JP5360407B2 - Method for producing lithium transition metal composite oxide - Google Patents

Method for producing lithium transition metal composite oxide Download PDF

Info

Publication number
JP5360407B2
JP5360407B2 JP2009250622A JP2009250622A JP5360407B2 JP 5360407 B2 JP5360407 B2 JP 5360407B2 JP 2009250622 A JP2009250622 A JP 2009250622A JP 2009250622 A JP2009250622 A JP 2009250622A JP 5360407 B2 JP5360407 B2 JP 5360407B2
Authority
JP
Japan
Prior art keywords
transition metal
lithium
firing
composite oxide
metal composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009250622A
Other languages
Japanese (ja)
Other versions
JP2011093753A (en
Inventor
弥生 勝
隆 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2009250622A priority Critical patent/JP5360407B2/en
Publication of JP2011093753A publication Critical patent/JP2011093753A/en
Application granted granted Critical
Publication of JP5360407B2 publication Critical patent/JP5360407B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a lithium transition metal complex oxide in which composition misalignment can be prevented. <P>SOLUTION: The method for manufacturing a lithium transition metal complex oxide includes: a mixing process which mixes a lithium containing object and a transition metal containing object, and obtains a mixture; and a firing process which holds the mixture in a firing vessel, and calcinates it, wherein the lithium transition metal complex oxide has a structure of a layer-like rock salt, and the firing vessel containing Al<SB>2</SB>O<SB>3</SB>and SiO<SB>2</SB>as principal components which is stored under the atmosphere of 10&deg;C or less of a dew point is used. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は、リチウム遷移金属複合酸化物の製造方法、特に、層状岩塩構造を有するリチウム遷移金属複合酸化物の製造方法に関する。   The present invention relates to a method for producing a lithium transition metal composite oxide, and more particularly to a method for producing a lithium transition metal composite oxide having a layered rock salt structure.

近年、ポータブル機器や自動車などの電源として、小型・軽量であって高いエネルギー密度を有する非水電解質二次電池の需要が急速に伸びている。中でも、正極にリチウム遷移金属複合酸化物を用いたリチウムイオン二次電池は、単位電気量当たりの重量が小さく、エネルギー密度が高いため、急速に普及している。そのため、正極用材料であるリチウム遷移金属複合酸化物の開発が進められている。   In recent years, demand for non-aqueous electrolyte secondary batteries that are small and light and have a high energy density as a power source for portable devices and automobiles is rapidly increasing. Among them, a lithium ion secondary battery using a lithium transition metal composite oxide for a positive electrode is rapidly spreading because it has a small weight per unit quantity of electricity and a high energy density. Therefore, development of a lithium transition metal composite oxide, which is a positive electrode material, is underway.

一般に、リチウム遷移金属複合酸化物の製造方法は、リチウム含有物と遷移金属含有物とを混合して混合物を得る混合工程と、前記混合物を焼成容器に収容して焼成する焼成工程と、を備えている。   In general, a method for producing a lithium transition metal composite oxide includes a mixing step of mixing a lithium-containing material and a transition metal-containing material to obtain a mixture, and a baking step of storing the mixture in a baking container and baking the mixture. ing.

例えば特許文献1には、リチウム含有物と遷移金属含有物とを液体媒体中で粉砕し、これらを均一に分散させてスラリーを形成し、得られたスラリーを噴霧乾燥する噴霧乾燥工程と、得られた噴霧乾燥粉体を焼成する焼成工程とを備える、リチウム遷移金属複合酸化物の製造方法が記載されている。   For example, Patent Document 1 discloses a spray-drying process in which a lithium-containing material and a transition metal-containing material are pulverized in a liquid medium, uniformly dispersed to form a slurry, and the obtained slurry is spray-dried. A method for producing a lithium transition metal composite oxide comprising a firing step of firing the resulting spray-dried powder is described.

特開2008−305777号公報JP 2008-305777 A

ところが、本発明者が正極用材料の開発を進めていく中で、層状岩塩構造のリチウム遷移金属複合酸化物を焼成容器に収容して焼成した際に、焼成後の焼成容器に析出物が生じ、再度焼成容器を用いてリチウム遷移金属複合酸化物を合成した際、組成ずれが生じる問題が生じた。一般に組成ずれが生じた場合には、容量の低下など、電池特性に様々な問題が生じる恐れがある。   However, when the present inventors are proceeding with the development of the positive electrode material, when a lithium transition metal composite oxide having a layered rock salt structure is placed in a firing container and fired, precipitates are generated in the fired firing container. When the lithium transition metal composite oxide was synthesized again using the firing container, there was a problem that composition deviation occurred. In general, when a compositional deviation occurs, various problems may occur in battery characteristics such as a decrease in capacity.

本発明は、上記の課題に鑑みなされたものであって、本発明は、組成ずれを防ぐことができる、リチウム遷移金属複合酸化物の製造方法を提供することを目的とする。   This invention is made | formed in view of said subject, Comprising: This invention aims at providing the manufacturing method of lithium transition metal complex oxide which can prevent a composition shift | offset | difference.

本発明者が実験したところ、リチウム遷移金属複合酸化物の焼成後の焼成容器を大気中に長時間放置すると、焼成容器の表面に析出物が現れることが分かった。そして、表面上に析出物が存在する焼成容器にリチウム含有物と遷移金属含有物の混合物を収容して焼成を行った場合に、混合物と析出物とが反応し、組成ずれが生じることを突き止めた。   As a result of experiments by the present inventors, it was found that when the firing container after firing the lithium transition metal composite oxide was left in the atmosphere for a long time, precipitates appeared on the surface of the firing container. Then, when a mixture of a lithium-containing material and a transition metal-containing material is contained in a firing container in which a precipitate is present on the surface and fired, the mixture and the precipitate are reacted to cause a compositional deviation. It was.

そこで、本発明者が鋭意研究したところ、焼成後の焼成容器を露点が10℃以下の雰囲気下で保管することにより、析出物が現れないことを見出した。また、このような析出物の発生は層状岩塩構造に特有の現象であり、スピネル構造のリチウム遷移金属複合酸化物の場合には、析出物は発生しないことも分かった。   Then, when this inventor earnestly researched, it discovered that a deposit did not appear by storing the baking container after baking in the atmosphere whose dew point is 10 degrees C or less. It was also found that the generation of such a precipitate is a phenomenon peculiar to the layered rock salt structure, and no precipitate is generated in the case of a spinel structure lithium transition metal composite oxide.

本発明に係るリチウム遷移金属複合酸化物の製造方法は、リチウム含有物と遷移金属含有物とを混合して混合物を得る混合工程と、前記混合物を焼成容器に収容して焼成する焼成工程と、を備えるリチウム遷移金属複合酸化物の製造方法である。また、前記リチウム遷移金属複合酸化物は層状岩塩構造を有する。本発明において、前記焼成容器はセラミックを主成分として含有し、前記混合物を収容して一回以上焼成され、露点10℃以下の雰囲気下で保管されたものであることを特徴としている。   The method for producing a lithium transition metal composite oxide according to the present invention comprises a mixing step of mixing a lithium-containing material and a transition metal-containing material to obtain a mixture, a firing step of containing the mixture in a firing container and firing. Is a method for producing a lithium transition metal composite oxide. The lithium transition metal composite oxide has a layered rock salt structure. In the present invention, the firing container contains ceramic as a main component, and contains the mixture, fired at least once, and stored in an atmosphere having a dew point of 10 ° C. or less.

本発明では、かかる構成により、リチウム遷移金属複合酸化物の焼成後の焼成容器に析出物の発生を防ぎ、焼成容器の繰り返しの使用から生ずる組成ずれを防ぐことができる。   In the present invention, with this configuration, it is possible to prevent the generation of precipitates in the firing container after firing the lithium transition metal composite oxide, and to prevent compositional deviation caused by repeated use of the firing container.

保管後の焼成容器の状態の写真である。(実験例1)It is a photograph of the state of the baking container after storage. (Experimental example 1) 保管後の焼成容器の状態の写真である。(比較例1)It is a photograph of the state of the baking container after storage. (Comparative Example 1)

以下において、本発明を実施するための形態について説明する。   Hereinafter, modes for carrying out the present invention will be described.

本発明に係るリチウム遷移金属複合酸化物の製造方法は、混合工程と、焼成工程と、を備える。   The method for producing a lithium transition metal composite oxide according to the present invention includes a mixing step and a firing step.

まず、リチウム含有物と遷移金属含有物とを混合して混合物を得る混合工程を備える。リチウム含有物としては、リチウム金属単体や、炭酸リチウム、水酸化リチウム、硝酸リチウム、酸化リチウム、酢酸リチウム、水素化リチウム、硫酸リチウム、亜硝酸リチウム、ジカルボン酸リチウム、クエン酸リチウム、脂肪酸リチウム、アルキルリチウム、塩化リチウム、フッ素化リチウム、臭素化リチウム、ヨウ化リチウムなどのリチウムハロゲン化物等のリチウム化合物が挙げられる。遷移金属の例としては、マンガン、コバルト、ニッケルが挙げられる。また、これらを複数併用することができる。また、遷移金属含有物としては、遷移金属単体や遷移金属化合物が挙げられる。遷移金属化合物の例としては、酸化物、炭酸塩、無機酸塩、有機酸塩や塩化物等が挙げられる。   First, a mixing step of mixing a lithium-containing material and a transition metal-containing material to obtain a mixture is provided. Lithium-containing materials include lithium metal alone, lithium carbonate, lithium hydroxide, lithium nitrate, lithium oxide, lithium acetate, lithium hydride, lithium sulfate, lithium nitrite, lithium dicarboxylate, lithium citrate, fatty acid lithium, alkyl Examples of the lithium compound include lithium halides such as lithium, lithium chloride, lithium fluoride, lithium bromide, and lithium iodide. Examples of transition metals include manganese, cobalt, and nickel. A plurality of these can be used in combination. Examples of the transition metal-containing material include a transition metal simple substance and a transition metal compound. Examples of transition metal compounds include oxides, carbonates, inorganic acid salts, organic acid salts and chlorides.

混合の方法としては、例えばミルやミキサーによる混合が挙げられる。   Examples of the mixing method include mixing by a mill or a mixer.

本発明のリチウム遷移金属複合酸化物は、一般式LiAO2(Aは遷移金属)で表される層状岩塩構造を有する。層状岩塩構造は、一般式LiA24(Aは遷移金属)で表されるスピネル構造に比べて、構造的に不安定である。したがって、焼成容器の表面に現れる析出物は、スピネル構造では現れず、層状岩塩構造のリチウム遷移金属複合酸化物に特有に現れる。 The lithium transition metal composite oxide of the present invention has a layered rock salt structure represented by the general formula LiAO 2 (A is a transition metal). The layered rock salt structure is structurally unstable compared to the spinel structure represented by the general formula LiA 2 O 4 (A is a transition metal). Therefore, the precipitate appearing on the surface of the firing container does not appear in the spinel structure, but appears specifically in the lithium transition metal composite oxide having a layered rock salt structure.

また、本発明のリチウム遷移金属複合酸化物は、Li1+α(NixMnyCoz)O2(0≦α≦0.5、0≦x≦1、0≦y≦1、0≦z≦1、x+y+z=1)の組成式を満足する場合に好適である。また、本発明のリチウム遷移金属複合酸化物は、少なくともNiとCoを含む場合に好適である。 Further, the lithium transition metal composite oxide of the present invention, Li 1+ α (Ni x Mn y Co z) O 2 (0 ≦ α ≦ 0.5,0 ≦ x ≦ 1,0 ≦ y ≦ 1,0 ≦ It is suitable when the composition formula of z ≦ 1, x + y + z = 1) is satisfied. The lithium transition metal composite oxide of the present invention is suitable when it contains at least Ni and Co.

次に、混合物を焼成容器に収容して焼成する工程を備える。焼成容器は、セラミックを主成分として含むことを特徴としている。セラミックとしては、Al23、SiO2、ZrO2、MgOやこれらの混合物が挙げられる。また、Al23とSiO2を主成分として含む場合に好適である。さらに、リチウム遷移金属複合酸化物の焼成温度で安定な耐熱性セラミックである場合に好適である。また、本発明で用いられる焼成容器は、筒状、平板状、箱状など、形状に限定されない。 Next, the method includes a step of storing the mixture in a baking container and baking the mixture. The firing container is characterized by containing ceramic as a main component. Examples of the ceramic include Al 2 O 3 , SiO 2 , ZrO 2 , MgO, and a mixture thereof. Moreover, it is suitable when Al 2 O 3 and SiO 2 are contained as main components. Furthermore, it is suitable when the heat resistant ceramic is stable at the firing temperature of the lithium transition metal composite oxide. Moreover, the baking container used by this invention is not limited to shapes, such as a cylinder shape, flat plate shape, and box shape.

析出物は、一回以上混合物を収容して焼成している焼成容器に現れる。析出物は、下記のメカニズムで生じると考えられる。まず、焼成時にリチウムが酸化物となって焼成容器に吸収される。そして、そのリチウム酸化物がH2OやCO2と反応し、Li2CO3やLiOH・H2O等のリチウム化合物となる。そしてその析出物が、時間と共に容器表面に析出してくると考えられる。したがって、焼成容器が金属製の場合には、そもそもリチウム酸化物が焼成容器に吸収されないため、かかる問題は生じない。 The precipitate appears in a firing container containing and firing the mixture one or more times. Precipitation is considered to occur by the following mechanism. First, during firing, lithium becomes an oxide and is absorbed by the firing container. Then, the lithium oxide reacts with H 2 O or CO 2 to become a lithium compound such as Li 2 CO 3 or LiOH · H 2 O. And it is thought that the deposit precipitates on the container surface with time. Therefore, when the firing container is made of metal, lithium oxide is not absorbed by the firing container in the first place, so that such a problem does not occur.

また、本発明の焼成温度は、600℃以上1200℃未満の範囲であることが好適である。700℃以上1200℃未満の範囲であることがより好適である。また、焼成容器を保管する際の露点の下限温度は0℃が好適である。   In addition, the firing temperature of the present invention is preferably in the range of 600 ° C. or more and less than 1200 ° C. It is more preferable that the temperature is in the range of 700 ° C or higher and lower than 1200 ° C. Moreover, 0 degreeC is suitable for the minimum temperature of the dew point at the time of storing a baking container.

ここで、組成や焼成条件の異なる混合物を同一の焼成容器を用いて焼成する場合には、焼成容器内の残留による混合を防ぐため、焼成後の焼成容器を水洗浄する場合がある。焼成容器を水洗浄した場合においても、水洗浄後に80℃以上で焼成容器を加熱することで、析出物の発生を抑えて、組成ずれを防ぐことが可能となる。加熱の温度は、80℃以上150℃以下が好適である。また、加熱時間は、60分〜1800分が好適である。すなわち、水洗浄後の焼成容器は80℃以上で加熱された後、露点10℃以下の雰囲気下で保管されることが好ましい。   Here, when baking the mixture from which a composition and baking conditions differ using the same baking container, in order to prevent the mixing by the residue in a baking container, the baking container after baking may be washed with water. Even when the firing container is washed with water, heating the firing container at 80 ° C. or higher after washing with water suppresses the generation of precipitates and prevents composition deviation. The heating temperature is preferably 80 ° C. or higher and 150 ° C. or lower. The heating time is preferably 60 minutes to 1800 minutes. That is, it is preferable that the baked container after water washing is stored at 80 ° C. or higher and then stored in an atmosphere with a dew point of 10 ° C. or lower.

(実験例1)
リチウム含有物としてLi2CO3、遷移金属含有物として、金属ニッケル、Mn34、Co34を使用した。そして、Li:Ni:Mn:Co=1.05:0.45:0.45:0.10のモル比となるように秤量した。この秤量した原料を、
純水と混合し、スラリーを作製し、湿式混合を行った。次いで、噴霧乾燥して混合物を得た。その後、混合物をAl23とSiO2を主成分とするセラミック製の焼成容器に収容して、焼成を行った。焼成は酸素雰囲気中で行った。焼成最高温度は950℃、焼成最高温度の保持時間は20時間とした。昇温条件と降温条件はどちらも150℃/hとした。
(Experimental example 1)
Li 2 CO 3 was used as the lithium-containing material, and metallic nickel, Mn 3 O 4 , and Co 3 O 4 were used as the transition metal-containing material. And it weighed so that it might become a molar ratio of Li: Ni: Mn: Co = 1.05: 0.45: 0.45: 0.10. This weighed raw material
It was mixed with pure water to prepare a slurry, and wet mixing was performed. It was then spray dried to obtain a mixture. After that, the mixture was placed in a ceramic firing container mainly composed of Al 2 O 3 and SiO 2 and fired. Firing was performed in an oxygen atmosphere. The maximum firing temperature was 950 ° C., and the retention time of the maximum firing temperature was 20 hours. The temperature raising condition and the temperature lowering condition were both 150 ° C./h.

焼成後、焼成物を取り出した後に、水洗浄を行わずそのままの状態で焼成容器を露点0.5℃の条件下で4週間保管した。   After firing, after the fired product was taken out, the fired container was stored for 4 weeks under conditions of a dew point of 0.5 ° C. without washing with water.

4週間保管した焼成容器を用いて、再び同一組成のリチウム遷移金属複合酸化物の合成を行い、繰り返しの使用が可能かどうか検討した。   Using the firing container stored for 4 weeks, the lithium transition metal composite oxide having the same composition was synthesized again and examined whether it could be used repeatedly.

リチウム含有物としてLi2CO3、遷移金属含有物として、金属ニッケル、Mn34、Co34を使用した。そして、Li:Ni:Mn:Co=1.05:0.45:0.45:0.10のモル比となるように秤量した。この秤量した原料を湿式混合した後、噴霧乾燥して混合物を得た。その後、4週間保管した焼成容器に収容して、焼成を行いリチウム遷移金属複合酸化物を合成した。リチウム遷移金属複合酸化物の組成分析を行ったところ、組成ずれは起こらなかった。 Li 2 CO 3 was used as the lithium-containing material, and metallic nickel, Mn 3 O 4 , and Co 3 O 4 were used as the transition metal-containing material. And it weighed so that it might become a molar ratio of Li: Ni: Mn: Co = 1.05: 0.45: 0.45: 0.10. The weighed raw materials were wet mixed and then spray dried to obtain a mixture. Then, it was housed in a firing container stored for 4 weeks and fired to synthesize a lithium transition metal composite oxide. Compositional analysis of the lithium transition metal composite oxide revealed no composition shift.

(実験例2)
実験例1と同じリチウム含有物と遷移金属含有物を用いて、Li:Ni:Mn:Co=1.05:0.33:0.33:0.33のモル比となるように秤量した。そして、実験例1と同じ条件で混合物の焼成を行った。
(Experimental example 2)
Using the same lithium-containing material and transition metal-containing material as in Experimental Example 1, the materials were weighed so as to have a molar ratio of Li: Ni: Mn: Co = 1.05: 0.33: 0.33: 0.33. The mixture was fired under the same conditions as in Experimental Example 1.

焼成後、焼成物を取り出した後に、水洗浄を行わずそのままの状態で焼成容器を露点0.5℃の条件下で4週間保管した。   After firing, after the fired product was taken out, the fired container was stored for 4 weeks under conditions of a dew point of 0.5 ° C. without washing with water.

4週間保管した焼成容器を用いて、再びリチウム遷移金属複合酸化物の合成を行い、繰り返しの使用が可能かどうか検討した。組成分析の結果、組成ずれは起こらなかった。   Using the firing container stored for 4 weeks, the lithium transition metal composite oxide was synthesized again and examined whether it could be used repeatedly. As a result of the composition analysis, no composition shift occurred.

(実験例3)
実験例1と同じリチウム含有物と遷移金属含有物を用いて、Li:Ni:Mn:Co=1.05:0.80:0.00:0.20のモル比となるように秤量した。そして、実験例1と同じ条件で混合物の焼成を行った。
(Experimental example 3)
Using the same lithium-containing material and transition metal-containing material as in Experimental Example 1, the materials were weighed so as to have a molar ratio of Li: Ni: Mn: Co = 1.05: 0.80: 0.00: 0.20. The mixture was fired under the same conditions as in Experimental Example 1.

焼成後、焼成物を取り出した後に、水洗浄を行わずそのままの状態で焼成容器を露点0.5℃の条件下で4週間保管した。   After firing, after the fired product was taken out, the fired container was stored for 4 weeks under conditions of a dew point of 0.5 ° C. without washing with water.

4週間保管した焼成容器を用いて、再びリチウム遷移金属複合酸化物の合成を行い、繰り返しの使用が可能かどうか検討した。組成分析の結果、組成ずれは起こらなかった。   Using the firing container stored for 4 weeks, the lithium transition metal composite oxide was synthesized again and examined whether it could be used repeatedly. As a result of the composition analysis, no composition shift occurred.

(実験例4)
実験例1と同じリチウム含有物と遷移金属含有物を用いて、Li:Ni:Mn:Co=1.05:0.45:0.45:0.10のモル比となるように秤量した。そして、実験例1と同じ条件で混合物の焼成を行った。
(Experimental example 4)
Using the same lithium-containing material and transition metal-containing material as in Experimental Example 1, the materials were weighed so as to have a molar ratio of Li: Ni: Mn: Co = 1.05: 0.45: 0.45: 0.10. The mixture was fired under the same conditions as in Experimental Example 1.

焼成後、焼成物を取り出した後に、水洗浄を行わずそのままの状態で焼成容器を露点10.0℃の条件下で4週間保管した。   After firing, after the fired product was taken out, the fired container was stored for 4 weeks under the condition of a dew point of 10.0 ° C. without washing with water.

4週間保管した焼成容器を用いて、再びリチウム遷移金属複合酸化物の合成を行い、繰り返しの使用が可能かどうか検討した。組成分析の結果、組成ずれは起こらなかった。   Using the firing container stored for 4 weeks, the lithium transition metal composite oxide was synthesized again and examined whether it could be used repeatedly. As a result of the composition analysis, no composition shift occurred.

(実験例5)
実験例1と同じリチウム含有物と遷移金属含有物を用いて、Li:Ni:Mn:Co=1.05:0.45:0.45:0.10のモル比となるように秤量した。そして、実験例1と同じ条件で混合物の焼成を行った。
(Experimental example 5)
Using the same lithium-containing material and transition metal-containing material as in Experimental Example 1, the materials were weighed so as to have a molar ratio of Li: Ni: Mn: Co = 1.05: 0.45: 0.45: 0.10. The mixture was fired under the same conditions as in Experimental Example 1.

焼成後、焼成物を取り出した後に、焼成容器の水洗を行った。その後、焼成容器を80℃の条件で乾燥機で600分間乾燥させた。その後、焼成容器を露点6.9℃の条件下で4週間保管した。   After firing, after the fired product was taken out, the firing container was washed with water. Then, the baking container was dried for 600 minutes with the dryer on 80 degreeC conditions. Thereafter, the baking container was stored for 4 weeks under conditions of a dew point of 6.9 ° C.

4週間保管した焼成容器を用いて、再びリチウム遷移金属複合酸化物の合成を行い、繰り返しの使用が可能かどうか検討した。組成分析の結果、組成ずれは起こらなかった。   Using the firing container stored for 4 weeks, the lithium transition metal composite oxide was synthesized again and examined whether it could be used repeatedly. As a result of the composition analysis, no composition shift occurred.

(比較例1)
実験例1と同じリチウム含有物と遷移金属含有物を用いて、Li:Ni:Mn:Co=1.05:0.45:0.45:0.10のモル比となるように秤量した。そして、実験例1と同じ条件で混合物の焼成を行った。
(Comparative Example 1)
Using the same lithium-containing material and transition metal-containing material as in Experimental Example 1, the materials were weighed so as to have a molar ratio of Li: Ni: Mn: Co = 1.05: 0.45: 0.45: 0.10. The mixture was fired under the same conditions as in Experimental Example 1.

焼成後、焼成物を焼成容器から取り出した後に、水洗浄を行わずそのままの状態で焼成容器を露点10.5℃の条件下で4週間保管した。   After firing, the fired product was taken out of the fired container, and then washed without water washing and stored for 4 weeks under the condition of a dew point of 10.5 ° C.

4週間保管した焼成容器を用いて、再びリチウム遷移金属複合酸化物の合成を行い、繰り返しの使用が可能かどうか検討した。組成分析の結果、組成ずれが発生した。   Using the firing container stored for 4 weeks, the lithium transition metal composite oxide was synthesized again and examined whether it could be used repeatedly. As a result of the composition analysis, compositional deviation occurred.

(比較例2)
実験例1と同じリチウム含有物と遷移金属含有物を用いて、組成がスピネル型であるリチウムマンガン複合酸化物LiMn24となるように秤量した。そして、実験例1と同じ条件で混合物の焼成を行った。
(Comparative Example 2)
Using the same lithium-containing material and transition metal-containing material as in Experimental Example 1, the lithium manganese composite oxide LiMn 2 O 4 having a spinel composition was weighed. The mixture was fired under the same conditions as in Experimental Example 1.

焼成後、焼成物を取り出した後に、水洗浄を行わずそのままの状態で焼成容器を露点10.5℃の条件下で4週間保管した。   After firing, after the fired product was taken out, the fired container was stored for 4 weeks under the condition of a dew point of 10.5 ° C. without washing with water.

4週間保管した焼成容器を用いて、再びリチウム遷移金属複合酸化物の合成を行い、繰り返しの使用が可能かどうか検討した。組成分析の結果、組成ずれが発生した。   Using the firing container stored for 4 weeks, the lithium transition metal composite oxide was synthesized again and examined whether it could be used repeatedly. As a result of the composition analysis, compositional deviation occurred.

実験例1〜5と比較例1、2の保管後の焼成容器について、目視で外観を確認した。表1に4週間保管した後の焼成容器の析出物の有無と、焼成容器の繰り返し使用の可否を示す。リチウム遷移金属複合酸化物の2度目の合成後に組成ずれが起こらなかったものについて、繰り返し使用を○とした。そして、組成ずれが発生したものについて、繰り返し使用を×とした。   The appearances of the fired containers after storage in Experimental Examples 1 to 5 and Comparative Examples 1 and 2 were visually confirmed. Table 1 shows the presence or absence of deposits in the firing container after storage for 4 weeks, and whether or not the firing container can be used repeatedly. For the lithium transition metal composite oxide that did not undergo compositional deviation after the second synthesis, the repeated use was marked as ◯. And about the thing in which the composition shift | offset | difference generate | occur | produced, x was used repeatedly.

露点が10℃以下である実験例1〜5については、析出物が発生しなかった。また、4週間保管後の焼成容器を再び用いてリチウム遷移金属複合酸化物を合成した際に、組成のずれなく焼成可能であった。ゆえに、繰り返し使用が可能である結果となった。実験例1〜3については、異なる組成であっても析出物の発生は抑えられている。また、水洗浄後に80℃の温度で加熱した実験例5においても、析出物が発生しなかった。しかし、露点が10.5℃である比較例1では保管後に析出物が発生した。また、4週間保管後の焼成容器を再び用いてリチウム遷移金属複合酸化物を合成した際、組成ずれが起こり、焼成容器を繰り返し使用できなかった。したがって、層状岩塩構造を有するリチウム遷移金属複合酸化物において、焼成容器の保管条件を露点10℃以下とすることで、焼成容器を繰り返し使用することが可能となる。   In Experimental Examples 1 to 5 having a dew point of 10 ° C. or lower, no precipitate was generated. Further, when the lithium transition metal composite oxide was synthesized again using the firing container after storage for 4 weeks, it could be fired without deviation in composition. Therefore, the result was that it could be used repeatedly. About Experimental Examples 1-3, generation | occurrence | production of the precipitate is suppressed even if it is a different composition. Moreover, also in Experimental Example 5 heated at a temperature of 80 ° C. after washing with water, no precipitate was generated. However, in Comparative Example 1 having a dew point of 10.5 ° C., precipitates were generated after storage. Further, when the lithium transition metal composite oxide was synthesized again using the firing container stored for 4 weeks, the composition deviation occurred and the firing container could not be used repeatedly. Therefore, in the lithium transition metal composite oxide having a layered rock salt structure, the firing container can be used repeatedly by setting the storage condition of the firing container to a dew point of 10 ° C. or less.

また、比較例2は、スピネル構造の組成である。スピネル構造の場合には、露点が10.5℃であっても、析出物は発生しなかった。   Comparative Example 2 has a spinel structure. In the case of the spinel structure, no precipitate was generated even when the dew point was 10.5 ° C.

図1に実験例1の保管後の焼成容器の写真を示す。また、図2に比較例1の保管後の焼成容器の写真を示す。実験例1では、保管後に析出物は発生していない。一方、比較例1では、焼成容器の底部に白い析出物を確認した。保管後に析出物が発生していることが分かる。   FIG. 1 shows a photograph of the firing container after storage in Experimental Example 1. Moreover, the photograph of the baking container after the storage of the comparative example 1 is shown in FIG. In Experimental Example 1, no precipitate was generated after storage. On the other hand, in Comparative Example 1, white precipitates were confirmed at the bottom of the firing container. It can be seen that precipitates are generated after storage.




Claims (2)

リチウム含有物と遷移金属含有物とを混合して混合物を得る混合工程と、
前記混合物を焼成容器に収容して焼成する焼成工程と、
を備えるリチウム遷移金属複合酸化物の製造方法において、
前記リチウム遷移金属複合酸化物は層状岩塩構造を有し、
前記焼成容器はセラミックを主成分として含有し、前記混合物を収容して一回以上焼成され、露点10℃以下の雰囲気下で保管されたものであることを特徴とする、リチウム遷移金属複合酸化物の製造方法。
A mixing step of mixing a lithium-containing material and a transition metal-containing material to obtain a mixture;
A firing step of containing the mixture in a firing container and firing;
In a method for producing a lithium transition metal composite oxide comprising:
The lithium transition metal composite oxide has a layered rock salt structure,
Lithium transition metal composite oxide characterized in that the firing container contains ceramic as a main component, contains the mixture, is fired at least once, and is stored in an atmosphere having a dew point of 10 ° C. or less. Manufacturing method.
前記焼成容器は、水洗浄され、80℃以上に加熱された後に保管されたものであることを特徴とする、請求項1に記載のリチウム遷移金属複合酸化物の製造方法。   2. The method for producing a lithium transition metal composite oxide according to claim 1, wherein the firing container is stored after being washed with water and heated to 80 ° C. or more.
JP2009250622A 2009-10-30 2009-10-30 Method for producing lithium transition metal composite oxide Expired - Fee Related JP5360407B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009250622A JP5360407B2 (en) 2009-10-30 2009-10-30 Method for producing lithium transition metal composite oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009250622A JP5360407B2 (en) 2009-10-30 2009-10-30 Method for producing lithium transition metal composite oxide

Publications (2)

Publication Number Publication Date
JP2011093753A JP2011093753A (en) 2011-05-12
JP5360407B2 true JP5360407B2 (en) 2013-12-04

Family

ID=44111118

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009250622A Expired - Fee Related JP5360407B2 (en) 2009-10-30 2009-10-30 Method for producing lithium transition metal composite oxide

Country Status (1)

Country Link
JP (1) JP5360407B2 (en)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PT816288E (en) * 1996-06-26 2000-04-28 Solvay Fluor & Derivate PREPARATION OF LITHIUM HEXAFLUOROMETHYLATES
JPH10152327A (en) * 1996-11-19 1998-06-09 Seimi Chem Co Ltd Production of lithium-containing multiple oxide and kiln therefor
JP3976213B2 (en) * 1998-06-19 2007-09-12 Jfeミネラル株式会社 Method for producing positive electrode material for lithium secondary battery
JP3539223B2 (en) * 1998-08-07 2004-07-07 松下電器産業株式会社 Method for producing positive electrode active material for non-aqueous electrolyte secondary battery, positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery using the same
JP2003267729A (en) * 2002-03-18 2003-09-25 Tosoh Corp Method for producing compound oxide containing lithium and use of it
WO2006025600A1 (en) * 2004-09-03 2006-03-09 Nippon Shokubai Co., Ltd. Method for maintaining positive electrode material composition for lithium secondary battery
JP2010033918A (en) * 2008-07-30 2010-02-12 Idemitsu Kosan Co Ltd Manufacturing method of lithium battery, and lithium battery obtained by the same
JP5353125B2 (en) * 2008-08-28 2013-11-27 住友金属鉱山株式会社 Method for producing lithium nickel composite oxide

Also Published As

Publication number Publication date
JP2011093753A (en) 2011-05-12

Similar Documents

Publication Publication Date Title
You et al. Research progress of single‐crystal nickel‐rich cathode materials for lithium ion batteries
JP4691711B2 (en) Lithium manganese composite oxide and method for producing the same
JP4963059B2 (en) Lithium manganese composite oxide containing titanium and nickel
JP4826147B2 (en) Aluminum-containing nickel hydroxide particles and method for producing the same
CN108137347A (en) The composite oxides and its manufacturing method of the nickel containing lithium, non-aqueous electrolyte secondary battery
JP5294225B2 (en) Single crystal particles of oxide for lithium secondary battery electrode, method for producing the same, and lithium secondary battery using the same
KR20190125405A (en) Precursors and Methods for the Preparation of Ni-Based Cathode Materials for Rechargeable Lithium Ion Batteries
JP5737513B2 (en) Positive electrode active material powder for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
Lu et al. Single-crystal nickel-based cathodes: fundamentals and recent advances
JP2006127955A (en) Positive electrode active substance for nonaqueous secondary cell and its manufacturing method
JP6986879B2 (en) Positive electrode active material particle powder for non-aqueous electrolyte secondary battery and its manufacturing method, and non-aqueous electrolyte secondary battery
JP2011181193A (en) Nickel-cobalt composite hydroxide for nonaqueous electrolyte secondary battery positive electrode active material, manufacturing method thereof, and method of manufacturing nonaqueous electrolyte secondary battery positive electrode active material using nickel-cobalt composite hydroxide
JP2006525623A (en) A method for producing a lithium composite oxide for an anode active material of a lithium secondary battery.
JPWO2008023622A1 (en) Method for producing lithium manganese composite oxide
JP6142868B2 (en) Positive electrode active material particle powder for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
JP6109399B1 (en) Positive electrode active material particles for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
JP5207360B2 (en) Lithium manganese oxide powder particles, production method thereof, and lithium secondary battery using the same as a positive electrode active material
JP2006036621A (en) Method for producing lithium ferrite-based multiple oxide
JP6903360B2 (en) Positive electrode active material, positive electrode and secondary battery using it, and method for manufacturing positive electrode active material
JP5360407B2 (en) Method for producing lithium transition metal composite oxide
JP4543156B2 (en) Lithium ferrite composite oxide and method for producing the same
JPWO2018066633A1 (en) Titanium and / or germanium substituted lithium manganese based composite oxide and method for producing the same
JP2006036620A (en) Lithium ferrite-based multiple oxide and method for producing the same
JP6876600B2 (en) Precursor of positive electrode active material for non-aqueous electrolyte secondary battery and its manufacturing method, and positive electrode active material for non-aqueous electrolyte secondary battery and its manufacturing method
JP2009227505A (en) Manganese oxide, electrode active material for battery, those producing methods and secondary battery using electrode active material for battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120622

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130723

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130807

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130820

R150 Certificate of patent or registration of utility model

Ref document number: 5360407

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees