JP5339073B2 - Steam system - Google Patents

Steam system Download PDF

Info

Publication number
JP5339073B2
JP5339073B2 JP2009115087A JP2009115087A JP5339073B2 JP 5339073 B2 JP5339073 B2 JP 5339073B2 JP 2009115087 A JP2009115087 A JP 2009115087A JP 2009115087 A JP2009115087 A JP 2009115087A JP 5339073 B2 JP5339073 B2 JP 5339073B2
Authority
JP
Japan
Prior art keywords
steam
exhaust gas
upstream
pressure
economizer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009115087A
Other languages
Japanese (ja)
Other versions
JP2010266074A (en
Inventor
真典 竹本
省二 露口
昭典 川上
信行 石▲崎▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miura Co Ltd
Original Assignee
Miura Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miura Co Ltd filed Critical Miura Co Ltd
Priority to JP2009115087A priority Critical patent/JP5339073B2/en
Publication of JP2010266074A publication Critical patent/JP2010266074A/en
Application granted granted Critical
Publication of JP5339073B2 publication Critical patent/JP5339073B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To enhance a heat recovery amount from an exhaust gas, by using a plurality of still bodies different in steam pressures, as the still bodies of an exhaust gas boiler, and to enhance versatility of obtained steam obtained by pressure-rising steam of low vapor pressure. <P>SOLUTION: This stem system includes the upstream still body 3 passed with the exhaust gas, to generate the steam using heat of the exhaust gas, the downstream still body 5 passed with the exhaust gas after passed through the upstream still body 3, to generate the steam of pressure lower than that of the upstream still body 3, and a pressure rising mechanism 50 for rising pressure of the steam from the downstream still body 5, by the steam from the upstream still body 3. The pressure rising mechanism 50 is an ejector 51, for example. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は、排熱を用いて蒸気を発生させる排ガスボイラを含む蒸気システムに関するものである。   The present invention relates to a steam system including an exhaust gas boiler that generates steam using exhaust heat.

従来、排熱を用いて蒸気を発生させる排ガスボイラは周知である。排ガスボイラでは、排ガスが通されることで、水管内の水が排ガスにより加熱され蒸気化される。これにより、排ガスボイラから設定蒸気圧の蒸気を得ることができる。   Conventionally, exhaust gas boilers that generate steam using exhaust heat are well known. In the exhaust gas boiler, when the exhaust gas is passed, the water in the water pipe is heated and vaporized by the exhaust gas. Thereby, the vapor | steam of setting vapor pressure can be obtained from an exhaust gas boiler.

排ガスボイラでは、入口と出口との排ガス温度に落差があるほど、言い換えれば入口における排ガス温度が一定であれば出口における排ガス温度が低いほど、排ガスからの熱回収が有効になされたことになる。排ガスからの熱回収を有効に図るために、排ガスボイラは伝熱面積を大きくとればよいが、伝熱面積をいかに大きくしても、前記設定蒸気圧との関係で、排ガスボイラ出口における排ガス温度を下げるには限界がある。設定蒸気圧における飽和温度以下にまで、排ガス温度を下げることはできないからである。   In the exhaust gas boiler, the more the exhaust gas temperature at the inlet and the outlet is lower, in other words, the lower the exhaust gas temperature at the outlet is, the more efficient the heat recovery from the exhaust gas is. In order to effectively recover heat from the exhaust gas, the exhaust gas boiler only needs to have a large heat transfer area. However, no matter how large the heat transfer area, the exhaust gas temperature at the exhaust gas boiler outlet is related to the set steam pressure. There is a limit to lowering. This is because the exhaust gas temperature cannot be lowered below the saturation temperature at the set vapor pressure.

たとえば、設定蒸気圧が8kgf/cm(=0.78MPa)の場合、その飽和温度は175℃であるから、実用上、排ガスボイラ出口における排ガス温度は190℃程度までにしか下げられない。排ガスボイラの下流にエコノマイザを設けて、排ガスボイラへの給水を予熱することで、排ガスからの熱回収をさらに図る場合でも、排ガスボイラの蒸発量が少ないので、排ガスボイラへの給水量も少なく、それ故、エコノマイザ出口における排ガス温度も150℃程度までしか下げられない。 For example, when the set vapor pressure is 8 kgf / cm 2 (= 0.78 MPa), the saturation temperature is 175 ° C., so that the exhaust gas temperature at the exhaust gas boiler outlet can be lowered only to about 190 ° C. in practice. An economizer is installed downstream of the exhaust gas boiler to preheat the water supply to the exhaust gas boiler, so that even when heat recovery from the exhaust gas is further promoted, the amount of evaporation of the exhaust gas boiler is small, so the amount of water supplied to the exhaust gas boiler is small, Therefore, the exhaust gas temperature at the economizer outlet can only be lowered to about 150 ° C.

排ガスからの一層の熱回収を図るために、下記各特許文献に開示されるように、排ガス流の下流へ行くに従って設定蒸気圧が低圧となるように、複数台の排ガスボイラを設置することが提案されている。この場合、排ガス温度が下がるほど設定蒸気圧の低い(飽和温度の低い)ボイラとすることで、熱回収効率を向上することができる。ところが、蒸気圧の異なる各蒸気の需要がなければ意味がなく、汎用性に乏しい。   In order to further recover heat from the exhaust gas, as disclosed in the following patent documents, it is possible to install a plurality of exhaust gas boilers so that the set vapor pressure becomes lower as the exhaust gas flow goes downstream. Proposed. In this case, heat recovery efficiency can be improved by using a boiler having a lower set vapor pressure (lower saturation temperature) as the exhaust gas temperature decreases. However, it is meaningless and lacks versatility unless there is a demand for each steam with different steam pressures.

特開昭59−150203号公報JP 59-150203 A 特開平11−350921号公報Japanese Patent Laid-Open No. 11-350921

本発明が解決しようとする課題は、排ガスからの熱回収を有効に図りつつ、得られる蒸気の汎用性を高めることにある。   The problem to be solved by the present invention is to improve the versatility of the steam obtained while effectively recovering heat from the exhaust gas.

本発明は、前記課題を解決するためになされたもので、請求項1に記載の発明は、排ガスが通され、その排ガス熱を用いて蒸気を起こす上流缶体と、この上流缶体を通過後の排ガスが通され、前記上流缶体よりも低圧の蒸気を起こす下流缶体と、前記上流缶体からの蒸気で、前記下流缶体からの蒸気を昇圧する昇圧機構とを備え、前記昇圧機構は、エゼクタを備え、このエゼクタは、そのノズルへ前記上流缶体からの蒸気が吹き込まれることで、前記下流缶体からの蒸気を吸引し、前記両缶体からの蒸気を混合して吐出し、前記上流缶体と前記下流缶体との間に、前記上流缶体よりも低圧で前記下流缶体よりも高圧の蒸気を起こす中流缶体をさらに備え、排ガスは、前記上流缶体、前記中流缶体および前記下流缶体を順に通され、前記下流缶体からの蒸気が前記昇圧機構により昇圧された後の蒸気、前記上流缶体からの蒸気が前記昇圧機構により減圧された後の蒸気、および前記中流缶体からの蒸気が、圧力を互いに同等にされることで混合され、前記上流缶体の圧力調整は、前記上流缶体へ供給する排ガス流量を調整することでなされ、前記中流缶体の圧力調整は、前記エゼクタからの蒸気と前記中流缶体からの蒸気との合流蒸気の蒸気路に設けた圧力調整弁にて行われ、前記下流缶体の圧力調整は、前記エゼクタの吸込口への蒸気路に設けた吸引弁と、前記エゼクタ以外の箇所へ蒸気を放出する放蒸弁とを制御することでなされることを特徴とする蒸気システムである。 The present invention has been made to solve the above-mentioned problems. The invention according to claim 1 is directed to an upstream can body through which exhaust gas is passed and steam is generated using the exhaust gas heat, and the upstream can body passes through the upstream can body. A downstream can body through which a later exhaust gas is passed and generates steam at a pressure lower than that of the upstream can body; and a booster mechanism that boosts the steam from the downstream can body with the steam from the upstream can body , The mechanism includes an ejector. The ejector sucks the steam from the downstream can body and mixes and discharges the steam from the both can bodies when the steam from the upstream can body is blown into the nozzle. And an intermediate-flow can body that generates steam at a lower pressure than the upstream can body and higher pressure than the downstream can body between the upstream can body and the downstream can body, The middle can body and the downstream can body are passed in order, and the downstream can The steam after the pressure from the booster mechanism is increased, the steam after the steam from the upstream can body is depressurized by the boost mechanism, and the steam from the midstream can body are equalized to each other. The pressure adjustment of the upstream can body is performed by adjusting the flow rate of the exhaust gas supplied to the upstream can body, and the pressure adjustment of the midstream can body is performed by adjusting the steam from the ejector and the midstream can body. The pressure adjustment valve provided in the steam path of the combined steam with the steam from, the pressure adjustment of the downstream can body, the suction valve provided in the steam path to the suction port of the ejector, and the other than the ejector The steam system is characterized by being controlled by a steam release valve that discharges steam to a location .

請求項1に記載の発明によれば、排ガス流の下流へ行くに従って設定蒸気圧が低くなるように、言い換えれば排ガス流の下流へ行くに従って缶体内の飽和温度が低くなるように、複数の缶体が設置される。これにより、排ガスからの熱回収量を向上することができる。しかも、上流缶体からの蒸気で、下流缶体からの蒸気を昇圧することで、蒸気の用途を広めることができる。   According to the first aspect of the present invention, the plurality of cans are configured such that the set vapor pressure decreases as the exhaust gas flow goes downstream, in other words, the saturation temperature in the can decreases as the exhaust gas flow goes downstream. The body is installed. Thereby, the amount of heat recovered from the exhaust gas can be improved. Moreover, the use of steam can be broadened by increasing the pressure of the steam from the downstream can body with the steam from the upstream can body.

請求項1に記載の発明によれば、エゼクタにより、簡易に下流缶体からの蒸気を昇圧することができる。 According to the first aspect of the present invention, the pressure from the downstream can body can be easily increased by the ejector.

請求項1に記載の発明によれば、上流缶体、中流缶体および下流缶体により、排ガスからの熱回収量を向上させつつ、異なる蒸気圧の蒸気を得ても、それを共通の蒸気圧に調整して出力することができる。 According to the first aspect of the present invention, even if steam with different vapor pressures is obtained by improving the amount of heat recovered from the exhaust gas by using the upstream can body, the midstream can body and the downstream can body, The pressure can be adjusted and output.

請求項2に記載の発明は、前記下流缶体を通過後の排ガスが通され、前記各缶体への給水を予熱するエコノマイザをさらに備えることを特徴とする請求項1に記載の蒸気システムである。 The invention according to claim 2 is the steam system according to claim 1 , further comprising an economizer through which the exhaust gas after passing through the downstream can body is passed and preheats water supplied to each can body. is there.

請求項2に記載の発明によれば、各缶体への給水を予熱するエコノマイザを設置することで、排ガスからの熱回収を一層確実に行うことができる。なお、全ての缶体への給水を、それぞれエコノマイザを介して行う必要はなく、一部の缶体へはエコノマイザを介さずに給水してもよい。 According to the second aspect of the present invention, it is possible to more reliably recover the heat from the exhaust gas by installing an economizer that preheats the water supply to each can body. In addition, it is not necessary to supply water to all the cans through the economizer, and water may be supplied to some of the cans without using the economizer.

さらに、請求項3に記載の発明は、前記エコノマイザとして、前記各缶体を通過後の排ガスが順に通される複数のエコノマイザを備え、この複数のエコノマイザは、排ガス流の上流側に設置されるものほど、排ガス流の上流側に設置される缶体への給水を予熱することを特徴とする請求項2に記載の蒸気システムである。 Furthermore, the invention described in claim 3 includes, as the economizer, a plurality of economizers through which the exhaust gas after passing through each can body is sequentially passed, and the economizers are installed upstream of the exhaust gas flow. The steam system according to claim 2 , wherein water is supplied to the can body installed upstream of the exhaust gas flow as the water is heated.

請求項3に記載の発明によれば、排ガスの流れ方向に対するエコノマイザの設置順序を、排ガスの流れ方向に対する缶体の設置順序と対応させた。つまり、上流側に設置されるエコノマイザほど、上流側に設置される缶体へ給水する構成とされる。これにより、排ガスからの熱回収量を一層向上することができる。 According to the invention described in claim 3 , the installation order of the economizer with respect to the flow direction of the exhaust gas is made to correspond to the installation order of the can body with respect to the flow direction of the exhaust gas. That is, the economizer installed on the upstream side is configured to supply water to the can body installed on the upstream side. Thereby, the amount of heat recovered from the exhaust gas can be further improved.

本発明によれば、複数の缶体を用いることで、排ガスからの熱回収を有効に図りつつ、昇圧機構を用いることで、得られる蒸気の汎用性を高めることができる。   According to the present invention, by using a plurality of cans, the versatility of the resulting steam can be enhanced by using the pressure increasing mechanism while effectively recovering heat from the exhaust gas.

本発明の蒸気システムの実施例1を示す概略図であり、一部を切り欠いて示している。BRIEF DESCRIPTION OF THE DRAWINGS It is the schematic which shows Example 1 of the steam system of this invention, and has shown it notched partially. 図1の蒸気システムに用いられる排ガスボイラの概略平面図であり、一部を切り欠いて示している。FIG. 2 is a schematic plan view of an exhaust gas boiler used in the steam system of FIG. 1, with a part cut away. 本発明の蒸気システムの実施例2を示す概略図である。It is the schematic which shows Example 2 of the steam system of this invention. 本発明の蒸気システムの実施例3を示す概略図である。It is the schematic which shows Example 3 of the steam system of this invention. 実施例1および実施例2における各缶体への給水方式の一例を示す概略図であり、缶体とエコノマイザのみを示している。It is the schematic which shows an example of the water supply system to each can body in Example 1 and Example 2, and has shown only the can body and the economizer. 実施例1および実施例2における各缶体への給水方式の他の例を示す概略図であり、缶体とエコノマイザのみを示している。It is the schematic which shows the other example of the water supply system to each can body in Example 1 and Example 2, and has shown only the can body and the economizer. 実施例1および実施例2における各缶体への給水方式のさらに別の例を示す概略図であり、缶体とエコノマイザのみを示している。It is the schematic which shows another example of the water supply system to each can in Example 1 and Example 2, and only the can and the economizer are shown.

以下、本発明の具体的実施例を図面に基づいて詳細に説明する。   Hereinafter, specific embodiments of the present invention will be described in detail with reference to the drawings.

図1は、本発明の蒸気システム1の実施例1を示す概略図であり、一部を切り欠いて示している。また、図2は、この蒸気システム1に用いられる排ガスボイラ2の概略平面図であり、一部を切り欠いて示している。   FIG. 1 is a schematic view showing a first embodiment of a steam system 1 according to the present invention, which is partially cut away. FIG. 2 is a schematic plan view of the exhaust gas boiler 2 used in the steam system 1 and is partially cut away.

本実施例の蒸気システム1は、排熱を用いて蒸気を起こす排ガスボイラ2を備え、この排ガスボイラ2は、複数の缶体3,4,5を備える。本実施例では、第一缶体3、第二缶体4および第三缶体5の三つの缶体が、排ガス流に沿って直列に設置される。それ故、第一缶体3を上流缶体、第二缶体4を中流缶体、第三缶体5を下流缶体ということもできる。   The steam system 1 of this embodiment includes an exhaust gas boiler 2 that generates steam using exhaust heat, and the exhaust gas boiler 2 includes a plurality of cans 3, 4, and 5. In the present embodiment, the three can bodies of the first can body 3, the second can body 4 and the third can body 5 are installed in series along the exhaust gas flow. Therefore, the first can body 3 can also be called an upstream can body, the second can body 4 can be called a midstream can body, and the third can body 5 can be called a downstream can body.

各缶体3〜5は、その構成を特に問わず、従来公知の各種の排ガスボイラと同様に構成できるが、図示例では、多管式の貫流ボイラとされる。具体的には、各缶体3〜5は、上部管寄せ6〜8と下部管寄せ9〜11との間を、多数の水管12〜14で接続して構成される。上部管寄せ6〜8と下部管寄せ9〜11とは、上下に離隔して平行に配置され、内部は中空に形成されている。一方、各水管12〜14は、垂直に配置され、上端部が上部管寄せ6〜8に接続される一方、下端部が下部管寄せ9〜11に接続される。図示していないが、上下の管寄せ6〜11と各水管12〜14との接続部は、耐火材で覆われる。   Each of the cans 3 to 5 can be configured in the same manner as various conventionally known exhaust gas boilers, regardless of the configuration, but in the illustrated example, it is a multi-pipe once-through boiler. Specifically, each of the cans 3 to 5 is configured by connecting the upper headers 6 to 8 and the lower headers 9 to 11 with a large number of water tubes 12 to 14. The upper headers 6 to 8 and the lower headers 9 to 11 are spaced apart in parallel in the vertical direction, and the inside is formed to be hollow. On the other hand, each water pipe 12-14 is arrange | positioned perpendicularly | vertically, and while an upper end part is connected to the upper headers 6-8, a lower end part is connected to the lower headers 9-11. Although not shown, the connection parts between the upper and lower headers 6 to 11 and the water pipes 12 to 14 are covered with a fireproof material.

各缶体3〜5における水管12〜14の配置は、適宜に設定されるが、排ガスの流れ方向と垂直に複数本配置されると共に、排ガスの流れ方向にも複数本配置される。その際、隣接する水管間には、排ガスが通される隙間が開けられると共に、図示例では千鳥状に配置される。また、各水管12〜14には、その外周面に所望によりフィンやスタッドなどを設けて、伝熱面積の拡大を図ってもよい。   Although arrangement | positioning of the water pipes 12-14 in each can 3-5 is set suitably, while being arrange | positioned perpendicularly | vertically with the flow direction of waste gas, it is arrange | positioned also with multiple flow direction of waste gas. At that time, a gap through which the exhaust gas is passed is opened between the adjacent water pipes, and the water pipes are arranged in a staggered manner in the illustrated example. In addition, the water pipes 12 to 14 may be provided with fins, studs, or the like on the outer peripheral surface as desired to increase the heat transfer area.

第一缶体3、第二缶体4および第三缶体5へと順に排ガスが流れるように、各缶体3〜5は、排ガスの出入口を除いて、缶体カバー15で覆われる。この際、各缶体3〜5を共通の缶体カバー15で覆ってもよいし、缶体3〜5ごとに排ガスの出入口を除いて缶体カバー15で覆い、互いにフランジや配管などで接続してもよい。つまり、第一缶体3の缶体カバーの排ガス出口と第二缶体4の缶体カバーの排ガス入口とを接続すると共に、第二缶体4の缶体カバーの排ガス出口と第三缶体5の缶体カバーの排ガス入口とを接続してもよい。この場合、独立に構成された排ガスボイラを、複数台直列に接続した構成となる。いずれの場合も、缶体カバー15には、断熱材や耐火材を設けてもよいのは言うまでもない。   Each can body 3 to 5 is covered with a can body cover 15 except for the entrance and exit of the exhaust gas so that the exhaust gas flows in order to the first can body 3, the second can body 4 and the third can body 5. At this time, each of the can bodies 3 to 5 may be covered with a common can body cover 15, or the can bodies 3 to 5 may be covered with the can body cover 15 except for the inlet / outlet of the exhaust gas, and connected to each other by a flange or a pipe. May be. That is, while connecting the exhaust gas outlet of the can body cover of the first can body 3 and the exhaust gas inlet of the can body cover of the second can body 4, the exhaust gas outlet of the can body cover of the second can body 4 and the third can body The exhaust gas inlet of the can body cover 5 may be connected. In this case, a plurality of independently configured exhaust gas boilers are connected in series. In any case, it goes without saying that the can body cover 15 may be provided with a heat insulating material or a refractory material.

各缶体3〜5には、給水路16〜18を介して下部管寄せ9〜11へ水(通常は軟水)が供給され、その水は、各水管12〜14において排ガスにより加熱され蒸気化される。その蒸気は、上部管寄せ6〜8から気水分離器19〜21を介して導出される。また、各缶体3〜5内の水は、所望により、排水路22〜24を介して下部管寄せ9〜11から排出可能とされる。各排水路22〜24に設けた排水弁25〜27を開くことで、各缶体3〜5内から排水を図ることができる。   Water (usually soft water) is supplied to the lower headers 9 to 11 through the water supply channels 16 to 18 to the cans 3 to 5, and the water is heated by the exhaust gas in the water tubes 12 to 14 and is vaporized. Is done. The steam is led out from the upper headers 6 to 8 through the steam separators 19 to 21. Moreover, the water in each can 3-5 can be discharged | emitted from the lower headers 9-11 via the drainage channels 22-24 if desired. By opening the drainage valves 25 to 27 provided in the drainage channels 22 to 24, drainage can be achieved from the cans 3 to 5.

気水分離器19〜21は、本実施例では遠心式の気水分離器とされている。具体的には、気水分離器19〜21は、縦向き円筒状の胴28〜30を備え、その胴28〜30内に接線方向で蒸気が導入される。従って、上部管寄せ6〜8からの蒸気は、胴28〜30内で旋回して、その遠心力で水分は外方へ飛ばされ下方へ脱落する一方、そのようにして乾き度を向上された蒸気は、胴28〜30の上部から導出される。なお、胴28〜30内において分離された水は、分離水戻し管31〜33を介して、下部管寄せ9〜11へ戻される。   The steam / water separators 19 to 21 are centrifugal steam / water separators in this embodiment. Specifically, the steam separators 19 to 21 are provided with longitudinally cylindrical cylinders 28 to 30, and steam is introduced into the cylinders 28 to 30 in a tangential direction. Accordingly, the steam from the upper headers 6 to 8 swirls within the barrels 28 to 30, and the centrifugal force causes the water to be blown outward and to drop downward, thus improving the dryness. Steam is led out from the top of the barrels 28-30. In addition, the water separated in the trunks 28 to 30 is returned to the lower headers 9 to 11 through the separated water return pipes 31 to 33.

本実施例では、各缶体3〜5の下部管寄せ6〜8への給水は、エコノマイザ34〜36で予熱される。具体的には、排ガスボイラ2の下流に、エコノマイザ34〜36が設置される。図示例では、第一缶体3、第二缶体4および第三缶体5とエコノマイザ34〜36とが共通の缶体カバー15で覆われているが、排ガスボイラ2とは別にエコノマイザ34〜35を構成して、排ガスボイラ2の排ガス出口とエコノマイザ34の排ガス入口とをフランジや配管で接続してもよい。   In the present embodiment, water supply to the lower headers 6 to 8 of the cans 3 to 5 is preheated by the economizers 34 to 36. Specifically, economizers 34 to 36 are installed downstream of the exhaust gas boiler 2. In the illustrated example, the first can body 3, the second can body 4, the third can body 5, and the economizers 34 to 36 are covered with a common can body cover 15, but separately from the exhaust gas boiler 2, the economizer 34 to 35 and the exhaust gas outlet of the exhaust gas boiler 2 and the exhaust gas inlet of the economizer 34 may be connected by a flange or piping.

また、本実施例では、エコノマイザ34〜35は、缶体3〜5の数だけ設置され、排ガス流に沿って直列に設置される。この場合、エコノマイザ34〜35は、排ガス流の上流側に設置されるものほど、排ガス流の上流側に設置される缶体への給水を予熱するのが好ましい。   In this embodiment, the economizers 34 to 35 are installed in the number of cans 3 to 5 and are installed in series along the exhaust gas flow. In this case, it is preferable that the economizers 34 to 35 preheat the water supplied to the can body installed upstream of the exhaust gas flow as it is installed upstream of the exhaust gas flow.

具体的には、排ガス流に沿って順に、第一エコノマイザ34、第二エコノマイザ35および第三エコノマイザ36が設置され、第一エコノマイザ34は第一缶体3への給水を予熱し、第二エコノマイザ35は第二缶体4への給水を予熱し、第三エコノマイザ36は第三缶体5への給水を予熱する。そして、各エコノマイザ34〜36で予熱された水は、各缶体3〜5の下部管寄せ9〜11へ供給される。各缶体3〜5への給水の有無は、各缶体3〜5の水位検出器(図示省略)の検出結果に基づき、各エコノマイザ34〜36への給水ポンプ37〜39の作動を制御して切り替えられる。   Specifically, the first economizer 34, the second economizer 35, and the third economizer 36 are installed in order along the exhaust gas flow. 35 preheats the water supply to the second can body 4, and the third economizer 36 preheats the water supply to the third can body 5. And the water pre-heated by each economizer 34-36 is supplied to the lower headers 9-11 of each can 3-5. The presence or absence of water supply to each of the cans 3 to 5 controls the operation of the water supply pumps 37 to 39 to the economizers 34 to 36 based on the detection result of the water level detector (not shown) of each of the cans 3 to 5. Can be switched.

排ガスボイラ2およびエコノマイザ34〜36は、排ガス導入路40を介して排ガスが導入され、排ガス導出路41を介して排ガスが導出される。排ガスが排ガスボイラ2を通過する間、排ガスと水管12〜14との熱交換がなされ、排ガスは冷却を図られる一方、水管12〜14内の水は加熱され蒸気化を図られる。また、排ガスがエコノマイザ34〜36を通過する間、各缶体3〜5への給水が排ガスにより予熱される。   In the exhaust gas boiler 2 and the economizers 34 to 36, exhaust gas is introduced through the exhaust gas introduction path 40, and exhaust gas is led out through the exhaust gas outlet path 41. While the exhaust gas passes through the exhaust gas boiler 2, heat exchange between the exhaust gas and the water pipes 12 to 14 is performed, and the exhaust gas is cooled while the water in the water pipes 12 to 14 is heated and vaporized. Further, while the exhaust gas passes through the economizers 34 to 36, the water supplied to the cans 3 to 5 is preheated by the exhaust gas.

排ガス導入路40と排ガス導出路41とは、バイパス路42で接続される。そして、排ガスを、排ガスボイラ2を介して排出するか、バイパス路42を介して排出するかを択一的に切り替えるか、両者の分配割合を調整可能とされる。これにより、排ガスボイラ2による蒸発量を調整することができる。そのために、本実施例では、排ガス導入路40とバイパス路42との分岐部に、三方ダンパ43を設けている。但し、排ガス導入路40とバイパス路42との分岐部より下流において、排ガス導入路40とバイパス路42とにそれぞれダンパを個別に設け、各ダンパの開閉または開度を調整してもよい。   The exhaust gas introduction path 40 and the exhaust gas outlet path 41 are connected by a bypass path 42. Then, it is possible to selectively switch whether the exhaust gas is discharged via the exhaust gas boiler 2 or the bypass passage 42, or to adjust the distribution ratio of both. Thereby, the evaporation amount by the exhaust gas boiler 2 can be adjusted. Therefore, in this embodiment, a three-way damper 43 is provided at a branch portion between the exhaust gas introduction path 40 and the bypass path 42. However, a damper may be separately provided in each of the exhaust gas introduction path 40 and the bypass path 42 downstream of the branch portion between the exhaust gas introduction path 40 and the bypass path 42, and the opening / closing or opening degree of each damper may be adjusted.

三方ダンパ43は、ボックス状の弁箱44を備え、この弁箱44には、一つの排ガス入口45と、二つの排ガス出口46,47とが設けられる。二つの排ガス出口46,47の内、一方(46)は、排ガスボイラ2への排ガス導入路40に接続され、他方(47)は、バイパス路42に接続される。また、弁箱44内には、ダンパ48が設けられており、このダンパ48の位置を調整することで、排ガス入口45からの排ガスについて、排ガスボイラ2への供給流量とバイパス路42への供給流量との分配割合を調整することができる。具体的には、ダンパ48を駆動させるモータ49を制御して、ダンパ48の回転停止位置を調整することで、前記分配割合が調整される。但し、前述したように、ダンパ48は、所望により、二つの排ガス出口46,47の内、択一的にいずれかを開き、残りを閉じるよう制御されてもよい。   The three-way damper 43 includes a box-shaped valve box 44, and the valve box 44 is provided with one exhaust gas inlet 45 and two exhaust gas outlets 46 and 47. Of the two exhaust gas outlets 46 and 47, one (46) is connected to the exhaust gas introduction path 40 to the exhaust gas boiler 2 and the other (47) is connected to the bypass path 42. In addition, a damper 48 is provided in the valve box 44, and the supply flow rate to the exhaust gas boiler 2 and the supply to the bypass passage 42 with respect to the exhaust gas from the exhaust gas inlet 45 by adjusting the position of the damper 48. The distribution ratio with the flow rate can be adjusted. Specifically, the distribution ratio is adjusted by controlling the motor 49 that drives the damper 48 and adjusting the rotation stop position of the damper 48. However, as described above, the damper 48 may be controlled to selectively open one of the two exhaust gas outlets 46 and 47 and close the rest as desired.

第一缶体3、第二缶体4および第三缶体5は、それぞれの蒸気圧および蒸発量を適宜に設計されるが、排ガスからの熱回収量を向上させるために、排ガス流の下流へ行くに従って、蒸気圧が低下するように設計するのが好ましい。たとえば、第一缶体3は8kgf/cm(=0.78MPa)、第二缶体4は5kgf/cm(=0.49MPa)、第三缶体5は3kgf/cm(=0.29MPa)とされる。 The first can body 3, the second can body 4 and the third can body 5 are appropriately designed for their vapor pressure and evaporation amount, but in order to improve the amount of heat recovered from the exhaust gas, It is preferable to design the vapor pressure to decrease as it goes to. For example, the first can of body 3 8kgf / cm 2 (= 0.78MPa) , the second cans body 4 5kgf / cm 2 (= 0.49MPa) , third cans body 5 3kgf / cm 2 (= 0. 29 MPa).

このように、複数の缶体3〜5から異なる圧力の蒸気を生じさせるが、本実施例の蒸気システム1は、高圧の蒸気を用いて低圧の蒸気を昇圧する昇圧機構50を備える。これにより、排ガスからの熱回収量を向上するために低圧の蒸気を得ても、その需要がないことによる不都合を回避できる。   As described above, steam having different pressures is generated from the plurality of cans 3 to 5, and the steam system 1 of the present embodiment includes a boosting mechanism 50 that boosts low-pressure steam using high-pressure steam. Thereby, even if low-pressure steam is obtained in order to improve the heat recovery amount from the exhaust gas, inconvenience due to the lack of demand can be avoided.

具体的には、本実施例の昇圧機構50は、エゼクタ51を備える。エゼクタ51は、ノズルとディフューザとを備え、高圧の流体をノズルからディフューザへ向けて噴出させることで、吸込口から低圧の流体を吸引して、両流体を混合して吐出する。ここでは、第一缶体3からの蒸気が通される第一蒸気路52がノズルに接続され、第三缶体5からの蒸気を通される第三蒸気路54が吸込口に接続されている。従って、第一缶体3からの蒸気がノズルへ吹き込まれることで、第三缶体5からの蒸気がエゼクタ51へ吸引される。そして、両蒸気は、混合され吐出される。この間、第一缶体3からの蒸気は減圧される一方、第三缶体5からの蒸気は昇圧される。ここでは、混合蒸気の圧力は、たとえば5kgf/cm(=0.49MPa)とされる。従って、エゼクタ51からの蒸気には、第二缶体4からの蒸気を、第二蒸気路53を介して合流させることができる。 Specifically, the booster mechanism 50 of this embodiment includes an ejector 51. The ejector 51 includes a nozzle and a diffuser, and by ejecting a high-pressure fluid from the nozzle toward the diffuser, the ejector 51 sucks the low-pressure fluid from the suction port, and mixes and discharges both fluids. Here, the first steam path 52 through which the steam from the first can body 3 passes is connected to the nozzle, and the third steam path 54 through which the steam from the third can body 5 passes is connected to the suction port. Yes. Therefore, the steam from the first can body 3 is sucked into the ejector 51 by blowing the steam from the first can body 3 into the nozzle. Both steams are mixed and discharged. During this time, the steam from the first can body 3 is depressurized, while the steam from the third can body 5 is pressurized. Here, the pressure of the mixed steam is, for example, 5 kgf / cm 2 (= 0.49 MPa). Therefore, the steam from the second can body 4 can be joined to the steam from the ejector 51 via the second steam path 53.

エゼクタ51からの蒸気は、第四蒸気路55へ導出される。第四蒸気路55の蒸気は、所望により蒸気ヘッダ56を介して、各種の蒸気使用設備へ供給可能とされる。蒸気ヘッダ56には、所望により、ボイラ(燃料焚きボイラまたは電気ボイラ)57からの蒸気も供給可能とされる。第四蒸気路55には、圧力調整弁58が設けられている。   The steam from the ejector 51 is led to the fourth steam path 55. The steam in the fourth steam path 55 can be supplied to various steam-using facilities via a steam header 56 as desired. Steam from a boiler (fuel-fired boiler or electric boiler) 57 can be supplied to the steam header 56 as desired. A pressure adjustment valve 58 is provided in the fourth steam path 55.

ところで、第一蒸気路52には給蒸弁59が設けられ、第三蒸気路54には吸引弁60が設けられている。給蒸弁59および吸引弁60は、それぞれ開閉または開度が変更可能とされる。また、第三缶体5には、エゼクタ51以外の箇所へ蒸気を放出可能に、放蒸弁61が設けられている。この放蒸弁61も、開閉または開度が変更可能とされる。なお、放蒸弁61は、吸引弁60より上流の第三蒸気路54に設けてもよい。その場合、吸引弁60と放蒸弁61とを共通化して、三方弁により構成してもよい。   Incidentally, a steam supply valve 59 is provided in the first steam path 52, and a suction valve 60 is provided in the third steam path 54. The steam supply valve 59 and the suction valve 60 can be opened and closed or changed in opening degree. Further, the third can body 5 is provided with a steaming valve 61 so that steam can be discharged to places other than the ejector 51. This evaporative valve 61 can also be opened / closed or changed in opening degree. The evaporating valve 61 may be provided in the third steam path 54 upstream from the suction valve 60. In that case, the suction valve 60 and the evaporating valve 61 may be shared and configured by a three-way valve.

第一缶体3の圧力調整は、三方ダンパ43のダンパ48の位置を調整して、排ガスボイラ2へ供給する排ガス流量を調整することでなされる。具体的には、第一センサ62により第一缶体3内の圧力(場合により温度でもよい)を監視して、第一缶体3からの蒸気圧を所望に維持するように、モータ49を制御して、ダンパ48の位置を調整する。   The pressure of the first can 3 is adjusted by adjusting the position of the damper 48 of the three-way damper 43 to adjust the flow rate of exhaust gas supplied to the exhaust gas boiler 2. Specifically, the pressure in the first can 3 is monitored by the first sensor 62 (temperature may be used in some cases), and the motor 49 is controlled so as to maintain the vapor pressure from the first can 3 as desired. The position of the damper 48 is adjusted by controlling.

第二缶体4の圧力調整は、圧力調整弁58にて行われる。すなわち、第四蒸気路55に設けた圧力調整弁58は、その一次側(上流側)の圧力を所望に維持するように開度調整する。圧力調整弁58は、本実施例では自力で開度調整する構成であるが、所望により、その手前に設けた第二センサ63による検出圧力(場合により温度でもよい)に基づき開度調整されてもよい。   The pressure adjustment of the second can body 4 is performed by the pressure adjustment valve 58. That is, the pressure adjustment valve 58 provided in the fourth steam path 55 adjusts the opening degree so as to maintain the primary side (upstream side) pressure as desired. The pressure adjustment valve 58 is configured to adjust the opening degree by itself in this embodiment, but the opening degree is adjusted based on the pressure detected by the second sensor 63 provided in front of the pressure adjusting valve 58 (which may be a temperature in some cases) if desired. Also good.

但し、第二缶体4の圧力調整は、このような制御に代えて、蒸気ヘッダ56に蒸気を供給するボイラ57で制御してもよい。つまり、第四蒸気路55に圧力調整弁58を設けずに、第二缶体4からの蒸気をそのまま蒸気ヘッダ56へ供給し、その蒸気ヘッダ56内の蒸気圧を所望に維持するようにボイラ57の燃焼量を制御してもよい。なお、圧力調整弁58による調整に加えて、このようなボイラ57による調整を行ってもよい。   However, the pressure adjustment of the second can 4 may be controlled by a boiler 57 that supplies steam to the steam header 56 instead of such control. That is, the steam from the second can body 4 is supplied as it is to the steam header 56 without providing the pressure regulating valve 58 in the fourth steam path 55, and the boiler is maintained so that the steam pressure in the steam header 56 is maintained as desired. The amount of combustion of 57 may be controlled. In addition to the adjustment by the pressure adjustment valve 58, such adjustment by the boiler 57 may be performed.

第三缶体5の圧力調整は、第三センサ64により第三缶体5内の圧力(場合により温度でもよい)を監視して、第三缶体5からの蒸気圧を所望に維持するように、吸引弁60と放蒸弁61とを制御することでなされる。   In adjusting the pressure of the third can body 5, the third sensor 64 monitors the pressure in the third can body 5 (temperature may be used in some cases) so that the vapor pressure from the third can body 5 is maintained as desired. In addition, the suction valve 60 and the evaporating valve 61 are controlled.

ところで、蒸気の使用負荷が減るかなくなった場合には、第二センサ63の検出圧力が増加するので、それが設定値を超えれば、給蒸弁59および吸引弁60を制御して、第一缶体3および第三缶体5からエゼクタ51を介しての蒸気供給を制限すればよい。あるいは、それに代えてまたはそれに加えて、三方ダンパ43のモータ49を制御して、排ガスボイラ2への排ガス供給量を制限して、排ガスボイラ2による蒸発量を制限すればよい。   By the way, when the use load of the steam does not decrease, the detection pressure of the second sensor 63 increases. If it exceeds the set value, the steam supply valve 59 and the suction valve 60 are controlled to The steam supply from the can 3 and the third can 5 through the ejector 51 may be limited. Alternatively, or in addition thereto, the motor 49 of the three-way damper 43 may be controlled to limit the amount of exhaust gas supplied to the exhaust gas boiler 2 to limit the amount of evaporation by the exhaust gas boiler 2.

なお、蒸気システム1の起動時、第一缶体3の蒸気圧が所定に至るまで、吸引弁60は閉じておくのが好ましい。そして、第一缶体3の蒸気圧が設定まで上がれば、吸引弁60を開けばよい。これにより、エゼクタ51に所期の機能を発揮させることができる。   In addition, when starting the steam system 1, it is preferable to close the suction valve 60 until the vapor pressure of the first can body 3 reaches a predetermined value. And if the vapor pressure of the 1st can 3 rises to a setting, the suction valve 60 should just be opened. As a result, the ejector 51 can exhibit its intended function.

本実施例では、たとえば、第一缶体3は8kgf/cm(=0.78MPa)で691kg/h、第二缶体4は5kgf/cm(=0.49MPa)で149kg/h、第三缶体5は3kgf/cm(=0.29MPa)で41kg/hとされる。なお、排ガス温度は、第一缶体3の入口で408℃、第二缶体4の入口で216℃、第三缶体5の入口で173℃、第三缶体5の出口で160℃とされ、エコノマイザ36の出口で100℃とされる。そして、第一缶体3からの蒸気がエゼクタ51で減圧された後の蒸気、第三缶体5からの蒸気がエゼクタ51で昇圧された後の蒸気、および第二缶体4からの蒸気とが混合されて、5kgf/cm(=0.49MPa)で881kg/hの蒸発量となる。これは、排ガスボイラ2が三つの缶体3〜5を備えても、あたかも一つの缶体(5kgf/cm、881kg/h)とみることができることを意味する。 In the present embodiment, for example, the first can body 3 is 69 kg / h at 8 kgf / cm 2 (= 0.78 MPa), the second can body 4 is 149 kg / h at 5 kgf / cm 2 (= 0.49 MPa), The three can bodies 5 are set to 41 kg / h at 3 kgf / cm 2 (= 0.29 MPa). The exhaust gas temperatures are 408 ° C. at the inlet of the first can body 3, 216 ° C. at the inlet of the second can body 4, 173 ° C. at the inlet of the third can body 5, and 160 ° C. at the outlet of the third can body 5. And 100 ° C. at the exit of the economizer 36. Then, steam after the steam from the first can body 3 is decompressed by the ejector 51, steam after the steam from the third can body 5 is pressurized by the ejector 51, and steam from the second can body 4 Are mixed to obtain an evaporation amount of 881 kg / h at 5 kgf / cm 2 (= 0.49 MPa). This means that even if the exhaust gas boiler 2 includes three can bodies 3 to 5, it can be regarded as one can body (5 kgf / cm 2 , 881 kg / h).

一方、仮に、もともと第一缶体3、第二缶体4および第三缶体5を合わせて一つの缶体から構成した場合、言い換えれば排ガスボイラ2が一つの缶体のみから構成される場合、5kgf/cm(=0.49MPa)で843kg/hとされ、排ガス温度は、共通缶体の入口で408℃、共通缶体の出口で175℃となり、またエコノマイザの出口では123℃となる。 On the other hand, if the first can body 3, the second can body 4 and the third can body 5 are originally composed of one can body, in other words, the exhaust gas boiler 2 is composed of only one can body. At 5 kgf / cm 2 (= 0.49 MPa), the exhaust gas temperature is 408 ° C. at the common can body inlet, 175 ° C. at the common can body outlet, and 123 ° C. at the economizer outlet. .

従って、本実施例の蒸気システム1の方が、排ガスボイラ2およびエコノマイザ36の出口における排ガス温度が低く、熱回収量が高い。また、排ガスボイラ2における蒸発量を増すことで、エコノマイザ34〜36を通過する水量を増すことになり、それによりエコノマイザ34〜36における熱回収も一層効果的になされる。   Therefore, the steam system 1 of this embodiment has a lower exhaust gas temperature at the outlet of the exhaust gas boiler 2 and the economizer 36 and a higher heat recovery amount. Further, by increasing the amount of evaporation in the exhaust gas boiler 2, the amount of water passing through the economizers 34 to 36 is increased, so that the heat recovery in the economizers 34 to 36 is made more effective.

図3は、本発明の蒸気システム1の実施例2を示す概略図であり、一部を省略して示している。本実施例2の蒸気システム1も、基本的には前記実施例1と同様である。そこで、以下では、両者の異なる点を中心に説明し、対応する箇所には同一の符号を付して説明する。   FIG. 3 is a schematic view showing a second embodiment of the steam system 1 of the present invention, and a part thereof is omitted. The steam system 1 according to the second embodiment is basically the same as the first embodiment. Therefore, in the following description, the differences between the two will be mainly described, and corresponding portions will be described with the same reference numerals.

前記実施例1では、エゼクタ51を用いて、第一缶体3からの蒸気を減圧する一方、第三缶体5からの蒸気を昇圧したが、本実施例2では、蒸気エンジン65を用いて、第一缶体3からの蒸気を減圧する一方、その蒸気エンジン65で駆動される蒸気圧縮機66を用いて、第三缶体5からの蒸気を昇圧する。   In the first embodiment, the ejector 51 is used to depressurize the steam from the first can body 3 while the steam from the third can body 5 is increased. In the second embodiment, the steam engine 65 is used. The steam from the first can body 3 is depressurized, while the steam from the third can body 5 is increased using the steam compressor 66 driven by the steam engine 65.

すなわち、本実施例2の蒸気システム1では、昇圧機構50として、蒸気を用いて動力を起こす蒸気エンジン65と、この蒸気エンジン65により駆動される蒸気圧縮機66とを備える。   That is, the steam system 1 according to the second embodiment includes a steam engine 65 that generates power using steam and a steam compressor 66 that is driven by the steam engine 65 as the pressure increasing mechanism 50.

蒸気エンジン65は、本実施例ではスクリュ式蒸気エンジンである。スクリュ式蒸気エンジンは、互いにかみ合うスクリュロータ間に蒸気が導入され、その蒸気によりスクリュロータを回転させつつ蒸気を膨張して減圧し、その際のスクリュロータの回転により動力を得る装置である。但し、蒸気エンジン65は、蒸気を用いて動力を起こすものであれば、スクリュ式蒸気エンジンに限らない。たとえば、蒸気タービンでもよいし、ピストンの往復動を用いるレシプロ式の蒸気エンジンでもよい。   The steam engine 65 is a screw-type steam engine in this embodiment. A screw-type steam engine is an apparatus in which steam is introduced between screw rotors that mesh with each other, and the steam is expanded and decompressed while rotating the screw rotor by the steam, and power is obtained by rotation of the screw rotor at that time. However, the steam engine 65 is not limited to a screw-type steam engine as long as it generates power using steam. For example, a steam turbine or a reciprocating steam engine using reciprocating piston movement may be used.

蒸気圧縮機66も、その種類を特に問わないが、たとえばスクリュ式の蒸気圧縮機とされる。スクリュ式の蒸気圧縮機は、互いにかみ合って回転するスクリュロータ間に蒸気を吸入して、スクリュロータの回転により圧縮して吐出する装置である。但し、蒸気圧縮機66は、蒸気を圧縮して吐出するものであれば、スクリュ式に限らず、レシプロ式などであってもよい。   The type of the vapor compressor 66 is not particularly limited, but is, for example, a screw type vapor compressor. A screw-type steam compressor is a device that sucks steam between screw rotors that rotate while meshing with each other, and compresses and discharges the steam by rotation of the screw rotor. However, the steam compressor 66 is not limited to a screw type as long as it compresses and discharges steam, and may be a reciprocating type.

本実施例では、第一缶体3からの蒸気は、第一蒸気路52を介して蒸気エンジン65に供給される。蒸気エンジン65に供給された蒸気は、蒸気エンジン65で仕事をすることで、膨張して減圧され、第四蒸気路55へ吐出される。そして、その蒸気エンジン65により駆動される蒸気圧縮機66は、第三缶体5からの蒸気を吸引し、圧縮して吐出する。このようにして、第三缶体5からの蒸気が蒸気圧縮機66により昇圧された後の蒸気、第一缶体3からの蒸気が蒸気エンジン65により減圧された後の蒸気が合流され、さらに前記実施例1と同様に、第二缶体4からの蒸気も合流される。その他の構成および制御は、前記実施例1と同様のため、説明を省略する。   In the present embodiment, the steam from the first can body 3 is supplied to the steam engine 65 via the first steam path 52. The steam supplied to the steam engine 65 is expanded and depressurized by working in the steam engine 65, and is discharged to the fourth steam path 55. The steam compressor 66 driven by the steam engine 65 sucks, compresses and discharges the steam from the third can body 5. In this way, the steam after the steam from the third can body 5 has been pressurized by the steam compressor 66 and the steam after the steam from the first can body 3 has been decompressed by the steam engine 65 are merged, and Similarly to the first embodiment, the steam from the second can 4 is also merged. Other configurations and controls are the same as those in the first embodiment, and thus description thereof is omitted.

図4は、本発明の蒸気システム1の実施例3を示す概略図であり、一部を省略して示している。本実施例3の蒸気システムも、基本的には前記実施例1と同様である。そこで、以下では、両者の異なる点を中心に説明し、対応する箇所には同一の符号を付して説明する。   FIG. 4 is a schematic view showing a third embodiment of the steam system 1 of the present invention, and a part thereof is omitted. The steam system of the third embodiment is basically the same as that of the first embodiment. Therefore, in the following description, the differences between the two will be mainly described, and corresponding portions will be described with the same reference numerals.

前記実施例1では、缶体3〜5の数と対応したエコノマイザ34〜36を設けたが、本実施例3では、エコノマイザ67は一つとされる。この場合、各缶体3〜5に共通のエコノマイザ67にて予熱された水は、分岐されて各缶体3〜5へ供給される。給水ポンプ68を作動させた状態で、各缶体3〜5への給水路16〜18に個別に設けた給水弁69〜71を制御することで、各缶体3〜5への給水を個別に制御することができる。その他の構成および制御は、前記実施例1と同様のため、説明は省略する。   In the first embodiment, the economizers 34 to 36 corresponding to the number of the cans 3 to 5 are provided, but in the third embodiment, the economizer 67 is one. In this case, the water preheated by the economizer 67 common to the cans 3 to 5 is branched and supplied to the cans 3 to 5. With the water supply pump 68 activated, the water supply valves 69 to 71 individually provided in the water supply passages 16 to 18 to the cans 3 to 5 are controlled to individually supply water to the cans 3 to 5. Can be controlled. Other configurations and controls are the same as those in the first embodiment, and a description thereof will be omitted.

ところで、各缶体3〜5に共通のエコノマイザ67とすることは、前記実施例1だけでなく前記実施例2にも同様に適用される。つまり、図3における複数のエコノマイザ34〜36を共通化して、図4に示すように一つのエコノマイザ67とし、その共通のエコノマイザ67から各缶体3〜5へ給水可能としてもよい。   By the way, it is similarly applied not only to the said Example 1 but the said Example 2 to make the economizer 67 common to each can 3-5. That is, the plurality of economizers 34 to 36 in FIG. 3 may be shared to form one economizer 67 as shown in FIG. 4, and water can be supplied from the common economizer 67 to each of the cans 3 to 5.

また、図4では、共通のエコノマイザ67からの水は、共通の給水ポンプ68を介した後、分岐して各缶体3〜5へ供給され、その各缶体3〜5への給水路16〜18に設けた給水弁69〜71で、各缶体3〜5への給水が制御されたが、共通の給水ポンプ68と各給水弁69〜71に代えて、各缶体3〜5への給水路16〜18に給水ポンプを設置してもよい。この場合、共通のエコノマイザ67からの水は、分岐して各缶体3〜5へ供給され、その各缶体3〜5への給水路16〜18に個別に設けた給水ポンプで、各缶体3〜5への給水が個別に制御される。   Further, in FIG. 4, the water from the common economizer 67 passes through the common water supply pump 68 and then branches to be supplied to each of the cans 3 to 5, and the water supply path 16 to each of the cans 3 to 5. Although the water supply to each can body 3-5 was controlled by the water supply valves 69-71 provided in -18, it replaced with the common water supply pump 68 and each water supply valve 69-71 to each can body 3-5. You may install a water supply pump in the water supply channels 16-18. In this case, the water from the common economizer 67 is branched and supplied to the cans 3 to 5, and each can is provided by a water supply pump provided individually in the water supply passages 16 to 18 to the cans 3 to 5. Water supply to the bodies 3 to 5 is individually controlled.

次に、前記実施例1および前記実施例2における各缶体3〜5への給水方式の類型について説明する。図5から図7は、前記実施例1および前記実施例2の蒸気システム1における各缶体3〜5への給水方式の類型を示す概略図であり、缶体3〜5とエコノマイザ34〜36のみを示している。なお、図5から図7では、給水ポンプ72からの水は、逆止弁73を介した後に分岐して、それぞれ給水弁74〜76および逆止弁77〜79を介してエコノマイザ34〜36へ供給され、エコノマイザ34〜36で予熱された後、缶体3〜5へ供給されている。この場合、給水ポンプ72を作動させた状態で、各給水弁74〜76の開閉を制御することで、各エコノマイザ34〜36および各缶体3〜5への給水の有無を切り替えることができる。但し、図1および図3に示すように、エコノマイザ34〜36ごとに給水ポンプ37〜39を設けて、各給水ポンプ37〜39を制御することで、各エコノマイザ34〜36および各缶体3〜5への給水の有無を切り替えてもよい。   Next, the type of the water supply system to each can 3-5 in the said Example 1 and the said Example 2 is demonstrated. FIG. 5 to FIG. 7 are schematic views showing types of water supply methods to the cans 3 to 5 in the steam systems 1 of the first and second embodiments. The cans 3 to 5 and the economizers 34 to 36 are shown in FIG. Only shows. 5 to 7, the water from the water supply pump 72 branches after passing through the check valve 73 and passes to the economizers 34 to 36 through the water supply valves 74 to 76 and the check valves 77 to 79, respectively. After being supplied and preheated by the economizers 34 to 36, the cans 3 to 5 are supplied. In this case, whether or not to supply water to the economizers 34 to 36 and the cans 3 to 5 can be switched by controlling the opening and closing of the water supply valves 74 to 76 with the water supply pump 72 activated. However, as shown in FIG. 1 and FIG. 3, by providing water supply pumps 37 to 39 for each economizer 34 to 36 and controlling each of the water supply pumps 37 to 39, each economizer 34 to 36 and each can 3 to 36 are controlled. The presence or absence of water supply to 5 may be switched.

図5では、エコノマイザ34〜36は、排ガス流に沿って直列に設置されると共に、エコノマイザを複数設置する場合には、排ガス流の上流側に設置されるものほど、排ガス流の上流側に設置される缶体への給水を予熱する例を示している。ここでは、排ガス流の上流側から順に、第一缶体3、第二缶体4および第三缶体5が設置され、その後、所望により、第一エコノマイザ34、第二エコノマイザ35および第三エコノマイザ36の内のいずれか一以上が設置される。   In FIG. 5, the economizers 34 to 36 are installed in series along the exhaust gas flow. When a plurality of economizers are installed, the economizers 34 to 36 are installed on the upstream side of the exhaust gas flow as they are installed on the upstream side of the exhaust gas flow. The example which preheats the water supply to the can body which is done is shown. Here, in order from the upstream side of the exhaust gas flow, the first can body 3, the second can body 4 and the third can body 5 are installed, and then, if desired, the first economizer 34, the second economizer 35 and the third economizer. Any one or more of 36 are installed.

図6では、エコノマイザ34〜36は、排ガス流に沿って直列に設置されると共に、エコノマイザを複数設置する場合には、排ガス流の上流側に設置されるものほど、排ガス流の下流側に設置される缶体への給水を予熱する例を示している。ここでは、排ガス流の上流側から順に、第一缶体3、第二缶体4および第三缶体5が設置され、その後、所望により、第三エコノマイザ36、第二エコノマイザ35および第一エコノマイザ34の内のいずれか一以上が設置される。   In FIG. 6, the economizers 34 to 36 are installed in series along the exhaust gas flow. When a plurality of economizers are installed, the economizers 34 to 36 are installed more downstream in the exhaust gas flow. The example which preheats the water supply to the can body which is done is shown. Here, in order from the upstream side of the exhaust gas flow, the first can body 3, the second can body 4 and the third can body 5 are installed, and then, if desired, a third economizer 36, a second economizer 35 and a first economizer. Any one or more of 34 are installed.

図7では、エコノマイザ34〜36は、排ガス流に沿って並列に設置された例を示している。ここでは、排ガス流の上流側から順に、第一缶体3、第二缶体4および第三缶体5が設置され、その後、所望により、第一エコノマイザ34、第二エコノマイザ35および第三エコノマイザ36の内のいずれか一以上が並列に設置される。   FIG. 7 shows an example in which the economizers 34 to 36 are installed in parallel along the exhaust gas flow. Here, in order from the upstream side of the exhaust gas flow, the first can body 3, the second can body 4 and the third can body 5 are installed, and then, if desired, the first economizer 34, the second economizer 35 and the third economizer. Any one or more of 36 are installed in parallel.

いずれの場合も、まず、エコノマイザ34〜36を全く設置せず、各缶体3〜5にエコノマイザなしに給水するパターンがある。あるいは、第一エコノマイザ34、第二エコノマイザ35および第三エコノマイザ36の内、いずれか一つのみを設置し、第一缶体3、第二缶体4および第三缶体5の内、いずれか一つのみはエコノマイザを介して給水するが、他の缶体へはエコノマイザなしに給水するパターンもある。   In any case, first, there is a pattern in which the economizers 34 to 36 are not installed at all and water is supplied to the cans 3 to 5 without an economizer. Alternatively, only one of the first economizer 34, the second economizer 35, and the third economizer 36 is installed, and any one of the first can body 3, the second can body 4, and the third can body 5 is installed. Only one water is supplied through an economizer, but there is a pattern in which water is supplied to other cans without an economizer.

また、第一エコノマイザ34、第二エコノマイザ35および第三エコノマイザ36の内、いずれか二つを設置し、第一缶体3、第二缶体4および第三缶体5の内、いずれか二つはエコノマイザを介して給水するが、残りの缶体へはエコノマイザなしに給水するパターンもある。たとえば、図5において実線および一点鎖線で示すように、第一エコノマイザ34と第二エコノマイザ35を設置する。つまり、第一缶体3へは第一エコノマイザ34を介して給水し、第二缶体4へは第二エコノマイザ35を介して給水し、第三缶体5へはエコノマイザなしに給水する。この場合、排ガスからの熱回収量を高め、またエコノマイザにおける結露を防止することができる。   Further, any two of the first economizer 34, the second economizer 35, and the third economizer 36 are installed, and any one of the first can body 3, the second can body 4, and the third can body 5 is installed. One water is supplied through an economizer, but there is also a pattern in which the remaining cans are supplied without an economizer. For example, the first economizer 34 and the second economizer 35 are installed as shown by a solid line and a one-dot chain line in FIG. That is, water is supplied to the first can body 3 via the first economizer 34, water is supplied to the second can body 4 via the second economizer 35, and water is supplied to the third can body 5 without the economizer. In this case, the amount of heat recovered from the exhaust gas can be increased, and condensation in the economizer can be prevented.

さらに、第一エコノマイザ34、第二エコノマイザ35および第三エコノマイザ36のすべてを設置するパターンもある。つまり、第一缶体3へは第一エコノマイザ34を介して給水し、第二缶体4へは第二エコノマイザ35を介して給水し、第三缶体5へは第三エコノマイザ36を介して給水する。   Further, there is a pattern in which all of the first economizer 34, the second economizer 35, and the third economizer 36 are installed. That is, water is supplied to the first can body 3 via the first economizer 34, water is supplied to the second can body 4 via the second economizer 35, and water is supplied to the third can body 5 via the third economizer 36. Supply water.

本発明の蒸気システム1は、前記各実施例に限らず適宜変更可能である。特に、複数の缶体を設置して、各缶体において排熱を用いて蒸気を起こし、上流側に配置された缶体からの蒸気で、それよりも下流側に配置されて蒸気圧の低い缶体からの蒸気を昇圧する構成であれば、その昇圧機構50をはじめとして、各種構成および制御は適宜に変更可能である。   The steam system 1 of the present invention is not limited to the above-described embodiments and can be changed as appropriate. In particular, a plurality of cans are installed, steam is generated by using exhaust heat in each can, and steam from the can placed on the upstream side is placed downstream and lower in vapor pressure. If it is the structure which pressurizes the vapor | steam from a can body, various structures and control including the pressure | voltage rise mechanism 50 can be changed suitably.

たとえば、図1において、第二缶体4を省略したり、第二缶体4の蒸気圧を第一缶体3と同等としたりしてもよい。また、第二缶体4の蒸気圧は、第三缶体5からの蒸気をエゼクタ51で昇圧後の蒸気圧と異ならしてもよい。その場合、第二缶体4からの蒸気は、第四蒸気路55へ合流させることなく用いられる。さらに、第二缶体4からの蒸気を用いて、昇圧機構50により第三缶体5からの蒸気を昇圧したり、第一缶体3からの蒸気を用いて、昇圧機構50により第二缶体4からの蒸気を昇圧したりしてもよい。それに応じて、蒸気路52〜55の合流の有無を変えることは言うまでもない。   For example, in FIG. 1, the second can body 4 may be omitted, or the vapor pressure of the second can body 4 may be equivalent to that of the first can body 3. Further, the vapor pressure of the second can body 4 may be different from the vapor pressure after the vapor from the third can body 5 is increased by the ejector 51. In that case, the steam from the second can body 4 is used without being merged into the fourth steam path 55. Further, using the steam from the second can body 4, the pressure from the third can body 5 is increased by the pressurizing mechanism 50, or the second can can be increased by using the steam from the first can body 3. The pressure from the body 4 may be increased. It goes without saying that the presence or absence of the merge of the steam paths 52 to 55 is changed accordingly.

また、前記各実施例では、排ガスボイラ2の下流に一または複数のエコノマイザ34〜36,67を設置したが、エコノマイザの設置は必須ではない。さらに、前記各実施例では、三つの缶体3〜5を備えたが、缶体の数は適宜に変更可能である。また、各缶体3〜5の蒸気圧や蒸発量も適宜に変更可能である。   Moreover, in each said Example, although the one or some economizer 34-36,67 was installed downstream of the exhaust gas boiler 2, installation of an economizer is not essential. Furthermore, in each said Example, although the three can bodies 3-5 were provided, the number of can bodies can be changed suitably. Moreover, the vapor pressure and evaporation amount of each can 3-5 can also be changed suitably.

1 蒸気システム
2 排ガスボイラ
3 第一缶体(上流缶体)
4 第二缶体(中流缶体)
5 第三缶体(下流缶体)
34 第一エコノマイザ
35 第二エコノマイザ
36 第三エコノマイザ
50 昇圧機構
51 エゼクタ
65 蒸気エンジン
66 蒸気圧縮機
67 エコノマイザ
1 Steam System 2 Exhaust Gas Boiler 3 First Can Body (Upstream Can Body)
4 Second can (middle-stream can)
5 Third can body (downstream can body)
34 1st economizer 35 2nd economizer 36 3rd economizer 50 Boosting mechanism 51 Ejector 65 Steam engine 66 Steam compressor 67 Economizer

Claims (3)

排ガスが通され、その排ガス熱を用いて蒸気を起こす上流缶体と、
この上流缶体を通過後の排ガスが通され、前記上流缶体よりも低圧の蒸気を起こす下流缶体と、
前記上流缶体からの蒸気で、前記下流缶体からの蒸気を昇圧する昇圧機構とを備え
前記昇圧機構は、エゼクタを備え、
このエゼクタは、そのノズルへ前記上流缶体からの蒸気が吹き込まれることで、前記下流缶体からの蒸気を吸引し、前記両缶体からの蒸気を混合して吐出し、
前記上流缶体と前記下流缶体との間に、前記上流缶体よりも低圧で前記下流缶体よりも高圧の蒸気を起こす中流缶体をさらに備え、
排ガスは、前記上流缶体、前記中流缶体および前記下流缶体を順に通され、
前記下流缶体からの蒸気が前記昇圧機構により昇圧された後の蒸気、前記上流缶体からの蒸気が前記昇圧機構により減圧された後の蒸気、および前記中流缶体からの蒸気が、圧力を互いに同等にされることで混合され
前記上流缶体の圧力調整は、前記上流缶体へ供給する排ガス流量を調整することでなされ、
前記中流缶体の圧力調整は、前記エゼクタからの蒸気と前記中流缶体からの蒸気との合流蒸気の蒸気路に設けた圧力調整弁にて行われ、
前記下流缶体の圧力調整は、前記エゼクタの吸込口への蒸気路に設けた吸引弁と、前記エゼクタ以外の箇所へ蒸気を放出する放蒸弁とを制御することでなされる
ことを特徴とする蒸気システム。
An upstream can body through which exhaust gas is passed and generates steam using the exhaust gas heat;
The exhaust gas after passing through this upstream can body is passed, and a downstream can body that generates steam at a lower pressure than the upstream can body,
A pressure increasing mechanism for increasing the pressure of the steam from the downstream can body with the steam from the upstream can body ,
The boost mechanism includes an ejector,
The ejector, by steam from the upstream boiler body to the nozzle is blown, sucks steam from the downstream boiler body, and discharging a mixture of vapor from the two can body,
Further comprising a midstream can body that generates steam at a lower pressure than the upstream can body and higher pressure than the downstream can body between the upstream can body and the downstream can body,
The exhaust gas is passed through the upstream can body, the midstream can body and the downstream can body in order,
The steam after the steam from the downstream can body has been pressurized by the pressurizing mechanism, the steam after the steam from the upstream can body has been decompressed by the pressurizing mechanism, and the steam from the midstream can body have a pressure. Mixed by equalizing each other ,
The pressure adjustment of the upstream can body is made by adjusting the exhaust gas flow rate supplied to the upstream can body,
The pressure adjustment of the intermediate flow can body is performed by a pressure adjustment valve provided in the steam path of the combined steam of the steam from the ejector and the steam from the intermediate flow can body,
The pressure adjustment of the downstream can body is performed by controlling a suction valve provided in a steam path to the suction port of the ejector and a steaming valve that discharges steam to a place other than the ejector. Steam system.
前記下流缶体を通過後の排ガスが通され、前記各缶体への給水を予熱するエコノマイザをさらに備える
ことを特徴とする請求項1に記載の蒸気システム。
The steam system according to claim 1 , further comprising an economizer through which the exhaust gas after passing through the downstream can body is passed and preheats water supplied to each can body.
前記エコノマイザとして、前記各缶体を通過後の排ガスが順に通される複数のエコノマイザを備え、
この複数のエコノマイザは、排ガス流の上流側に設置されるものほど、排ガス流の上流側に設置される缶体への給水を予熱する
ことを特徴とする請求項2に記載の蒸気システム。
As the economizer, comprising a plurality of economizers through which the exhaust gas after passing through each can body is passed in order,
The steam system according to claim 2 , wherein the plurality of economizers preheats water supplied to a can body installed upstream of the exhaust gas flow as it is installed upstream of the exhaust gas flow.
JP2009115087A 2009-05-12 2009-05-12 Steam system Active JP5339073B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009115087A JP5339073B2 (en) 2009-05-12 2009-05-12 Steam system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009115087A JP5339073B2 (en) 2009-05-12 2009-05-12 Steam system

Publications (2)

Publication Number Publication Date
JP2010266074A JP2010266074A (en) 2010-11-25
JP5339073B2 true JP5339073B2 (en) 2013-11-13

Family

ID=43363205

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009115087A Active JP5339073B2 (en) 2009-05-12 2009-05-12 Steam system

Country Status (1)

Country Link
JP (1) JP5339073B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140041359A1 (en) * 2012-08-13 2014-02-13 Babcock & Wilcox Power Generation Group, Inc. Rapid startup heat recovery steam generator

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60105902U (en) * 1983-12-19 1985-07-19 三井造船株式会社 Steam recovery equipment using waste heat
JPH03140752A (en) * 1989-10-27 1991-06-14 Mitsui Eng & Shipbuild Co Ltd Waste heat recovery for cogeneration engine

Also Published As

Publication number Publication date
JP2010266074A (en) 2010-11-25

Similar Documents

Publication Publication Date Title
US7509794B2 (en) Waste heat steam generator
US6920760B2 (en) Device and method for preheating combustibles in combined gas and steam turbine installations
RU2563447C2 (en) Method of operation of combined cycle power plant with cogeneration and combined cycle power plant for realisation of this method
JP3784413B2 (en) Waste heat boiler operation method and waste heat boiler operated by this method
US10006313B2 (en) Power plant with integrated fuel gas preheating
KR101813741B1 (en) Waste heat steam generator
US10641170B2 (en) Advanced humid air gas turbine system
KR101760585B1 (en) Method and configuration to reduce fatigue in steam drums
JPH06229209A (en) Gas-steam turbine composite equipment and operating method thereof
KR20170022892A (en) Power generation system and method for operating same
JP2008530493A (en) Once-through boiler
US20160273406A1 (en) Combined cycle system
JP2010249505A (en) Method and system for operating steam generation facility
CN109312635A (en) Condensate recirculation
JP5339073B2 (en) Steam system
JP5359540B2 (en) Steam system
US20040025510A1 (en) Method for operating a gas and steam turbine installation and corresponding installation
US7074259B2 (en) Method and apparatus for thermal degassing
JP4895835B2 (en) Steam recovery equipment
JP5041941B2 (en) Once-through exhaust heat recovery boiler
CN102933801A (en) Method for quick connection of a steam generator
JP5901194B2 (en) Gas turbine cooling system and gas turbine cooling method
JP2006046087A (en) Desalination combined cycle power generation plant and its operation method
JP2008075996A (en) Exhaust heat recovery boiler and its steam pressure control method
EP1807608A1 (en) Method and system for heat recovery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130508

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130604

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130710

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130723

R150 Certificate of patent or registration of utility model

Ref document number: 5339073

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250