JP5041941B2 - Once-through exhaust heat recovery boiler - Google Patents

Once-through exhaust heat recovery boiler Download PDF

Info

Publication number
JP5041941B2
JP5041941B2 JP2007242764A JP2007242764A JP5041941B2 JP 5041941 B2 JP5041941 B2 JP 5041941B2 JP 2007242764 A JP2007242764 A JP 2007242764A JP 2007242764 A JP2007242764 A JP 2007242764A JP 5041941 B2 JP5041941 B2 JP 5041941B2
Authority
JP
Japan
Prior art keywords
pressure
evaporator
heat recovery
primary evaporator
once
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007242764A
Other languages
Japanese (ja)
Other versions
JP2009074726A (en
Inventor
和弘 武永
貢 武蔵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP2007242764A priority Critical patent/JP5041941B2/en
Publication of JP2009074726A publication Critical patent/JP2009074726A/en
Application granted granted Critical
Publication of JP5041941B2 publication Critical patent/JP5041941B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)

Description

本発明は、コンバインドサイクル発電設備に設置される貫流式排熱回収ボイラに係り、特に大容量高効率化に好適な貫流式排熱回収ボイラに関する。  The present invention relates to a once-through exhaust heat recovery boiler installed in a combined cycle power generation facility, and more particularly to a once-through exhaust heat recovery boiler suitable for high capacity and high efficiency.

まず、一般的なコンバインドサイクル発電設備のプラント構成について図15を参照して説明する。 First, the plant configuration of a general combined cycle power generation facility will be described with reference to FIG.

ガスタービン1で天然ガス等を燃焼させて発電を行い、ガスタービン1から排出された高温の排ガスは排熱回収ボイラ2に送られる。排熱回収ボイラ2では排ガスからの熱回収により給水が蒸気に変換され、発生した蒸気は蒸気タービン3に送られて発電機4にて発電を行う。  Electric power is generated by burning natural gas or the like in the gas turbine 1, and high-temperature exhaust gas discharged from the gas turbine 1 is sent to the exhaust heat recovery boiler 2. In the exhaust heat recovery boiler 2, the feed water is converted into steam by heat recovery from the exhaust gas, and the generated steam is sent to the steam turbine 3 to generate power by the generator 4.

従来の貫流式排熱回収ボイラの系統構成の例を図16に示す。前記ガスタービン1からの排ガスは最初の熱交換部である高圧過熱器5から排ガス流れ方向最下流部に設置された低圧節炭器13まで送られ、その間で熱回収が行われる。  An example of the system configuration of a conventional once-through exhaust heat recovery boiler is shown in FIG. The exhaust gas from the gas turbine 1 is sent from the high-pressure superheater 5 that is the first heat exchange part to the low-pressure economizer 13 that is installed at the most downstream part in the exhaust gas flow direction, and heat recovery is performed therebetween.

給水は低圧節炭器13を経て、高中圧給水ポンプ17で昇圧され中圧節炭器11と高圧節炭器9へ送られる。高圧節炭器9で加熱された高圧給水は高圧一次蒸発器8、高圧二次蒸発器7で蒸気に変換され、更に過熱された後、高圧汽水分離器14を経て高圧過熱器5へ供給される。高圧一次蒸発器8と高圧二次蒸発器7の間には、高圧一次蒸発器出口連絡管19、高圧分配器20、高圧二次蒸発器入口連絡管21が設置されている。  The feed water passes through the low pressure economizer 13, is pressurized by the high and medium pressure feed water pump 17, and is sent to the medium pressure economizer 11 and the high pressure economizer 9. The high-pressure feed water heated by the high-pressure economizer 9 is converted into steam by the high-pressure primary evaporator 8 and the high-pressure secondary evaporator 7, further superheated, and then supplied to the high-pressure superheater 5 via the high-pressure steam separator 14. The Between the high-pressure primary evaporator 8 and the high-pressure secondary evaporator 7, a high-pressure primary evaporator outlet connecting pipe 19, a high-pressure distributor 20, and a high-pressure secondary evaporator inlet connecting pipe 21 are installed.

図中の6は再熱器、10は中圧蒸発器、12は低圧蒸発器、15は中圧ドラム、12は低圧ドラム、18は低圧節炭器再循環系統、22は高圧ドレンタンク、23は高圧ドレンタンクブロー系統、24は高圧二次蒸発器入口バイパス系統、25は高圧給水調節弁である。  6 is a reheater, 10 is a medium pressure evaporator, 12 is a low pressure evaporator, 15 is a medium pressure drum, 12 is a low pressure drum, 18 is a low pressure economizer recirculation system, 22 is a high pressure drain tank, 23 Is a high pressure drain tank blow system, 24 is a high pressure secondary evaporator inlet bypass system, and 25 is a high pressure feed water control valve.

ここで、排熱回収ボイラの起動初期には節炭器及び蒸発器に水張りを行った後ガスタービンは点火され、排熱回収ボイラに排ガスが導入され蒸発器内で蒸発を開始するが、高圧系では排ガス流れ方向上流側に設置されている高圧二次蒸発器7で蒸発が始まった後、それの排ガス流れ方向下流側に設置されている高圧一次蒸発器8で蒸発を開始する。  Here, at the beginning of the start of the exhaust heat recovery boiler, after filling the economizer and evaporator, the gas turbine is ignited, exhaust gas is introduced into the exhaust heat recovery boiler, and evaporation starts in the evaporator. In the system, after evaporation starts in the high-pressure secondary evaporator 7 installed on the upstream side in the exhaust gas flow direction, evaporation starts in the high-pressure primary evaporator 8 installed on the downstream side in the exhaust gas flow direction.

従って高圧二次蒸発器7で発生した蒸気は高圧汽水分離器14に送られるが、高圧一次蒸発器8ではまだ蒸気が発生しない状態が存在して、高圧二次蒸発器7内部の保有水が一次的に減少し、高圧二次蒸発器7の内部が流体で満たされず、高圧二次蒸発器管の温度が局部的に上昇して、最悪の場合は高圧二次蒸発器7の焼損が起こる恐れがあった。  Therefore, the steam generated in the high-pressure secondary evaporator 7 is sent to the high-pressure steam separator 14, but the high-pressure primary evaporator 8 is in a state where no steam is generated yet, and the retained water in the high-pressure secondary evaporator 7 is The pressure gradually decreases, the inside of the high-pressure secondary evaporator 7 is not filled with fluid, the temperature of the high-pressure secondary evaporator tube rises locally, and in the worst case, the high-pressure secondary evaporator 7 is burned out. There was a fear.

この対策として排熱回収ボイラでは起動初期に定格運転時の10%程度の量の水を蒸発器に強制的に供給するミニマムフロー運転が行なわれるが、貫流式ではドラムのような大容量の保有水設備が無く、汽水分離器14の下部に設置されたドレンタンク22でレベルを確認しながらブロー系統23により系外または復水器(図示せず)へのブローが行われるが、レベル変動が大きくブロー量も多くなる。  As a countermeasure, the exhaust heat recovery boiler performs minimum flow operation that forcibly supplies about 10% of the water during rated operation to the evaporator at the beginning of startup, but the once-through type has a large capacity like a drum. There is no water facility, and the blow system 23 blows to the outside of the system or a condenser (not shown) while checking the level with the drain tank 22 installed at the lower part of the brackish water separator 14, but the level fluctuation is Large blow amount.

これらの問題を解決するため、図16に示すようにバイパス系統24を設置し、ボイラ起動時に給水調節弁25の調節により高圧節炭器9の給水を高圧二次蒸発器7の入口にバイパスさせることで、高圧二次蒸発器7内の保有水の減少を補っていた。それとともに、起動前の水張時に高圧一次蒸発器8を満水にせず上部に空間を設けることで、高圧二次蒸発器7への内部流体の急激な流入を防ぎ、ドレンタンク22でのレベル変動やブロー系統23からのブロー量を抑制している。
特表2001−505645号公報
In order to solve these problems, a bypass system 24 is installed as shown in FIG. 16, and the feed water of the high pressure economizer 9 is bypassed to the inlet of the high pressure secondary evaporator 7 by adjusting the feed water control valve 25 when the boiler is activated. This compensated for the decrease in the water retained in the high-pressure secondary evaporator 7. At the same time, by providing a space above the high pressure primary evaporator 8 without filling the high pressure primary evaporator 8 at the time of water filling before start-up, the sudden flow of the internal fluid into the high pressure secondary evaporator 7 is prevented, and the level fluctuation in the drain tank 22 is prevented. The amount of blow from the blow system 23 is suppressed.
Special table 2001-505645 gazette

しかし、起動初期に高圧一次蒸発器8の上部が内部に流体が存在しない状態で排ガスの熱を受ける空焚き状態となるため、管材質を低合金鋼にする等の対応が必要になる。また高圧一次蒸発器8の管内上部に空間を設けるために内部流体を排出する必要があり、保有熱を含めた給水の損失となる。  However, since the upper part of the high-pressure primary evaporator 8 is in an empty state where the heat of the exhaust gas is received in the state where no fluid is present in the interior at the initial stage of startup, it is necessary to take measures such as using a low alloy steel for the pipe material. Further, in order to provide a space in the upper part of the high-pressure primary evaporator 8, it is necessary to discharge the internal fluid, resulting in a loss of water supply including the retained heat.

本発明の目的は、排熱回収ボイラ起動時における汽水分離器内のレベル変動及びブロー量の抑制のために一次蒸発器の部分水張りを行うことなく、蒸発器管の焼損防止や汽水分離器のレベル変動抑制を行うとともに、信頼性の向上が図れる貫流式排熱回収ボイラを提供することにある。  The purpose of the present invention is to prevent burnout of the evaporator pipe and prevent the brackish water separator from being blown without partial water filling of the primary evaporator in order to suppress level fluctuation and blow amount in the brackish water separator at the start of the exhaust heat recovery boiler. An object of the present invention is to provide a once-through exhaust heat recovery boiler capable of suppressing level fluctuation and improving reliability.

前記課題を解決するため本発明の第1の手段は、二次蒸発器と、その二次蒸発器の排ガス流れ方向下流側に設置された一次蒸発器と、その一次蒸発器と前記二次蒸発器を直列に接続した連絡管と、前記二次蒸発器で発生した蒸気を汽水分離する汽水分離器と、前記一次蒸発器よりも低圧となる系に設置された低圧系のドラムを備えた貫流式排熱回収ボイラにおいて、
前記一次蒸発器の出口側から前記低圧系のドラムへ缶水を排出する缶水排出系統を設置したことを特徴とするものである。
In order to solve the above problems, the first means of the present invention includes a secondary evaporator, a primary evaporator installed downstream of the secondary evaporator in the exhaust gas flow direction, the primary evaporator, and the secondary evaporation. A through-flow comprising a connecting pipe connected in series, a brackish water separator for steam-separating steam generated in the secondary evaporator, and a low-pressure drum installed in a system having a lower pressure than the primary evaporator In the type exhaust heat recovery boiler,
A can water discharge system for discharging can water from the outlet side of the primary evaporator to the low pressure drum is installed.

本発明の第2の手段は、二次蒸発器と、その二次蒸発器の排ガス流れ方向下流側に設置された一次蒸発器と、その一次蒸発器と前記二次蒸発器を直列に接続した連絡管と、前記二次蒸発器で発生した蒸気を汽水分離する汽水分離器と、
前記一次蒸発器よりも低圧となる系に設置された低圧系の節炭器を備えた貫流式排熱回収ボイラにおいて、
前記一次蒸発器の出口側から前記低圧系の節炭器へ缶水を排出する缶水排出系統を設置したことを特徴とするものである。
The second means of the present invention comprises a secondary evaporator, a primary evaporator installed downstream of the secondary evaporator in the exhaust gas flow direction, and the primary evaporator and the secondary evaporator connected in series. A communication pipe, and a brackish water separator for bracking and separating steam generated in the secondary evaporator;
In the once-through exhaust heat recovery boiler equipped with a low-pressure system economizer installed in a system that is at a lower pressure than the primary evaporator,
A can water discharge system for discharging can water from the outlet side of the primary evaporator to the low pressure economizer is installed.

本発明の第3の手段は、前記第1または第2の手段において、前記一次蒸発器の排ガス流れ方向下流側に前記一次蒸発器と同圧系統の節炭器を設置し、その同圧系統の節炭器の出口側に給水調節弁または圧力調節弁を設け、その給水調節弁または圧力調節弁の入口側から前記二次蒸発器の入口側に向けてバイパス系統を設けたことを特徴とするものである。  According to a third means of the present invention, in the first or second means, a economizer of the same pressure system as the primary evaporator is installed downstream of the primary evaporator in the exhaust gas flow direction, and the same pressure system. A water supply control valve or a pressure control valve is provided on the outlet side of the economizer, and a bypass system is provided from the inlet side of the water supply control valve or the pressure control valve toward the inlet side of the secondary evaporator. To do.

本発明の第4の手段は、高圧二次蒸発器と、その高圧二次蒸発器の排ガス流れ方向下流側に設置された高圧一次蒸発器と、その高圧一次蒸発器と前記高圧二次蒸発器を直列に接続した連絡管と、前記高圧二次蒸発器で発生した蒸気を汽水分離する高圧汽水分離器と、前記高圧一次蒸発器よりも低圧となる系に設置された低圧ドラムを備えた貫流式排熱回収ボイラにおいて、
前記高圧一次蒸発器の出口側から前記低圧ドラムへ缶水を排出する缶水排出系統を設置したことを特徴とするものである。
The fourth means of the present invention includes a high-pressure secondary evaporator, a high-pressure primary evaporator installed downstream of the high-pressure secondary evaporator in the exhaust gas flow direction, the high-pressure primary evaporator, and the high-pressure secondary evaporator. A through-flow comprising a connecting pipe connected in series, a high-pressure steam separator for steam-separating the steam generated in the high-pressure secondary evaporator, and a low-pressure drum installed in a system having a lower pressure than the high-pressure primary evaporator In the type exhaust heat recovery boiler,
A can water discharge system for discharging can water from the outlet side of the high pressure primary evaporator to the low pressure drum is installed.

本発明の第5の手段は、高圧二次蒸発器と、その高圧二次蒸発器の排ガス流れ方向下流側に設置された高圧一次蒸発器と、その高圧一次蒸発器と前記高圧二次蒸発器を直列に接続した連絡管と、前記高圧二次蒸発器で発生した蒸気を汽水分離する高圧汽水分離器と、前記高圧一次蒸発器よりも低圧となる系に設置された中圧ドラムを備えた貫流式排熱回収ボイラにおいて、
前記高圧一次蒸発器の出口側から前記中圧ドラムへ缶水を排出する缶水排出系統を設置したことを特徴とするものである。
The fifth means of the present invention includes a high-pressure secondary evaporator, a high-pressure primary evaporator installed downstream of the high-pressure secondary evaporator in the exhaust gas flow direction, the high-pressure primary evaporator, and the high-pressure secondary evaporator. A connecting pipe connected in series, a high-pressure steam separator for steam-separating steam generated in the high-pressure secondary evaporator, and an intermediate-pressure drum installed in a system having a lower pressure than the high-pressure primary evaporator In the once-through exhaust heat recovery boiler,
A can water discharge system for discharging can water from the outlet side of the high pressure primary evaporator to the intermediate pressure drum is provided.

本発明の第6の手段は、高圧二次蒸発器と、その高圧二次蒸発器の排ガス流れ方向下流側に設置された高圧一次蒸発器と、その高圧一次蒸発器と前記高圧二次蒸発器を直列に接続した連絡管と、前記高圧二次蒸発器で発生した蒸気を汽水分離する高圧汽水分離器と、前記高圧一次蒸発器よりも低圧となる系に設置された中圧節炭器を備えた貫流式排熱回収ボイラにおいて、
前記高圧一次蒸発器の出口側から前記中圧節炭器へ缶水を排出する缶水排出系統を設置したことを特徴とするものである。
The sixth means of the present invention includes a high-pressure secondary evaporator, a high-pressure primary evaporator installed downstream of the high-pressure secondary evaporator in the exhaust gas flow direction, the high-pressure primary evaporator, and the high-pressure secondary evaporator. A connecting pipe connected in series, a high-pressure steam separator for steam-separating steam generated in the high-pressure secondary evaporator, and a medium-pressure economizer installed in a system having a lower pressure than the high-pressure primary evaporator In the once-through exhaust heat recovery boiler provided,
A can water discharge system for discharging can water from the outlet side of the high pressure primary evaporator to the medium pressure economizer is installed.

本発明の第7の手段は、高圧二次蒸発器と、その高圧二次蒸発器の排ガス流れ方向下流側に設置された高圧一次蒸発器と、その高圧一次蒸発器と前記高圧二次蒸発器を直列に接続した連絡管と、前記高圧二次蒸発器で発生した蒸気を汽水分離する高圧汽水分離器と、前記高圧一次蒸発器よりも低圧となる中圧ドラムならびに低圧ドラムを備えた貫流式排熱回収ボイラにおいて、
前記高圧一次蒸発器の出口側から前記中圧ドラムならびに低圧ドラムへ缶水を排出する缶水排出系統を設置したことを特徴とするものである。
The seventh means of the present invention includes a high-pressure secondary evaporator, a high-pressure primary evaporator installed downstream of the high-pressure secondary evaporator in the exhaust gas flow direction, the high-pressure primary evaporator, and the high-pressure secondary evaporator. A through-flow type comprising a connecting pipe connected in series, a high-pressure steam separator for steam-separating steam generated in the high-pressure secondary evaporator, an intermediate-pressure drum having a lower pressure than the high-pressure primary evaporator, and a low-pressure drum In the exhaust heat recovery boiler,
A can water discharge system for discharging can water from the outlet side of the high pressure primary evaporator to the medium pressure drum and the low pressure drum is provided.

本発明の第8の手段は、高圧二次蒸発器と、その高圧二次蒸発器の排ガス流れ方向下流側に設置された高圧一次蒸発器と、その高圧一次蒸発器と前記高圧二次蒸発器を直列に接続した連絡管と、前記高圧二次蒸発器で発生した蒸気を汽水分離する高圧汽水分離器と、前記高圧一次蒸発器よりも低圧となる中圧ドラムならびに低圧節炭器を備えた貫流式排熱回収ボイラにおいて、
前記高圧一次蒸発器の出口側から前記中圧ドラムならびに低圧節炭器へ缶水を排出する缶水排出系統を設置したことを特徴とするものである。
The eighth means of the present invention includes a high-pressure secondary evaporator, a high-pressure primary evaporator installed downstream of the high-pressure secondary evaporator in the exhaust gas flow direction, the high-pressure primary evaporator, and the high-pressure secondary evaporator. A connecting pipe connected in series, a high-pressure steam separator for steam-separating steam generated in the high-pressure secondary evaporator, an intermediate-pressure drum and a low-pressure economizer that have a lower pressure than the high-pressure primary evaporator In the once-through exhaust heat recovery boiler,
A can water discharge system for discharging can water from the outlet side of the high pressure primary evaporator to the intermediate pressure drum and the low pressure economizer is installed.

本発明の第9の手段は、前記第4ないし第8の手段において、前記高圧一次蒸発器の排ガス流れ方向下流側に設置された高圧節炭器の出口側に給水調節弁または圧力調節弁を設け、その給水調節弁または圧力調節弁の入口側から前記高圧二次蒸発器の入口側に向けて延びたバイパス系統を設けたことを特徴とするものである。  According to a ninth means of the present invention, in the fourth to eighth means, a water supply control valve or a pressure control valve is provided on the outlet side of the high-pressure economizer installed on the downstream side in the exhaust gas flow direction of the high-pressure primary evaporator. And a bypass system extending from the inlet side of the water supply control valve or pressure control valve toward the inlet side of the high-pressure secondary evaporator is provided.

本発明の第10の手段は、高圧二次蒸発器と、その高圧二次蒸発器の排ガス流れ方向下流側に設置された高圧一次蒸発器と、その高圧一次蒸発器と前記高圧二次蒸発器を直列に接続した高圧連絡管と、前記高圧二次蒸発器で発生した蒸気を汽水分離する高圧汽水分離器とを備えた高圧系統と、
前記高圧一次蒸発器の排ガス流れ方向下流側に設置された中圧二次蒸発器と、その中圧二次蒸発器の排ガス流れ方向下流側に設置された中圧一次蒸発器と、その中圧一次蒸発器と前記中圧二次蒸発器を直列に接続した中圧連絡管と、前記中圧二次蒸発器で発生した蒸気を汽水分離する中圧汽水分離器と、前記中圧一次蒸発器の排ガス流れ方向下流側に設置された中圧節炭器とを備えた中圧系統と、
その中圧系統よりも低圧となる系に設置された低圧ドラムを備えた貫流式排熱回収ボイラにおいて、
前記高圧一次蒸発器の出口側から前記中圧節炭器へ缶水を排出する第1の缶水排出系統と、
前記中圧一次蒸発器の出口側から前記低圧ドラムへ缶水を排出する第2の缶水排出系統を設置したことを特徴とするものである。
The tenth means of the present invention includes a high-pressure secondary evaporator, a high-pressure primary evaporator installed downstream of the high-pressure secondary evaporator in the exhaust gas flow direction, the high-pressure primary evaporator, and the high-pressure secondary evaporator. A high-pressure system comprising: a high-pressure connecting pipe connected in series; and a high-pressure steam separator for steam-separating steam generated in the high-pressure secondary evaporator;
An intermediate pressure secondary evaporator installed downstream of the high pressure primary evaporator in the exhaust gas flow direction, an intermediate pressure primary evaporator installed downstream of the intermediate pressure secondary evaporator in the exhaust gas flow direction, and an intermediate pressure thereof An intermediate pressure communication pipe in which a primary evaporator and the intermediate pressure secondary evaporator are connected in series, an intermediate pressure brackish water separator that separates steam generated by the intermediate pressure secondary evaporator, and the intermediate pressure primary evaporator An intermediate pressure system having an intermediate pressure economizer installed downstream of the exhaust gas flow direction of
In a once-through exhaust heat recovery boiler equipped with a low-pressure drum installed in a system that is lower in pressure than the medium-pressure system,
A first can water discharge system for discharging can water from the outlet side of the high pressure primary evaporator to the medium pressure economizer;
A second can water discharge system for discharging can water from the outlet side of the intermediate pressure primary evaporator to the low pressure drum is installed.

本発明の第11の手段は、高圧二次蒸発器と、その高圧二次蒸発器の排ガス流れ方向下流側に設置された高圧一次蒸発器と、その高圧一次蒸発器と前記高圧二次蒸発器を直列に接続した高圧連絡管と、前記高圧二次蒸発器で発生した蒸気を汽水分離する高圧汽水分離器とを備えた高圧系統と、
前記高圧一次蒸発器の排ガス流れ方向下流側に設置された中圧二次蒸発器と、その中圧二次蒸発器の排ガス流れ方向下流側に設置された中圧一次蒸発器と、その中圧一次蒸発器と前記中圧二次蒸発器を直列に接続した中圧連絡管と、前記中圧二次蒸発器で発生した蒸気を汽水分離する中圧汽水分離器と、前記中圧一次蒸発器の排ガス流れ方向下流側に設置された中圧節炭器とを備えた中圧系統と、
その中圧系統よりも低圧となる系に設置された低圧節炭器を備えた貫流式排熱回収ボイラにおいて、
前記高圧一次蒸発器の出口側から前記中圧節炭器へ缶水を排出する第1の缶水排出系統と、
前記中圧一次蒸発器の出口側から前記低圧節炭器へ缶水を排出する第2の缶水排出系統を設置したことを特徴とするものである。
The eleventh means of the present invention includes a high-pressure secondary evaporator, a high-pressure primary evaporator installed downstream of the high-pressure secondary evaporator in the exhaust gas flow direction, the high-pressure primary evaporator, and the high-pressure secondary evaporator. A high-pressure system comprising: a high-pressure connecting pipe connected in series; and a high-pressure steam separator for steam-separating steam generated in the high-pressure secondary evaporator;
An intermediate pressure secondary evaporator installed downstream of the high pressure primary evaporator in the exhaust gas flow direction, an intermediate pressure primary evaporator installed downstream of the intermediate pressure secondary evaporator in the exhaust gas flow direction, and an intermediate pressure thereof An intermediate pressure communication pipe in which a primary evaporator and the intermediate pressure secondary evaporator are connected in series, an intermediate pressure brackish water separator that separates steam generated by the intermediate pressure secondary evaporator, and the intermediate pressure primary evaporator An intermediate pressure system having an intermediate pressure economizer installed downstream of the exhaust gas flow direction of
In the once-through exhaust heat recovery boiler equipped with a low-pressure economizer installed in a system that is lower in pressure than the medium-pressure system,
A first can water discharge system for discharging can water from the outlet side of the high pressure primary evaporator to the medium pressure economizer;
A second can water discharge system for discharging can water from the outlet side of the intermediate pressure primary evaporator to the low pressure economizer is installed.

本発明は前述のような構成になっており、排熱回収ボイラ起動時における汽水分離器内のレベル変動及びブロー量の抑制のために一次蒸発器の部分水張りを行うことなく、蒸発器管の焼損防止や汽水分離器のレベル変動抑制を行うとともに、信頼性の向上が図れる貫流式排熱回収ボイラを提供することができる。   The present invention is configured as described above, and without performing partial water filling of the primary evaporator in order to suppress level fluctuation and blow amount in the brackish water separator at the start of the exhaust heat recovery boiler, It is possible to provide a once-through exhaust heat recovery boiler that can prevent burnout and suppress fluctuations in the level of the brackish water separator and can improve reliability.

以下に述べる本発明の実施形態によれば、高圧一次蒸発器の出口水の排出系統を設置することで、ボイラ起動前に高圧一次蒸発器の上部に空間を設けることなく起動時の汽水分離器のレベル変動及びブロー量の抑制が可能となり、一次蒸発器の空焚き対策が不要で、保有熱を含めた給水の損失を防ぐことができる。   According to the embodiments of the present invention described below, by installing a discharge system for outlet water of the high-pressure primary evaporator, a brackish water separator at startup without providing a space above the high-pressure primary evaporator before starting the boiler Level fluctuations and the amount of blow can be suppressed, and it is not necessary to take measures to blow the primary evaporator, and loss of water supply including retained heat can be prevented.

また、高圧一次蒸発器の出口水の排出先を低圧ドラム又は低圧節炭器入口とすることにより、排熱回収ボイラ入口の給水温度を露点温度以上に上昇させるまでの時間が短縮でき、腐食や応力腐食割れの防止をより確実に行うことが可能となる。  In addition, by setting the outlet water of the high-pressure primary evaporator to the low-pressure drum or low-pressure economizer inlet, the time until the feed water temperature at the exhaust heat recovery boiler inlet is raised above the dew point temperature can be shortened. It becomes possible to more reliably prevent stress corrosion cracking.

更に、高圧一次蒸発器の出口水の排出先を中圧ドラム又は中圧節炭器系とすることにより、燃料加温用抽水が温度上昇する時間が短縮されることになり、ガスタービンの効率向上を早期に行うことが可能となる。  Furthermore, by setting the outlet water of the high-pressure primary evaporator to the medium pressure drum or medium pressure economizer system, the time for the fuel warming water to rise will be shortened, and the efficiency of the gas turbine will be reduced. Improvements can be made early.

(第1実施形態)
次に本発明の各実施形態を図と共に説明する。図1は、第1実施形態に係る貫流式排熱回収ボイラの系統図である。
(First embodiment)
Next, each embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a system diagram of a once-through exhaust heat recovery boiler according to the first embodiment.

ガスタービンからの排ガスは最初の熱交換部である高圧過熱器5から排ガス流れ方向最下流部に設置された低圧節炭器13まで送られ、その間で熱回収が行われる。   The exhaust gas from the gas turbine is sent from the high-pressure superheater 5 which is the first heat exchange part to the low-pressure economizer 13 installed at the most downstream part in the exhaust gas flow direction, and heat recovery is performed in the meantime.

給水は低圧節炭器13を経て、高中圧給水ポンプ17で昇圧され中圧節炭器11と高圧節炭器9へ送られる。高圧節炭器9で加熱された高圧給水は高圧一次蒸発器8、高圧二次蒸発器7で蒸気に変換され、更に過熱された後、高圧汽水分離器14を経て高圧過熱器5へ供給される。高圧一次蒸発器8と高圧二次蒸発器7の間には、高圧一次蒸発器出口連絡管19、高圧分配器20、高圧二次蒸発器入口連絡管21が設置されている。  The feed water passes through the low pressure economizer 13, is pressurized by the high and medium pressure feed water pump 17, and is sent to the medium pressure economizer 11 and the high pressure economizer 9. The high-pressure feed water heated by the high-pressure economizer 9 is converted into steam by the high-pressure primary evaporator 8 and the high-pressure secondary evaporator 7, further superheated, and then supplied to the high-pressure superheater 5 via the high-pressure steam separator 14. The Between the high-pressure primary evaporator 8 and the high-pressure secondary evaporator 7, a high-pressure primary evaporator outlet connecting pipe 19, a high-pressure distributor 20, and a high-pressure secondary evaporator inlet connecting pipe 21 are installed.

本実施形態では、高圧一次蒸発器8の出口から低圧ドラム16へ内部流体を排出するための低圧ドラム排出系統26が設置されており、この低圧ドラム排出系統26は図に示すように高圧一次蒸発器出口連絡管19の途中から分岐して低圧ドラム16に接続されている。  In the present embodiment, a low-pressure drum discharge system 26 for discharging the internal fluid from the outlet of the high-pressure primary evaporator 8 to the low-pressure drum 16 is installed, and the low-pressure drum discharge system 26 is shown in FIG. Branching from the middle of the vessel outlet connecting pipe 19 is connected to the low pressure drum 16.

ボイラ起動時、高圧一次蒸発器8を満水にした状態でミニマムフロー運転を行い、高圧節炭器9から高圧一次蒸発器8へ一定量の水を強制給水することで高圧二次蒸発器7での焼損を防止する。その際、高圧一次蒸発器8の出口水の一部を低圧ドラム排出系統26により低圧ドラム16へ排出することで、高圧二次蒸発器7への急激な流体の流入を防ぐことができ、そのため高圧汽水分離器14のレベル変動やブロー量の抑制が可能となる。  At the start of the boiler, the minimum flow operation is performed with the high pressure primary evaporator 8 being full, and a certain amount of water is forcibly supplied from the high pressure economizer 9 to the high pressure primary evaporator 8. Prevents burning. At that time, by discharging a part of the outlet water of the high-pressure primary evaporator 8 to the low-pressure drum 16 by the low-pressure drum discharge system 26, it is possible to prevent a sudden flow of fluid into the high-pressure secondary evaporator 7. The level fluctuation of the high-pressure brack separator 14 and the amount of blow can be suppressed.

図2を用いて本実施形態の更なる効果を説明する。同図は、ボイラ起動時における低圧節炭器13の入口給水温度特性を示している。  The further effect of this embodiment is demonstrated using FIG. The figure has shown the inlet water supply temperature characteristic of the low pressure economizer 13 at the time of boiler starting.

低圧節炭器13の入口給水温度は、低圧節炭器再循環系統18に設置した節炭器再循環ポンプ41により、低圧節炭器13の出口の高温給水を低圧節炭器13の入口の配管へと再循環させることで、低圧節炭器13の入口の給水温度を上昇させ、排ガス流路内に設置された低圧節炭器管等の表面で排ガス中の水分が結露し腐食することを防止するようになっている。  The inlet water supply temperature of the low-pressure economizer 13 is changed to the high-temperature water supply at the outlet of the low-pressure economizer 13 by the economizer recirculation pump 41 installed in the low-pressure economizer recirculation system 18. Recirculation to the pipe raises the feed water temperature at the inlet of the low-pressure economizer 13 and causes moisture in the exhaust gas to condense and corrode on the surface of the low-pressure economizer pipe installed in the exhaust gas flow path. Is to prevent.

ところで従来の排熱回収ボイラでは図16に示すように、高圧一次蒸発器8で加熱された流体が低圧ドラム16に送る低圧ドラム排出系統26が無く、低圧節炭器13は排ガス流れ方向最下流部に設置されているため、ボイラ起動時には低圧節炭器13の出口の温度上昇、つまりは低圧節炭器再循環系統18を用いた前述の温度上昇に時間がかかる(図2の一点鎖線参照)。そのため、起動初期に排熱回収ボイラ入口給水温度が露点以下となる時間帯が長時間存在するという問題がある。  By the way, in the conventional exhaust heat recovery boiler, as shown in FIG. 16, there is no low pressure drum discharge system 26 for sending the fluid heated by the high pressure primary evaporator 8 to the low pressure drum 16, and the low pressure economizer 13 is the most downstream in the exhaust gas flow direction. Therefore, when the boiler is started, it takes time to increase the temperature at the outlet of the low-pressure economizer 13, that is, the above-described temperature increase using the low-pressure economizer recirculation system 18 (see the one-dot chain line in FIG. 2). ). Therefore, there is a problem that a time zone in which the exhaust water recovery boiler inlet water supply temperature is below the dew point exists for a long time at the start-up.

これに対して本実施形態では、高圧一次蒸発器8で加熱された流体が低圧ドラム16を経て低圧蒸発器12へ送られるため、低圧蒸発器12の排ガス流れ方向下流でのガス温度が従来よりも高く、低圧節炭器13の出口給水温度が早期に上昇し、低圧節炭器13の入口の温度上昇も早まる(図2の実線参照)。従って起動初期に排ガス中の水分が低圧節炭器13の管表面等で結露する時間が短縮し、腐食や応力腐食割れの懸念が軽減される。  On the other hand, in the present embodiment, the fluid heated by the high pressure primary evaporator 8 is sent to the low pressure evaporator 12 via the low pressure drum 16, so that the gas temperature downstream of the low pressure evaporator 12 in the exhaust gas flow direction is higher than that of the prior art. The outlet water supply temperature of the low-pressure economizer 13 rises early, and the temperature rise at the inlet of the low-pressure economizer 13 is also accelerated (see the solid line in FIG. 2). Therefore, the time during which the moisture in the exhaust gas is condensed on the pipe surface of the low-pressure economizer 13 at the beginning of the startup is shortened, and the concern about corrosion and stress corrosion cracking is reduced.

(第2実施形態)
図3は、第2実施形態に係る貫流式排熱回収ボイラの系統図である。本実施形態では、前記第1実施形態に係る貫流式排熱回収ボイラの系統に、高圧節炭器9の給水を高圧二次蒸発器7の入口側へバイパスさせる高圧二次蒸発器入口バイパス系統24を追加することで、高圧二次蒸発器7の焼損対策をより確実に行うことにした。すなわちバイパス系統24を設置し、ボイラ起動時に高圧給水調節弁25の調節により高圧節炭器9の給水の一部を高圧二次蒸発器7の入口にバイパスさせることで、高圧二次蒸発器7内の保有水の減少を補う。
(Second Embodiment)
FIG. 3 is a system diagram of the once-through exhaust heat recovery boiler according to the second embodiment. In the present embodiment, a high-pressure secondary evaporator inlet bypass system for bypassing the feed water of the high-pressure economizer 9 to the inlet side of the high-pressure secondary evaporator 7 in the system of the once-through exhaust heat recovery boiler according to the first embodiment. By adding 24, it was decided to more reliably take measures against burning of the high-pressure secondary evaporator 7. That is, by installing the bypass system 24 and bypassing a part of the water supply of the high pressure economizer 9 to the inlet of the high pressure secondary evaporator 7 by adjusting the high pressure water supply control valve 25 when the boiler is started up, the high pressure secondary evaporator 7 To compensate for the decrease in the water held inside.

本実施形態においても前記第1実施形態と同様に、高圧汽水分離器14のレベル変動やブロー量の抑制が可能となるとともに、低圧節炭器13の管表面等での結露時間を短縮することによる水腐食や応力腐食割れの抑制効果も得られる。  Also in the present embodiment, as in the first embodiment, the level fluctuation of the high-pressure steam separator 14 and the blow amount can be suppressed, and the dew condensation time on the pipe surface of the low-pressure economizer 13 is shortened. The effect of suppressing water corrosion and stress corrosion cracking can also be obtained.

(第3実施形態)
図4は、第3実施形態に係る貫流式排熱回収ボイラの系統図である。本実施形態で前記第2実施形態と相違する点は、高中圧給水ポイプ17と高圧節炭器9の間に給水調節弁42を設けるとともに、高圧節炭器9の出口側に圧力調節弁43を設けた点である。
(Third embodiment)
FIG. 4 is a system diagram of the once-through exhaust heat recovery boiler according to the third embodiment. The present embodiment is different from the second embodiment in that a feed water adjustment valve 42 is provided between the high and medium pressure feed water pipe 17 and the high pressure economizer 9, and a pressure control valve 43 is provided on the outlet side of the high pressure economizer 9. This is the point.

バイパス系統24は高圧二次蒸発器7が損傷しないように設けた系統であり、バイパス系統24の途中に付設されている弁は蒸発器ミニマムフロー弁(アングル弁)になっており、この弁はボイラ起動初期にのみ開くようになっている。従って、図3に示すように給水調節弁25を設けた場合は、この給水調節弁25で流量コントロールして、バイパス系統24をミニマムフローの状態にする。一方、図4に示すように圧力調節弁43を用いる場合には差圧をつけることでバイパス系統24をミニマムフローの状態とし、圧力調節弁43では流量コントロールができないので、高中圧給水ポイプ17と高圧節炭器9の間に給水調節弁42を設けている。  The bypass system 24 is a system provided so that the high-pressure secondary evaporator 7 is not damaged. A valve attached in the middle of the bypass system 24 is an evaporator minimum flow valve (angle valve). It opens only at the beginning of boiler startup. Therefore, when the water supply control valve 25 is provided as shown in FIG. 3, the flow rate is controlled by the water supply control valve 25 to bring the bypass system 24 into a minimum flow state. On the other hand, when using the pressure control valve 43 as shown in FIG. 4, the differential pressure is applied to bring the bypass system 24 into a minimum flow state, and the pressure control valve 43 cannot control the flow rate. A water supply control valve 42 is provided between the high pressure economizer 9.

(第4実施形態)
図5は、第4実施形態に係る貫流式排熱回収ボイラの系統図である。本実施形態で前記第1実施形態と相違する点は、前記低圧ドラム排出系統26の代わりに、高圧一次蒸発器8の出口から中圧ドラム15へ内部流体を排出する中圧ドラム排出系統27を設置した点である。
(Fourth embodiment)
FIG. 5 is a system diagram of the once-through exhaust heat recovery boiler according to the fourth embodiment. The present embodiment is different from the first embodiment in that an intermediate pressure drum discharge system 27 that discharges internal fluid from the outlet of the high pressure primary evaporator 8 to the intermediate pressure drum 15 is used instead of the low pressure drum discharge system 26. This is the point where it was installed.

ボイラの起動時、高圧一次蒸発器8を満水にした状態でミニマムフロー運転を行い、高圧節炭器9から高圧一次蒸発器8へ一定量の水を強制給水することで高圧二次蒸発器7での焼損を防止する。その際、高圧一次蒸発器8から出る水の一部を中圧ドラム排出系統27により中圧ドラム15へ排出することで、高圧二次蒸発器7への急激な流体の流入を防ぐことができ、汽水分離器14のレベル変動やブロー量の抑制が可能となる。   When the boiler is started, a minimum flow operation is performed with the high-pressure primary evaporator 8 being full, and a certain amount of water is forcibly supplied from the high-pressure economizer 9 to the high-pressure primary evaporator 8 to thereby supply the high-pressure secondary evaporator 7. Prevents burning in At that time, a part of water discharged from the high-pressure primary evaporator 8 is discharged to the intermediate-pressure drum 15 by the intermediate-pressure drum discharge system 2 7, thereby preventing a sudden flow of fluid into the high-pressure secondary evaporator 7. The level fluctuation of the brackish water separator 14 and the amount of blow can be suppressed.

図6を用いて本実施形態の更なる効果を説明する。同図は、ボイラ起動時における中圧節炭器10の給水温度特性を示している。  The further effect of this embodiment is demonstrated using FIG. The figure has shown the feed water temperature characteristic of the medium pressure economizer 10 at the time of boiler starting.

中圧系統は高圧系統の排ガス流れ方向下流側に設置されているため、ボイラ起動時には高圧系統に比べ熱の流入が遅れ、同図に示すように従来の排熱回収ボイラでは、中圧節炭器11への給水の温度上昇にも時間がかかる。  Since the medium pressure system is installed downstream of the high pressure system in the exhaust gas flow direction, the heat inflow is delayed compared to the high pressure system when the boiler starts up. It takes time to increase the temperature of the water supply to the vessel 11.

これに対して本実施形態を採用した場合には、中圧ドラム15を経て中圧蒸発器10へ熱が送られるため、中圧蒸発器10の出口のガス温度が高く、従って同図に示すように中圧節炭器11の出入口給水温度が早い段階で上昇することになる。  On the other hand, when this embodiment is adopted, heat is sent to the intermediate pressure evaporator 10 through the intermediate pressure drum 15, so that the gas temperature at the outlet of the intermediate pressure evaporator 10 is high, and therefore shown in FIG. Thus, the inlet / outlet water supply temperature of the medium pressure economizer 11 rises at an early stage.

ガスタービンの効率向上を図るため、図5に示すように中圧節炭器11の出口加熱水を用いてガスタービン用の燃料ガスを加熱する燃料ガス加熱器28が設置されたシステムがコンバインドサイクル発電設備で採用されている。このシステムの場合、中圧節炭器11の給水の温度上昇に時間がかかればガスタービンの起動特性と効率向上に支障をきたすことになる。この点本実施形態を採用すれば、ボイラ起動時での中圧節炭器11の出口側温度が燃料ガスの加熱に必要な温度に達するまでの時間が短縮され、ガスタービンの起動特性が安定し、早期に効率向上が図れる。  In order to improve the efficiency of the gas turbine, as shown in FIG. 5, the system in which the fuel gas heater 28 for heating the fuel gas for the gas turbine using the outlet heating water of the medium pressure economizer 11 is installed is a combined cycle. Used in power generation facilities. In the case of this system, if it takes time to increase the temperature of the feed water of the medium pressure economizer 11, it will hinder the startup characteristics and efficiency of the gas turbine. In this regard, if this embodiment is adopted, the time until the outlet side temperature of the medium pressure economizer 11 reaches the temperature required for heating the fuel gas when the boiler is started is shortened, and the startup characteristics of the gas turbine are stable. The efficiency can be improved at an early stage.

(第5実施形態)
図7は、第5実施形態に係る貫流式排熱回収ボイラの系統図である。本実施形態で前記第3実施形態と相違する点は、高圧節炭器9の給水を高圧二次蒸発器7の入口へバイパスさせる高圧二次蒸発器入口バイパス系統24を設けることで、高圧二次蒸発器7の焼損対策をより確実に行うことにした点である。
(Fifth embodiment)
FIG. 7 is a system diagram of the once-through exhaust heat recovery boiler according to the fifth embodiment. This embodiment is different from the third embodiment in that a high pressure secondary evaporator inlet bypass system 24 for bypassing the feed water of the high pressure economizer 9 to the inlet of the high pressure secondary evaporator 7 is provided. It is the point which decided to take the countermeasure against burning of the next evaporator 7 more reliably.

本実施形態においても汽水分離器14のレベル変動やブロー量の抑制が可能となるとともに、ボイラ起動時での中圧節炭器11の出口側温度が燃料ガスの加熱に必要な温度に達するまでの時間が短縮され、ガスタービンの起動特性が安定し、効率向上を早期に行うことができる。  Also in this embodiment, the level fluctuation of the brackish water separator 14 and the amount of blow can be suppressed, and the outlet side temperature of the medium pressure economizer 11 at the time of boiler startup reaches the temperature necessary for heating the fuel gas. This shortens the time, stabilizes the startup characteristics of the gas turbine, and improves the efficiency at an early stage.

本実施形態においても高圧給水調節弁25の代わりに、図4に示すように給水調節弁42と圧力調節弁43を用いることもできる。  Also in this embodiment, instead of the high-pressure water supply control valve 25, a water supply control valve 42 and a pressure control valve 43 can be used as shown in FIG.

(第6実施形態)
図8は、第6実施形態に係る貫流式排熱回収ボイラの系統図である。本実施形態の場合、高圧一次蒸発器8の出口から低圧ドラム16へ内部流体を排出する低圧ドラム排出系統26と、高圧一次蒸発器8の出口から中圧ドラム15へ内部流体を排出する中圧ドラム排出系統27とを並設している。
(Sixth embodiment)
FIG. 8 is a system diagram of the once-through exhaust heat recovery boiler according to the sixth embodiment. In the case of this embodiment, the low pressure drum discharge system 26 that discharges the internal fluid from the outlet of the high pressure primary evaporator 8 to the low pressure drum 16, and the medium pressure that discharges the internal fluid from the outlet of the high pressure primary evaporator 8 to the intermediate pressure drum 15. A drum discharge system 27 is juxtaposed.

(第7実施形態)
図9は、第7実施形態に係る貫流式排熱回収ボイラの系統図である。本実施形態で前記第5実施形態と相違する点は、高圧節炭器9の給水を高圧二次蒸発器7の入口へバイパスさせる高圧二次蒸発器入口バイパス系統24を設けることで、高圧二次蒸発器7の焼損対策をより確実に行うことにした点である。
(Seventh embodiment)
FIG. 9 is a system diagram of the once-through exhaust heat recovery boiler according to the seventh embodiment. The present embodiment is different from the fifth embodiment in that a high pressure secondary evaporator inlet bypass system 24 for bypassing the feed water of the high pressure economizer 9 to the inlet of the high pressure secondary evaporator 7 is provided. It is the point which decided to take the countermeasure against burning of the next evaporator 7 more reliably.

本実施形態においても高圧給水調節弁25の代わりに、図4に示すように給水調節弁42と圧力調節弁43を用いることもできる。  Also in this embodiment, instead of the high-pressure water supply control valve 25, a water supply control valve 42 and a pressure control valve 43 can be used as shown in FIG.

(第8実施形態)
図10は、第8実施形態に係る貫流式排熱回収ボイラの系統図である。本実施形態で前記第7実施形態と相違する点は、低圧ドラム排出系統26の代わりに高圧一次蒸発器8の出口側から中圧節炭器11側に延びる中圧節炭器系再循環系統30を設けた点である。
(Eighth embodiment)
FIG. 10 is a system diagram of the once-through exhaust heat recovery boiler according to the eighth embodiment. The present embodiment is different from the seventh embodiment in that a medium pressure economizer recirculation system extending from the outlet side of the high pressure primary evaporator 8 to the medium pressure economizer 11 side instead of the low pressure drum discharge system 26. 30 is provided.

(第9実施形態)
図11は、第9実施形態に係る貫流式排熱回収ボイラの系統図である。本実施形態の場合、高圧系及び中圧系に貫流式を採用した排熱回収ボイラにおいて、高圧一次蒸発器8の出口側から中圧節炭器11側に延びる中圧節炭器系再循環系統30を設けるとともに、中圧一次蒸発器32の出口側から低圧ドラム16側に延びる中圧一次蒸発器出口連絡管34を設けている。
(Ninth embodiment)
FIG. 11 is a system diagram of a once-through exhaust heat recovery boiler according to the ninth embodiment. In the case of the present embodiment, in the exhaust heat recovery boiler adopting the once-through type for the high pressure system and the medium pressure system, the medium pressure economizer system recirculation extending from the outlet side of the high pressure primary evaporator 8 to the medium pressure economizer 11 side. A system 30 is provided, and an intermediate pressure primary evaporator outlet communication pipe 34 extending from the outlet side of the intermediate pressure primary evaporator 32 to the low pressure drum 16 side is provided.

なお、図中の31は中圧二次蒸発器、33は中圧汽水分離器、35は中圧分配器、36は中圧二次蒸発器入口連絡管、37は中圧ドレンタンク、38は中圧ドレンタンクブロー系統、39は中圧二次蒸発器入口バイパス系統、40は中圧給水調節弁である。   In the figure, 31 is an intermediate pressure secondary evaporator, 33 is an intermediate pressure steam separator, 35 is an intermediate pressure distributor, 36 is an intermediate pressure secondary evaporator inlet communication pipe, 37 is an intermediate pressure drain tank, and 38 is An intermediate pressure drain tank blow system, 39 is an intermediate pressure secondary evaporator inlet bypass system, and 40 is an intermediate pressure feed water control valve.

(第10実施形態)
図12は、第10実施形態に係る貫流式排熱回収ボイラの系統図である。本実施形態で前記第9実施形態と相違する点は、低圧ドラム排出系統26の代わりに、中圧一次蒸発器32の出口側から低圧節炭器13の入口側に延びる低圧節炭器入口再循環系統29を設けて、中圧一次蒸発器32の缶水を低圧節炭器13の入口側に排出した点である。
(10th Embodiment)
FIG. 12 is a system diagram of the once-through exhaust heat recovery boiler according to the tenth embodiment. The present embodiment is different from the ninth embodiment in that the low pressure economizer inlet extending from the outlet side of the intermediate pressure primary evaporator 32 to the inlet side of the low pressure economizer 13 is used instead of the low pressure drum discharge system 26. The circulation system 29 is provided, and the can water of the intermediate pressure primary evaporator 32 is discharged to the inlet side of the low pressure economizer 13.

(第11実施形態)
図13は、第11実施形態に係る貫流式排熱回収ボイラの系統図である。本実施形態の場合、一次蒸発器8の出口側から低圧節炭器13の入口側に延びる低圧節炭器入口再循環系統29を設けて、一次蒸発器8の缶水を低圧節炭器13の入口側に排出している。
(Eleventh embodiment)
FIG. 13 is a system diagram of the once-through exhaust heat recovery boiler according to the eleventh embodiment. In the case of the present embodiment, a low pressure economizer inlet recirculation system 29 extending from the outlet side of the primary evaporator 8 to the inlet side of the low pressure economizer 13 is provided, and the can water of the primary evaporator 8 is supplied to the low pressure economizer 13. It is discharged to the inlet side.

(第12実施形態)
図14は、第12実施形態に係る貫流式排熱回収ボイラの系統図である。本実施形態の場合、一次蒸発器8の出口側から中圧節炭器11に延びる中圧節炭器系再循環系統30を設けて、一次蒸発器8の缶水を中圧節炭器11へ再循環している。
(Twelfth embodiment)
FIG. 14 is a system diagram of a once-through exhaust heat recovery boiler according to a twelfth embodiment. In the case of the present embodiment, a medium pressure economizer recirculation system 30 extending from the outlet side of the primary evaporator 8 to the medium pressure economizer 11 is provided, and the can water of the primary evaporator 8 is supplied to the medium pressure economizer 11. Recirculating to

本実施形態などのように中圧節炭器系再循環系統30を中圧節炭器11に接続する場合は、中圧節炭器11を構成している多数の伝熱パネルどうしが連絡管で連結されているため、そのいずれかの連絡管に前記中圧節炭器系再循環系統30の配管を接続することになる。   When the medium pressure economizer recirculation system 30 is connected to the medium pressure economizer 11 as in the present embodiment, a number of heat transfer panels constituting the medium pressure economizer 11 are connected to each other. Therefore, the pipe of the medium pressure economizer recirculation system 30 is connected to any one of the connecting pipes.

本発明の第1実施形態に係る貫流式排熱回収ボイラの系統図である。1 is a system diagram of a once-through exhaust heat recovery boiler according to a first embodiment of the present invention. その第1実施形態に係る貫流式排熱回収ボイラの低圧節炭器における入口給水温度上昇を示す特性図である。It is a characteristic view which shows the inlet water supply temperature rise in the low pressure economizer of the once-through type heat recovery steam generator according to the first embodiment. 本発明の第2実施形態に係る貫流式排熱回収ボイラの系統図である。It is a systematic diagram of the once-through-type exhaust heat recovery boiler which concerns on 2nd Embodiment of this invention. 本発明の第3実施形態に係る貫流式排熱回収ボイラの系統図である。It is a systematic diagram of a once-through type exhaust heat recovery boiler according to a third embodiment of the present invention. 本発明の第4実施形態に係る貫流式排熱回収ボイラの系統図である。It is a systematic diagram of the once-through type exhaust heat recovery boiler which concerns on 4th Embodiment of this invention. その第4実施形態に係る貫流式排熱回収ボイラの中圧節炭器における入口ならびに出口の給水温度上昇を示す特性図である。It is a characteristic view which shows the feed water temperature rise of the inlet_port | entrance and an exit in the medium pressure economizer in the once-through-type waste heat recovery boiler which concerns on the 4th Embodiment. 本発明の第5実施形態に係る貫流式排熱回収ボイラの系統図である。It is a systematic diagram of the once-through type exhaust heat recovery boiler which concerns on 5th Embodiment of this invention. 本発明の第6実施形態に係る貫流式排熱回収ボイラの系統図である。It is a systematic diagram of the once-through type exhaust heat recovery boiler which concerns on 6th Embodiment of this invention. 本発明の第7実施形態に係る貫流式排熱回収ボイラの系統図である。It is a systematic diagram of the once-through type exhaust heat recovery boiler which concerns on 7th Embodiment of this invention. 本発明の第8実施形態に係る貫流式排熱回収ボイラの系統図である。It is a systematic diagram of the once-through type exhaust heat recovery boiler which concerns on 8th Embodiment of this invention. 本発明の第9実施形態に係る貫流式排熱回収ボイラの系統図である。It is a systematic diagram of a once-through type exhaust heat recovery boiler according to a ninth embodiment of the present invention. 本発明の第10実施形態に係る貫流式排熱回収ボイラの系統図である。It is a systematic diagram of the once-through type exhaust heat recovery boiler which concerns on 10th Embodiment of this invention. 本発明の第11実施形態に係る貫流式排熱回収ボイラの系統図である。It is a systematic diagram of the once-through type exhaust heat recovery boiler which concerns on 11th Embodiment of this invention. 本発明の第12実施形態に係る貫流式排熱回収ボイラの系統図である。It is a systematic diagram of the once-through type exhaust heat recovery boiler which concerns on 12th Embodiment of this invention. コンバインドサイクル発電設備のプラント構成図である。It is a plant block diagram of a combined cycle power generation facility. 従来の貫流式排熱回収ボイラの系統図である。It is a systematic diagram of the conventional once-through type exhaust heat recovery boiler.

符号の説明Explanation of symbols

1:ガスタービン、2:排熱回収ボイラ、3:蒸気タービン、4:発電機、5:高圧過熱器、6:再熱器、7:高圧二次蒸発器、8:高圧一次蒸発器、9:高圧節炭器、10:中圧蒸発器、11:中圧節炭器、12:低圧蒸発器、13:低圧節炭器、14:高圧汽水分離器、15:中圧ドラム、16:低圧ドラム、17:高中圧給水ポンプ、18:低圧節炭器再循環系統、19:高圧一次蒸発器出口連絡管、20:高圧分配器、21:高圧二次蒸発器入口連絡管、22:高圧ドレンタンク、23:高圧ドレンタンクブロー系統、24:高圧二次蒸発器入口バイパス系統、25:高圧給水調節弁、26:低圧ドラム排出系統、27:中圧ドラム排出系統、28:燃料ガス加熱器、29:低圧節炭器入口再循環系統、30:中圧節炭器系再循環系統、31:中圧二次蒸発器、32:中圧一次節炭器、33:中圧汽水分離器、34:中圧一次蒸発器出口連絡管、35:中圧分配器、36:中圧二次蒸発器入口連絡管、37:中圧ドレンタンク、38:中圧ドレンタンクブロー系統、39:中圧二次蒸発器入口バイパス系統、40:中圧給水調節弁、41:節炭器再循環ポンプ、42:給水調節弁、43:圧力水調節弁。  1: gas turbine, 2: exhaust heat recovery boiler, 3: steam turbine, 4: generator, 5: high pressure superheater, 6: reheater, 7: high pressure secondary evaporator, 8: high pressure primary evaporator, 9 : High pressure economizer, 10: medium pressure evaporator, 11: medium pressure economizer, 12: low pressure evaporator, 13: low pressure economizer, 14: high pressure brackish water separator, 15: medium pressure drum, 16: low pressure Drum, 17: High and medium pressure feed pump, 18: Low pressure economizer recirculation system, 19: High pressure primary evaporator outlet communication pipe, 20: High pressure distributor, 21: High pressure secondary evaporator inlet communication pipe, 22: High pressure drain Tank: 23: High pressure drain tank blow system, 24: High pressure secondary evaporator inlet bypass system, 25: High pressure water supply control valve, 26: Low pressure drum discharge system, 27: Medium pressure drum discharge system, 28: Fuel gas heater, 29: Low pressure economizer inlet recirculation system, 30: Medium pressure economizer recirculation system 31: Medium pressure secondary evaporator, 32: Medium pressure primary economizer, 33: Medium pressure brackish water separator, 34: Medium pressure primary evaporator outlet connecting pipe, 35: Medium pressure distributor, 36: Medium pressure secondary Secondary evaporator inlet communication pipe, 37: Medium pressure drain tank, 38: Medium pressure drain tank blow system, 39: Medium pressure secondary evaporator inlet bypass system, 40: Medium pressure feed water control valve, 41: Recycler Pump, 42: water supply control valve, 43: pressure water control valve.

Claims (11)

二次蒸発器と、その二次蒸発器の排ガス流れ方向下流側に設置された一次蒸発器と、その一次蒸発器と前記二次蒸発器を直列に接続した連絡管と、前記二次蒸発器で発生した蒸気を汽水分離する汽水分離器と、前記一次蒸発器よりも低圧となる系に設置された低圧系のドラムを備えた貫流式排熱回収ボイラにおいて、
前記一次蒸発器の出口側から前記低圧系のドラムへ缶水を排出する缶水排出系統を設置したことを特徴とする貫流式排熱回収ボイラ。
A secondary evaporator, a primary evaporator installed downstream in the exhaust gas flow direction of the secondary evaporator, a connecting pipe connecting the primary evaporator and the secondary evaporator in series, and the secondary evaporator In the once-through type exhaust heat recovery boiler equipped with a brackish water separator for bracking off the steam generated in, and a low-pressure drum installed in a system having a lower pressure than the primary evaporator,
A once-through exhaust heat recovery boiler having a can water discharge system for discharging can water from the outlet side of the primary evaporator to the low pressure drum.
二次蒸発器と、その二次蒸発器の排ガス流れ方向下流側に設置された一次蒸発器と、その一次蒸発器と前記二次蒸発器を直列に接続した連絡管と、前記二次蒸発器で発生した蒸気を汽水分離する汽水分離器と、前記一次蒸発器よりも低圧となる系に設置された低圧系の節炭器を備えた貫流式排熱回収ボイラにおいて、
前記一次蒸発器の出口側から前記低圧系の節炭器へ缶水を排出する缶水排出系統を設置したことを特徴とする貫流式排熱回収ボイラ。
A secondary evaporator, a primary evaporator installed downstream in the exhaust gas flow direction of the secondary evaporator, a connecting pipe connecting the primary evaporator and the secondary evaporator in series, and the secondary evaporator In the once-through type heat recovery steam generator equipped with a brackish water separator for bracking off the steam generated in the above, and a low-pressure system economizer installed in a system having a lower pressure than the primary evaporator,
A once-through exhaust heat recovery boiler, wherein a can water discharge system for discharging can water from the outlet side of the primary evaporator to the low pressure economizer is installed.
請求項1または2に記載の貫流式排熱回収ボイラにおいて、前記一次蒸発器の排ガス流れ方向下流側に前記一次蒸発器と同圧系統の節炭器を設置し、その同圧系統の節炭器の出口側に給水調節弁または圧力調節弁を設け、その給水調節弁または圧力調節弁の入口側から前記二次蒸発器の入口側に向けてバイパス系統を設けたことを特徴とする貫流式排熱回収ボイラ。  3. The once-through exhaust heat recovery boiler according to claim 1, wherein a economizer of the same pressure system as the primary evaporator is installed downstream of the primary evaporator in the exhaust gas flow direction, and the economizer of the same pressure system is installed. A once-through type characterized in that a water supply control valve or a pressure control valve is provided on the outlet side of the evaporator, and a bypass system is provided from the inlet side of the water supply control valve or pressure control valve toward the inlet side of the secondary evaporator Waste heat recovery boiler. 高圧二次蒸発器と、その高圧二次蒸発器の排ガス流れ方向下流側に設置された高圧一次蒸発器と、その高圧一次蒸発器と前記高圧二次蒸発器を直列に接続した連絡管と、前記高圧二次蒸発器で発生した蒸気を汽水分離する高圧汽水分離器と、前記高圧一次蒸発器よりも低圧となる系に設置された低圧ドラムを備えた貫流式排熱回収ボイラにおいて、
前記高圧一次蒸発器の出口側から前記低圧ドラムへ缶水を排出する缶水排出系統を設置したことを特徴とする貫流式排熱回収ボイラ。
A high-pressure secondary evaporator, a high-pressure primary evaporator installed on the downstream side in the exhaust gas flow direction of the high-pressure secondary evaporator, a communication pipe connecting the high-pressure primary evaporator and the high-pressure secondary evaporator in series, In the once-through exhaust heat recovery boiler comprising a high-pressure steam separator for steam-separating steam generated in the high-pressure secondary evaporator, and a low-pressure drum installed in a system having a lower pressure than the high-pressure primary evaporator,
A once-through exhaust heat recovery boiler having a can water discharge system for discharging can water from the outlet side of the high pressure primary evaporator to the low pressure drum.
高圧二次蒸発器と、その高圧二次蒸発器の排ガス流れ方向下流側に設置された高圧一次蒸発器と、その高圧一次蒸発器と前記高圧二次蒸発器を直列に接続した連絡管と、前記高圧二次蒸発器で発生した蒸気を汽水分離する高圧汽水分離器と、前記高圧一次蒸発器よりも低圧となる系に設置された中圧ドラムを備えた貫流式排熱回収ボイラにおいて、
前記高圧一次蒸発器の出口側から前記中圧ドラムへ缶水を排出する缶水排出系統を設置したことを特徴とする貫流式排熱回収ボイラ。
A high-pressure secondary evaporator, a high-pressure primary evaporator installed on the downstream side in the exhaust gas flow direction of the high-pressure secondary evaporator, a communication pipe connecting the high-pressure primary evaporator and the high-pressure secondary evaporator in series, In the once-through exhaust heat recovery boiler provided with a high-pressure steam separator for steam-separating steam generated in the high-pressure secondary evaporator and a medium-pressure drum installed in a system having a lower pressure than the high-pressure primary evaporator,
A once-through exhaust heat recovery boiler, wherein a can water discharge system for discharging can water from the outlet side of the high pressure primary evaporator to the intermediate pressure drum is installed.
高圧二次蒸発器と、その高圧二次蒸発器の排ガス流れ方向下流側に設置された高圧一次蒸発器と、その高圧一次蒸発器と前記高圧二次蒸発器を直列に接続した連絡管と、前記高圧二次蒸発器で発生した蒸気を汽水分離する高圧汽水分離器と、前記高圧一次蒸発器よりも低圧となる系に設置された中圧節炭器を備えた貫流式排熱回収ボイラにおいて、
前記高圧一次蒸発器の出口側から前記中圧節炭器へ缶水を排出する缶水排出系統を設置したことを特徴とする貫流式排熱回収ボイラ。
A high-pressure secondary evaporator, a high-pressure primary evaporator installed on the downstream side in the exhaust gas flow direction of the high-pressure secondary evaporator, a communication pipe connecting the high-pressure primary evaporator and the high-pressure secondary evaporator in series, In a once-through type exhaust heat recovery boiler equipped with a high-pressure steam separator for steam-separating steam generated in the high-pressure secondary evaporator and a medium-pressure economizer installed in a system having a lower pressure than the high-pressure primary evaporator ,
A once-through exhaust heat recovery boiler, wherein a can water discharge system for discharging can water from the outlet side of the high pressure primary evaporator to the medium pressure economizer is installed.
高圧二次蒸発器と、その高圧二次蒸発器の排ガス流れ方向下流側に設置された高圧一次蒸発器と、その高圧一次蒸発器と前記高圧二次蒸発器を直列に接続した連絡管と、前記高圧二次蒸発器で発生した蒸気を汽水分離する高圧汽水分離器と、前記高圧一次蒸発器よりも低圧となる中圧ドラムならびに低圧ドラムを備えた貫流式排熱回収ボイラにおいて、
前記高圧一次蒸発器の出口側から前記中圧ドラムならびに低圧ドラムへ缶水を排出する缶水排出系統を設置したことを特徴とする貫流式排熱回収ボイラ。
A high-pressure secondary evaporator, a high-pressure primary evaporator installed on the downstream side in the exhaust gas flow direction of the high-pressure secondary evaporator, a communication pipe connecting the high-pressure primary evaporator and the high-pressure secondary evaporator in series, In a once-through exhaust heat recovery boiler comprising a high-pressure steam separator for steam-separating steam generated in the high-pressure secondary evaporator, an intermediate-pressure drum having a lower pressure than the high-pressure primary evaporator, and a low-pressure drum,
A once-through exhaust heat recovery boiler having a can water discharge system for discharging can water from the outlet side of the high pressure primary evaporator to the intermediate pressure drum and the low pressure drum.
高圧二次蒸発器と、その高圧二次蒸発器の排ガス流れ方向下流側に設置された高圧一次蒸発器と、その高圧一次蒸発器と前記高圧二次蒸発器を直列に接続した連絡管と、前記高圧二次蒸発器で発生した蒸気を汽水分離する高圧汽水分離器と、前記高圧一次蒸発器よりも低圧となる中圧ドラムならびに低圧節炭器を備えた貫流式排熱回収ボイラにおいて、
前記高圧一次蒸発器の出口側から前記中圧ドラムならびに低圧節炭器へ缶水を排出する缶水排出系統を設置したことを特徴とする貫流式排熱回収ボイラ。
A high-pressure secondary evaporator, a high-pressure primary evaporator installed on the downstream side in the exhaust gas flow direction of the high-pressure secondary evaporator, a communication pipe connecting the high-pressure primary evaporator and the high-pressure secondary evaporator in series, In a once-through exhaust heat recovery boiler equipped with a high-pressure steam separator for steam-separating steam generated in the high-pressure secondary evaporator, a medium-pressure drum and a low-pressure economizer that have a lower pressure than the high-pressure primary evaporator,
A once-through exhaust heat recovery boiler, wherein a can water discharge system for discharging can water from the outlet side of the high pressure primary evaporator to the intermediate pressure drum and the low pressure economizer is installed.
請求項4ないし8のいずれか1項に記載の貫流式排熱回収ボイラにおいて、前記高圧一次蒸発器の排ガス流れ方向下流側に設置された高圧節炭器の出口側に給水調節弁または圧力調節弁を設け、その給水調節弁または圧力調節弁の入口側から前記高圧二次蒸発器の入口側に向けて延びたバイパス系統を設けたことを特徴とする貫流式排熱回収ボイラ。  The once-through type exhaust heat recovery boiler according to any one of claims 4 to 8, wherein a feed water control valve or a pressure control is provided at an outlet side of a high pressure economizer installed downstream of the high pressure primary evaporator in an exhaust gas flow direction. A once-through exhaust heat recovery boiler comprising a valve and a bypass system extending from an inlet side of the water supply control valve or the pressure control valve toward an inlet side of the high-pressure secondary evaporator. 高圧二次蒸発器と、その高圧二次蒸発器の排ガス流れ方向下流側に設置された高圧一次蒸発器と、その高圧一次蒸発器と前記高圧二次蒸発器を直列に接続した高圧連絡管と、前記高圧二次蒸発器で発生した蒸気を汽水分離する高圧汽水分離器とを備えた高圧系統と、
前記高圧一次蒸発器の排ガス流れ方向下流側に設置された中圧二次蒸発器と、その中圧二次蒸発器の排ガス流れ方向下流側に設置された中圧一次蒸発器と、その中圧一次蒸発器と前記中圧二次蒸発器を直列に接続した中圧連絡管と、前記中圧二次蒸発器で発生した蒸気を汽水分離する中圧汽水分離器と、前記中圧一次蒸発器の排ガス流れ方向下流側に設置された中圧節炭器とを備えた中圧系統と、
その中圧系統よりも低圧となる系に設置された低圧ドラムを備えた貫流式排熱回収ボイラにおいて、
前記高圧一次蒸発器の出口側から前記中圧節炭器へ缶水を排出する第1の缶水排出系統と、
前記中圧一次蒸発器の出口側から前記低圧ドラムへ缶水を排出する第2の缶水排出系統を設置したことを特徴とする貫流式排熱回収ボイラ。
A high-pressure secondary evaporator, a high-pressure primary evaporator installed downstream of the high-pressure secondary evaporator in the exhaust gas flow direction, a high-pressure connecting pipe connecting the high-pressure primary evaporator and the high-pressure secondary evaporator in series, A high-pressure system comprising a high-pressure steam separator for steam-separating steam generated in the high-pressure secondary evaporator;
An intermediate pressure secondary evaporator installed downstream of the high pressure primary evaporator in the exhaust gas flow direction, an intermediate pressure primary evaporator installed downstream of the intermediate pressure secondary evaporator in the exhaust gas flow direction, and an intermediate pressure thereof An intermediate pressure communication pipe in which a primary evaporator and the intermediate pressure secondary evaporator are connected in series, an intermediate pressure brackish water separator that separates steam generated by the intermediate pressure secondary evaporator, and the intermediate pressure primary evaporator An intermediate pressure system having an intermediate pressure economizer installed downstream of the exhaust gas flow direction of
In a once-through exhaust heat recovery boiler equipped with a low-pressure drum installed in a system that is lower in pressure than the medium-pressure system,
A first can water discharge system for discharging can water from the outlet side of the high pressure primary evaporator to the medium pressure economizer;
A once-through exhaust heat recovery boiler having a second can water discharge system for discharging can water from the outlet side of the intermediate pressure primary evaporator to the low pressure drum.
高圧二次蒸発器と、その高圧二次蒸発器の排ガス流れ方向下流側に設置された高圧一次蒸発器と、その高圧一次蒸発器と前記高圧二次蒸発器を直列に接続した高圧連絡管と、前記高圧二次蒸発器で発生した蒸気を汽水分離する高圧汽水分離器とを備えた高圧系統と、
前記高圧一次蒸発器の排ガス流れ方向下流側に設置された中圧二次蒸発器と、その中圧二次蒸発器の排ガス流れ方向下流側に設置された中圧一次蒸発器と、その中圧一次蒸発器と前記中圧二次蒸発器を直列に接続した中圧連絡管と、前記中圧二次蒸発器で発生した蒸気を汽水分離する中圧汽水分離器と、前記中圧一次蒸発器の排ガス流れ方向下流側に設置された中圧節炭器とを備えた中圧系統と、
その中圧系統よりも低圧となる系に設置された低圧節炭器を備えた貫流式排熱回収ボイラにおいて、
前記高圧一次蒸発器の出口側から前記中圧節炭器へ缶水を排出する第1の缶水排出系統と、
前記中圧一次蒸発器の出口側から前記低圧節炭器へ缶水を排出する第2の缶水排出系統を設置したことを特徴とする貫流式排熱回収ボイラ。
A high-pressure secondary evaporator, a high-pressure primary evaporator installed downstream of the high-pressure secondary evaporator in the exhaust gas flow direction, a high-pressure connecting pipe connecting the high-pressure primary evaporator and the high-pressure secondary evaporator in series, A high-pressure system comprising a high-pressure steam separator for steam-separating steam generated in the high-pressure secondary evaporator;
An intermediate pressure secondary evaporator installed downstream of the high pressure primary evaporator in the exhaust gas flow direction, an intermediate pressure primary evaporator installed downstream of the intermediate pressure secondary evaporator in the exhaust gas flow direction, and an intermediate pressure thereof An intermediate pressure communication pipe in which a primary evaporator and the intermediate pressure secondary evaporator are connected in series, an intermediate pressure brackish water separator that separates steam generated by the intermediate pressure secondary evaporator, and the intermediate pressure primary evaporator An intermediate pressure system having an intermediate pressure economizer installed downstream of the exhaust gas flow direction of
In the once-through exhaust heat recovery boiler equipped with a low-pressure economizer installed in a system that is lower in pressure than the medium-pressure system,
A first can water discharge system for discharging can water from the outlet side of the high pressure primary evaporator to the medium pressure economizer;
A once-through exhaust heat recovery boiler, wherein a second can water discharge system for discharging can water from the outlet side of the intermediate pressure primary evaporator to the low pressure economizer is installed.
JP2007242764A 2007-09-19 2007-09-19 Once-through exhaust heat recovery boiler Expired - Fee Related JP5041941B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007242764A JP5041941B2 (en) 2007-09-19 2007-09-19 Once-through exhaust heat recovery boiler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007242764A JP5041941B2 (en) 2007-09-19 2007-09-19 Once-through exhaust heat recovery boiler

Publications (2)

Publication Number Publication Date
JP2009074726A JP2009074726A (en) 2009-04-09
JP5041941B2 true JP5041941B2 (en) 2012-10-03

Family

ID=40609874

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007242764A Expired - Fee Related JP5041941B2 (en) 2007-09-19 2007-09-19 Once-through exhaust heat recovery boiler

Country Status (1)

Country Link
JP (1) JP5041941B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5448883B2 (en) * 2010-01-28 2014-03-19 バブコック日立株式会社 Once-through exhaust heat recovery boiler
US20140041359A1 (en) * 2012-08-13 2014-02-13 Babcock & Wilcox Power Generation Group, Inc. Rapid startup heat recovery steam generator
JP7111525B2 (en) * 2018-06-25 2022-08-02 三菱重工業株式会社 Once-through heat recovery boiler and control system for once-through heat recovery boiler
CN114135853A (en) * 2021-11-03 2022-03-04 中山嘉明电力有限公司 Method and system for increasing outlet smoke temperature of low-pressure economizer

Also Published As

Publication number Publication date
JP2009074726A (en) 2009-04-09

Similar Documents

Publication Publication Date Title
RU2537823C2 (en) Improved steam cycle for dual pressure waste heat boiler with intermediate superheating
RU2193726C2 (en) Waste heat-powered steam generator
JP3784413B2 (en) Waste heat boiler operation method and waste heat boiler operated by this method
US8820078B1 (en) Heat recovery steam generator and method for fast starting combined cycles
US20190072006A1 (en) Method and apparatus to reduce thermal stress when starting combined cycle power systems
US6237542B1 (en) Heat recovery boiler and hot banking releasing method thereof
US9581328B2 (en) High efficiency feedwater heater
CN104806308B (en) A kind of prioritization scheme of ultra supercritical double reheat power generation sets
US10247409B2 (en) Remote preheat and pad steam generation
JP5183305B2 (en) Startup bypass system in steam power plant
JP5725913B2 (en) Combined cycle plant
JP5041941B2 (en) Once-through exhaust heat recovery boiler
JP6400779B1 (en) Power plant and operation method thereof
US20160273406A1 (en) Combined cycle system
US20040025510A1 (en) Method for operating a gas and steam turbine installation and corresponding installation
KR102106676B1 (en) Steam turbine plant, combined cycle plant equipped with same, and method of operating steam turbine plant
US10100680B2 (en) Combined cycle gas turbine plant comprising a waste heat steam generator and fuel preheating step
JP7086523B2 (en) A combined cycle power plant and a method for operating this combined cycle power plant
US10208630B2 (en) Method for operating a steam power plant and steam power plant for conducting said method
US20110162592A1 (en) Continuous steam generator
JP2007187352A (en) Starting method of boiler
JP2012117703A (en) Exhaust heat recovery boiler, and method for preventing corrosion during stopping of the same
JP6556648B2 (en) Power plant operation method
JP2007183068A (en) Once-through exhaust heat recovery boiler
JP4842071B2 (en) Operation method of once-through exhaust heat recovery boiler and operation method of power generation equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100408

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120329

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120626

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120710

R150 Certificate of patent or registration of utility model

Ref document number: 5041941

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150720

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees