JP5335595B2 - Chrome-plated stainless steel plate with excellent post-processing corrosion resistance - Google Patents

Chrome-plated stainless steel plate with excellent post-processing corrosion resistance Download PDF

Info

Publication number
JP5335595B2
JP5335595B2 JP2009172590A JP2009172590A JP5335595B2 JP 5335595 B2 JP5335595 B2 JP 5335595B2 JP 2009172590 A JP2009172590 A JP 2009172590A JP 2009172590 A JP2009172590 A JP 2009172590A JP 5335595 B2 JP5335595 B2 JP 5335595B2
Authority
JP
Japan
Prior art keywords
layer
corrosion resistance
plating
stainless steel
chromium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009172590A
Other languages
Japanese (ja)
Other versions
JP2010209458A (en
Inventor
俊治 坂本
慎一 寺岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel and Sumikin Stainless Steel Corp
Original Assignee
Nippon Steel and Sumikin Stainless Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumikin Stainless Steel Corp filed Critical Nippon Steel and Sumikin Stainless Steel Corp
Priority to JP2009172590A priority Critical patent/JP5335595B2/en
Priority to TW99103319A priority patent/TWI468557B/en
Priority to KR1020100012476A priority patent/KR101206004B1/en
Priority to CN201010121155A priority patent/CN101812706A/en
Priority to CN201310672380.9A priority patent/CN103757666B/en
Publication of JP2010209458A publication Critical patent/JP2010209458A/en
Application granted granted Critical
Publication of JP5335595B2 publication Critical patent/JP5335595B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、外層が水和クロム酸化物層で内層が金属クロム層から成る防食めっき層を有する耐食性に優れたクロムめっきステンレス鋼板に関し、特に当該鋼板に冷間加工を施した後にも優れた耐食性を発揮するクロムめっきステンレス鋼板に関する。   The present invention relates to a corrosion-resistant chromium-plated stainless steel sheet having an anti-corrosion plating layer in which the outer layer is a hydrated chromium oxide layer and the inner layer is a metal chromium layer, and particularly excellent corrosion resistance even after cold working the steel sheet. The present invention relates to a chrome-plated stainless steel sheet that exhibits

従来より、ステンレス鋼材に、めっき、塗装、化成処理などの各種表面処理を施して耐食性を高める技術が知られている。中でも、クロムめっきステンレス鋼材に関しては、意匠性の点からも好ましく、自動車用部品などの過酷な環境で使用されている。このような高耐食性クロムめっきステンレス鋼材に関して次の技術が開示されている。   2. Description of the Related Art Conventionally, techniques for improving corrosion resistance by performing various surface treatments such as plating, painting, and chemical conversion treatment on stainless steel materials are known. Among them, the chrome-plated stainless steel material is preferable from the viewpoint of design and is used in harsh environments such as automobile parts. The following technique is disclosed regarding such a highly corrosion-resistant chromium-plated stainless steel material.

下記特許文献1には、ステンレス鋼製品表面に厚さ0.1〜1.0μmのクロムめっきを直接施し、0.25規定塩酸(50℃)中でのアノード分極曲線の電流密度100μA/cmに対応する電位V100.t.p.が0.5V(Ag/AgCl)以上になるように、大気中で加熱処理を施すなどの処理を加える方法が記載されている。ここで、耐食性評価方法とされたアノード分極曲線の測定条件(0.25規定塩酸、50℃)が過酷過ぎるため、目標とするV100.t.p.を得るのは容易でなく、クロムめっき後48時間以内(望ましくはめっき直後)に100〜300℃の大気中に0.5〜24時間放置する加熱処理を必要とする。このような特殊の付帯要件を伴った製品は用途によっては過剰品質である上、工程が煩雑であるため生産性を阻害するとの問題があった。 In Patent Document 1 below, the surface of a stainless steel product is directly plated with chromium having a thickness of 0.1 to 1.0 μm, and the current density of the anodic polarization curve in 0.25 N hydrochloric acid (50 ° C.) is 100 μA / cm 2. Potential V100. t. p. Describes a method of applying a treatment such as a heat treatment in the air so that the voltage becomes 0.5 V (Ag / AgCl) or more. Here, since the measurement conditions (0.25 N hydrochloric acid, 50 ° C.) of the anodic polarization curve, which was regarded as a corrosion resistance evaluation method, are too severe, the target V100. t. p. It is not easy to obtain the heat treatment, and heat treatment is required to be left in the atmosphere of 100 to 300 ° C. for 0.5 to 24 hours within 48 hours (desirably immediately after plating) after chromium plating. A product with such special incidental requirements has a problem in that productivity is hindered due to excessive quality depending on applications and complicated processes.

また、下記特許文献2には、クロムめっきと酸化皮膜から成るクロムめっき製品の、5%NaCl、pH:10〜11における自然電位が−0.3V(vs.Ag/AgCl)以上になるように、陽極電解酸化処理や化学酸化処理などの湿式酸化処理を施す方法が記載されている。この方法は、特許文献1と比べて耐食性評価方法に違いがあるものの、付帯工程を必要とする点では特許文献1と同じであり、湿式処理を必要としているので廃液処理も必要となる問題があった。   Further, in Patent Document 2 below, the natural potential of a chromium plating product composed of chromium plating and an oxide film at 5% NaCl, pH: 10 to 11 is −0.3 V (vs. Ag / AgCl) or more. And a method of performing a wet oxidation treatment such as an anodic electrolytic oxidation treatment or a chemical oxidation treatment. Although this method has a difference in the corrosion resistance evaluation method as compared with Patent Document 1, it is the same as Patent Document 1 in that an auxiliary process is required, and there is a problem that waste liquid processing is also necessary because wet processing is required. there were.

また、下記特許文献3には、クロムめっきと酸化皮膜から成るクロムめっき製品の、5%NaCl、pH:10〜11における自然電位が−0.3V(vs.Ag/AgCl)以上になるように、クロムめっきの後にプラズマ処理を施す方法が記載されている。この方法は、特許文献1、2と同様に、付帯工程を必要としていた。   Further, in Patent Document 3 below, the natural potential of a chromium plating product composed of chromium plating and an oxide film at 5% NaCl, pH: 10 to 11 is −0.3 V (vs. Ag / AgCl) or more. A method of performing plasma treatment after chromium plating is described. This method requires an incidental process as in Patent Documents 1 and 2.

さらに、前記の従来技術は、いずれも加工、成形された製品を対象としてめっきを施す場合の技術であり、前もってクロムめっきを施した製品を加工した後の耐食性に関するものではなかった。   Further, all of the above-mentioned conventional techniques are techniques when plating is performed on a processed and molded product, and is not related to corrosion resistance after processing a product plated with chromium in advance.

一般に、クロムめっき層にはピンホールやミクロ亀裂も多く導入され、また硬質で延性に乏しく冷間加工によって損傷を受けやすいという欠点もある。各種自動車部品を始め、建材、厨房器具などの広範囲の用途に対応するには、めっき後に冷間加工が施された場合にも十分な耐食性を有することが重要であり、とりわけ広範囲の用途に供されるステンレス鋼板については十分な加工後耐食性を備えることが不可欠の要素となる。しかしながら、この点に関して、従来の技術では明らかにされていなかった。   Generally, many pinholes and microcracks are introduced into the chromium plating layer, and there are also disadvantages that it is hard and poor in ductility and is easily damaged by cold working. In order to support a wide range of applications such as various automotive parts, building materials, kitchen appliances, etc., it is important to have sufficient corrosion resistance even when cold-worked after plating, especially for a wide range of applications. It is an indispensable element to provide sufficient post-processing corrosion resistance for the stainless steel plate to be processed. However, this has not been clarified by the prior art.

特許第2687014号公報Japanese Patent No. 2668714 特開2005−232529号公報JP-A-2005-232529 特開2007−56282号公報JP 2007-56282 A

本発明は、加工後の耐食性に優れたクロムめっきステンレス鋼板を提供することを課題とする。   This invention makes it a subject to provide the chromium plating stainless steel plate excellent in the corrosion resistance after a process.

金属材料の耐食性は腐食環境の過酷度に依存する。マイルド環境では低級材でも充分な耐食性が得られ、過酷な環境では高級材でないと充分な耐食性が得られない。そこで、本発明においては適用されるべき腐食環境を大きく2つに分けて取り扱うことにした。すなわち、自動車部品や屋外建材など屋外で使用される場合の過酷環境を再現する手段として、乾湿繰り返しサイクルが付加される複合サイクル腐食試験(以後、CCTと略す)によって評価することとし、家電品、厨房、屋内用建材など屋内で使用される場合のマイルド環境を模擬する手段として、塩水噴霧試験(以後、SSTと略す)を用いて評価することにした。以後、過酷環境、マイルド環境の順で説明する。   The corrosion resistance of metallic materials depends on the severity of the corrosive environment. In a mild environment, sufficient corrosion resistance can be obtained even with a low-grade material, and in a severe environment, sufficient corrosion resistance cannot be obtained unless it is a high-grade material. Therefore, in the present invention, the corrosive environment to be applied is roughly divided into two. In other words, as a means to reproduce the harsh environment when used outdoors such as automobile parts and outdoor building materials, it will be evaluated by a combined cycle corrosion test (hereinafter abbreviated as CCT) to which repeated dry and wet cycles are applied. As a means for simulating a mild environment when used indoors such as kitchens and indoor building materials, it was decided to evaluate using a salt spray test (hereinafter abbreviated as SST). In the following, explanation will be given in the order of harsh environment and mild environment.

(過酷な腐食環境に対する技術)
本発明者らは、先ず、従来から知られている標準的なクロムめっき浴であるサ−ジェント浴を用いて電気めっき法でCr含有量17%のフェライト系ステンレス鋼板にクロムめっきを施し、電解時間を変化させてめっき厚みを変えた鋼板サンプルを作製し、このサンプルから採取した試験片にドロービード加工を加えた後、耐食性試験に供してクロムめっき厚みと加工後耐食性の関係を調査した。その結果を図1に示す。なお、めっき浴組成はクロム酸:100g/L、硫酸:1.0g/Lで、浴温度は50℃、電流密度は、20A/dm、電解時間を0.5〜15secとした。めっき層の厚みは、グロー放電発光分光分析装置を用いてクロムと酸素の厚み方向元素濃度プロファイルを測定して求めた。ドロービード加工は、ビード部R=4mm、ビード高さ4mmのSKD11金型を800kgで押し付けながら板厚減少率20%の引き抜き加工を施す方法を適用した。耐食性評価方法としては、JASO M610−92に準じたCCT試験とし、発銹の程度をJIS G 0595「ステンレス鋼の表面さび発生程度評価方法」(2004)に記されたRNを指標として評価した。
(Technology for severe corrosive environments)
The inventors first applied chromium plating to a ferritic stainless steel plate having a Cr content of 17% by electroplating using a Sargent bath, which is a conventionally known standard chromium plating bath, and electrolyzed it. A steel plate sample with varying plating thickness was produced by changing the time, and a draw bead processing was applied to a test piece collected from this sample, and then subjected to a corrosion resistance test to investigate the relationship between the chromium plating thickness and the post-processing corrosion resistance. The result is shown in FIG. The plating bath composition was chromic acid: 100 g / L, sulfuric acid: 1.0 g / L, the bath temperature was 50 ° C., the current density was 20 A / dm 2 , and the electrolysis time was 0.5 to 15 sec. The thickness of the plating layer was determined by measuring the element concentration profile in the thickness direction of chromium and oxygen using a glow discharge optical emission spectrometer. For the draw bead processing, a method of performing a drawing process with a plate thickness reduction rate of 20% while pressing an SKD11 mold having a bead portion R = 4 mm and a bead height of 4 mm with 800 kg was applied. As a corrosion resistance evaluation method, a CCT test according to JASO M610-92 was used, and the degree of rusting was evaluated using RN described in JIS G 0595 “Stainless Steel Surface Rust Generation Evaluation Method” (2004) as an index.

図1より、めっき厚みによって加工後耐食性が支配されることがわかる。加工後耐食性には、めっき厚みは薄いほうが有利である。めっき厚みが厚いと加工によるめっき層損傷が激しくなるためである。しかしながら、同一のめっき厚みでも加工後耐食性の変動が大きいことがわかる。   FIG. 1 shows that the post-processing corrosion resistance is governed by the plating thickness. A thinner plating thickness is advantageous for the corrosion resistance after processing. This is because if the plating thickness is thick, damage to the plating layer due to processing becomes severe. However, it can be seen that the variation in corrosion resistance after processing is large even with the same plating thickness.

本発明者等は、この原因について調査した結果、加工後耐食性の変動は加工前のクロムめっき層の性状に依存することがわかった。すなわち、図2に示すように、加工前サンプルのカソード電流密度と加工後耐食性に明瞭な相関関係があることを知見した。   As a result of investigating this cause, the present inventors have found that the variation in corrosion resistance after processing depends on the properties of the chromium plating layer before processing. That is, as shown in FIG. 2, it was found that there is a clear correlation between the cathode current density of the sample before processing and the corrosion resistance after processing.

クロムめっき材の加工後耐食性は、めっき層が局部破壊されて露出された地鉄の面積率に支配される。クロムめっき層にはピンホールやミクロ亀裂などの潜在欠陥が含まれており、加工によってこれらを起点としためっき層破壊が生じて地鉄露出に至る。したがって、めっきままの状態で潜在欠陥が少なければ加工後の地鉄露出も少なく、結果として加工後耐食性もより良好となる。   The post-processing corrosion resistance of the chromium plating material is governed by the area ratio of the ground iron exposed by the local destruction of the plating layer. The chrome plating layer contains latent defects such as pinholes and microcracks, and the plating layer breaks from these as a result of processing, leading to the exposure of the ground iron. Therefore, if there are few latent defects in the as-plated state, the exposed post-processed iron is less, and as a result, the post-processing corrosion resistance is better.

そして、この潜在欠陥の寡多はカソード電流密度で表現できる。めっき層の外層は水和クロム酸化物であり、ここではカソード反応がほとんど起こらない。この外層に欠陥があって下地の金属クロム層あるいはさらに下地の地鉄が露出していればカソード反応が起こる。したがって、カソード電流密度の大小はめっき層外層の欠陥面積率に対応するものであり、これがクロムめっき層全体における潜在欠陥の量と相関関係にある。   The number of latent defects can be expressed by the cathode current density. The outer layer of the plating layer is a hydrated chromium oxide, and the cathode reaction hardly occurs here. If this outer layer is defective and the underlying metallic chromium layer or the underlying ground iron is exposed, a cathode reaction occurs. Therefore, the magnitude of the cathode current density corresponds to the defect area ratio of the outer plating layer, and this correlates with the amount of latent defects in the entire chromium plating layer.

以上より、良好な加工後耐食性を得るためには、めっき層厚みが適正であることが必要で、加えて、めっきままの状態でのカソード電流密度が適正であること、がより望ましいとの結論を得た。   From the above, in order to obtain good post-processing corrosion resistance, it is necessary that the plating layer thickness is appropriate, and in addition, it is more desirable that the cathode current density in the as-plated state is appropriate. Got.

次に、素材の影響について検討した。鋼成分を種々変化させた実験室溶製材を用いて冷延板を作製し、サージェント浴を用いた電気めっき法でクロムめっきを施し、めっき厚み0.02μm、カソード電流密度0.3〜0.6μA/cmのクロムめっきサンプルを作製し、前記と同様の方法で加工後耐食性を調査した。結果の一例を図3に示す。 Next, the influence of the material was examined. Cold-rolled sheets are prepared using laboratory melts with various steel components, and chromium plating is applied by electroplating using a sergeant bath. The plating thickness is 0.02 μm and the cathode current density is 0.3-0. A 6 μA / cm 2 chromium plating sample was prepared, and the corrosion resistance after processing was investigated by the same method as described above. An example of the results is shown in FIG.

これより、素材のCr含有量が不十分の場合には、満足すべき加工後耐食性が得られないことがわかる。この理由は、加工時のめっき層局部破壊部位でガルバニック腐食が生じるためである。したがって、素材の自然電位はめっき層の電位より貴であることが必要であり、これを満たすためにはCr含有量が、質量%で、少なくとも15.0%以上でなければならない。
(マイルドな腐食環境に対する技術)
前記の過酷環境の場合と同じ手法で、Cr含有量13%のフェライト系ステンレス鋼板にクロムめっきを施し、電解時間を変化させてめっき厚みを変えた鋼板サンプルを作製し、このサンプルから採取した試験片にドロービード加工を加えた後、耐食性試験に供してクロムめっき厚みと加工後耐食性の関係を調査した。その結果を図5に示す。耐食性評価方法としては、JIS Z 2371に記されたSST試験とし、発銹の程度をJIS G 0595「ステンレス鋼の表面さび発生程度評価方法」(2004)に記されたRNを指標として評価した。
From this, it can be seen that when the Cr content of the material is insufficient, satisfactory post-processing corrosion resistance cannot be obtained. The reason for this is that galvanic corrosion occurs at the local destruction site of the plating layer during processing. Therefore, the natural potential of the material needs to be more noble than the potential of the plating layer, and in order to satisfy this, the Cr content must be at least 15.0% by mass%.
(Technology for mild corrosive environment)
Using the same technique as in the harsh environment described above, a ferritic stainless steel plate having a Cr content of 13% was subjected to chromium plating, and a steel plate sample was produced by changing the electrolysis time to change the plating thickness. After adding a draw bead processing to the piece, it was subjected to a corrosion resistance test to investigate the relationship between the chromium plating thickness and the post-processing corrosion resistance. The result is shown in FIG. As the corrosion resistance evaluation method, the SST test described in JIS Z 2371 was used, and the degree of rusting was evaluated using the RN described in JIS G 0595 “Stainless steel surface rust generation evaluation method” (2004) as an index.

図5より、前記のCCT試験結果と同様に、めっき厚みによって加工後耐食性が支配され、また、図6に示すように、加工前サンプルのカソード電流密度と加工後耐食性に明瞭な相関関係があることも、前記のCCT試験結果と同様である。   As shown in FIG. 5, the corrosion resistance after processing is governed by the plating thickness as in the CCT test result, and as shown in FIG. 6, there is a clear correlation between the cathode current density of the sample before processing and the corrosion resistance after processing. This is the same as the CCT test result.

以上より、過酷環境の場合と同様に、マイルド環境においても、めっき層厚みが適正であれば良好な耐食性が得られ、加えて、めっきままの状態でのカソード電流密度が適正であれば、より望ましいとの結論を得た。
過酷環境の場合と異なるのは、基材の必要条件である。鋼成分を種々変化させた実験室溶製材から作製した冷延板に、めっき厚みとカソード電流密度が適正なクロムめっきを施し、前記と同様の方法で加工後耐食性を調査した。結果の一例を図7に示す。
From the above, as in the harsh environment, even in a mild environment, good corrosion resistance can be obtained if the plating layer thickness is appropriate, and in addition, if the cathode current density in the as-plated state is appropriate, more The conclusion was desirable.
What is different from the harsh environment is the requirement of the substrate. Chromium plating with appropriate plating thickness and cathode current density was applied to cold-rolled sheets made from laboratory melts with various steel components, and the corrosion resistance after processing was investigated by the same method as described above. An example of the result is shown in FIG.

これより、基材のCr含有量が10.5%以上であれば満足すべき加工後耐食性が得られることがわかり、前記の過酷環境におけるCr含有量15.0%より少なくなくて済む。   From this, it can be seen that if the Cr content of the substrate is 10.5% or more, satisfactory post-processing corrosion resistance can be obtained, and the Cr content in the harsh environment need not be less than 15.0%.

本発明は前記知見に基づいて構成したものであり、その要旨は特許請求の範囲に記載した通りの下記内容である。
(1)質量%で、Cr:15.0〜30.0%を含有するステンレス鋼板基材の表面に、外層が水和クロム酸化物層で内層が金属クロム層から成る防食めっき層を有し、前記防食めっき層の厚みが0.01〜0.10μmであり、前記防食めっき層は、大気開放状態の30℃,3.5%NaCl溶液中で測定されるカソード電流密度が、銀/塩化銀標準電極基準−0.6Vの条件において、2.5μA/cm 2 以下であることを特徴とする、加工後耐食性に優れたクロムめっきステンレス鋼板。
(2)質量%で、Cr:10.5〜15.0%を含有するステンレス鋼板基材の表面に、外層が水和クロム酸化物層で内層が金属クロム層から成る防食めっき層を有し、前記防食めっき層の厚みが0.01〜0.10μmであり、前記防食めっき層は、大気開放状態の30℃,3.5%NaCl溶液中で測定されるカソード電流密度が、銀/塩化銀標準電極基準−0.6Vの条件において、2.5μA/cm 2 以下であることを特徴とする、加工後耐食性に優れたクロムめっきステンレス鋼板。
The present invention is configured based on the above knowledge, and the gist thereof is the following contents as described in the claims.
(1) On a surface of a stainless steel plate base material containing Cr: 15.0 to 30.0% by mass%, and having an anticorrosion plating layer in which an outer layer is a hydrated chromium oxide layer and an inner layer is a metallic chromium layer The anticorrosion plating layer has a thickness of 0.01 to 0.10 μm, and the anticorrosion plating layer has a cathode current density measured in a 3.5% NaCl solution at 30 ° C. in an open air state. A chromium-plated stainless steel sheet excellent in post-processing corrosion resistance , characterized by being 2.5 μA / cm 2 or less under the condition of silver standard electrode reference −0.6 V.
(2) On a surface of a stainless steel plate base material containing Cr: 10.5 to 15.0% by mass%, and having an anticorrosion plating layer in which the outer layer is a hydrated chromium oxide layer and the inner layer is a metallic chromium layer The anticorrosion plating layer has a thickness of 0.01 to 0.10 μm, and the anticorrosion plating layer has a cathode current density measured in a 3.5% NaCl solution at 30 ° C. in an open air state. A chromium-plated stainless steel sheet excellent in post-processing corrosion resistance , characterized by being 2.5 μA / cm 2 or less under the condition of silver standard electrode reference −0.6 V.

以上述べたように、本発明によれば、加工後の耐食性に優れたクロムめっきステンレス鋼板を提供することができ、産業上有用な著しい効果を奏する。   As described above, according to the present invention, it is possible to provide a chrome-plated stainless steel sheet having excellent corrosion resistance after processing, and there are significant industrially useful effects.

めっき層厚みと加工後のCCT耐食性の関係を示す図である。It is a figure which shows the relationship between a plating layer thickness and the CCT corrosion resistance after a process. めっきまま状態でのカソード電流密度と加工後のCCT耐食性の関係を示す図である。It is a figure which shows the relationship between the cathode current density in an as-plated state, and the CCT corrosion resistance after a process. 素材のCr含有量と加工後のCCT耐食性の関係を示す図である。It is a figure which shows the relationship between Cr content of a raw material, and the CCT corrosion resistance after a process. ドロービード加工に用いる工具の形状を示す図である。It is a figure which shows the shape of the tool used for draw bead processing. めっき層厚みと加工後のSST耐食性の関係を示す図である。It is a figure which shows the relationship between a plating layer thickness and SST corrosion resistance after a process. めっきまま状態でのカソード電流密度と加工後のSST耐食性の関係を示す図である。It is a figure which shows the relationship between the cathode current density in an as-plated state, and the SST corrosion resistance after a process. 素材のCr含有量と加工後のSST耐食性の関係を示す図である。It is a figure which shows the relationship between Cr content of a raw material, and SST corrosion resistance after a process.

以下、本発明について詳細に説明する。   Hereinafter, the present invention will be described in detail.

先ず、本発明におけるステンレス鋼板素材について説明する。   First, the stainless steel plate material in the present invention will be described.

本発明における素材としては、過酷な腐食環境に対しては、質量%で、Cr:15.0〜30.0%を含有するステンレス鋼板とし、マイルドな腐食環境に対してはCr:10.5〜15.0%を含有するステンレス鋼板とする。クロムめっきステンレス鋼板の加工後耐食性を確保する基本元素であるCrの含有量が前記範囲であれば、鋼板の金属組織は問わない。フェライト系、オーステナイト系、マルテンサイト系あるいはこれらの混合組織鋼のいずれであってもよい。また、Cr以外の耐食性に寄与するMo,Ni,Cu,Ti,Nb,C,Nなどの合金元素は、従来技術を参照して必要に応じて調整すればよい。   The material in the present invention is a stainless steel plate containing Cr: 15.0 to 30.0% by mass% for a severe corrosive environment, and Cr: 10.5 for a mild corrosive environment. A stainless steel plate containing ˜15.0% is used. The metal structure of the steel sheet is not limited as long as the content of Cr, which is a basic element for ensuring corrosion resistance after processing of the chromium-plated stainless steel sheet, is within the above range. Any of ferritic, austenitic, martensitic, or mixed structure steels may be used. Further, alloy elements such as Mo, Ni, Cu, Ti, Nb, C, and N that contribute to corrosion resistance other than Cr may be adjusted as necessary with reference to the prior art.

以下に本発明で適用すべきスレンレス鋼板のCr含有量の限定理由を説明する。   The reason for limiting the Cr content of the stainless steel sheet to be applied in the present invention will be described below.

Crは素材の耐食性を支配する主要元素であり適量を含有させる。加工によって、めっき層が局部的に破壊されて一部で地鉄が露出する部位が形成されるが、当該部の発銹および腐食進展を極力抑制するには、めっき層と地鉄の間の電位差を極力小さくしておく必要がある。このために必要最小のCr含有量は、過酷環境に対しては質量%で15.0%、マイルド環境に対しては10.5%であり、これを下回るとガルバニック腐食が生じ、図3や図5に示すように満足すべき加工後耐食性は得られない。Cr含有量の上限は、耐食性の観点からは特に規定する必要はないが、素材自体の加工性やコスト等を考慮して、過酷環境に対しては質量%で30.0%を、マイルド環境に対しては15.0%を上限とするのが良い。   Cr is a main element that dominates the corrosion resistance of the material and contains an appropriate amount. By processing, the plating layer is locally destroyed and a part where the iron is exposed is formed in part, but in order to suppress the occurrence of corrosion and corrosion of the part as much as possible, the space between the plating layer and the iron It is necessary to make the potential difference as small as possible. For this purpose, the minimum Cr content is 15.0% by mass for harsh environments and 10.5% for mild environments, below which galvanic corrosion occurs. As shown in FIG. 5, satisfactory post-processing corrosion resistance cannot be obtained. The upper limit of Cr content does not need to be specified from the viewpoint of corrosion resistance, but considering the workability and cost of the material itself, 30.0% by mass% for harsh environments, mild environment The upper limit is preferably 15.0%.

前記組成のステンレス鋼板は、転炉や電気炉などで溶製、精錬された鋼片を熱間圧延、酸洗、冷延、焼鈍、仕上酸洗等を施す通常のステンレス鋼板の製造方法によって製造される。   The stainless steel plate having the above composition is manufactured by a normal stainless steel plate manufacturing method in which a steel piece melted and refined in a converter or an electric furnace is subjected to hot rolling, pickling, cold rolling, annealing, finish pickling, and the like. Is done.

次に、本発明における防食めっき層について説明する。   Next, the anticorrosion plating layer in this invention is demonstrated.

本発明における防食めっき層は、下層(内層)が金属クロム層で上層(外層)が水和クロム酸化物層から成り、0.01〜0.10μmの厚みを有するものとする。   The anticorrosion plating layer in the present invention is such that the lower layer (inner layer) is a metal chromium layer and the upper layer (outer layer) is a hydrated chromium oxide layer and has a thickness of 0.01 to 0.10 μm.

めっき層の上層(外層)に水和クロム酸化物層を配するのは、この表面ではカソード反応が生じないためである。加工によって地鉄露出に至るめっき欠陥が生じると当該部が腐食起点となる。ここで腐食が継続、成長していくには地鉄部のアノード溶解を支えるカソードがある面積で必要である。しかしながら欠陥周辺が水和クロム酸化物層で覆われていれば、ここではカソード反応が起こらないので、アノード溶解を支えられず、地鉄が露出していても極めて小規模で地鉄露出面上でのカソード反応が小さい場合には、腐食は容易に成長しない。このように、水和クロム酸化物層は、腐食の成長を抑止するために極めて重要な役割を果たす。なお、水和クロム酸化物層の存在は、X線光電子分光(XPS)やX線吸収端微細構造解析(EXAFS)などの表面分析法を用いて金属―酸素、金属―酸素―水素の結合を同定することによって確認できる。また、簡便には、オージェ電子分光(AES)やグロー放電電子分光(GDS)を用いて、めっき層厚み方向の元素濃度分布を測定することによって、水和クロム酸化物層の存在と厚みを把握できる。   The reason why the hydrated chromium oxide layer is disposed on the upper layer (outer layer) of the plating layer is that no cathode reaction occurs on this surface. When a plating defect that leads to the exposure of the ground iron occurs due to the processing, the part becomes a corrosion starting point. Here, in order for corrosion to continue and grow, it is necessary in the area where the cathode that supports the dissolution of the anode of the ground iron part exists. However, if the periphery of the defect is covered with a hydrated chromium oxide layer, the cathodic reaction does not occur here, so anodic dissolution cannot be supported, and even if the iron is exposed, it is extremely small and on the exposed surface. If the cathodic reaction at is small, corrosion does not grow easily. Thus, the hydrated chromium oxide layer plays an extremely important role in inhibiting corrosion growth. The presence of the hydrated chromium oxide layer is determined by the bonding of metal-oxygen and metal-oxygen-hydrogen using surface analysis methods such as X-ray photoelectron spectroscopy (XPS) and X-ray absorption edge fine structure analysis (EXAFS). This can be confirmed by identification. In addition, the presence and thickness of the hydrated chromium oxide layer can be ascertained by measuring the element concentration distribution in the thickness direction of the plating layer using Auger electron spectroscopy (AES) or glow discharge electron spectroscopy (GDS). it can.

めっき層の厚みを規定するのは、良好な加工後耐食性を確保するためである。すなわち、図1や図5に示すように、めっき層厚みが0.10μmを超えると満足すべき耐食性が得られなくなる。これは、めっき層が厚くなることによって、ミクロ亀裂などの潜在欠陥への歪集中が増大して大規模なめっき層損傷を引き起こし地鉄露出面積が大きくなるためである。地鉄露出面積が大きくなれば、周囲が水和クロム酸化物で覆われていても地鉄面上でカソード反応が進むようになるので、腐食が成長し耐食性は劣化する。一方、めっき層厚みが0.01μm未満ではピンホールが増大して地鉄露出が増えるので耐食性も不十分となる。   The reason for defining the thickness of the plating layer is to ensure good post-processing corrosion resistance. That is, as shown in FIGS. 1 and 5, when the plating layer thickness exceeds 0.10 μm, satisfactory corrosion resistance cannot be obtained. This is because, as the plating layer becomes thicker, strain concentration on latent defects such as microcracks increases, causing large-scale plating layer damage and increasing the exposed area of the ground iron. If the exposed area of the steel is increased, the cathodic reaction proceeds on the surface of the steel, even if the surrounding area is covered with hydrated chromium oxide, so that corrosion grows and the corrosion resistance deteriorates. On the other hand, if the thickness of the plating layer is less than 0.01 μm, the pinhole increases and the exposure of the base iron increases, so that the corrosion resistance becomes insufficient.

したがって、めっき層厚みは、厚すぎず薄すぎず、0.01〜0.10μmの範囲に制御するのが良く、より好ましい耐食性を得るには0.01〜0.05μmの範囲に留めるのが良い。なお、本発明で規定するめっき層厚みは、下層(内層):金属クロム層と上層(外層):水和クロム酸化物層の厚みの総和である。   Therefore, the plating layer thickness is not too thick and not too thin, and should be controlled in the range of 0.01 to 0.10 μm. To obtain more preferable corrosion resistance, the plating layer thickness should be kept in the range of 0.01 to 0.05 μm. good. In addition, the plating layer thickness prescribed | regulated by this invention is the sum total of the thickness of a lower layer (inner layer): Metal chromium layer and an upper layer (outer layer): Hydrated chromium oxide layer.

さらに、加工前のめっき層に含まれる潜在欠陥は可及的に少ないことが望ましい。潜在欠陥が多ければ、それだけ加工によってめっき層が損傷され易くなるからである。この潜在欠陥の多寡は、カソード電流密度を指標として知ることができる。めっき層の上層を被覆する水和クロム酸化物層上ではカソード反応は生じず、下層の金属クロム層あるいは地鉄上でのみカソード反応が起こるので、カソード電流密度を測定することによって潜在欠陥の程度を知ることができ、図2や図6に示すように、耐食性のより良好なめっき層を得ることができる。なお、ここで言うカソード電流密度は潜在欠陥面積率に対応するため、主にはめっき条件に依存するが、形成させるめっき厚みが極めて薄いため、めっき後のハンドリング等によって導入されるキズをも含んだ指標である。本発明で設定した望ましい条件は、大気開放状態の30℃,3.5%NaCl溶液中で測定されるカソード電流密度が、銀/塩化銀標準電極基準−0.6Vの条件において2.5μA/cm以下である。 Furthermore, it is desirable that the latent defects contained in the plating layer before processing be as small as possible. This is because the larger the number of latent defects, the more easily the plating layer is damaged by processing. The number of latent defects can be known using the cathode current density as an index. The cathode reaction does not occur on the hydrated chromium oxide layer that covers the upper layer of the plating layer, but only on the lower metal chromium layer or the iron base. As shown in FIG. 2 and FIG. 6, a plating layer with better corrosion resistance can be obtained. The cathode current density referred to here depends mainly on the plating conditions because it corresponds to the latent defect area ratio. However, since the plating thickness to be formed is extremely thin, it also includes scratches introduced by handling after plating. It is an indicator. The desirable condition set in the present invention is that the cathode current density measured in a 3.5% NaCl solution at 30 ° C. in the open atmosphere is 2.5 μA / s under the condition of a silver / silver chloride standard electrode reference of −0.6 V. cm 2 or less.

前記要件を満たす防食めっき層は、通常の電気めっき法で得られる。めっき浴組成は特に限定する必要はなく、従来から知られているサージェント浴などを用いることができる。めっき浴としては、クロム酸:100〜400g/L、硫酸:1.0〜4.5g/Lの組成が好ましく、めっき条件としては、温度:45〜55℃、電流密度:10〜80A/dmの条件が好ましい。なお、クロム酸を主体とするめっき浴を用いて電気めっきを行えば、めっき層構造は自動的に下層が金属クロム層で上層が水和クロム酸化物層の2層構造となる。 The anticorrosion plating layer satisfying the above requirements can be obtained by a normal electroplating method. The plating bath composition is not particularly limited, and a conventionally known sergeant bath can be used. As the plating bath, a composition of chromic acid: 100 to 400 g / L, sulfuric acid: 1.0 to 4.5 g / L is preferable. As plating conditions, temperature: 45 to 55 ° C., current density: 10 to 80 A / dm. The condition of 2 is preferable. When electroplating is performed using a plating bath mainly composed of chromic acid, the plating layer structure automatically becomes a two-layer structure in which the lower layer is a metallic chromium layer and the upper layer is a hydrated chromium oxide layer.

めっき層の厚みは、グロー放電発光分光分析法によって求められるCrとOの厚み方向濃度分布データから求めるものとする。すなわち、表面から1.0μm深さにおけるクロム濃度を基材中のクロム濃度とし、これより5.0%高く、かつ酸素濃度が10.0%未満の値を示す表面からの深さ位置をめっき厚みとして定義する。本発明で用いた機器は、JOBIN YVON社製JY5000RF−PSS型であり、分析条件としては、Current Method Program:CNBisteel−05NNN−0、Mode:Constant Electric Power 40W、Ar Pressure:775MPa、Analytical Time:90sec、Sampling Time:0.020(sec/point)、とした。   The thickness of the plating layer is obtained from the concentration distribution data of Cr and O in the thickness direction obtained by glow discharge optical emission spectrometry. That is, the chromium concentration at a depth of 1.0 μm from the surface is defined as the chromium concentration in the base material, and the depth position from the surface where the oxygen concentration is 5.0% higher and the oxygen concentration is less than 10.0% is plated. Defined as thickness. The equipment used in the present invention is JY5000RF-PSS type manufactured by JOBIN YVON, and analysis conditions include Current Method Program: CNBistel-05NNN-0, Mode: Constant Electric Power 40W, Ar Pressure: 775 MPaAsec 980 MPaAsec. Sampling Time: 0.020 (sec / point).

また、カソード電流密度の測定は、静止状態かつ大気開放状態の30℃,3.5%NaCl溶液中で、銀/塩化銀標準電極を参照電極としてポテンシオスタットを用いた動電位法によって測定されるカソード分極曲線から求めるものとする。本発明では、東方技研(株)製ポテンシオスタットPS−08型を用い、試験片を前記溶液に浸漬後1分経過時点から掃引速度20mV/minでカソード分極曲線を測定し、銀/塩化銀標準電極基準−0.6Vにおける電流密度を本発明で言うカソード電流密度として求めた。   The cathode current density was measured by a potentiostat method using a potentiostat with a silver / silver chloride standard electrode as a reference electrode in a static solution at 30 ° C. and 3.5% NaCl in an open atmosphere. It is determined from the cathode polarization curve. In the present invention, a potentiostat PS-08 type manufactured by Toho Giken Co., Ltd. was used, and the cathode polarization curve was measured at a sweep rate of 20 mV / min from the time when 1 minute passed after the test piece was immersed in the solution. The current density at a standard electrode reference of −0.6 V was determined as the cathode current density referred to in the present invention.

また、加工後耐食性の評価方法としては、幅40mmの短冊試験片にドロービード加工を施し、脱脂・端面シールを施した後にCCT試験またはSST試験を行って評価するものとする。ドロービード加工は、短冊試験片に予め潤滑油(カストロールNo.122)を塗布し、図4に示す形状の1対の工具を荷重800kgで押し付けながら引き抜き速度:200mm/minで板厚減少率20%の引き抜き加工を施すものとする。CCT試験は、JASO M610−92に規定される条件で行い、30サイクル経過後の発銹の程度をJIS G0595に規定のRNを指標として評価し、RN6.5点以上を合格とする。また、SST試験は、JIS Z 2371に記されたSST試験とし、1000Hr暴露した後の発銹程度をJIS G 0595規定のRNを指標として評価し、RN6.5以上を合格とする。   Further, as a method for evaluating post-processing corrosion resistance, a strip test piece having a width of 40 mm is subjected to a draw bead process, and after degreasing and end face sealing, a CCT test or an SST test is performed for evaluation. In draw bead processing, a lubricating oil (Castroll No. 122) is applied in advance to a strip test piece, and a pair of tools having the shape shown in FIG. 4 is pressed with a load of 800 kg while pulling speed: 200 mm / min and a plate thickness reduction rate of 20%. The drawing process shall be performed. The CCT test is performed under the conditions specified in JASO M610-92. The degree of eruption after 30 cycles has been evaluated using the RN specified in JIS G0595 as an index, and an RN of 6.5 or higher is accepted. The SST test is an SST test described in JIS Z 2371. The degree of eruption after exposure to 1000 Hr is evaluated using RN of JIS G 0595 as an index, and RN 6.5 or higher is passed.

(実施例1)
表1に示す組成のステンレス鋼を150kg真空溶解炉で溶製し、50kg鋼塊に鋳造した後、熱延−熱延板焼鈍−酸洗−冷延−中間焼鈍−酸洗−冷延−仕上焼鈍−仕上酸洗の工程を通して板厚0.8mmの鋼板を作製した。
Example 1
Stainless steel having the composition shown in Table 1 was melted in a 150 kg vacuum melting furnace and cast into a 50 kg steel ingot, and then hot-rolled, hot-rolled sheet annealed, pickled, cold rolled, intermediate annealed, pickled, cold rolled, and finished. A steel plate having a thickness of 0.8 mm was manufactured through an annealing-finish pickling process.

このステンレス鋼板を素材とし、サージェント浴を用いた電気めっき法で防食めっき層を形成させた。このサンプルのめっき層厚み、カソード電流密度を測定すると共に、ドロービード加工を施した後の耐食性を評価した。   Using this stainless steel plate as a material, an anticorrosion plating layer was formed by electroplating using a sergeant bath. The thickness of the plating layer and the cathode current density of this sample were measured, and the corrosion resistance after the draw bead processing was evaluated.

めっき浴組成はクロム酸:100g/L、硫酸:1.0g/Lで、浴温度は50℃、電流密度は、20A/dmとし電解時間を0.5〜15secの範囲で変化させてめっき層厚みを変えた。 The plating bath composition is chromic acid: 100 g / L, sulfuric acid: 1.0 g / L, the bath temperature is 50 ° C., the current density is 20 A / dm 2, and the electrolysis time is changed in the range of 0.5 to 15 sec. The layer thickness was changed.

めっき層の厚みは、前記の方法で、グロー放電発光分光分析装置を用いてクロムと酸素の厚み方向元素濃度プロファイルから求め、下層(内層):金属クロム層と上層(外層):水和クロム酸化物層の厚みの総和である。   The thickness of the plating layer is obtained from the element profile of chromium and oxygen in the thickness direction using a glow discharge emission spectroscopic analyzer by the above-described method. Lower layer (inner layer): metallic chromium layer and upper layer (outer layer): hydrated chromium oxidation This is the sum of the thicknesses of physical layers.

ドロービード加工は、予め潤滑油(カストロールNo.122)を塗布した幅40mmの短冊試験片に、図4に示す形状の1対の工具を800kgで押し付けながら引き抜き速度:200mm/minで板厚減少率20%の引き抜き加工を施す方法を取った。
耐食性評価方法としては、JASO M610−92のCCT試験とし、試験期間は30サイクルとした。発銹の程度をJIS G0595規定のRNを指標として評価し、RN6.5点以上を合格として評価した。
The draw bead processing is performed by pressing a pair of tools having a shape shown in FIG. 4 on a strip test piece having a width of 40 mm applied in advance with lubricating oil (Castroll No. 122) at 800 kg, and a drawing rate: 200 mm / min. A method of drawing 20% was taken.
As a corrosion resistance evaluation method, the CCT test of JASO M610-92 was used, and the test period was 30 cycles. The degree of rusting was evaluated using RN defined in JIS G0595 as an index, and RN 6.5 points or more were evaluated as passing.

試験の条件と結果を表2に示す。本発明No.1〜7、No,11〜13,15は、素材のCr含有量とめっき層厚みが適正であり、カソード電流密度も望ましい範囲にあるため、優れた加工後耐食性を示した。参考例No.14、16,17は、カソード電流密度のみが、望ましい範囲を外れているので、本発明No.13.15に比べて耐食性は若干劣位となるが充分に満足できるレベルにある。一方、比較例No.101〜103は、素材のCr含有量が少なすぎ、比較例No.108、109は、めっき層厚みが不適切であり、比較例No.104〜107はめっき厚み、カソード電流密度ともに不適切であるため、満足すべき加工後耐食性が得られない。なお、比較例No.201、202は、めっきを施さない場合のステンレス鋼板自体の耐食性を示す。これらを基準に17%Cr鋼板を素材とした本発明No.No.3、12〜17を比較すると、本発明のクロムめっきによって17Cr−1.2Mo鋼板(比較例No.202)を超える加工後耐食性が得られることがわかる。
(実施例2)
表3に示すステンレス鋼素材を用いた点と耐食性評価試験としてJIS Z 2371に記されたSST試験(試験時間1000Hr)を用いた点、以外は前記実施例1と同じ内容の試験を行った。
Table 2 shows the test conditions and results. This invention No. Nos. 1 to 7 and Nos. 11 to 13 and 15 showed excellent post-processing corrosion resistance because the Cr content and plating layer thickness of the materials were appropriate and the cathode current density was also in a desirable range. Reference Example No. Nos. 14, 16, and 17 are different from the present invention in that only the cathode current density is out of the desired range. Compared to 13.15, the corrosion resistance is slightly inferior, but is sufficiently satisfactory. On the other hand, Comparative Example No. Nos. 101 to 103 have comparatively low Cr content in the material. Nos. 108 and 109 have an inappropriate plating layer thickness. Since Nos. 104 to 107 have inappropriate plating thickness and cathode current density, satisfactory post-processing corrosion resistance cannot be obtained. Comparative Example No. 201 and 202 show the corrosion resistance of the stainless steel plate itself when not plated. Based on these, the present invention No. 1 made of 17% Cr steel plate was used. No. 3 and 12-17, it turns out that the post-process corrosion resistance exceeding a 17Cr-1.2Mo steel plate (comparative example No. 202) is obtained by the chromium plating of this invention.
(Example 2)
A test having the same contents as in Example 1 was performed except that the stainless steel material shown in Table 3 was used and the SST test (test time 1000 Hr) described in JIS Z 2371 was used as the corrosion resistance evaluation test.

試験の条件と結果を表4に示す。本発明No.301〜309は、素材のCr含有量とめっき層厚みが適正であり、カソード電流密度も望ましい範囲にあるため、優れた加工後耐食性を示した。参考例No.310〜312は、カソード電流密度のみが、望ましい範囲を外れているので、本発明No.303307〜309に比べて耐食性は若干劣位となるが充分に満足できるレベルにある。一方、比較例No.501、502は、素材のCr含有量が少なすぎ、比較例No.507、508は、めっき層厚みが不適切であり、比較例No.503〜506はめっき厚み、カソード電流密度ともに不適切であるため、満足すべき加工後耐食性が得られない。なお、比較例No.509、510は、めっきを施さない場合の13〜14%Cr系ステンレス鋼板自体の耐食性を示す。防食めっきが施されていないため耐食性は不十分である。以上の実施例により、本発明の効果が確認された。 Table 4 shows the test conditions and results. This invention No. Nos. 301 to 309 exhibited excellent post-processing corrosion resistance because the Cr content and plating layer thickness of the material were appropriate and the cathode current density was also in a desirable range. Reference Example No. Nos. 310 to 312 are in the present invention No. 3 because only the cathode current density is out of the desirable range. Compared with 303 and 307 to 309, the corrosion resistance is slightly inferior, but it is at a level that is sufficiently satisfactory. On the other hand, Comparative Example No. Nos. 501 and 502 have comparatively low Cr content in the material. Nos. 507 and 508 have an inappropriate plating layer thickness. Since 503 to 506 are inappropriate in plating thickness and cathode current density, satisfactory post-processing corrosion resistance cannot be obtained. Comparative Example No. Reference numerals 509 and 510 denote the corrosion resistance of the 13 to 14% Cr stainless steel sheet itself when plating is not performed. Corrosion resistance is insufficient because anticorrosion plating is not applied. The effects of the present invention were confirmed by the above examples.

Figure 0005335595
Figure 0005335595

Figure 0005335595
Figure 0005335595

Figure 0005335595
Figure 0005335595

Figure 0005335595
Figure 0005335595

Claims (2)

質量%で、Cr:15.0〜30.0%を含有するステンレス鋼板基材の表面に、外層が水和クロム酸化物層で内層が金属クロム層から成る防食めっき層を有し、前記防食めっき層の厚みが0.01〜0.10μmであり、前記防食めっき層は、大気開放状態の30℃,3.5%NaCl溶液中で測定されるカソード電流密度が、銀/塩化銀標準電極基準−0.6Vの条件において、2.5μA/cm 2 以下であることを特徴とする、加工後耐食性に優れたクロムめっきステンレス鋼板。 On the surface of a stainless steel plate base material containing Cr: 15.0 to 30.0% by mass%, the anticorrosion plating layer comprising an outer layer consisting of a hydrated chromium oxide layer and an inner layer consisting of a metal chromium layer, The plating layer has a thickness of 0.01 to 0.10 μm, and the anticorrosion plating layer has a cathode current density measured in a 3.5% NaCl solution at 30 ° C. in an open air state. A chromium-plated stainless steel sheet excellent in post-processing corrosion resistance , characterized by being 2.5 μA / cm 2 or less under a condition of reference −0.6V . 質量%で、Cr:10.5〜15.0%を含有するステンレス鋼板基材の表面に、外層が水和クロム酸化物層で内層が金属クロム層から成る防食めっき層を有し、前記防食めっき層の厚みが0.01〜0.10μmであり、前記防食めっき層は、大気開放状態の30℃,3.5%NaCl溶液中で測定されるカソード電流密度が、銀/塩化銀標準電極基準−0.6Vの条件において、2.5μA/cm 2 以下であることを特徴とする、加工後耐食性に優れたクロムめっきステンレス鋼板。 Mass% Cr: the surface of the stainless steel substrate containing 10.5 to 15.0%, the outer layer has a corrosion plated layer inner layer with hydrated chromium oxide layer is formed of a metal chromium layer, the anticorrosive The plating layer has a thickness of 0.01 to 0.10 μm, and the anticorrosion plating layer has a cathode current density measured in a 3.5% NaCl solution at 30 ° C. in an open air state. A chromium-plated stainless steel sheet excellent in post-processing corrosion resistance , characterized by being 2.5 μA / cm 2 or less under a condition of reference −0.6V .
JP2009172590A 2009-02-16 2009-07-24 Chrome-plated stainless steel plate with excellent post-processing corrosion resistance Active JP5335595B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2009172590A JP5335595B2 (en) 2009-02-16 2009-07-24 Chrome-plated stainless steel plate with excellent post-processing corrosion resistance
TW99103319A TWI468557B (en) 2009-02-16 2010-02-04 Stainless steel plate with excellent corrosion resistance after processing
KR1020100012476A KR101206004B1 (en) 2009-02-16 2010-02-10 Cr COATED STAINLESS STEEL HAVING SUPERIOR CORROSION RESISTANCE AFTER PROCESSING
CN201010121155A CN101812706A (en) 2009-02-16 2010-02-11 The chromium plating stainless steel plate of processing back corrosion resistance excellent
CN201310672380.9A CN103757666B (en) 2009-02-16 2010-02-11 The chromium plating stainless steel plate of corrosion resistance excellent after processing

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009032094 2009-02-16
JP2009032094 2009-02-16
JP2009172590A JP5335595B2 (en) 2009-02-16 2009-07-24 Chrome-plated stainless steel plate with excellent post-processing corrosion resistance

Publications (2)

Publication Number Publication Date
JP2010209458A JP2010209458A (en) 2010-09-24
JP5335595B2 true JP5335595B2 (en) 2013-11-06

Family

ID=42969919

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009172590A Active JP5335595B2 (en) 2009-02-16 2009-07-24 Chrome-plated stainless steel plate with excellent post-processing corrosion resistance

Country Status (3)

Country Link
JP (1) JP5335595B2 (en)
CN (1) CN103757666B (en)
TW (1) TWI468557B (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10975743B1 (en) 2020-03-13 2021-04-13 Tenneco Automotive Operating Company Inc. Vehicle exhaust component
US11199116B2 (en) 2017-12-13 2021-12-14 Tenneco Automotive Operating Company Inc. Acoustically tuned muffler
US11268430B2 (en) 2019-01-17 2022-03-08 Tenneco Automotive Operating Company Inc. Diffusion surface alloyed metal exhaust component with welded edges
US11268429B2 (en) 2019-01-17 2022-03-08 Tenneco Automotive Operating Company Inc. Diffusion surface alloyed metal exhaust component with inwardly turned edges
US11365658B2 (en) 2017-10-05 2022-06-21 Tenneco Automotive Operating Company Inc. Acoustically tuned muffler
US11702969B2 (en) 2017-10-05 2023-07-18 Tenneco Automotive Operating Company Inc. Acoustically tuned muffler

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5700917B2 (en) * 2009-06-08 2015-04-15 新日鐵住金ステンレス株式会社 Surface-treated stainless steel sheet for automobile fuel tanks with excellent salt corrosion resistance
TWI468533B (en) * 2012-05-31 2015-01-11 Nippon Steel & Sumitomo Metal Corp Non - directional electromagnetic steel plate
US11141501B2 (en) 2016-11-16 2021-10-12 Dai Nippon Printing Co., Ltd. Gasifier for sterilizer
WO2018092812A1 (en) * 2016-11-16 2018-05-24 大日本印刷株式会社 Sanitizer gasification apparatus

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1289117A (en) * 1969-10-10 1972-09-13
JPS5424375B2 (en) * 1972-07-14 1979-08-21
JPS4928541A (en) * 1972-07-14 1974-03-14
FR2487383A1 (en) * 1980-07-28 1982-01-29 Teksid Spa LONG-LIFE THIN-SHEET FOR AUTOMOTIVE BODYWORK AND METHOD FOR MANUFACTURING THE SAME
JPS59140392A (en) * 1983-01-31 1984-08-11 Nippon Steel Corp Manufacture of stainless steel sheet
JP2687014B2 (en) * 1989-07-06 1997-12-08 日本金属株式会社 High corrosion resistance chrome plated stainless steel product and manufacturing method thereof
JP2711953B2 (en) * 1991-10-16 1998-02-10 東洋鋼鈑株式会社 Chrome plated steel sheet with excellent gloss and corrosion resistance and its manufacturing method
JPH07145498A (en) * 1993-09-30 1995-06-06 Kobe Steel Ltd Surface treatment of metallic material for semiconductor producing device
JPH09279388A (en) * 1996-04-12 1997-10-28 Japan Energy Corp Method for preventing corrosion of austenitic stainless steel
CN1114719C (en) * 1996-08-22 2003-07-16 东洋钢钣株式会社 Surface treated aluminium material with good wording sealing and connection and crossion-resisting
JP2001073164A (en) * 1999-08-31 2001-03-21 Showa Denko Kk Metallic material in which oxidized passive film has been formed, formation of the oxidized passive film and die and parts in which the oxidized passive films have been formed
CN1141420C (en) * 2001-02-27 2004-03-10 中山中粤马口铁工业有限公司 Process for electroplating Cr onto surface of thin steel sheet
JP2005223488A (en) * 2004-02-04 2005-08-18 Sanyo Electric Co Ltd Video information reproducing system
JP2007056282A (en) * 2005-08-22 2007-03-08 Toyota Auto Body Co Ltd Method of manufacturing chromium plated product
CN101215708A (en) * 2008-01-08 2008-07-09 厦门大学 Method for preparing corrosion resistant nickel/chromium plating steel belt

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11365658B2 (en) 2017-10-05 2022-06-21 Tenneco Automotive Operating Company Inc. Acoustically tuned muffler
US11702969B2 (en) 2017-10-05 2023-07-18 Tenneco Automotive Operating Company Inc. Acoustically tuned muffler
US11199116B2 (en) 2017-12-13 2021-12-14 Tenneco Automotive Operating Company Inc. Acoustically tuned muffler
US11268430B2 (en) 2019-01-17 2022-03-08 Tenneco Automotive Operating Company Inc. Diffusion surface alloyed metal exhaust component with welded edges
US11268429B2 (en) 2019-01-17 2022-03-08 Tenneco Automotive Operating Company Inc. Diffusion surface alloyed metal exhaust component with inwardly turned edges
US10975743B1 (en) 2020-03-13 2021-04-13 Tenneco Automotive Operating Company Inc. Vehicle exhaust component

Also Published As

Publication number Publication date
TW201038777A (en) 2010-11-01
TWI468557B (en) 2015-01-11
CN103757666A (en) 2014-04-30
CN103757666B (en) 2019-01-15
JP2010209458A (en) 2010-09-24

Similar Documents

Publication Publication Date Title
JP5335595B2 (en) Chrome-plated stainless steel plate with excellent post-processing corrosion resistance
US11248287B2 (en) Zinc alloy plated steel material having excellent weldability and processed-part corrosion resistance
US20220025498A1 (en) Aluminum-plated steel sheet, hot-stamped member, and method for manufacturing hot-stamped member
WO2011070877A1 (en) Hot-pressed member and process for producing same
CN106319370A (en) Medium-chromium ferrite stainless steel with excellent plasticity and high strength and manufacturing method of medium-chromium ferrite stainless steel
JP2001081538A (en) Hot-dip galvanized steel sheet excellent in corrosion resistance
JP4319158B2 (en) High chromium steel with excellent coating adhesion and corrosion resistance under coating
JP2001131725A (en) Hot dip aluminized steel sheet excellent in heat resistance and corrosion resistance and its producing method
JP2950199B2 (en) Electrogalvanized steel sheet and electrogalvanized steel sheet having excellent wood grain resistance, and methods for producing them
KR101206004B1 (en) Cr COATED STAINLESS STEEL HAVING SUPERIOR CORROSION RESISTANCE AFTER PROCESSING
JP2007314858A (en) Hot dip galvannealed steel sheet and production method therefor
KR20060085939A (en) Hot-rolled steel plate excellent in chemical treatment characteristics and method for production thereof
JP5700917B2 (en) Surface-treated stainless steel sheet for automobile fuel tanks with excellent salt corrosion resistance
JPH07310166A (en) Chrom-nickel diffusion treated steel sheet excellent in workability and corrosion resistance and its production
JP7247946B2 (en) Hot-dip galvanized steel sheet and its manufacturing method
JPH08239733A (en) Ferritic stainless steel excellent in hue stability and corrosion resistance and its production
JP3286400B2 (en) High corrosion resistant ferritic stainless steel and method for producing the same
JP7458902B2 (en) Ferritic Stainless Steel
CN111971419A (en) Ni diffusion-plated steel sheet and method for producing Ni diffusion-plated steel sheet
JP2018076589A (en) Al-CONTAINING FERRITIC STAINLESS STEEL SHEET EXCELLENT IN SURFACE PROPERTY AND SULFIDE CORROSION RESISTANCE AND PRODUCTION METHOD THEREFOR
JP7368712B2 (en) Plated steel plate for hot press forming
JP2021155832A (en) Ferrite stainless steel and method for manufacturing the same
JP3614496B2 (en) Embossed stainless steel sheet with excellent corrosion resistance and manufacturing method
JP3383124B2 (en) Hot-dip aluminized steel sheet for building materials excellent in corrosion resistance after painting and method for producing the same
JP3286401B2 (en) Ferritic stainless steel excellent in corrosion resistance and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120307

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130416

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130612

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130730

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130731

R150 Certificate of patent or registration of utility model

Ref document number: 5335595

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250