JP5350843B2 - Power supply control device and power supply control method - Google Patents

Power supply control device and power supply control method Download PDF

Info

Publication number
JP5350843B2
JP5350843B2 JP2009058383A JP2009058383A JP5350843B2 JP 5350843 B2 JP5350843 B2 JP 5350843B2 JP 2009058383 A JP2009058383 A JP 2009058383A JP 2009058383 A JP2009058383 A JP 2009058383A JP 5350843 B2 JP5350843 B2 JP 5350843B2
Authority
JP
Japan
Prior art keywords
control device
storage battery
power supply
voltage
bypass circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009058383A
Other languages
Japanese (ja)
Other versions
JP2010213506A (en
Inventor
弘毅 小倉
信行 八重樫
剛宏 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Motors Ltd
Original Assignee
Kawasaki Jukogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Jukogyo KK filed Critical Kawasaki Jukogyo KK
Priority to JP2009058383A priority Critical patent/JP5350843B2/en
Publication of JP2010213506A publication Critical patent/JP2010213506A/en
Application granted granted Critical
Publication of JP5350843B2 publication Critical patent/JP5350843B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Dc-Dc Converters (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Description

本発明は電源制御装置及び電源制御方法に関し、特に、昇降圧チョッパを備え、電気車両に搭載される蓄電池の充放電を制御する充放電制御装置を含む電源制御装置、及びその制御方法に関する。   The present invention relates to a power supply control device and a power supply control method, and more particularly to a power supply control device including a charge / discharge control device that includes a buck-boost chopper and controls charge / discharge of a storage battery mounted on an electric vehicle, and a control method thereof.

従来の鉄道車両は、車両上部に取り付けられたパンタグラフを介して、空中に敷設された架線から電力を受け、その電力でモータを駆動して走行する。近年、架線が敷設された区間(以下「架線区間」という。)のみならず、架線が敷設されていない区間(以下「架線レス区間」という。)においても走行可能な鉄道車両が開発されている(例えば、特許文献1参照)。そのような車両は、内部に蓄電池を有し、その蓄電池に蓄えた電力を用いて架線レス区間を走行する。このような車両では、蓄電池への充電は、架線区間を走行中に、又は架線レス区間に設けられた所定の充電所にて、パンタグラフを介して架線から電力を取り込むことで行われる。または、蓄電池は車両のブレーキ動作時に発生する回生電力によっても充電される。   A conventional railway vehicle receives electric power from an overhead line laid in the air via a pantograph attached to the upper part of the vehicle, and travels by driving a motor with the electric power. In recent years, railway vehicles have been developed that can travel not only in sections where overhead lines are laid (hereinafter referred to as “overhead section”) but also in sections where overhead lines are not laid (hereinafter referred to as “overhead-less section”). (For example, refer to Patent Document 1). Such a vehicle has a storage battery inside and travels in an overhead line-less section using electric power stored in the storage battery. In such a vehicle, charging of the storage battery is performed by taking in electric power from the overhead line via the pantograph while traveling in the overhead line section or at a predetermined charging station provided in the overhead line-less section. Alternatively, the storage battery is also charged by regenerative power generated during the braking operation of the vehicle.

一般に架線電圧と蓄電池電圧とは異なるため、架線から蓄電池に充電を行う場合、架線電圧を所定の電圧に変換し、その変換した電圧で充電を行う必要がある。これは、回生電力による充電の場合も同様である。また、蓄電池の電圧は充電状態により変動するため、蓄電池からモータや補機のような負荷へ電力を供給する場合(すなわち、蓄電池から放電する場合)も、蓄電池の出力電圧を一定の電圧に変換する必要がある。このため、従来、蓄電池の充電及び放電制御のために充放電制御装置を設けていた(例えば、特許文献2参照)。   In general, since the overhead wire voltage and the storage battery voltage are different, when charging the storage battery from the overhead wire, it is necessary to convert the overhead wire voltage into a predetermined voltage and perform charging with the converted voltage. The same applies to charging with regenerative power. In addition, since the voltage of the storage battery varies depending on the state of charge, the output voltage of the storage battery is converted to a constant voltage when power is supplied from the storage battery to a load such as a motor or auxiliary machine (that is, when the storage battery is discharged). There is a need to. For this reason, conventionally, the charge / discharge control apparatus was provided for charge and discharge control of a storage battery (for example, refer patent document 2).

図4に、特許文献2に開示された充放電制御装置の構成を示す。図4に示すように、特許文献2の充放電制御装置100は双方向昇降圧チョッパ1Aと制御ユニット2とを有している。双方向昇降圧チョッパ1Aは、第1のスイッチング素子SW1と、第1のスイッチング素子SW1の一方の主端子にその一方の主端子が接続された第2のスイッチング素子SW2と、第3のスイッチング素子SW3と、第3のスイッチング素子SW3の一方の主端子にその一方の主端子が接続された第4のスイッチング素子SW4と、第1のスイッチング素子SW1の一方の主端子と第3のスイッチング素子SW3の一方の主端子とを接続するリアクトルDCLと、第1乃至第4のスイッチング素子SW1〜SW4にそれぞれ並列に接続されたダイオードD1〜D4とを備えている。   In FIG. 4, the structure of the charging / discharging control apparatus disclosed by patent document 2 is shown. As shown in FIG. 4, the charge / discharge control device 100 of Patent Document 2 includes a bidirectional buck-boost chopper 1 </ b> A and a control unit 2. The bidirectional buck-boost chopper 1A includes a first switching element SW1, a second switching element SW2 having one main terminal connected to one main terminal of the first switching element SW1, and a third switching element. SW3, a fourth switching element SW4 having one main terminal connected to one main terminal of the third switching element SW3, one main terminal of the first switching element SW1, and a third switching element SW3 And a diode D1 to D4 connected in parallel to the first to fourth switching elements SW1 to SW4, respectively.

特許文献2の充放電制御装置では、充電及び放電時において、第1のスイッチング素子SW1と第2のスイッチング素子SW2とを含むき電源側アームと、第3のスイッチング素子SW3と第4のスイッチング素子SW4とを含む電池側アームとの少なくともいずれかの変調率(通流率)が1となるように制御を行っている。この構成により、変調率(通流率)が1のアームのスイッチング素子は常時ONまたは常時OFFとなることから、スイッチング損失を低減することができる。   In the charge / discharge control apparatus of Patent Document 2, the power supply side arm including the first switching element SW1 and the second switching element SW2, the third switching element SW3, and the fourth switching element are charged and discharged. Control is performed so that at least one of the modulation rate (flow rate) of the battery side arm including SW4 becomes 1. With this configuration, the switching element of the arm having the modulation rate (conduction rate) of 1 is always ON or always OFF, so that the switching loss can be reduced.

特開2001−352607号公報JP 2001-352607 A 特開2008−228420号公報JP 2008-228420 A

しかしながら、特許文献2の充放電制御装置は、蓄電池に対する充電時及び放電時の双方において昇降圧チョッパ1Aを動作させている。このため、昇降圧チョッパ1Aに含まれるリアクトルDCLやスイッチング素子SW1〜SW4における導通損失が発生する。さらに、スイッチング素子SW1〜SW4のスイッチング動作に伴いスイッチング損失やスイッチング時に伴う電磁ノイズが発生する。このスイッチングノイズが他の信号へ影響を及ぼす可能性もある。   However, the charge / discharge control device of Patent Document 2 operates the step-up / down chopper 1A both during charging and discharging of the storage battery. For this reason, conduction loss occurs in the reactor DCL and the switching elements SW1 to SW4 included in the step-up / down chopper 1A. Furthermore, switching loss and electromagnetic noise accompanying switching occur with the switching operation of the switching elements SW1 to SW4. This switching noise may affect other signals.

本発明は、上記課題を解決すべくなされたものであり、その目的とするところは、昇降圧チョッパにおける電力損失及びノイズの低減を可能とした電源制御装置及び電源制御方法を提供することにある。   The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a power supply control device and a power supply control method capable of reducing power loss and noise in a buck-boost chopper. .

本発明に係る電源制御装置は、電気車両に搭載された蓄電池の充放電を制御する電源制御装置であって、複数のスイッチング素子のスイッチング動作により電圧変換を行う昇降圧チョッパを有し、蓄電池の充放電を制御する充放電制御装置と、充放電制御装置に並列に接続され、オンしたときに昇降圧チョッパの高圧側母線における、蓄電池側にある第1のノードと、架線側にある第2のノードとを短絡することにより、充放電制御装置を迂回して蓄電池の充放電を可能とするバイパス経路を形成し、オフしたときに前記バイパス経路を遮断するバイパス回路とを備える。
A power supply control device according to the present invention is a power supply control device that controls charging / discharging of a storage battery mounted on an electric vehicle, and includes a step-up / step-down chopper that performs voltage conversion by switching operations of a plurality of switching elements. A charge / discharge control device for controlling charge / discharge and a first node on the storage battery side and a second on the overhead wire side in the high-voltage side bus of the buck-boost chopper when turned on and connected in parallel to the charge / discharge control device A bypass circuit that bypasses the charge / discharge control device to enable charging / discharging of the storage battery by short-circuiting the node, and that bypasses the bypass path when turned off.

本発明に係る電源制御方法は、複数のスイッチング素子のスイッチング動作により電圧変換を行う昇降圧チョッパを備え、電気車両に搭載された蓄電池の充放電を制御する電源制御装置の制御方法である。その制御方法は、架線レス区間を走行する場合、電気車両の蓄電池から放電された電圧でモータを駆動して走行中は、昇降圧チョッパを動作させないように制御するとともに、昇降圧チョッパの高圧側母線における、蓄電池側にある第1のノードと、架線側にある第2のノードとを短絡することにより、昇降圧チョッパを迂回するバイパス経路を形成してバイパス経路を介して蓄電池の充放電を行う。電気車両が架線区間を走行する場合、架線から受けた電圧でモータを駆動して走行中は、バイパス経路を遮断する。
The power supply control method according to the present invention is a control method for a power supply control device that includes a step-up / step-down chopper that performs voltage conversion by switching operations of a plurality of switching elements, and that controls charging / discharging of a storage battery mounted on an electric vehicle. The control method is such that when traveling in an overhead wire-less section, the motor is driven by the voltage discharged from the storage battery of the electric vehicle so that the step-up / step-down chopper is not operated during traveling and the high-pressure side of the step-up / step-down chopper is controlled. in bus, and the first node in the storage battery side, by short-circuiting the second node on the overhead wire side, to form a bypass path which bypasses the buck chopper, battery charge and discharge through the bypass path I do. If the electric vehicle travels through the overhead line section, by driving the motor at a voltage received from overhead wires, traveling blocks the bypass path.

上記の電気車両は、好ましくは、架線区間では、架線から車両に電力を得ることで走行するとともに搭載した蓄電池に充電し、架線レス区間では、搭載した蓄電池に充電した電力により走行可能な電池駆動車両である。   The above-mentioned electric vehicle preferably travels by obtaining power from the overhead line to the vehicle in the overhead line section and charges the mounted storage battery, and in the overhead line-less section, the battery drive that can travel with the power charged in the mounted storage battery It is a vehicle.

本発明によれば、バイパス回路によって、充放電制御装置(昇降圧チョッパ)を迂回して蓄電池の充放電を可能とする。これにより、蓄電池に対する充放電を充放電制御装置(昇降圧チョッパ)を動作させずに行えることから、従来、昇降圧チョッパ内で生じていた、リアクトルやスイッチング素子の導通損失、スイッチング損失を削減でき、また、スイッチングノイズの発生も防止できる。   According to the present invention, the bypass battery bypasses the charge / discharge control device (step-up / step-down chopper) and enables the storage battery to be charged / discharged. As a result, the storage battery can be charged / discharged without operating the charge / discharge control device (step-up / step-down chopper), so that it is possible to reduce the conduction loss and switching loss of the reactor and switching element, which have conventionally occurred in the step-up / step-down chopper In addition, generation of switching noise can be prevented.

本発明の実施形態の電源制御装置を備えた電池駆動車両の構成図1 is a configuration diagram of a battery-powered vehicle including a power control device according to an embodiment of the present invention. 充放電制御装置の詳細な構成図Detailed configuration diagram of charge / discharge controller 各種電池等における、SOC(state of charge)に対する電圧変化を示すSOC特性を示した図The figure which showed the SOC characteristic which shows the voltage change with respect to SOC (state of charge) in various batteries etc. 従来の充放電制御装置の構成を示した図The figure which showed the structure of the conventional charge / discharge control apparatus

添付の図面を参照して本発明の実施の形態を説明する。   Embodiments of the present invention will be described with reference to the accompanying drawings.

1.構成
図1は、本発明の実施形態の電源制御装置を搭載した電池駆動車両の構成を示した図である。図1では、電池駆動車両1は3両編成で構成されている。車両Aには、モータ60を駆動する主制御装置(VVVFインバータ)65が搭載され、車両Bには、架線3から電力を取り込むためのパンタグラフ5が設けられている。車両Cには、モータ60や補機(車両内の客室灯、ヒータ、クーラ、放送設備等)を含む負荷への電源の供給を制御する電源制御装置10と、電力を蓄積し、架線3から電力を受けられないときに負荷へ電力を供給する蓄電池20とが搭載されている。なお、電池駆動車両とは、架線区間及び架線レス区間または架線レス区間のみを走行する電池を搭載した電気車両をいう。電池駆動車両は電池で駆動されるが、さらに架線からの電力やディーゼル機関等によって駆動されてもよい。
1. Configuration FIG. 1 is a diagram showing a configuration of a battery-powered vehicle equipped with a power supply control device according to an embodiment of the present invention. In FIG. 1, the battery-powered vehicle 1 is composed of a three-car train. A main control device (VVVF inverter) 65 for driving the motor 60 is mounted on the vehicle A, and a pantograph 5 for taking in electric power from the overhead line 3 is provided on the vehicle B. In the vehicle C, a power supply control device 10 that controls the supply of power to a load including a motor 60 and auxiliary equipment (such as cabin lights, heaters, coolers, and broadcasting facilities in the vehicle), and electric power are stored. A storage battery 20 is mounted to supply power to the load when power cannot be received. In addition, a battery drive vehicle means the electric vehicle carrying the battery which drive | works only an overhead wire area, an overhead wire-less area, or an overhead wire-less area. The battery-powered vehicle is driven by a battery, but may be further driven by electric power from an overhead line, a diesel engine, or the like.

主制御装置65は、架線3からの直流電圧を所望の周波数及び電圧の三相交流電圧に変換しモータ60に供給してモータ60を駆動する。   The main controller 65 converts the DC voltage from the overhead wire 3 into a three-phase AC voltage having a desired frequency and voltage, and supplies the three-phase AC voltage to the motor 60 to drive the motor 60.

蓄電池20は、モータ60を駆動するのに十分な出力電圧が得られる二次電池で構成する。また、蓄電池20は、出力電圧の変動幅が小さい二次電池で構成されるのが好ましい。このような電池として、例えば、ニッケル水素電池がある。ニッケル水素電池は、後述するように充電状態(SOC: State of Charge)によらず電圧の変動幅が小さいという特性を持つ。なお、蓄電池20は、モータ60を駆動するのに十分な出力電圧が得られ、出力変動幅が仕様上の許容範囲内のものであれば、ニッケル水素電池以外の他のタイプの二次電池で構成してもよい。本実施形態では、蓄電池20はニッケル水素電池で構成されるとする。   The storage battery 20 is formed of a secondary battery that can obtain an output voltage sufficient to drive the motor 60. Moreover, it is preferable that the storage battery 20 is comprised with a secondary battery with a small fluctuation range of an output voltage. An example of such a battery is a nickel metal hydride battery. As will be described later, the nickel-metal hydride battery has a characteristic that the voltage fluctuation range is small regardless of the state of charge (SOC). The storage battery 20 is a secondary battery other than a nickel metal hydride battery as long as an output voltage sufficient to drive the motor 60 is obtained and the output fluctuation range is within the allowable range in the specification. It may be configured. In the present embodiment, the storage battery 20 is assumed to be a nickel metal hydride battery.

電源制御装置10は、充放電制御装置11と、バイパス回路12と、補助電源装置13と、ダイオード15とを含む。補助電源装置13は、車両内の客室灯、ヒータ、クーラ、放送設備等の補機に対する電源の供給を制御する。   The power supply control device 10 includes a charge / discharge control device 11, a bypass circuit 12, an auxiliary power supply device 13, and a diode 15. The auxiliary power supply device 13 controls the supply of power to auxiliary equipment such as cabin lights, heaters, coolers, and broadcasting facilities in the vehicle.

バイパス回路12は充放電制御装置11と並列に接続されている。バイパス回路12はオンして導通すると、昇降圧チョッパ33の高圧側母線におけるノードXとノードYを短絡し、昇降圧チョッパ33に対するバイパス経路を形成する。バイパス回路12はオフしたときにノードXとノードY間のバイパス経路を遮断(開放)する。すなわち、バイパス回路12は、充放電制御装置11(昇降圧チョッパ33)を迂回して蓄電池20への充電又は蓄電池20からの放電を可能とするバイパス経路を形成する。   The bypass circuit 12 is connected in parallel with the charge / discharge control device 11. When the bypass circuit 12 turns on and becomes conductive, the node X and the node Y on the high-voltage side bus of the step-up / step-down chopper 33 are short-circuited to form a bypass path for the step-up / step-down chopper 33. When the bypass circuit 12 is turned off, the bypass path between the node X and the node Y is blocked (opened). That is, the bypass circuit 12 bypasses the charge / discharge control device 11 (the step-up / down chopper 33) and forms a bypass path that allows charging or discharging from the storage battery 20.

バイパス回路12は、接触器や、双方向に導通可能な半導体スイッチで構成できる。半導体スイッチは、例えば、単体で又は一対の、トライアック、MOSFET、GTO、IGBT、等の半導体素子で構成できる。半導体素子は導通損失の小さいものが好ましい。   The bypass circuit 12 can be configured by a contactor or a semiconductor switch that can conduct in both directions. The semiconductor switch can be composed of, for example, a semiconductor element such as a single unit or a pair of triacs, MOSFETs, GTOs, and IGBTs. The semiconductor element preferably has a small conduction loss.

充放電制御装置11は蓄電池20への充電及び蓄電池20からの放電を制御する。充放電制御装置11及びバイパス回路は高速度遮断器37を介して架線3側と接続されている。   The charge / discharge control device 11 controls charging to the storage battery 20 and discharging from the storage battery 20. The charge / discharge control device 11 and the bypass circuit are connected to the overhead wire 3 side via a high-speed circuit breaker 37.

図2に、充放電制御装置11及びその周辺回路の詳細な構成を示す。充放電制御装置11は昇降圧チョッパ33を含む。昇降圧チョッパ33は、架線3又は蓄電池20から受けた電圧を所望の電圧に昇圧または降圧する機能を有する。   FIG. 2 shows a detailed configuration of the charge / discharge control device 11 and its peripheral circuits. The charge / discharge control device 11 includes a step-up / down chopper 33. The step-up / step-down chopper 33 has a function of increasing or decreasing the voltage received from the overhead wire 3 or the storage battery 20 to a desired voltage.

図2に示すように、昇降圧チョッパ33は、蓄電池20側に設けられた第1のスイッチング素子41と第2のスイッチング素子42の直列回路からなるハーフブリッジと、架線3側に設けられた第3のスイッチング素子43と第4のスイッチング素子44の直列回路からなるハーフブリッジと、第1のスイッチング素子41と第2のスイッチング素子42の接続点と第3のスイッチング素子43と第4のスイッチング素子44の接続点との間に接続されたリアクトル45とを含む。第1乃至第4のスイッチング素子41〜44にはそれぞれダイオード41d〜44dが逆並列に接続されている。各スイッチング素子41〜44は例えばIGBTで構成される。図2に示す昇降圧チョッパ33の回路構成は特許文献2に開示された双方向昇降圧チョッパの回路構成と同じであり、その動作も特許文献2に開示されたとおりである。よって、ここでは、昇降圧チョッパ33の基本的な昇降圧動作の説明は省略する。なお、本実施形態で示す昇降圧チョッパの構成は一例であり、昇降圧チョッパの回路構成は他の構成であってもよい。   As shown in FIG. 2, the step-up / down chopper 33 includes a half bridge formed of a series circuit of a first switching element 41 and a second switching element 42 provided on the storage battery 20 side, and a first bridge provided on the overhead line 3 side. A half bridge composed of a series circuit of the third switching element 43 and the fourth switching element 44, a connection point of the first switching element 41 and the second switching element 42, and the third switching element 43 and the fourth switching element. And a reactor 45 connected between 44 connection points. Diodes 41d to 44d are connected in antiparallel to the first to fourth switching elements 41 to 44, respectively. Each switching element 41-44 is comprised, for example by IGBT. The circuit configuration of the step-up / step-down chopper 33 shown in FIG. 2 is the same as the circuit configuration of the bidirectional step-up / step-down chopper disclosed in Patent Document 2, and the operation thereof is also disclosed in Patent Document 2. Therefore, description of the basic step-up / step-down operation of the step-up / step-down chopper 33 is omitted here. The configuration of the step-up / step-down chopper shown in the present embodiment is an example, and the circuit configuration of the step-up / step-down chopper may be another configuration.

制御ユニット35は、昇降圧チョッパ33の各スイッチング素子41〜44のスイッチング動作及びバイパス回路12のオン・オフを制御する。   The control unit 35 controls the switching operation of the switching elements 41 to 44 of the buck-boost chopper 33 and the on / off of the bypass circuit 12.

充放電制御装置11はさらに、電源の脈流成分を除去するフィルタコンデンサ51f、52f及びフィルタリアクトル51l、52lと、サージ電圧を抑制するスナバコンデンサ51s、52sを含む。   The charge / discharge control device 11 further includes filter capacitors 51f and 52f and filter reactors 51l and 52l for removing a pulsating flow component of the power source, and snubber capacitors 51s and 52s for suppressing a surge voltage.

2.動作
本実施形態の電池駆動車両1は架線区間と架線レス区間の双方を走行可能な車両である。本実施形態の電池駆動車両1において、架線レス区間走行時は、バイパス回路12をオンし、充放電制御装置11を介さずに蓄電池20を主制御装置65及び補助電源装置13に直結する。一方、架線区間走行時は、バイパス回路12をオフし、充放電制御装置11を介して蓄電池20を主制御装置65及び補助電源装置13に接続する。以下、架線区間及び架線レス区間それぞれにおける動作を詳細に説明する。
2. Operation The battery-powered vehicle 1 of the present embodiment is a vehicle that can travel in both the overhead line section and the overhead line-less section. In the battery-powered vehicle 1 according to the present embodiment, the bypass circuit 12 is turned on and the storage battery 20 is directly connected to the main control device 65 and the auxiliary power supply device 13 without going through the charge / discharge control device 11 when traveling in an overhead line-less section. On the other hand, when traveling over the overhead line section, the bypass circuit 12 is turned off, and the storage battery 20 is connected to the main control device 65 and the auxiliary power supply device 13 via the charge / discharge control device 11. Hereinafter, the operations in the overhead line section and the overhead line-less section will be described in detail.

2.1 架線レス区間走行時の動作
架線レス区間を走行中、電池駆動車両1は架線3から電力の供給を受けることができないため、電池駆動車両1は蓄電池20に蓄積された電力を用いて負荷を駆動する。その際、バイパス回路12をオンして導通させ、昇降圧チョッパ33に対するバイパス経路を形成する。その際、昇降圧チョッパ33は、スイッチング素子41〜44を全てオフにすることで停止させる。これにより、蓄電池20からの電力は、バイパス回路12を経由して主制御装置65及び補助電源装置13に直接供給される。なお、このようなことが可能なのは、蓄電池20の電圧変動が小さいことと、主制御装置65及び補助電源装置13の入力電圧範囲が蓄電池20の電圧変動範囲内に収まるように設計されていることによる。
2.1 Operation during traveling in an overhead line-less section Since the battery-powered vehicle 1 cannot receive power from the overhead line 3 while traveling in an overhead line-less section, the battery-driven vehicle 1 uses the power stored in the storage battery 20. Drive the load. At that time, the bypass circuit 12 is turned on to conduct, and a bypass path for the step-up / step-down chopper 33 is formed. At that time, the step-up / step-down chopper 33 is stopped by turning off all the switching elements 41 to 44. Thereby, the electric power from the storage battery 20 is directly supplied to the main control device 65 and the auxiliary power supply device 13 via the bypass circuit 12. Note that this is possible because the voltage fluctuation of the storage battery 20 is small and the input voltage range of the main controller 65 and the auxiliary power supply device 13 is designed to be within the voltage fluctuation range of the storage battery 20. by.

架線レス区間における充電制御機能を有する充電所からの充電時や、主制御装置65からの回生電力の充電時には、充電電圧はバイパス回路12を経由して蓄電池20に直接供給される。   The charging voltage is directly supplied to the storage battery 20 via the bypass circuit 12 at the time of charging from a charging station having a charging control function in an overhead line-less section or charging of regenerative power from the main controller 65.

以上のように、架線レス区間走行時においては、バイパス回路を経由して蓄電池20の充放電を行い、昇降圧チョッパ33を動作させない。このため、昇降圧チョッパ33動作時に発生するリアクトル45及びスイッチング素子41〜44の導通損失及びスイッチング損失並びにスイッチング時に伴う電磁ノイズを低減することが可能となる。   As described above, during traveling without an overhead wire, the storage battery 20 is charged / discharged via the bypass circuit, and the step-up / down chopper 33 is not operated. For this reason, it is possible to reduce the conduction loss and switching loss of the reactor 45 and the switching elements 41 to 44 generated during the operation of the step-up / step-down chopper 33 and electromagnetic noise accompanying switching.

ここで留意すべき点として、バイパス回路12をオンさせるタイミングがある。蓄電池20側の電圧と架線3側の電圧とに大きな電圧差がある状態で、バイパス回路12をオンすると、大電流が瞬時に流れ、昇降圧チョッパ33内の回路素子が破壊されるという問題がある。これを防止するため、バイパス回路12は、昇降圧チョッパ33の高圧側母線のノードXの電圧(架線3側の電圧)と、ノードYの電圧(蓄電池20の電圧)とが同じになった時点でオンするようにする。具体的には、第1及び第3のスイッチング素子41、43の変調率(通流率)が1になり、第2及び第4のスイッチング素子42、44の変調率(通流率)が0になったときに(すなわち、ノードXの電圧(架線3側の電圧)とノードYの電圧(蓄電池20の電圧)とが同じになったときに)、バイパス回路12をオンする。そして、バイパス回路12がオンした後、昇降圧チョッパ33の第1乃至第4のスイッチング素子41〜44を全てオフする。なお、スイッチング素子の変調率(通流率)は0〜1の値をとり、0が常時オフ、1が常時オンに対応する。   It should be noted that there is a timing at which the bypass circuit 12 is turned on. If the bypass circuit 12 is turned on in a state where there is a large voltage difference between the voltage on the storage battery 20 side and the voltage on the overhead line 3 side, a large current flows instantaneously, and the circuit elements in the step-up / down chopper 33 are destroyed. is there. In order to prevent this, the bypass circuit 12 is configured such that the voltage at the node X (voltage on the overhead wire 3 side) of the high-voltage side bus of the step-up / down chopper 33 becomes equal to the voltage at the node Y (voltage of the storage battery 20). To turn on. Specifically, the modulation rate (flow rate) of the first and third switching elements 41 and 43 is 1, and the modulation rate (flow rate) of the second and fourth switching elements 42 and 44 is 0. (That is, when the voltage at the node X (voltage on the overhead wire 3 side) and the voltage at the node Y (voltage of the storage battery 20) become the same), the bypass circuit 12 is turned on. Then, after the bypass circuit 12 is turned on, all the first to fourth switching elements 41 to 44 of the step-up / step-down chopper 33 are turned off. Note that the modulation factor (conduction rate) of the switching element takes a value of 0 to 1, with 0 corresponding to always off and 1 corresponding to always on.

2.2 架線区間走行時の動作
架線区間走行時においては、バイパス回路12はオフしてバイパス経路を開放する。
2.2 Operation during traveling in the overhead line section During traveling in the overhead line section, the bypass circuit 12 is turned off to open the bypass route.

架線区間走行中、電池駆動車両1はパンタグラフ5を介して架線3から電力の供給を受ける。電源制御装置10は、パンタグラフ5を介して受けた電力を主制御装置65、補助電源装置13及び充放電制御装置11に供給する。また、架線電圧が低下した場合には、蓄電池20からの電力を、充放電制御装置11の昇降圧チョッパ33により所望の電力に変換した後、主制御装置65及び補助電源装置13に供給する。   During traveling in the overhead line section, the battery-powered vehicle 1 is supplied with electric power from the overhead line 3 via the pantograph 5. The power supply control device 10 supplies the power received via the pantograph 5 to the main control device 65, the auxiliary power supply device 13, and the charge / discharge control device 11. When the overhead line voltage decreases, the power from the storage battery 20 is converted into desired power by the step-up / step-down chopper 33 of the charge / discharge control device 11, and then supplied to the main control device 65 and the auxiliary power supply device 13.

ブレーキ時に発生した回生電力は、充電制御装置11の昇降圧チョッパ33により所定の充電電圧に変換されて蓄電池20に供給され、蓄電池20を充電する。   The regenerative power generated at the time of braking is converted into a predetermined charging voltage by the step-up / step-down chopper 33 of the charging control device 11 and supplied to the storage battery 20 to charge the storage battery 20.

以上のように架線区間走行中、バイパス回路12はオフするが、ここで、留意すべきことは、架線レス区間から架線区間へ移行した場合の、バイパス回路12をオンからオフにするタイミングである。前述のように架線レス区間では、昇降圧チョッパ33は動作が停止している。そこで、昇降圧チョッパ33の第1及び第3のスイッチング素子41、43の変調率(通流率)を1にした後、バイパス回路をオフして、スイッチング素子41〜44の変調率(通流率)を1〜0までの指令値に制御して、補助電源装置(補機)13への充放電制御装置を介した通電を開始する。その後、パンタグラフを上昇させる。   As described above, the bypass circuit 12 is turned off during traveling of the overhead line section. However, what should be noted here is the timing of turning the bypass circuit 12 from on to off when the section moves from the overhead line-less section to the overhead line section. . As described above, the operation of the step-up / down chopper 33 is stopped in the section without the overhead wire. Therefore, after setting the modulation factors (conduction rates) of the first and third switching elements 41 and 43 of the step-up / down chopper 33 to 1, the bypass circuit is turned off and the modulation factors (conduction rates) of the switching elements 41 to 44 are set. The rate) is controlled to a command value from 1 to 0, and energization of the auxiliary power supply device (auxiliary machine) 13 via the charge / discharge control device is started. Then raise the pantograph.

3.その他
電源制御装置10において、充放電制御装置11の高圧入力端側にダイオード15が設けられている。このダイオード15は、蓄電池20の電圧が架線3の電圧よりも高くなるような場合に、蓄電池20から架線3への放電を防止する機能を有する。
3. In the other power supply control device 10, a diode 15 is provided on the high-voltage input end side of the charge / discharge control device 11. The diode 15 has a function of preventing discharge from the storage battery 20 to the overhead line 3 when the voltage of the storage battery 20 becomes higher than the voltage of the overhead line 3.

4.補足
以下、蓄電池20として使用されるニッケル水素電池の特性について説明する。図3に、各種電池等における、SOC(state of charge)に対する電圧変化を示すSOC特性を示す。曲線aはニッケル水素電池の電圧変化、曲線bは鉛蓄電池の電圧変化、曲線cはリチウムイオン電池の電圧変化、曲線dは電気二重層キャパシタの電圧変化をそれぞれ示す。同図より、SOCの変動に対する電圧変化の割合(ΔV/ΔSOC)は、ニッケル水素電池で約0.1、鉛蓄電池で約1.5、リチウムイオン電池で約2、電気二重層キャパシタで約3となっている。つまり、同じ電圧変化(ΔV)とすれば、ニッケル水素電池の体積は、鉛蓄電池の1/15に、リチウムイオン電池の1/20に、電気二重層キャパシタの1/30に小さくできる。
4). Supplement The following describes the characteristics of the nickel-hydrogen battery to be used as a battery 20. FIG. 3 shows SOC characteristics indicating voltage change with respect to SOC (state of charge) in various batteries and the like. Curve a shows the voltage change of the nickel metal hydride battery, curve b shows the voltage change of the lead acid battery, curve c shows the voltage change of the lithium ion battery, and curve d shows the voltage change of the electric double layer capacitor. From the figure, the ratio of voltage change (ΔV / ΔSOC) to SOC fluctuation is about 0.1 for nickel metal hydride battery, about 1.5 for lead acid battery, about 2 for lithium ion battery, and about 3 for electric double layer capacitor. It has become. In other words, if the voltage change (ΔV) is the same, the volume of the nickel-metal hydride battery can be reduced to 1/15 of the lead storage battery, 1/20 of the lithium ion battery, and 1/30 of the electric double layer capacitor.

図3のように、曲線aで示されるニッケル水素電池は、他の電池等に比して、電圧の変動に対するSOCの範囲(範囲S)が広いという特性を有する。換言すれば、ニッケル水素電池は、SOCの変動に対する電池電圧の変動が小さいという特性を有する。これに対して曲線b、c、dで示される他の電池等では、SOCの変動に対して電池電圧の変動が大きい。例えば、SOCの中央値でみれば、ニッケル水素電池では、中央値の電圧をV1とし、電圧変動が範囲dV1内におさまるように使用する場合、SOCの範囲Sのほぼ全てにおいて使用することができ、電池容量を有効に利用することができる。これに対し、鉛蓄電池を、中央値の電圧をV2とし、電圧変動がdV2内におさまるように使用する場合には、SOCが狭い範囲でしか使用することができず、電池容量を有効に利用できない。同様に、リチウムイオン電池を、中央値の電圧をV3とし電圧変動が範囲dV3内におさまるように使用する場合には、SOCが狭い範囲でしか使用することができず、電池容量を有効に利用できない。なお、電圧変動範囲の大きさはdV1/V1=dV2/V2=dV3/V3とする。   As shown in FIG. 3, the nickel metal hydride battery indicated by the curve a has a characteristic that the SOC range (range S) with respect to voltage fluctuation is wider than other batteries and the like. In other words, the nickel metal hydride battery has a characteristic that the battery voltage fluctuation is small relative to the SOC fluctuation. On the other hand, in other batteries indicated by the curves b, c, d, the battery voltage varies greatly with respect to the SOC. For example, in terms of the median SOC, in a nickel metal hydride battery, when the median voltage is V1 and the voltage fluctuation is within the range dV1, it can be used in almost all of the SOC range S. The battery capacity can be used effectively. On the other hand, when the lead-acid battery is used so that the median voltage is V2 and the voltage fluctuation is kept within dV2, it can be used only in a narrow range of SOC, and the battery capacity is effectively utilized. Can not. Similarly, when using a lithium ion battery so that the median voltage is V3 and the voltage fluctuation is within the range dV3, the battery can be used only in a narrow range, and the battery capacity is effectively utilized. Can not. Note that the magnitude of the voltage fluctuation range is dV1 / V1 = dV2 / V2 = dV3 / V3.

このように、ニッケル水素電池は、他の電池等に比して変動幅が小さい安定した出力電圧が得られるため、本実施形態のように、バイパス回路12を介して蓄電池20を主制御装置65に直結することが可能となる。   As described above, since the nickel metal hydride battery can obtain a stable output voltage with a small fluctuation range compared to other batteries or the like, the storage battery 20 is connected to the main controller 65 via the bypass circuit 12 as in this embodiment. It becomes possible to connect directly to.

5.まとめ
従来の充放電制御装置では、架線レス区間走行時において、力行時の蓄電池からの放電、回生時の蓄電池への充電において、昇降圧チョッパを動作させて電圧変換を行う必要があった。これに対して、本実施形態では、架線レス区間走行時は、充放電制御装置11(すなわち、昇降圧チョッパ33)を動作させずに、力行時の蓄電池20からの放電、回生時の蓄電池20への充電を可能としている。このため、昇降圧チョッパの動作に伴い生じていた、リアクトルの導通損失及びスイッチング素子のスイッチング損失及びスイッチング時に伴う電磁ノイズの発生を低減できる。
5. Summary In the conventional charge / discharge control device, it is necessary to perform voltage conversion by operating the step-up / step-down chopper in discharging from the storage battery during power running and charging to the storage battery during regeneration during traveling in an overhead line-less section. On the other hand, in the present embodiment, during traveling without an overhead wire, the charge / discharge control device 11 (that is, the step-up / step-down chopper 33) is not operated, and the discharge from the storage battery 20 during power running and the storage battery 20 during regeneration are performed. Can be charged. For this reason, the generation | occurrence | production of the electromagnetic noise accompanying the conduction loss of a reactor, the switching loss of a switching element, and the switching which occurred with the operation | movement of a step-up / step-down chopper can be reduced.

本実施形態の構成によれば、昇降圧チョッパ33の故障時においても、バイパス回路12をオンしてバイパス経路を設けることで、蓄電池20に対する充放電が可能となり、電気車両の運行を停止させずに継続して運転することが可能となる。このことは、電気車両が公共交通機関に使用された場合、特に大きな利点となる。   According to the configuration of the present embodiment, even when the buck-boost chopper 33 fails, by turning on the bypass circuit 12 and providing a bypass path, the storage battery 20 can be charged / discharged without stopping the operation of the electric vehicle. It becomes possible to continue driving. This is a particularly great advantage when the electric vehicle is used for public transportation.

また、本実施形態では、架線区間では、充放電制御装置を動作させるが、架線レス区間では、充放電制御装置を動作させずに蓄電池の充放電を行うことにより、架線レス区間での電力損失を低減し、全体として電力消費の低減を図っている。このことは、架線区間及び架線レス区間の双方を走行可能な電気車両にとって利点となる。   In the present embodiment, the charge / discharge control device is operated in the overhead line section, but in the overhead line-less section, the power loss in the overhead line-less section is performed by charging / discharging the storage battery without operating the charge / discharge control device. To reduce power consumption as a whole. This is advantageous for an electric vehicle that can travel in both the overhead line section and the overhead line-less section.

1 電池駆動車両
3 架線
5 パンタグラフ
10 電源制御装置
11 充電制御装置
12 バイパス回路
13 補助電源制御装置
15 ダイオード
20 蓄電池
33 昇降圧チョッパ
35 制御部
37 高速度遮断器
60 モータ
65 主制御装置(VVVFインバータ)
DESCRIPTION OF SYMBOLS 1 Battery drive vehicle 3 Overhead line 5 Pantograph 10 Power supply control apparatus 11 Charging control apparatus 12 Bypass circuit 13 Auxiliary power supply control apparatus 15 Diode 20 Storage battery 33 Buck-boost chopper 35 Control part 37 High speed circuit breaker 60 Motor 65 Main control apparatus (VVVF inverter)

Claims (14)

電気車両に搭載された蓄電池の充放電を制御する電源制御装置であって、
複数のスイッチング素子のスイッチング動作により電圧変換を行う昇降圧チョッパを有し、前記蓄電池の充放電を制御する充放電制御装置と、
前記充放電制御装置に並列に接続され、オンしたときに前記昇降圧チョッパの高圧側母線における、蓄電池側にある第1のノードと、架線側にある第2のノードとを短絡することにより、前記充放電制御装置を迂回して前記蓄電池の充放電を可能とするバイパス経路を形成し、オフしたときに前記バイパス経路を遮断するバイパス回路と、
を備えた電源制御装置。
A power supply control device for controlling charging and discharging of a storage battery mounted on an electric vehicle,
A charge / discharge control device that has a step-up / step-down chopper that performs voltage conversion by switching operations of a plurality of switching elements, and controls charge / discharge of the storage battery;
By short-circuiting the first node on the storage battery side and the second node on the overhead line side in the high-voltage side bus of the buck-boost chopper when connected to the charge / discharge control device in parallel and turned on , A bypass circuit that bypasses the charge / discharge control device to enable charging / discharging of the storage battery, and bypasses the bypass path when turned off; and
A power supply control device.
前記蓄電池はニッケル水素電池である、請求項1記載の電源制御装置。   The power supply control device according to claim 1, wherein the storage battery is a nickel metal hydride battery. 前記充放電制御装置及びバイパス回路の動作を制御する制御手段をさらに備え、
前記制御手段は、前記電気車両が架線から受けた電力でモータを駆動して走行中は、前記バイパス回路をオフするように前記バイパス回路を制御する、請求項1記載の電源制御装置。
A control means for controlling the operation of the charge / discharge control device and the bypass circuit;
2. The power supply control device according to claim 1, wherein the control unit controls the bypass circuit so as to turn off the bypass circuit while the electric vehicle is running by driving a motor with electric power received from an overhead line.
前記昇降圧チョッパ及び前記バイパス回路の動作を制御する制御手段をさらに備え、
前記制御手段は、前記電気車両が前記蓄電池から放電された電力でモータを駆動して走行中は、前記バイパス回路をオンし、且つ前記昇降圧チョッパを動作させないように、前記昇降圧チョッパ及び前記バイパス回路の動作を制御する、請求項1記載の電源制御装置。
A control means for controlling operations of the step-up / step-down chopper and the bypass circuit;
The control means is configured to turn on the bypass circuit and not operate the step-up / step-down chopper and the step-up / step-down chopper while the electric vehicle is running by driving a motor with electric power discharged from the storage battery. The power supply control apparatus of Claim 1 which controls operation | movement of a bypass circuit.
前記昇降圧チョッパ及び前記バイパス回路の動作を制御する制御手段をさらに備え、
前記制御手段は、前記第1のノードの電圧と前記第2のノードの電圧とを同じにした後に、前記バイパス回路をオフからオンに切り替えるように前記昇降圧チョッパ及び前記バイパス回路を制御する、請求項1記載の電源制御装置。
A control means for controlling operations of the step-up / step-down chopper and the bypass circuit;
The control means controls the step-up / step-down chopper and the bypass circuit to switch the bypass circuit from OFF to ON after making the voltage of the first node and the voltage of the second node the same. The power supply control device according to claim 1.
前記昇降圧チョッパ及び前記バイパス回路の動作を制御する制御手段をさらに備え、
前記制御手段は、前記第1のノードの電圧と前記第2のノードの電圧とを同じにした後に、前記バイパス回路をオンからオフに切り替えるように前記昇降圧チョッパ及び前記バイパス回路を制御する、請求項1記載の電源制御装置。
A control means for controlling operations of the step-up / step-down chopper and the bypass circuit;
The control means controls the step-up / step-down chopper and the bypass circuit so as to switch the bypass circuit from ON to OFF after making the voltage of the first node and the voltage of the second node the same. The power supply control device according to claim 1.
前記充放電制御装置及び前記バイパス回路の前段にさらにダイオードを挿入した、請求項1記載の電源制御装置。   The power supply control device according to claim 1, further comprising a diode inserted before the charge / discharge control device and the bypass circuit. 前記電気車両は、架線のある区間では、架線から車両に電力を得ることで走行するとともに搭載した蓄電池に充電し、架線の無い区間では、搭載した蓄電池に充電した電力により走行可能な電池駆動車両である、請求項1記載の電源制御装置。   The electric vehicle travels by obtaining power from the overhead line to the vehicle in a section with an overhead line and charges the mounted storage battery, and in a section without the overhead line, a battery-driven vehicle that can travel with the power charged in the mounted storage battery The power supply control device according to claim 1, wherein 前記バイパス回路は半導体スイッチである、請求項1記載の電源制御装置。   The power supply control device according to claim 1, wherein the bypass circuit is a semiconductor switch. 前記バイパス回路は接触器である、請求項1記載の電源制御装置。   The power supply control device according to claim 1, wherein the bypass circuit is a contactor. 複数のスイッチング素子のスイッチング動作により電圧変換を行う昇降圧チョッパを備え、電気車両に搭載された蓄電池の充放電を制御する電源制御装置の制御方法であって、
前記電気車両が前記蓄電池から放電された電圧でモータを駆動して走行中は、前記昇降圧チョッパを動作させないように制御するとともに、前記昇降圧チョッパの高圧側母線における、蓄電池側にある第1のノードと、架線側にある第2のノードとを短絡することにより、前記昇降圧チョッパを迂回するバイパス経路を形成して前記バイパス経路を介して前記蓄電池の充放電を行い、
前記電気車両が架線から受けた電圧でモータを駆動して走行中は、前記バイパス経路を遮断する、
電源制御方法。
A control method of a power supply control device that includes a step-up / step-down chopper that performs voltage conversion by switching operations of a plurality of switching elements, and that controls charging / discharging of a storage battery mounted on an electric vehicle,
While the electric vehicle is running by driving the motor with the voltage discharged from the storage battery, the electric vehicle is controlled so as not to operate the first step-up / down chopper, and the first high-voltage side bus of the step-up / down chopper is on the storage battery side. and nodes, by short-circuiting the second node on the overhead wire side, to form a bypass path which bypasses the buck chopper performs charging and discharging of the storage battery through the bypass path,
It said electric vehicle drives the motor with a voltage received from overhead wires, during running, blocking the bypass path,
Power control method.
前記バイパス経路を新たに形成する際に、前記第1のノードの電圧と前記第2のノードの電圧とを同じにした後に、前記バイパス経路を形成する、請求項11記載の電源制御方法。 The power supply control method according to claim 11, wherein when the bypass path is newly formed, the bypass path is formed after making the voltage of the first node and the voltage of the second node the same. 前記形成されたバイパス経路を遮断する際に、前記第1のノードの電圧と前記第2のノードの電圧とを同じにした後に、前記バイパス経路を遮断する、請求項11記載の電源制御方法。 The power supply control method according to claim 11, wherein when the formed bypass path is cut off, the voltage of the first node and the voltage of the second node are made the same, and then the bypass path is cut off. 前記電気車両は、架線のある区間では、架線から車両に電力を得ることで走行するとともに搭載した蓄電池に充電し、架線の無い区間では、搭載した蓄電池に充電した電力により走行可能な電池駆動車両である、請求項11記載の電源制御方法。   The electric vehicle travels by obtaining power from the overhead line to the vehicle in a section with an overhead line and charges the mounted storage battery, and in a section without the overhead line, a battery-driven vehicle that can travel with the power charged in the mounted storage battery The power supply control method according to claim 11, wherein
JP2009058383A 2009-03-11 2009-03-11 Power supply control device and power supply control method Expired - Fee Related JP5350843B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009058383A JP5350843B2 (en) 2009-03-11 2009-03-11 Power supply control device and power supply control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009058383A JP5350843B2 (en) 2009-03-11 2009-03-11 Power supply control device and power supply control method

Publications (2)

Publication Number Publication Date
JP2010213506A JP2010213506A (en) 2010-09-24
JP5350843B2 true JP5350843B2 (en) 2013-11-27

Family

ID=42973074

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009058383A Expired - Fee Related JP5350843B2 (en) 2009-03-11 2009-03-11 Power supply control device and power supply control method

Country Status (1)

Country Link
JP (1) JP5350843B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2987589B1 (en) * 2012-03-05 2014-04-11 Alstom Transport Sa ELECTRIC RAILWAY NETWORK AND ASSOCIATED ENERGY EXCHANGE METHOD.
JP5902534B2 (en) * 2012-03-30 2016-04-13 株式会社日立製作所 Railway vehicle drive system
JP5832354B2 (en) * 2012-03-30 2015-12-16 東日本旅客鉄道株式会社 Vehicle movement prohibition system
JP6300664B2 (en) * 2014-06-23 2018-03-28 三菱電機株式会社 Railway vehicle power circuit
JP6642974B2 (en) * 2015-03-27 2020-02-12 株式会社東芝 Electric car control device
JP6847623B2 (en) * 2016-10-12 2021-03-24 株式会社東芝 Electric vehicle power conversion device and electric vehicle power conversion method
JP7213039B2 (en) * 2018-08-30 2023-01-26 広島電鉄株式会社 Electric vehicle power supply system, power supply control method and additional power supply system
US11888396B2 (en) 2018-10-23 2024-01-30 Tokyo Institute Of Technology Chopper circuit

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2523679Y2 (en) * 1986-04-21 1997-01-29 ダイハツ工業 株式会社 Braking control device in electric vehicle running speed control device
JPS6481601A (en) * 1987-09-18 1989-03-27 Nippon Yusoki Co Ltd Regenerative braking and control system for dc shunt motor
JPS6481607A (en) * 1987-09-18 1989-03-27 Hitachi Cable Method of repairing optical fiber composite overhead ground wire

Also Published As

Publication number Publication date
JP2010213506A (en) 2010-09-24

Similar Documents

Publication Publication Date Title
CA2806817C (en) Electric vehicle propulsion control device and railway vehicle system
JP5350843B2 (en) Power supply control device and power supply control method
US10065511B2 (en) Hybrid drive system
CN107042762B (en) Vehicle-mounted hybrid energy storage system of railway vehicle and application thereof
US8924051B2 (en) Drive device for railway vehicle
US9145060B2 (en) Propulsion control apparatus for electric motor car
JP5843624B2 (en) Power conversion system for grid connection
JP2009273198A (en) Power flow control method and control device of battery-driven vehicle
CN103481785B (en) Extended-range dynamical system and two voltage protection method thereof
US10044312B2 (en) Modular stacked DC architecture traction system and method of making same
CN103427680A (en) Transformer tap-changing circuit and method of making same
JP2013211964A (en) Driving apparatus of railway vehicle
JP2018152979A (en) Electric power source system for electric motor vehicle, electric power supply control method and additional electric power source system
JP2013208008A (en) Electric vehicle
JP6240023B2 (en) Power converter and railway vehicle equipped with the same
JP2014155298A (en) Power supply system, and vehicle mounting the same
JP7213039B2 (en) Electric vehicle power supply system, power supply control method and additional power supply system
JP7030599B2 (en) Battery system and electric vehicle control system
JP2015095995A (en) Vehicle power conversion equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121225

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130723

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130822

R150 Certificate of patent or registration of utility model

Ref document number: 5350843

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees