon dioxide gas injection pipe, and the tee joint for injecting the sodium hypochlorite aqueous solution or the sodium chlorite aqueous solution is connected to the sodium hypochlorite aqueous solution or the sodium chlorite aqueous solution injection pipe. The sterilized water production apparatus according to any one of claims 1 to 3.
  5.  前記主配管における炭酸ガス注入用配管の接続位置から撹拌槽を経て殺菌水出口に至る流路中の水の、下記(1)式で算出される代表長さ(直径)0.3mmの炭酸ガス泡に対する粒子レイノルズ数を500以下とする、請求項1~4のいずれか1項に記載の殺菌水製造装置。
    粒子レイノルズ数=(流量*炭酸ガス泡直径)/(水動粘度*配管断面積)・・・(1)
    A carbon dioxide gas having a representative length (diameter) of 0.3 mm calculated by the following formula (1), which is the water in the flow path from the connection position of the carbon dioxide gas injection pipe in the main pipe to the sterilizing water outlet through the stirring tank. The sterilizing water production apparatus according to any one of claims 1 to 4, wherein the Reynolds number of particles with respect to bubbles is 500 or less.
    Number of particle Reynolds = (flow rate * carbon dioxide bubble diameter) / (hydraulic viscosity * pipe cross-sectional area) ... (1)
  6.  原料水入口から撹拌槽を経て殺菌水出口に至る流路における水の流量が毎時500L以下、かつ、前記主配管、前記スタティックミキサーの管及び前記排出管の直径が11mm以上であり、前記スタティックミキサーの管に直径4mm以上の穴を1~8個設ける、請求項1~5のいずれか1項に記載の殺菌水製造装置。 The flow rate of water in the flow path from the raw material water inlet to the sterilizing water outlet via the stirring tank is 500 L or less per hour, and the diameters of the main pipe, the static mixer pipe and the discharge pipe are 11 mm or more, and the static mixer. The sterilizing water production apparatus according to any one of claims 1 to 5, wherein 1 to 8 holes having a diameter of 4 mm or more are provided in the pipe.
  7.  前記攪拌槽のスタティックミキサーは、前記炭酸ガスと次亜塩素酸ナトリウム水溶液又は亜塩素酸ナトリウム水溶液が添加された原料水の炭酸ガス泡を粗泡と微泡に分離するハイドロサイクロンを構成する、請求項1~6のいずれか1項に記載の殺菌水製造装置。 The static mixer of the stirring tank constitutes a hydrocyclone that separates the carbon dioxide gas bubbles of the raw material water to which the carbon dioxide gas and the sodium hypochlorite aqueous solution or the sodium chlorite aqueous solution are added into coarse bubbles and fine bubbles. Item 4. The sterilized water producing apparatus according to any one of Items 1 to 6.
  8.  前記攪拌槽において溶解しなかった余剰の炭酸ガスと殺菌水を分離し、余剰の炭酸ガスを大気に放出する部材を有する、請求項1~7のいずれか1項に記載の殺菌水製造装置。 The sterilizing water production apparatus according to any one of claims 1 to 7, further comprising a member that separates excess carbon dioxide gas and sterilizing water that have not been dissolved in the stirring tank and releases the excess carbon dioxide gas to the atmosphere.
  9.  次亜塩素酸又は亜塩素酸を含む殺菌水の製造方法であって、原料水入口と殺菌水出口の間に、炭酸ガス注入用配管、次亜塩素酸ナトリウム水溶液又は亜塩素酸ナトリウム水溶液注入用配管、及び、攪拌羽根が管に挿入されたスタティックミキサーを有する攪拌槽を備えた殺菌水製造装置を用いて、原料水を上方へと送る揚水部を有し前記原料水入口から撹拌槽入口に至る主配管に、前記炭酸ガス注入用配管から炭酸ガスを注入し、次に、前記次亜塩素酸ナトリウム水溶液又は亜塩素酸ナトリウム水溶液注入用配管から次亜塩素酸ナトリウム水溶液又は亜塩素酸ナトリウム水溶液を注入し、前記主配管から前記攪拌槽に、炭酸ガスと次亜塩素酸ナトリウム水溶液又は亜塩素酸ナトリウム水溶液が添加された原料水を供給し、撹拌槽内の前記スタティックミキサーの管の下部に設けた入口(穴)から、前記原料水を流入させ、前記スタティックミキサーで撹拌することにより、次亜塩素酸又は亜塩素酸を含む殺菌水を製造し、前記スタティックミキサーの管の出口に接続された排出管の殺菌水出口より、前記次亜塩素酸又は亜塩素酸を含む殺菌水を排出する、殺菌水製造方法。 A method for producing sterilizing water containing hypochlorite or chlorite, which is used for injecting a pipe for injecting carbon dioxide gas, an aqueous solution of sodium hypochlorite or an aqueous solution of sodium chlorite between the raw material water inlet and the sterilizing water outlet. Using a sterilizing water production device equipped with a pipe and a stirring tank having a static mixer in which stirring blades are inserted into the pipe, a pumping part for sending raw water upward is provided from the raw material water inlet to the stirring tank inlet. Carbon dioxide gas is injected into the main pipe leading to the main pipe, and then the sodium hypochlorite aqueous solution or the sodium chlorite aqueous solution injection pipe is used to inject the sodium hypochlorite aqueous solution or the sodium chlorite aqueous solution. Is injected, and raw water to which carbon dioxide gas and sodium hypochlorite aqueous solution or sodium hypochlorite aqueous solution are added is supplied from the main pipe to the stirring tank, and is supplied to the lower part of the static mixer tube in the stirring tank. By flowing the raw material water from the provided inlet (hole) and stirring it with the static mixer, sterilizing water containing hypochlorite or chlorite is produced and connected to the outlet of the pipe of the static mixer. A method for producing sterilizing water, in which sterilizing water containing the hypochlorite or chlorite is discharged from the sterilizing water outlet of the discharge pipe.
  10.  前記主配管における炭酸ガス注入用配管の接続位置から撹拌槽を経て殺菌水出口に至る流路中の水の、下記(1)式で算出される代表長さ(直径)0.3mmの炭酸ガス泡に対する粒子レイノルズ数を500以下とする、請求項9に記載の殺菌水製造方法。
    粒子レイノルズ数=(流量*炭酸ガス泡直径)/(水動粘度*配管断面積)・・・(1)
    A carbon dioxide gas having a representative length (diameter) of 0.3 mm calculated by the following formula (1), which is water in the flow path from the connection position of the carbon dioxide gas injection pipe in the main pipe to the sterilizing water outlet through the stirring tank. The method for producing sterilized water according to claim 9, wherein the Reynolds number of particles with respect to the foam is 500 or less.
    Number of particle Reynolds = (flow rate * carbon dioxide bubble diameter) / (hydraulic viscosity * pipe cross-sectional area) ... (1)
  11.  原料水入口から撹拌槽を経て殺菌水出口に至る流路における水の流量が毎時500L以下、かつ、前記主配管、前記スタティックミキサーの管及び前記排出管の直径が11mm以上であり、前記スタティックミキサーの管に直径4mm以上の穴を1~8個設ける、請求項9又は10に記載の殺菌水製造方法。 The flow rate of water in the flow path from the raw material water inlet to the sterilizing water outlet via the stirring tank is 500 L or less per hour, and the diameters of the main pipe, the static mixer pipe and the discharge pipe are 11 mm or more, and the static mixer. The method for producing sterilized water according to claim 9 or 10, wherein 1 to 8 holes having a diameter of 4 mm or more are provided in the pipe.
PCT/JP2021/008977 2020-03-09 2021-03-08 Device for producing sterile water, and method for producing sterile water WO2021182391A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022507176A JPWO2021182391A1 (en) 2020-03-09 2021-03-08

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020040375 2020-03-09
JP2020-040375 2020-03-09

Publications (1)

Publication Number Publication Date
WO2021182391A1 true WO2021182391A1 (en) 2021-09-16

Family

ID=77672375

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/008977 WO2021182391A1 (en) 2020-03-09 2021-03-08 Device for producing sterile water, and method for producing sterile water

Country Status (2)

Country Link
JP (1) JPWO2021182391A1 (en)
WO (1) WO2021182391A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06331211A (en) * 1993-05-20 1994-11-29 Matsushita Electric Ind Co Ltd Carbonated water processing device
JP2010115639A (en) * 2008-10-18 2010-05-27 Viita Kk Method and apparatus for adjusting ph
KR20190026552A (en) * 2017-09-04 2019-03-13 한국코스믹라운드(주) Apparatus for rapidly generating hypochlorous acid water

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06331211A (en) * 1993-05-20 1994-11-29 Matsushita Electric Ind Co Ltd Carbonated water processing device
JP2010115639A (en) * 2008-10-18 2010-05-27 Viita Kk Method and apparatus for adjusting ph
KR20190026552A (en) * 2017-09-04 2019-03-13 한국코스믹라운드(주) Apparatus for rapidly generating hypochlorous acid water

Also Published As

Publication number Publication date
JPWO2021182391A1 (en) 2021-09-16

Similar Documents

Publication Publication Date Title
US20240043294A1 (en) Pulsed power supply for sustainable redox agent supply for hydrogen abatement during electrochemical hypochlorite generation
KR101150740B1 (en) Nanobubble-containing liquid producing apparatus and nanobubble-containing liquid producing method
JP6384765B2 (en) Microbubble forming method and microbubble forming apparatus
KR20070114119A (en) Process for producing sterile water containing hypochlorous acid or chlorous acid as its main component and apparatus therefor
US20110114569A1 (en) Apparatus and method for treating ballast water
CN105793199B (en) The processing equipment and processing method of ship ballast water are electrolysed using carbon dioxide
KR101045056B1 (en) A manufacturing device numerical sterilization
KR101563179B1 (en) The bypass line through type electrolysis ballast water treatment method and device designed to disinfect fresh water and seawater
US20020162802A1 (en) Large water reservoir management system
KR102416387B1 (en) Oxidation of copper in a copper etching solution by the use of oxygen and/or air as an oxidizing agent
EP0520826B1 (en) Recarbonation of water
JP5360634B2 (en) Carbon dioxide containing sterilized water generating method and apparatus capable of controlling carbon dioxide containing concentration
WO2021182391A1 (en) Device for producing sterile water, and method for producing sterile water
JP2797070B2 (en) Method and apparatus for producing continuous static chlorine dioxide water
JP3041510B2 (en) Equipment for producing sodium hypochlorite-containing water
JP2008055352A (en) Method and apparatus for maintaining fine bubble of ozone gas in water, and ballast water treatment method
JP2006263701A (en) Method and apparatus for producing sterile water containing carbon dioxide, slight amount of which can be discharged
KR100943673B1 (en) Method and equipment for generating slightly acidic electrolyzed water
JP2005161142A (en) Apparatus for producing sterilizing water continuously
JP2000239003A (en) Method and apparatus for producing aqueous solution of chlorine dioxide
JPH1192104A (en) High-purity chlorine dioxide aqueous composition, its production and producing device
US11642634B2 (en) Gas saturation of liquids with application to dissolved gas flotation and supplying dissolved gases to downstream processes and water treatment
EP1885481B1 (en) Method for dissolving a gas in a liquid
US20210395904A1 (en) System and Method for Making Hypochlorous Acid Using Saltwater with Sodium Bicarbonate
KR20220159584A (en) System and method for producing an aqueous chlorine dioxide solution using reactor and dissolver under atmospheric pressure

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21768567

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022507176

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21768567

Country of ref document: EP

Kind code of ref document: A1