JP2007314858A - Hot dip galvannealed steel sheet and production method therefor - Google Patents

Hot dip galvannealed steel sheet and production method therefor Download PDF

Info

Publication number
JP2007314858A
JP2007314858A JP2006148278A JP2006148278A JP2007314858A JP 2007314858 A JP2007314858 A JP 2007314858A JP 2006148278 A JP2006148278 A JP 2006148278A JP 2006148278 A JP2006148278 A JP 2006148278A JP 2007314858 A JP2007314858 A JP 2007314858A
Authority
JP
Japan
Prior art keywords
less
steel sheet
base material
mass
dip galvanized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006148278A
Other languages
Japanese (ja)
Other versions
JP4720618B2 (en
Inventor
Tamotsu Toki
保 土岐
Hiroyuki Nakagawa
浩行 中川
Masahiro Nakada
匡浩 中田
Hiroyuki Suishi
弘之 水師
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2006148278A priority Critical patent/JP4720618B2/en
Publication of JP2007314858A publication Critical patent/JP2007314858A/en
Application granted granted Critical
Publication of JP4720618B2 publication Critical patent/JP4720618B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Coating With Molten Metal (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hot dip galvannealed steel sheet having improved interface adhesive strength while having formability, and to provide a method for producing a hot dip galvannealed steel sheet providing improved productivity. <P>SOLUTION: The hot dip galvannealed steel sheet is obtained by providing the surface of a steel sheet base material with a hot dip galvannealing layer. The steel sheet base material has a chemical composition comprising, by mass, ≤0.25% C, 0.030 to 0.15% Si, 0.030 to 3.0% Mn, ≤0.050% P, ≤0.010% S, ≤0.0060% N and 0.10 to 0.80% sol.Al, and the balance Fe with inevitable impurities. The hot dip galvannealing layer comprises 8.0 to 15% Fe and 0.080 to 0.50% Al, and is further free from a η phase, and, in the interfacial debonding part between the hot dip galvannealing layer and the base material, the ratio of area interfacial debonding in the grain unit on the base material side in the steel sheet is ≥5.0%. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、合金化溶融亜鉛めっき鋼板及びその製造方法に関する。より具体的には、主として、家電、建材、及び自動車等の分野で用いられる、合金化溶融亜鉛めっき鋼板及びその製造方法に関する。   The present invention relates to an alloyed hot-dip galvanized steel sheet and a method for producing the same. More specifically, the present invention relates to an alloyed hot-dip galvanized steel sheet and a method for producing the same, mainly used in the fields of home appliances, building materials, automobiles, and the like.

近年、家電、建材、及び自動車等の分野において溶融亜鉛めっき鋼板が大量に使用されており、とりわけ、経済性、防錆機能、塗装後の性能等の点で優れる合金化溶融亜鉛めっき鋼板が、広く用いられている。   In recent years, hot-dip galvanized steel sheets have been used in large quantities in fields such as home appliances, building materials, and automobiles.In particular, alloyed hot-dip galvanized steel sheets that are excellent in terms of economy, rust prevention function, performance after painting, etc. Widely used.

この合金化溶融亜鉛めっき鋼板は、通常、次のようにして製造される。鋼板を溶融めっき前に予熱炉において加熱し、露点を−20℃以下に調整したH+Nの還元雰囲気中で焼鈍し、次いでめっき浴温前後に冷却した後、溶融亜鉛めっきを施す。そして、この溶融亜鉛めっきを施した鋼板を、熱処理炉において鋼板温度が480〜600℃となる条件で30秒間に亘って加熱することにより、Fe−Zn合金めっき層を形成する。 This alloyed hot-dip galvanized steel sheet is usually produced as follows. The steel sheet is heated in a preheating furnace before hot dipping, annealed in a reducing atmosphere of H 2 + N 2 with a dew point adjusted to −20 ° C. or lower, then cooled to around the plating bath temperature, and hot dip galvanized. And the Fe-Zn alloy plating layer is formed by heating the steel plate which gave this hot dip galvanization over 30 seconds on the conditions which a steel plate temperature will be 480-600 degreeC in a heat treatment furnace.

合金化溶融亜鉛めっき鋼板(以下において、単に「鋼板」ということがある。)をプレス加工する場合、めっき表層に、Fe含有量が比較的低い軟質な合金層(ζ相)が備えられると、めっき表層と金型表面との凝着現象等により、めっき剥離(以下「フレーキング」という。)や鋼板のプレス割れ等が生じることがある。これに対し、めっき層中のFe含有量が高い場合には、鋼板とめっき層との界面近傍に硬質なΓ、Γ1、δ1c相が形成されるため、鋼板をプレス加工する場合にめっき層の粉化(以下「パウダリング」という。)が発生しやすくなる。パウダリングが発生すると、金型に剥離片が付着して押し込み疵が生じることになる。   When pressing an alloyed hot-dip galvanized steel sheet (hereinafter sometimes simply referred to as “steel sheet”), if the plating surface layer is provided with a soft alloy layer (ζ phase) having a relatively low Fe content, Peeling (hereinafter referred to as “flaking”), press cracking of the steel sheet, and the like may occur due to an adhesion phenomenon between the plating surface layer and the mold surface. On the other hand, when the Fe content in the plating layer is high, a hard Γ, Γ1, δ1c phase is formed in the vicinity of the interface between the steel plate and the plating layer. Powdering (hereinafter referred to as “powdering”) tends to occur. When powdering occurs, a peeling piece adheres to the mold and a pushing-in flaw occurs.

一方、非特許文献1には、合金化溶融亜鉛めっき鋼板を自動車車体に適用する際の問題点として、合金化溶融亜鉛めっき鋼板は他のめっき鋼板と比較して耐チッピング性に劣ることが挙げられている。これは、合金化溶融亜鉛めっき鋼板のめっき層と母材との界面に、硬質なFe−Znの金属間化合物層が厚く形成されるため、他のめっき種に比べ、めっき層−母材界面の界面密着強度が低いことによると考えられる。   On the other hand, in Non-Patent Document 1, as a problem when applying the galvannealed steel sheet to an automobile body, the galvannealed steel sheet is inferior in chipping resistance compared to other galvanized steel sheets. It has been. This is because the hard Fe-Zn intermetallic compound layer is formed thick at the interface between the plated layer and the base material of the alloyed hot-dip galvanized steel sheet, so compared to other plating types, the plating layer-base material interface This is probably due to the low interfacial adhesion strength.

このような問題点を解決するため、これまで、合金化溶融亜鉛めっき鋼板に関して様々な提案がなされてきている。例えば、特許文献1には、目付量45〜90g/mのめっき層を少なくとも片面に有する耐パウダリング性および耐フレーキング性に優れた合金化溶融亜鉛めっき鋼板が提案されている。特許文献1で開示されている鋼板では、めっき層中のFe含有量を8〜12%、同Al含有量を0.05〜0.25%に管理して、めっき層表面にη、ζ相を存在させず、母材とめっき層との界面のΓ相を1.0μm以下にしている。 In order to solve such problems, various proposals have been made so far regarding alloyed hot-dip galvanized steel sheets. For example, Patent Document 1 proposes an galvannealed steel sheet excellent in powdering resistance and flaking resistance having a plating layer having a basis weight of 45 to 90 g / m 2 on at least one surface. In the steel sheet disclosed in Patent Document 1, the Fe content in the plating layer is controlled to 8 to 12%, and the Al content is controlled to 0.05 to 0.25%. The Γ phase at the interface between the base material and the plating layer is 1.0 μm or less.

また、特許文献2には、皮膜中のFe含有量が8〜12%となるように合金化処理を行う合金化溶融亜鉛めっき鋼板の製造方法において、亜鉛めっき浴中のAl量を0.13%以上に管理するとともに、母材となる鋼板の侵入材温と浴中Al量とを制御してめっきを行い、めっき後に高周波誘導加熱炉出側の板温を適正範囲に管理して所定時間保持後に冷却する、プレス成形性および耐パウダリング性に優れた合金化溶融亜鉛めっき鋼板の製造方法が開示されている。   Moreover, in patent document 2, in the manufacturing method of the alloying hot-dip galvanized steel plate which performs an alloying process so that Fe content in a film | membrane may be 8-12%, the amount of Al in a galvanizing bath is 0.13. In addition to controlling the intrusion temperature of the steel sheet as the base metal and the amount of Al in the bath, plating is performed, and the plate temperature on the high-frequency induction heating furnace exit side is managed within an appropriate range after plating. A method for producing an galvannealed steel sheet excellent in press formability and powdering resistance, which is cooled after holding, is disclosed.

さらに、特許文献3には、母材の化学組成がC:0.01%以下、Si:0.03〜0.3%、Mn:0.05〜2%、P:0.017〜0.15%、Al:0.005〜0.1%、Ti:0.005〜0.1%、Nb:0.1%以下、B:0.005%以下を含み、めっき層が接している母材表面の平均結晶粒径が12μm以下であることを特徴とする合金化溶融亜鉛めっき鋼板とその製造方法が提案されている。   Further, in Patent Document 3, the chemical composition of the base material is C: 0.01% or less, Si: 0.03-0.3%, Mn: 0.05-2%, P: 0.017-0. 15%, Al: 0.005 to 0.1%, Ti: 0.005 to 0.1%, Nb: 0.1% or less, B: 0.005% or less, and the mother in contact with the plating layer An alloyed hot-dip galvanized steel sheet characterized by having an average crystal grain size of 12 μm or less on the surface of the material and a method for producing the same have been proposed.

特許文献4には、母材となる鋼板の化学組成を、質量%で、C:0.05%以上0.20%以下、Si:0.02%以上0.70%以下、Mn:0.50%以上3.0%以下、P:0.005%以上0.10%以下、S:0.1%以下、sol.Al:0.10%以上2.0%以下、N:0.01%以下で、且つ、Si(%)+Al(%)≧0.5を満足すると共に残部がFeおよび不純物から成り、母材がオーステナイト相を体積%で1%以上含有し、さらに、めっき皮膜は、Fe濃度が8質量%以上15質量%以下であり、且つ、めっき皮膜におけるΓ相平均厚み:2μm以下、厚み方向の最大Γ1相長さ:1.5μm以下であって、最大Γ1相長さ/Γ相厚み≦1.0の関係を満足する合金化溶融亜鉛めっき鋼板が提案されている。さらに、特許文献4では、当該鋼板に、750℃以上870℃以下で還元焼鈍を行い、次いで350℃以上550℃以下の温度に20s以上滞留させ、その後、溶融亜鉛めっきを行ってから、特定の合金化温度と滞留時間で合金化処理を行う合金化溶融亜鉛めっき鋼板の製造方法が開示されている。特許文献4にかかる発明では、母材となる鋼板中にオーステナイト(γ)相を1体積%以上残存させることによって、当該鋼板に優れた局部延性及び高強度を付与している。そして、皮膜中のFe量を8〜15質量%に規定するとともに、めっき層におけるΓ相平均厚みを2μm以下、厚み方向の最大Γ1相長さを1.5μm以下、そして、最大Γ1相長さとΓ相厚みとの比を1以下に規定することによって、耐パウダリング性を改善している。   In Patent Document 4, the chemical composition of a steel sheet as a base material is, in mass%, C: 0.05% to 0.20%, Si: 0.02% to 0.70%, Mn: 0.00. 50% or more and 3.0% or less, P: 0.005% or more and 0.10% or less, S: 0.1% or less, sol. Al: 0.10% or more and 2.0% or less, N: 0.01% or less, and satisfying Si (%) + Al (%) ≧ 0.5, and the balance is made of Fe and impurities, and the base material Contains 1% or more of austenite phase by volume%, and the plating film has an Fe concentration of 8% by mass or more and 15% by mass or less, and an average thickness of Γ phase in the plating film: 2 μm or less, maximum in the thickness direction. An galvannealed steel sheet that satisfies the relationship of Γ1 phase length: 1.5 μm or less and satisfies the relationship of maximum Γ1 phase length / Γ phase thickness ≦ 1.0 has been proposed. Furthermore, in Patent Document 4, the steel sheet is subjected to reduction annealing at 750 ° C. or more and 870 ° C. or less, and then retained at a temperature of 350 ° C. or more and 550 ° C. or less for 20 s or more, and then hot dip galvanized, A method for producing an alloyed hot-dip galvanized steel sheet in which alloying treatment is performed at the alloying temperature and residence time is disclosed. In the invention concerning patent document 4, the local ductility and high intensity | strength which were excellent in the said steel plate are provided by leaving the austenite ((gamma)) phase 1 volume% or more in the steel plate used as a base material. The amount of Fe in the film is regulated to 8 to 15% by mass, the average thickness of the Γ phase in the plating layer is 2 μm or less, the maximum Γ1 phase length in the thickness direction is 1.5 μm or less, and the maximum Γ1 phase length By defining the ratio of the Γ phase thickness to 1 or less, the powdering resistance is improved.

特許文献5には、質量%で、C:0.05%以上0.20%以下、Si:0.01%以上1.50%以下、Mn:0.5%以上3.0%以下、P:0.05%以下、S:0.01%以下、Al:0.01%以上2.0%以下、N:0.01%以下、且つ、Si(%)+Al(%)≧0.5を満足し、残部不純物およびFeから成る化学組成を有する、オーステナイト相を体積%で1%以上含有し、引っ張り強度Ts(MPa)×伸びEl(%)≧20000を満たす鋼板を母材とし、上記鋼板を、あらかじめ、780℃以上870℃以下で焼鈍した後、さらに、700℃から550℃までの温度範囲を平均30℃/s以上の冷却速度で冷却し、次いで、350℃以上550℃以下の温度範囲に20s以上滞留させ、そして常温まで冷却し、得られた母材に、Ni、Fe、CuおよびCoのうち1種または2種以上、付着させ、再び、780℃以上870℃以下で5s以上500s以下滞留させて還元焼鈍を行い、そのときの到達温度からめっき浴温度近傍まで冷却してから、めっきを行い、520℃以下で合金化処理を行い、7%以上15%以下のFe濃度の皮膜を形成させることを特徴とする合金化溶融亜鉛めっき鋼板の製造方法が開示されている。特許文献5にかかる発明では、母材となる鋼板中にオーステナイト(γ)相を体積%で1%以上含有させることによって、母材となる鋼板に引張り強度Ts(MPa)×伸びEl(%)≧20000を満足する高強度と高延性とを付与している。そして、皮膜中のAl量を0.20%以上0.40%以下、同Fe量を8%以上15%以下に規定して、1回目の焼鈍後のNi、Cu、Co量を増加させ、合金化を促進させることで、耐パウダリング性及び耐フレーキング性を改善している。   Patent Document 5 includes mass%, C: 0.05% to 0.20%, Si: 0.01% to 1.50%, Mn: 0.5% to 3.0%, P : 0.05% or less, S: 0.01% or less, Al: 0.01% or more and 2.0% or less, N: 0.01% or less, and Si (%) + Al (%) ≧ 0.5 A steel plate that has a chemical composition composed of the remaining impurities and Fe, contains an austenite phase at 1% or more by volume, and satisfies tensile strength Ts (MPa) × elongation El (%) ≧ 20000, After annealing the steel plate at 780 ° C. or higher and 870 ° C. or lower in advance, the temperature range from 700 ° C. to 550 ° C. is further cooled at an average cooling rate of 30 ° C./s or higher, and then 350 ° C. or higher and 550 ° C. or lower. Stay in the temperature range for 20s or more and cool to room temperature. One or two or more of Ni, Fe, Cu and Co are attached to the base material, and again reduced and retained at 780 ° C. or higher and 870 ° C. or lower for 5 seconds or longer and 500 seconds or shorter. Alloying hot dip galvanizing, characterized in that after cooling from temperature to near the plating bath temperature, plating is performed, alloying is performed at 520 ° C. or less, and a film having a Fe concentration of 7% or more and 15% or less is formed. A method for manufacturing a steel sheet is disclosed. In the invention according to Patent Document 5, an austenite (γ) phase is contained in a steel sheet as a base material in an amount of 1% or more by volume, whereby the tensile strength Ts (MPa) × elongation El (%) is given to the steel sheet as a base material. High strength and high ductility satisfying ≧ 20000 are imparted. And, the amount of Al in the film is defined as 0.20% or more and 0.40% or less, the amount of Fe is defined as 8% or more and 15% or less, and the amount of Ni, Cu, Co after the first annealing is increased, By promoting alloying, the powdering resistance and flaking resistance are improved.

特許文献6には、加工性及びめっき密着性等に優れた合金化溶融亜鉛めっき鋼板として、質量%で、C:0.0001〜0.004%、Si:0.001〜0.1%、Mn:0.01〜0.5%、P:0.001〜0.015%、S:0.015%以下、Al:0.1〜0.5%、Ti:0.002〜0.1%、N:0.0005〜0.004%を含有し、必要に応じて、さらに、質量%で、Nb:0.002〜0.1%を含有し、さらに、B:0.0002〜0.003%を含有させた合金化溶融亜鉛めっき鋼板を開示しており、さらに、Al:0.05〜0.5%、Fe:7〜15%、残部がZnおよび不可避的不純物からなる合金化溶融亜鉛めっき層を形成させることが記載されている。   In Patent Document 6, as an alloyed hot-dip galvanized steel sheet excellent in workability and plating adhesion, etc., in mass%, C: 0.0001 to 0.004%, Si: 0.001 to 0.1%, Mn: 0.01 to 0.5%, P: 0.001 to 0.015%, S: 0.015% or less, Al: 0.1 to 0.5%, Ti: 0.002 to 0.1 %, N: 0.0005 to 0.004%, and if necessary, Nb: 0.002 to 0.1%, and B: 0.0002 to 0% by mass. An alloyed hot-dip galvanized steel sheet containing 0.003% is disclosed, and further alloying of Al: 0.05 to 0.5%, Fe: 7 to 15%, the balance being Zn and inevitable impurities It is described that a hot-dip galvanized layer is formed.

特許文献7には、鋼板表面に合金化溶融亜鉛めっき層を備える合金化溶融亜鉛めっき鋼板であって、前記鋼板が質量%で、C:0.05〜0.25%、Si:0.02〜0.20%、Mn:0.5〜3.0%、S:0.01%以下、P:0.035%以下およびsol.Al:0.01〜0.5%を含有し、残部がFeおよび不純物からなる化学組成を有し、かつ前記合金化亜鉛めっき層が質量%で、Fe:10〜15%およびAl:0.20〜0.45%を含有し、残部がZnおよび不純物からなる化学組成を有するとともに、前記鋼板と前記合金化亜鉛めっき層との界面密着強度が20MPa以上であることを特徴とする高張力合金化溶融亜鉛めっき鋼板が開示されている。
特開昭64−68456号公報 特開平4−276053号公報 特開平10−81948号公報 特開2002−30403号公報 特開2002−47535号公報 特開2003−96540号公報 特開2006−97102号公報 日本接着協会誌、Vol.25、No.8、p.306(1989)
Patent Document 7 discloses an alloyed hot-dip galvanized steel sheet provided with an alloyed hot-dip galvanized layer on the surface of the steel sheet, wherein the steel sheet is in mass%, C: 0.05 to 0.25%, Si: 0.02. -0.20%, Mn: 0.5-3.0%, S: 0.01% or less, P: 0.035% or less, and sol. Al: 0.01 to 0.5% is contained, the remainder has a chemical composition composed of Fe and impurities, and the alloyed galvanized layer is in mass%, Fe: 10 to 15% and Al: 0.00. A high-strength alloy containing 20 to 0.45%, the balance having a chemical composition consisting of Zn and impurities, and having an interface adhesion strength between the steel sheet and the galvannealed layer of 20 MPa or more A galvannealed steel sheet is disclosed.
JP-A 64-68456 JP-A-4-276053 JP-A-10-81948 JP 2002-30403 A JP 2002-47535 A JP 2003-96540 A JP 2006-97102 A Journal of Japan Adhesion Association, Vol. 25, no. 8, p. 306 (1989)

ところで、最近は、自動車車体を製造する際の鋼材の接合技術として、溶接ではなく接着剤による接合(以下、「接着」という。)が適用される部位が増加してきている。しかしながら、合金化溶融亜鉛めっき鋼板を接着構造部材に適用した場合、他のめっき鋼板に比べ、接着強度が低い。具体的には、他のめっき鋼板では接着剤自身の凝集破壊が生じるのに対し、合金化溶融亜鉛めっき鋼板では、めっき層−鋼板母材界面での剥離が生じやすい。この理由は、前述したように、合金化溶融亜鉛めっき鋼板のめっき層−鋼板母材界面の界面密着強度(以下、単に「界面密着強度」という場合は、めっき層−鋼板母材界面の密着強度を意味する。)が低いため、当該界面で剥離が生じることによる。耐チッピング性や、耐パウダリング性の改善においても、界面密着強度を高くすることが有効であり、接着構造材料として適合する場合はより高い界面密着強度が求められる。   By the way, recently, as a joining technique of steel materials when manufacturing an automobile body, a part to which joining by an adhesive (hereinafter referred to as “adhesion”) is applied instead of welding is increasing. However, when an alloyed hot-dip galvanized steel sheet is applied to an adhesive structure member, the adhesive strength is lower than other plated steel sheets. Specifically, cohesive failure of the adhesive itself occurs in other plated steel sheets, whereas in an alloyed hot dip galvanized steel sheet, peeling at the plating layer-steel base material interface is likely to occur. The reason for this is that, as described above, the interfacial adhesion strength at the plating layer-steel base material interface of the alloyed hot-dip galvanized steel sheet (hereinafter simply referred to as “interfacial adhesion strength” is the adhesion strength at the plating layer-steel base material interface). This means that peeling occurs at the interface. Also in improving chipping resistance and powdering resistance, it is effective to increase the interfacial adhesion strength, and higher interfacial adhesion strength is required when it is suitable as an adhesive structure material.

ここで、特許文献1に記載の合金化溶融亜鉛めっき鋼板や、特許文献2に記載の合金化溶融亜鉛めっき鋼板の製造方法によって得られる合金化溶融亜鉛めっき鋼板は、鋼板に関して、めっき層中の合金相を規定している。ところが、めっき層中の合金相は、上記耐フレーキング性や耐パウダリング性には影響するものの、合金化溶融亜鉛めっき鋼板の界面密着強度向上にはほとんど影響しない。したがって、特許文献1又は特許文献2に記載の技術では、高い界面密着強度を有する合金化溶融亜鉛めっき鋼板が得られ難いという問題があった。   Here, the alloyed hot-dip galvanized steel sheet described in Patent Document 1 and the alloyed hot-dip galvanized steel sheet obtained by the method for producing an alloyed hot-dip galvanized steel sheet described in Patent Document 2 are as follows. It defines the alloy phase. However, the alloy phase in the plated layer has little influence on the improvement of the interfacial adhesion strength of the alloyed hot-dip galvanized steel sheet, although it affects the anti-flaking property and the powdering property. Therefore, the technique described in Patent Document 1 or Patent Document 2 has a problem that it is difficult to obtain an alloyed hot-dip galvanized steel sheet having high interface adhesion strength.

また、特許文献3には、合金化溶融亜鉛めっき鋼板の耐チッピング性を改善する手段として、鋼板母材にSiを0.03〜0.3%添加することが記載されている。鋼板母材にSiを含有させることは、界面密着強度の改善に有効であるが、鋼板母材のSi含有量を多くすると、合金化速度が遅くなり、生産性が低下する虞がある。また、Siは、一般に、鋼板の強度を高める一方で、伸びを低下させ、成形性を低下させる元素である。したがって、鋼板に成形性が要求される場合等には、そもそも鋼板母材にSiを多量に含有させることができず、特許文献3に記載の技術によっても、高い界面密着強度を有する合金化溶融亜鉛めっき鋼板が得られ難いという問題があった。   Patent Document 3 describes that 0.03 to 0.3% of Si is added to the steel plate base material as a means for improving the chipping resistance of the galvannealed steel plate. Inclusion of Si in the steel plate base material is effective in improving the interfacial adhesion strength, but if the Si content of the steel plate base material is increased, the alloying speed may be reduced and the productivity may be reduced. Further, Si is an element that generally increases the strength of a steel sheet while decreasing elongation and reducing formability. Therefore, when formability is required for a steel plate, it is not possible to contain a large amount of Si in the steel plate base material in the first place. Even with the technique described in Patent Document 3, alloying and melting having high interfacial adhesion strength. There was a problem that it was difficult to obtain a galvanized steel sheet.

また、特許文献4又は特許文献5で提案された合金化溶融亜鉛めっき鋼板は、鋼板母材のSi含有量及びP含有量が比較的多い鋼種である上に、その製造のために複雑な還元焼鈍ヒートパターンで熱処理を行う必要がある。さらに、特許文献4又は特許文献5で提案された合金化溶融亜鉛めっき鋼板を得るためには、長い合金化処理時間が必要とされる。したがって、特許文献4又は特許文献5に記載の技術では、合金化溶融亜鉛めっき鋼板の生産性が低下しやすいという問題があった。   In addition, the alloyed hot-dip galvanized steel sheet proposed in Patent Document 4 or Patent Document 5 is a steel type that has a relatively high Si content and P content in the steel sheet base metal, and has a complicated reduction due to its production. It is necessary to perform heat treatment with an annealing heat pattern. Furthermore, in order to obtain the galvannealed steel sheet proposed in Patent Document 4 or Patent Document 5, a long alloying time is required. Therefore, the technique described in Patent Document 4 or Patent Document 5 has a problem that the productivity of the galvannealed steel sheet is likely to decrease.

また、特許文献6では、鋼板母材のAl含有量を多くすることにより、鋼板の強度をほとんど上昇させずに合金化速度を遅くし、鋼板の加工性とめっき密着性とを満足することができる、とされている。しかしながら、特許文献6にいう密着性とは、その従来技術欄の記載や実施例の評価方法(鋼板のV字曲げ)等から見て、耐パウダリング性を意味するものであって、本発明が目的とする界面密着強度については何ら記載がない。したがって、特許文献6に記載の技術では、高い界面密着強度を有する合金化溶融亜鉛めっき鋼板が得られ難いという問題があった。   Further, in Patent Document 6, by increasing the Al content of the steel plate base material, it is possible to slow the alloying speed without substantially increasing the strength of the steel plate and satisfy the workability and plating adhesion of the steel plate. It can be done. However, the adhesion referred to in Patent Document 6 means powdering resistance in view of the description in the prior art column and the evaluation method of the example (V-shaped bending of a steel plate) and the like. However, there is no description about the intended interfacial adhesion strength. Therefore, the technique described in Patent Document 6 has a problem that it is difficult to obtain an galvannealed steel sheet having high interfacial adhesion strength.

また、特許文献7では、鋼板母材のC含有量が多いため、加工性に劣るという問題があった。また、鋼板母材のSi含有量の上限値を0.20%としているが、鋼板母材のSi含有量が高いと、合金化速度が遅くなるという問題があった。   Moreover, in patent document 7, since there was much C content of a steel plate base material, there existed a problem that it was inferior to workability. Moreover, although the upper limit of Si content of the steel plate base material is set to 0.20%, there is a problem that the alloying speed is slow when the Si content of the steel plate base material is high.

そこで、本発明は、成形性を備えながら界面密着強度を向上させることが可能な合金化溶融亜鉛めっき鋼板、及び、生産性を向上させることが可能な合金化溶融亜鉛めっき鋼板の製造方法を提供することを課題とする。   Therefore, the present invention provides an alloyed hot-dip galvanized steel sheet capable of improving interfacial adhesion strength while having formability, and a method for producing an alloyed hot-dip galvanized steel sheet capable of improving productivity. The task is to do.

本発明者らは、鋭意研究の結果、成形性を備えながら界面密着強度を向上させるには、鋼板母材にSiを少量含有させるとともに、Alを複合的に含有させることが有効であることを見出した。さらに、界面密着強度が高いものは、強制的にめっき層−鋼板母材の界面で剥離させた場合の剥離形態に特徴があることを見出した。加えて、鋼板母材の組成及び製造工程を工夫することにより、生産性を維持しながら、上記剥離形態を備える鋼板を製造可能であることを見出した。本発明は、このような新たな知見に基いてなされたものである。   As a result of diligent research, the present inventors have found that it is effective to contain a small amount of Si in a steel plate base material and to contain Al in a composite manner in order to improve interfacial adhesion strength while providing formability. I found it. Furthermore, it discovered that the thing with high interface adhesive strength had the characteristic in the peeling form at the time of making it peel at the interface of a plating layer-steel plate base material compulsorily. In addition, it discovered that the steel plate provided with the said peeling form can be manufactured, maintaining productivity, by devising the composition and manufacturing process of a steel plate base material. The present invention has been made based on such new findings.

以下、本発明について説明する。   The present invention will be described below.

本発明の第1の態様は、鋼板母材の表面に合金化溶融亜鉛めっき層を備える合金化溶融亜鉛めっき鋼板であって、鋼板母材が、質量%で、C:0.25%以下、Si:0.030%以上0.15%以下、Mn:0.030%以上3.0%以下、P:0.050%以下、S:0.010%以下、N:0.0060%以下、及び、sol.Al:0.10%以上0.80%以下、残部がFe及び不可避的不純物からなる化学組成を有し、合金化溶融亜鉛めっき層に、質量%で、Fe:8.0%以上15%以下、及び、Al:0.080%以上0.50%以下、が含有されるとともに、該合金化溶融亜鉛めっき層にη相が存在せず、合金化溶融亜鉛めっき層と鋼板母材との界面剥離部における、鋼板母材側の粒径剥離面積率が5%以上であることを特徴とする、合金化溶融亜鉛めっき鋼板である。   A first aspect of the present invention is an alloyed hot-dip galvanized steel sheet provided with an alloyed hot-dip galvanized layer on the surface of a steel sheet base material, the steel sheet base material being in mass%, C: 0.25% or less, Si: 0.030% or more and 0.15% or less, Mn: 0.030% or more and 3.0% or less, P: 0.050% or less, S: 0.010% or less, N: 0.0060% or less, And sol. Al: 0.10% or more and 0.80% or less, with the balance being a chemical composition consisting of Fe and inevitable impurities, in the alloyed hot-dip galvanized layer, by mass, Fe: 8.0% or more and 15% or less And Al: 0.080% or more and 0.50% or less, and there is no η phase in the alloyed hot-dip galvanized layer, and the interface between the alloyed hot-dip galvanized layer and the steel plate base material It is an alloyed hot-dip galvanized steel sheet characterized by having a grain size peeled area ratio on the steel sheet base metal side in the peeling part of 5% or more.

ここに、「sol.Al:0.10%以上0.80%以下」とは、鋼板母材に、固溶状態のAlが、0.10質量%以上0.80質量%以下含まれることを意味する。さらに、「合金化溶融亜鉛めっき層に、質量%で、Fe:8.0%以上15%以下、及び、Al:0.080%以上0.50%以下、が含有されるとともに、η相が存在せず」とは、合金化溶融亜鉛めっき層(以下、単に「めっき層」ということがある。)に8.0質量%以上15質量%以下のFe及び0.080質量%以上0.50質量%以下のAlが備えられるとともに、当該めっき層にη相が存在していないことを意味する。加えて、「粒径剥離面積率」とは、「めっき層と鋼板母材との界面でこれらを強制的に剥離させた場合に、剥離後の鋼板母材に備えられる、ほぼ結晶粒径単位の大きさで剥離した部分が観察視野全体に占める割合」をいう。以下においても同様である。   Here, “sol.Al: 0.10% or more and 0.80% or less” means that 0.10% by mass or more and 0.80% by mass or less of Al in a solid solution state is included in the steel plate base material. means. Furthermore, “the alloyed hot-dip galvanized layer contains Fe: 8.0% to 15% and Al: 0.080% to 0.50% by mass%, and the η phase is “Not present” means that the alloyed hot-dip galvanized layer (hereinafter sometimes simply referred to as “plated layer”) contains 8.0% by mass to 15% by mass of Fe and 0.080% by mass to 0.50%. This means that not more than mass% Al is provided, and that the η phase does not exist in the plating layer. In addition, “grain size peeled area ratio” means “the crystal grain size unit provided in the steel plate base material after peeling when these are forcibly separated at the interface between the plating layer and the steel plate base material”. The ratio of the part peeled off with the size of the entire observation field ”. The same applies to the following.

本発明の第2の態様は、鋼板母材の表面に合金化溶融亜鉛めっき層を備える合金化溶融亜鉛めっき鋼板であって、鋼板母材が、質量%で、C:0.010%以下、Si:0.030%以上0.15%以下、Mn:0.030%以上1.5%以下、P:0.050%以下、S:0.010%以下、N:0.0060%以下、及び、sol.Al:0.10%以上0.80%以下、残部がFe及び不可避的不純物からなる化学組成を有し、合金化溶融亜鉛めっき層に、質量%で、Fe:8.0%以上15%以下、及び、Al:0.080%以上0.50%以下、が含有されるとともに、η相が存在せず、合金化溶融亜鉛めっき層と鋼板母材との界面剥離部における、鋼板母材側の粒径剥離面積率が5%以上であることを特徴とする、合金化溶融亜鉛めっき鋼板である。   A second aspect of the present invention is an alloyed hot-dip galvanized steel sheet provided with an alloyed hot-dip galvanized layer on the surface of the steel sheet base material, the steel sheet base material being in mass%, C: 0.010% or less, Si: 0.030% to 0.15%, Mn: 0.030% to 1.5%, P: 0.050% or less, S: 0.010% or less, N: 0.0060% or less, And sol. Al: 0.10% or more and 0.80% or less, with the balance being a chemical composition consisting of Fe and inevitable impurities, in the alloyed hot-dip galvanized layer, by mass, Fe: 8.0% or more and 15% or less And Al: 0.080% or more and 0.50% or less, and the η phase does not exist, and the steel plate base side at the interface peeling portion between the alloyed hot-dip galvanized layer and the steel plate base material This is an alloyed hot-dip galvanized steel sheet characterized by having a particle size peeled area ratio of 5% or more.

本発明の第1の態様又は本発明の第2の態様において、鋼板母材に含有されるFeの一部に代えて、質量%で、Ti:0.0040%以上0.50%以下、及び/又は、Nb:0.0040%以上0.50%以下、並びに、B:0.0050%以下、の添加元素が含有されることが好ましい。   In the first aspect of the present invention or the second aspect of the present invention, instead of a part of Fe contained in the steel plate base material, by mass%, Ti: 0.0040% or more and 0.50% or less, and It is preferable that the additive elements of Nb: 0.0040% or more and 0.50% or less and B: 0.0050% or less are contained.

本発明の第3の態様は、質量%で、C:0.25%以下、Si:0.030%以上0.15%以下、Mn:0.030%以上3.0%以下、P:0.050%以下、S:0.010%以下、N:0.0060%以下、及び、sol.Al:0.10%以上0.80%以下、残部がFe及び不可避的不純物からなる化学組成を有するスラブを、熱間圧延して鋼板とする、熱間圧延工程と、該熱間圧延工程後に鋼板を600℃以下の温度で巻き取る巻き取り工程と、該巻き取り工程後に鋼板を酸洗する酸洗工程と、該酸洗工程後に鋼板を冷間圧延する冷間圧延工程と、該冷間圧延工程後に鋼板を還元雰囲気中で焼鈍する還元焼鈍工程と、該還元焼鈍工程後に、鋼板を、質量%で0.080%以上0.14%以下のAlを含有する溶融亜鉛めっき浴へ浸漬する浸漬工程と、該浸漬工程後に鋼板表面の亜鉛付着量を制御する付着量制御工程と、該付着量制御工程後に鋼板を530℃以下の温度で合金化処理する合金化処理工程と、を備え、合金化処理工程において、質量%で、Fe:8.0%以上15%以下、及び、Al:0.080%以上0.50%以下、を含有するとともに、η相が残存しない合金化溶融亜鉛めっき層、が形成されることを特徴とする、合金化溶融亜鉛めっき鋼板の製造方法である。   The third aspect of the present invention is, in mass%, C: 0.25% or less, Si: 0.030% to 0.15%, Mn: 0.030% to 3.0%, P: 0 .050% or less, S: 0.010% or less, N: 0.0060% or less, and sol. Al: 0.10% or more and 0.80% or less, a slab having a chemical composition composed of Fe and unavoidable impurities in the balance, hot rolled into a steel sheet, and after the hot rolling process A winding step for winding the steel plate at a temperature of 600 ° C. or less, a pickling step for pickling the steel plate after the winding step, a cold rolling step for cold rolling the steel plate after the pickling step, and the cold After the rolling process, the steel sheet is immersed in a hot dip galvanizing bath containing 0.080% or more and 0.14% or less Al in mass% after the reduction annealing process in which the steel sheet is annealed in a reducing atmosphere. An immersion step, an adhesion amount control step for controlling the zinc adhesion amount on the steel sheet surface after the immersion step, and an alloying treatment step for alloying the steel plate at a temperature of 530 ° C. or less after the adhesion amount control step, In the alloying process, in mass%, Fe An alloyed hot-dip galvanized layer containing 8.0% to 15% and Al: 0.080% to 0.50% and having no remaining η phase is formed. This is a method for producing an alloyed hot-dip galvanized steel sheet.

本発明の第4の態様は、質量%で、C:0.010%以下、Si:0.030%以上0.15%以下、Mn:0.030%以上1.5%以下、P:0.050%以下、S:0.010%以下、N:0.0060%以下、及び、sol.Al:0.10%以上0.80%以下、残部がFe及び不可避的不純物からなる化学組成を有するスラブを、熱間圧延して鋼板とする、熱間圧延工程と、該熱間圧延工程後に鋼板を600℃以下の温度で巻き取る巻き取り工程と、該巻き取り工程後に鋼板を酸洗する酸洗工程と、該酸洗工程後に鋼板を冷間圧延する冷間圧延工程と、該冷間圧延工程後に鋼板を還元雰囲気中で焼鈍する還元焼鈍工程と、該還元焼鈍工程後に、鋼板を、質量%で0.080%以上0.14%以下のAlを含有する溶融亜鉛めっき浴へ浸漬する浸漬工程と、該浸漬工程後に鋼板表面の亜鉛付着量を制御する付着量制御工程と、該付着量制御工程後に鋼板を530℃以下の温度で合金化処理する合金化処理工程と、を備え、合金化処理工程において、質量%で、Fe:8.0%以上15%以下、及び、Al:0.080%以上0.50%以下、を含有するとともに、η相が残存しない合金化溶融亜鉛めっき層、が形成されることを特徴とする、合金化溶融亜鉛めっき鋼板の製造方法である。   The fourth aspect of the present invention is, in mass%, C: 0.010% or less, Si: 0.030% to 0.15%, Mn: 0.030% to 1.5%, P: 0 .050% or less, S: 0.010% or less, N: 0.0060% or less, and sol. Al: 0.10% or more and 0.80% or less, a slab having a chemical composition composed of Fe and unavoidable impurities in the balance, hot rolled into a steel sheet, and after the hot rolling process A winding step for winding the steel plate at a temperature of 600 ° C. or less, a pickling step for pickling the steel plate after the winding step, a cold rolling step for cold rolling the steel plate after the pickling step, and the cold After the rolling process, the steel sheet is immersed in a hot dip galvanizing bath containing 0.080% or more and 0.14% or less Al in mass% after the reduction annealing process in which the steel sheet is annealed in a reducing atmosphere. An immersion step, an adhesion amount control step for controlling the zinc adhesion amount on the steel sheet surface after the immersion step, and an alloying treatment step for alloying the steel plate at a temperature of 530 ° C. or less after the adhesion amount control step, In the alloying process, in mass%, Fe An alloyed hot-dip galvanized layer containing 8.0% to 15% and Al: 0.080% to 0.50% and having no remaining η phase is formed. This is a method for producing an alloyed hot-dip galvanized steel sheet.

本発明の第3の態様又は本発明の第4の態様において、スラブに含有されるFeの一部に代えて、質量%で、Ti:0.0040%以上0.50%以下、及び/又は、Nb:0.0040%以上0.50%以下、並びに、B:0.0050%以下、の添加元素が含有されることが好ましい。   In the third aspect of the present invention or the fourth aspect of the present invention, instead of a part of Fe contained in the slab, by mass%, Ti: 0.0040% or more and 0.50% or less, and / or Nb: 0.0040% or more and 0.50% or less and B: 0.0050% or less are preferably contained.

本発明の第1の態様又は本発明の第2の態様によれば、成形性を備え、かつ、めっき層と鋼板母材との界面密着強度を向上させることが可能な、合金化溶融亜鉛めっき鋼板を提供できる。かかる効果を奏する合金化溶融亜鉛めっき鋼板は、自動車分野や家電分野に好適である。   According to the first aspect of the present invention or the second aspect of the present invention, alloyed hot dip galvanizing is provided that has formability and can improve the interfacial adhesion strength between the plating layer and the steel plate base material. Steel sheet can be provided. An alloyed hot-dip galvanized steel sheet that exhibits such an effect is suitable for the automobile field and the home appliance field.

本発明の第3の態様又は本発明の第4の態様によれば、成形性を備え、かつ、めっき層と鋼板母材との界面密着強度を向上させ得る合金化溶融亜鉛めっき鋼板の、生産性を向上させることが可能な、合金化溶融亜鉛めっき鋼板の製造方法を提供できる。   According to the third aspect of the present invention or the fourth aspect of the present invention, production of an alloyed hot-dip galvanized steel sheet that has formability and can improve the interfacial adhesion strength between the plating layer and the steel sheet base material. The manufacturing method of the galvannealed steel plate which can improve property can be provided.

以下、本発明の実施の形態について説明する。   Embodiments of the present invention will be described below.

1.合金化溶融亜鉛めっき鋼板
本発明の合金化溶融亜鉛めっき鋼板について、詳細に説明する。以下、「%」は、特に断りがない限り、「質量%」を意味する。また、本発明の合金化溶融亜鉛めっき鋼板を単に「鋼板」と表記し、表面にめっき層が備えられる鋼板母材を「母材」と表記する。
1. Alloyed hot-dip galvanized steel sheet The alloyed hot-dip galvanized steel sheet of the present invention will be described in detail. Hereinafter, “%” means “% by mass” unless otherwise specified. Further, the galvannealed steel sheet of the present invention is simply referred to as “steel sheet”, and the steel sheet base material provided with a plating layer on the surface is referred to as “base material”.

1.1.母材
(1)C:0.25%以下
本発明の鋼板は、成形性を重視する用途を対象とするため、Cは、本発明においては不純物であり、その含有量は少ないほど良い。母材に多量のCを含有させると、鋼板の加工性を低下させる。したがって、Cの含有量は0.25%以下とする。好ましくは、0.010%以下である。
1.1. Base material (1) C: 0.25% or less Since the steel sheet of the present invention is intended for applications in which formability is important, C is an impurity in the present invention, and its content is preferably as small as possible. When a large amount of C is contained in the base material, the workability of the steel sheet is lowered. Therefore, the C content is 0.25% or less. Preferably, it is 0.010% or less.

(2)Si:0.030%以上0.15%以下
Siは、合金化処理工程において、めっき層と母材との界面密着強度を増加させる重要な元素である。母材にSiが含有されることによる界面密着強度の増加メカニズムとして、「鉄と鋼、Vol.89、No.1(2003)、第46頁及至第53頁」には、Si含有により、合金化時にめっき層中のZnが母材の粒界へ拡散するのを助長し、母材とめっき層との界面の凹凸を増加させるとともに、剥離流路が迂回されてエネルギーが吸収されるためであることが提案されている。
Siの含有量が少ないと界面密着強度の向上効果が十分に得られない。そのため、Siの含有量は0.030%以上とする。好ましくは、0.040%以上である。一方、Siの含有量が多すぎると、鋼板の成形性に悪影響を及ぼす。また、合金化速度が著しく低下するため、合金化処理時間が長時間化し、生産性の低下や設備の長大化を招く。そのため、Siの含有量は0.15%以下とする。好ましくは、0.10%以下である。
(2) Si: 0.030% to 0.15% Si is an important element that increases the interfacial adhesion strength between the plating layer and the base material in the alloying process. As an increase mechanism of interfacial adhesion strength due to the inclusion of Si in the base material, “Iron and Steel, Vol. 89, No. 1 (2003), pages 46 to 53” includes an alloy containing Si. This promotes the diffusion of Zn in the plating layer to the grain boundary of the base material during the conversion, increases the unevenness of the interface between the base material and the plating layer, and bypasses the separation flow path to absorb energy. It has been proposed that there be.
If the content of Si is small, the effect of improving the interfacial adhesion strength cannot be obtained sufficiently. Therefore, the Si content is 0.030% or more. Preferably, it is 0.040% or more. On the other hand, when there is too much content of Si, it will have a bad influence on the moldability of a steel plate. Further, since the alloying speed is remarkably reduced, the alloying treatment time is prolonged, leading to a decrease in productivity and an increase in equipment length. Therefore, the Si content is 0.15% or less. Preferably, it is 0.10% or less.

(3)Mn:0.030%以上3.0%以下
Mnの含有量が多すぎると、鋼板が脆化する。そのため、Mnの含有量は3.0%以下とする。好ましくは、2.5%以下である。さらに、伸びの過度の低下や、TiCの析出を低減して降伏点が必要以上に上昇することを防止する観点から、より好ましくは1.5%以下である。一方、Mn含有量が少なすぎると母材が脆化することがある。そのため、Mnの含有量は0.030%以上とする。
(3) Mn: 0.030% or more and 3.0% or less If the content of Mn is too large, the steel plate becomes brittle. Therefore, the Mn content is 3.0% or less. Preferably, it is 2.5% or less. Furthermore, it is more preferably 1.5% or less from the viewpoint of preventing an excessive decrease in elongation or preventing precipitation of TiC and increasing the yield point more than necessary. On the other hand, if the Mn content is too small, the base material may become brittle. Therefore, the Mn content is 0.030% or more.

(4)P:0.050%以下
Pは、本発明においては不純物であり、その含有量は少ないほど良い。Pの含有量が多すぎると、Siと同様に、伸びが小さくなる等、鋼板の成形性に悪影響を及ぼす。また、合金化速度も低下するため、合金化処理時間を長時間化し、生産性の低下や設備の長大化を招く。したがって、Pの含有量は0.050%以下とする。好ましくは、0.030%以下である。
(4) P: 0.050% or less P is an impurity in the present invention, and the smaller the content, the better. When the content of P is too large, the formability of the steel sheet is adversely affected, such as the elongation becomes small, as in Si. Moreover, since the alloying speed is also lowered, the alloying treatment time is lengthened, leading to a decrease in productivity and an increase in equipment length. Therefore, the P content is 0.050% or less. Preferably, it is 0.030% or less.

(5)S:0.010%以下
Sは、本発明においては不純物であり、その含有量は少ないほど良い。Sの含有量が多すぎると、MnSの析出が顕著になり、鋼板の延性を低下させる。そのため、Sの含有量は0.010%以下とする。好ましくは、0.0050%以下である。
(5) S: 0.010% or less S is an impurity in the present invention, and the smaller the content, the better. When there is too much content of S, precipitation of MnS will become remarkable and the ductility of a steel plate will be reduced. Therefore, the content of S is set to 0.010% or less. Preferably, it is 0.0050% or less.

(6)sol.Al:0.10%以上0.80%以下
Alは、Siと同様に、めっき層と母材との界面密着強度を増加させる重要な元素である。その効果を発現させるため、Alは固溶状態で0.10%以上含有させる。好ましくは、0.20%以上である。一方、Alを固溶状態で多量に含有させても、その効果は飽和する上、めっきライン通板時に鋼帯同士を溶接する場合の溶接性が低下するため、その上限を0.80%とする。sol.Alの好ましい含有量は、0.20%以上0.60%以下である。
(6) sol. Al: 0.10% or more and 0.80% or less Al, like Si, is an important element that increases the interfacial adhesion strength between the plating layer and the base material. In order to express the effect, Al is contained in a solid solution state at 0.10% or more. Preferably, it is 0.20% or more. On the other hand, even if Al is contained in a large amount in a solid solution state, the effect is saturated, and weldability when steel strips are welded to each other during plating line passing decreases, so the upper limit is 0.80%. To do. sol. A preferable content of Al is 0.20% or more and 0.60% or less.

(7)N:0.0060%以下
Nは、鋼板の成形性を低下させる。そのため、少ないほど良く、本発明では、Nの含有量を0.0060%以下とする。
(7) N: 0.0060% or less N reduces the formability of the steel sheet. Therefore, the smaller the content, the better. In the present invention, the N content is set to 0.0060% or less.

(8)Ti:0.0040%以上0.50%以下、Nb:0.0040%以上0.50%以下、B:0.0050%以下
これらの元素は、任意添加元素である。Ti及び/又はNbを0.0040%以上0.50%以下添加することにより、C、Nを炭化物、窒化物として固定し、鋼板の成形性を向上させることが可能になる。ただし、Cの含有量が少なく、Ti及び/又はNbを添加した鋼板を成形した成形品は、低温で加工変形応力とは異なる方向の衝撃応力を加えられると、簡単に割れてしまうことがある。そこで、かかる割れを防止するため、Bを微量(0.0050%以下)添加することが好ましい。
(8) Ti: 0.0040% to 0.50%, Nb: 0.0040% to 0.50%, B: 0.0050% or less These elements are arbitrarily added elements. By adding 0.0040% or more and 0.50% or less of Ti and / or Nb, it becomes possible to fix C and N as carbides and nitrides and improve the formability of the steel sheet. However, a molded product obtained by forming a steel sheet with a small content of C and added with Ti and / or Nb may be easily cracked if an impact stress in a direction different from the work deformation stress is applied at a low temperature. . Therefore, in order to prevent such cracking, it is preferable to add a trace amount (0.0050% or less) of B.

本発明において、鋼板母材の、上記元素を除く化学組成は、Fe及び不可避的不純物である。ただし、上記元素のほか、本発明の鋼板には、Mo、Cr、Cu、Ni、Cu、V等を少量含有させることも可能である。また、鋼板の集合組織は特に限定されない。強度よりも成形性を重視する場合、母材はフェライト組織とし、再結晶が十分に進行しているものが好ましい。   In the present invention, the chemical composition of the steel plate base material excluding the above elements is Fe and inevitable impurities. However, in addition to the above elements, the steel plate of the present invention may contain a small amount of Mo, Cr, Cu, Ni, Cu, V, and the like. Further, the texture of the steel sheet is not particularly limited. When emphasis is placed on formability rather than strength, it is preferable that the base material has a ferrite structure and recrystallization is sufficiently advanced.

1.2.めっき層
(1)Fe:8.0%以上15%以下、η相
めっき層表層部にη相が局所的に残存すると、プレス成形時に金型との焼きつきが生じやすくなるほか、鋼板表面に配設される接着剤とめっき層との界面における接着強度が低下し、当該界面で剥離が生じやすくなる。そのため、めっき層にη相が残存しない程度に、めっき層を十分に合金化させる必要がある。合金化度の目安として、めっき層のFeの含有量は、8.0%以上とする。好ましくは、9.0%以上である。一方、Feの含有量が多すぎると、耐パウダリング性が低下する。また、合金化に時間を要すため生産性の点でも不利である。そのため、Feの含有量は15%以下とする。好ましくは、14%以下、より好ましくは10%未満である。
1.2. Plating layer (1) Fe: 8.0% or more and 15% or less, η phase If the η phase remains locally on the surface of the plating layer, seizure with the mold is likely to occur during press molding, and Adhesive strength at the interface between the disposed adhesive and the plating layer is reduced, and peeling tends to occur at the interface. For this reason, it is necessary to sufficiently alloy the plating layer so that the η phase does not remain in the plating layer. As a measure of the degree of alloying, the Fe content in the plating layer is 8.0% or more. Preferably, it is 9.0% or more. On the other hand, when there is too much content of Fe, powdering resistance will fall. Moreover, since it takes time for alloying, it is also disadvantageous in terms of productivity. Therefore, the Fe content is 15% or less. Preferably, it is 14% or less, more preferably less than 10%.

(2)Al:0.080%以上0.50%以下
めっき層のAlの含有量が少なすぎると、めっき付着量の制御が困難になる。そのため、Alの含有量は0.080%以上とする。一方、Alの含有量が多すぎると、合金化速度が低下し、鋼板の生産性が低下する虞がある。そのため、Alの含有量は0.50%以下とする。めっき層に含有されるAlは、後述するめっき浴中のAl濃度でほぼ決定されるが、めっき付着量や母材のAlによっても若干変動する。本発明では、Alを多く含有する母材をめっき基材として用いるので、Al含有量の少ない母材を基材に用いた場合と比較して、Alの含有量が多くなる傾向がある。本発明において、めっき層のAlの含有量は、めっき付着量が片面あたり40g/m〜60g/m程度の場合、0.25%以上0.50%以下とするのが好ましい。
(2) Al: 0.080% or more and 0.50% or less If the content of Al in the plating layer is too small, it becomes difficult to control the amount of plating. Therefore, the Al content is 0.080% or more. On the other hand, when there is too much content of Al, there exists a possibility that the alloying speed | rate may fall and the productivity of a steel plate may fall. Therefore, the Al content is 0.50% or less. Al contained in the plating layer is substantially determined by the Al concentration in the plating bath described later, but slightly varies depending on the plating adhesion amount and Al of the base material. In the present invention, since a base material containing a large amount of Al is used as the plating base material, the Al content tends to be higher than when a base material having a low Al content is used as the base material. In the present invention, the content of Al in the plating layer, when the amount of plating deposition is about 40g / m 2 ~60g / m 2 per side, preferably not less than 0.25% 0.50% or less.

1.3.母材側の粒径剥離面積率
本発明の鋼板を、めっき層−母材界面で強制的に剥離させると、剥離後の母材側に、ほぼ結晶粒単位の大きさで剥離した箇所が観察される。
図1は、後述の条件で強制的にめっき層−母材界面で剥離させた時の、母材側剥離面のSEM像である。写真中に矢印で示した箇所が、ほぼ結晶粒単位の大きさで剥離した箇所であり、それぞれの視野における粒径剥離面積率は、(a)が1.0%以下、(b)が約7.0%である。
1.3. Grain peeling area ratio on base material side When the steel sheet of the present invention is forcibly peeled off at the plating layer-base material interface, the part peeled off in the size of crystal grains is observed on the base material side after peeling. Is done.
FIG. 1 is an SEM image of the base material side release surface when it is forcibly peeled off at the plating layer-base material interface under the conditions described below. The part indicated by the arrow in the photograph is the part peeled off in a size of about a crystal grain unit, and the grain size peeling area ratio in each field of view is (a) 1.0% or less, (b) about 7.0%.

図2に、めっき層と母材との界面で強制的に剥離させる際のサンプルの形態を概略的に示す。本発明では、約30MPa以上の接着せん断強さを有する接着剤20を使用して、2枚の鋼板10、10を張り合わせ、図2のようなせん断引張試験を行う。界面密着強度と粒径剥離面積率との間には相関が認められ、界面密着強度が高いほど、粒径剥離面積率の値が大きい。そして、界面密着強度を高くし、粒径剥離面積率を大きくすると、鋼板の耐チッピング性や耐パウダリング性を改善することができる。そのため、本発明の鋼板における、母材側の粒径剥離面積率は、5.0%以上とする。好ましくは、10%以上である。   In FIG. 2, the form of the sample at the time of forcedly peeling at the interface of a plating layer and a base material is shown schematically. In the present invention, using the adhesive 20 having an adhesive shear strength of about 30 MPa or more, the two steel plates 10 and 10 are bonded together, and a shear tensile test as shown in FIG. 2 is performed. There is a correlation between the interfacial adhesion strength and the particle size separation area ratio, and the higher the interface adhesion strength, the larger the value of the particle size separation area ratio. When the interfacial adhesion strength is increased and the particle size peeling area ratio is increased, the chipping resistance and the powdering resistance of the steel sheet can be improved. Therefore, the particle size peeling area ratio on the base material side in the steel sheet of the present invention is 5.0% or more. Preferably, it is 10% or more.

図3は、めっき層と母材との界面の断面を概略的に示す図であり、一部を拡大するとともに、結晶粒の形状を簡略化して示している。以下、図2及び図3を参照しつつ、説明を続ける。母材1とめっき層2とを備える本発明の鋼板10に対して、上記せん断引張試験を行うと、ほぼ結晶粒単位の大きさの剥離が、母材1側に観察される。これは、後述するように、本発明の鋼板10は、合金化処理の際に、母材1の結晶粒界へのZn侵入が促進されるため、母材1とめっき層2との界面でこれらを強制的に剥離させると、Znが侵入していない又はZnの侵入が不十分である結晶粒界を有する、母材表面近傍の結晶粒3、3、…の一部が、めっき層2側に付着して剥離するためと考えられる。   FIG. 3 is a diagram schematically showing a cross section of the interface between the plating layer and the base material, and shows a part of the crystal grain and a simplified shape of the crystal grain. Hereinafter, the description will be continued with reference to FIGS. 2 and 3. When the above-described shear tensile test is performed on the steel plate 10 of the present invention including the base material 1 and the plating layer 2, delamination in the size of almost crystal grains is observed on the base material 1 side. As will be described later, this is because the steel sheet 10 of the present invention promotes Zn intrusion into the crystal grain boundary of the base material 1 during the alloying treatment, and therefore at the interface between the base material 1 and the plating layer 2. When these are forcedly peeled off, a part of the crystal grains 3, 3,... In the vicinity of the base material surface having a crystal grain boundary in which Zn has not invaded or in which Zn has not sufficiently infiltrated becomes a plating layer 2. This is considered to adhere to the side and peel off.

2.鋼板の製造方法
(1)熱間圧延工程、巻き取り工程
本発明の製造方法では、上記母材と同じ化学組成を有するスラブを、例えば、加熱炉で加熱し、粗圧延機及び仕上圧延機にて熱間圧延する熱間圧延工程により、帯状の鋼板(ストリップ)とする。かかる熱間圧延工程で圧延された鋼板は、その後、巻取機でコイルに巻き取られる(巻き取り工程)。コイルに巻き取る際のコイル巻き取り温度は、界面密着強度の低下を防止する観点から、600℃以下とする。好ましくは、550℃以下である。一方、コイル巻き取り温度が480℃未満になると熱延後段の圧延荷重が高くなり、設備能力を超えてしまう虞がある。そのため、コイル巻き取り温度は480℃以上が好ましい。
本発明の製造方法では、後述する合金化処理工程において、母材のSiやAlの効果により、母材の結晶粒界へZnの侵入を助長し、めっき層と母材との界面密着強度を向上させる。そのため、母材に含まれるSi及びAlは、固溶状態で存在することが好ましい。本発明の製造方法では、コイル巻き取り温度を低めに設定することで、母材内部でのSi、Alの酸化が抑制されると考えられる。
2. Manufacturing method of steel plate (1) Hot rolling step, winding step In the manufacturing method of the present invention, a slab having the same chemical composition as the base material is heated in a heating furnace, for example, to a roughing mill and a finishing mill. A strip-shaped steel plate (strip) is obtained by a hot rolling process of hot rolling. The steel sheet rolled in the hot rolling process is then wound around a coil by a winder (winding process). The coil winding temperature at the time of winding on the coil is set to 600 ° C. or less from the viewpoint of preventing a decrease in interfacial adhesion strength. Preferably, it is 550 degrees C or less. On the other hand, when the coil winding temperature is less than 480 ° C., the rolling load after the hot rolling becomes high, which may exceed the facility capacity. Therefore, the coil winding temperature is preferably 480 ° C. or higher.
In the manufacturing method of the present invention, in the alloying treatment step described later, penetration of Zn into the crystal grain boundary of the base material is promoted by the effect of the base material Si and Al, and the interfacial adhesion strength between the plating layer and the base material is increased. Improve. Therefore, it is preferable that Si and Al contained in the base material exist in a solid solution state. In the manufacturing method of the present invention, it is considered that the oxidation of Si and Al inside the base material is suppressed by setting the coil winding temperature low.

(2)酸洗工程
上記巻き取り工程で巻き取られた鋼板(鋼帯)は、表面にスケールが形成されている。それゆえ、このスケールを除去するため、鋼板を酸洗する。酸洗工程で使用する酸は、塩酸と硫酸が主流である。また、過酸洗を防止するため、ごく少量の抑制剤(例えば、酸腐食抑制剤(朝日化学工業株式会社製のイビット710N)等)を添加することができる。
(2) Pickling process The steel sheet (steel strip) wound in the winding process has a scale formed on the surface. Therefore, the steel sheet is pickled to remove this scale. The acid used in the pickling process is mainly hydrochloric acid and sulfuric acid. Moreover, in order to prevent peracid washing, a very small amount of an inhibitor (for example, an acid corrosion inhibitor (Ibit 710N manufactured by Asahi Chemical Industry Co., Ltd.)) can be added.

(3)冷間圧延工程
酸洗工程によりスケールを除去された鋼板は、引き続き、熱延鋼板から所定の板厚の冷延母材を得るために、冷間圧延が施される。モーターパワー・各スタンドの速度範囲・形状・板厚変動・作業性等の観点から、冷間圧延工程における圧縮率は40%以上95%以下とすることが好ましい。
(3) Cold rolling process The steel sheet from which the scale has been removed by the pickling process is subsequently subjected to cold rolling in order to obtain a cold rolled base material having a predetermined thickness from the hot rolled steel sheet. From the viewpoint of motor power, speed range of each stand, shape, plate thickness variation, workability, etc., the compression ratio in the cold rolling process is preferably 40% or more and 95% or less.

(4)還元焼鈍工程
冷延母材には、圧延油や鉄粉が付着している。それゆえ、めっき外観を向上させる等の観点から、冷間圧延工程後の鋼板をアルカリ脱脂槽へ入れてアルカリ脱脂することにより、洗浄しても良い。その後、水素を含有する還元雰囲気下で、鋼板を必要な温度(例えば、820℃)まで上昇させることにより、還元焼鈍を行う。
(4) Reduction annealing process Rolled oil and iron powder are adhering to the cold rolled base metal. Therefore, from the standpoint of improving the plating appearance, the steel sheet after the cold rolling step may be washed by placing it in an alkaline degreasing tank and performing alkaline degreasing. Then, reduction annealing is performed by raising a steel plate to required temperature (for example, 820 degreeC) in the reducing atmosphere containing hydrogen.

(5)浸漬工程
還元焼鈍工程を経た鋼板は、その後、めっき浴温近傍(例えば、470℃程度)まで冷却され、めっき浴に浸漬される(浸漬工程)。めっき浴中のAl濃度が低すぎると、めっき付着量の制御が難しい。そのため、めっき浴中のAl濃度は0.080%以上とする。好ましくは、0.090%以上である。一方、めっき浴中のAl濃度が高すぎると、めっき層−母材界面にFe−Al合金層が厚く形成され、後述する合金化処理工程において、所定の合金化度を得るために必要とされる処理時間が長くなり、生産性が低下する。そのため、めっき浴中のAl濃度は、0.14%以下とする。好ましくは、0.13%以下である。
めっき浴への浸漬時間は、1秒以上であれば、性能、操業性を阻害しない。その他のめっき条件は、一般的に採用されているものを用いることができる。めっき浴温は450℃以上470℃以下、侵入材温(還元焼鈍工程後に冷却された後の温度)は450℃以上480℃以下とすることができる。めっき浴中のAl以外の成分として、不可避不純物であるFe、Pb、Cd、Cr、Ni、W、Ti、Mg、Siのそれぞれが、0.10%以下含有されていても、鋼板の性能はほとんど変わらない。
(5) Immersion step The steel sheet that has undergone the reduction annealing step is then cooled to near the plating bath temperature (for example, about 470 ° C.) and immersed in the plating bath (immersion step). If the Al concentration in the plating bath is too low, it is difficult to control the amount of plating adhesion. Therefore, the Al concentration in the plating bath is set to 0.080% or more. Preferably, it is 0.090% or more. On the other hand, if the Al concentration in the plating bath is too high, a thick Fe-Al alloy layer is formed at the plating layer-base metal interface, which is necessary for obtaining a predetermined degree of alloying in the alloying process described later. Processing time becomes longer and productivity is lowered. Therefore, the Al concentration in the plating bath is 0.14% or less. Preferably, it is 0.13% or less.
If the immersion time in the plating bath is 1 second or longer, the performance and operability are not impaired. Other plating conditions that are generally employed can be used. The plating bath temperature can be 450 ° C. or higher and 470 ° C. or lower, and the intrusion material temperature (temperature after cooling after the reduction annealing step) can be 450 ° C. or higher and 480 ° C. or lower. As a component other than Al in the plating bath, even if each of Fe, Pb, Cd, Cr, Ni, W, Ti, Mg, and Si, which are inevitable impurities, is contained in an amount of 0.10% or less, the performance of the steel sheet is Almost unchanged.

(6)付着量制御工程
上記浸漬工程後に、一般に製品として用いられる25g/m以上70g/m以下となるように、めっき層の付着量を制御する。
(6) after adhesion amount control step said soaking step generally such that 25 g / m 2 or more 70 g / m 2 or less used as a product, to control the coating weight of the plating layer.

(7)合金化処理工程
合金化処理温度を高くすると、母材の結晶粒内へのZnの拡散速度が大きくなり、Znが粒界よりも粒内へ拡散しやすくなる。その結果、めっき層と母材との界面密着強度が低下する。そのため、合金化処理温度は530℃以下とする。好ましくは、520℃以下である。
一方、合金化処理温度が低いと、Znの拡散速度が小さくなり、合金化処理時間が長くなる。かかる場合であっても、η層が存在しない程度にまで合金化処理を行えば、界面密着強度の鋼板が得られる。しかし、生産性の低下を防止する観点から、合金化処理温度は470℃以上とすることが好ましい。より好ましくは、480℃以上である。
本発明において、合金化処理温度までの昇温速度、合金化処理温度での保持時間及び保持後の冷却速度等は、特に制限されない。合金化処理における加熱手段は、めっき層の集合組織及び合金化度が上記構成となれば、輻射加熱、高周波誘導加熱、通電加熱等、何れの手段によっても良い。
(7) Alloying treatment step When the alloying treatment temperature is increased, the diffusion rate of Zn into the crystal grains of the base material increases, and Zn is more easily diffused into the grains than the grain boundaries. As a result, the interfacial adhesion strength between the plating layer and the base material decreases. Therefore, the alloying treatment temperature is set to 530 ° C. or lower. Preferably, it is 520 degrees C or less.
On the other hand, when the alloying treatment temperature is low, the diffusion rate of Zn becomes small and the alloying treatment time becomes long. Even in such a case, if the alloying treatment is performed to such an extent that the η layer does not exist, a steel sheet having interfacial adhesion strength can be obtained. However, from the viewpoint of preventing a decrease in productivity, the alloying treatment temperature is preferably set to 470 ° C. or higher. More preferably, it is 480 degreeC or more.
In the present invention, the rate of temperature rise to the alloying treatment temperature, the holding time at the alloying treatment temperature, the cooling rate after holding, etc. are not particularly limited. The heating means in the alloying treatment may be any means such as radiant heating, high frequency induction heating, and energization heating as long as the texture and degree of alloying of the plating layer are as described above.

(8)後処理工程
上記工程を経て製造された鋼板の表面には、必要に応じて、防錆処理(例えば、クロメート処理やクロムフリー処理等)、リン酸塩処理、樹脂皮膜塗布等の後処理を施すことができ、防錆油を塗布することも可能である。
(8) Post-treatment process On the surface of the steel sheet manufactured through the above-mentioned processes, if necessary, after rust prevention treatment (for example, chromate treatment or chromium-free treatment), phosphate treatment, resin film application, etc. It can be treated and rust-preventing oil can be applied.

少なくとも、熱間圧延工程、巻き取り工程、酸洗工程、冷間圧延工程、還元焼鈍工程、浸漬工程、付着量制御工程、及び、合金化処理工程を備える、本発明の合金化溶融亜鉛めっき鋼板の製造方法(以下、単に「製造方法」という。)によれば、母材(スラブ)の化学組成を限定し、めっき浴のAl濃度を特定し、さらに、合金化処理温度を限定することで、生産性の低下を防止している。そして、当該製造方法により製造される鋼板は、優れた界面密着強度を有し、成形性が要求される用途にも用いることができる。   The alloyed hot-dip galvanized steel sheet of the present invention comprising at least a hot rolling process, a winding process, a pickling process, a cold rolling process, a reduction annealing process, an immersion process, an adhesion amount control process, and an alloying treatment process According to the manufacturing method (hereinafter simply referred to as “manufacturing method”), the chemical composition of the base material (slab) is limited, the Al concentration of the plating bath is specified, and further the alloying treatment temperature is limited. , Preventing a decline in productivity. And the steel plate manufactured by the said manufacturing method has the outstanding interface adhesive strength, and can be used also for the use for which a moldability is requested | required.

以下、実施例を示しつつ、本発明についてさらに具体的に説明する。
1.供試材の作製
表1に、今回使用した供試材の化学組成をあわせて示す。本発明の技術的範囲に含まれる供試材を「実施例」、本発明の技術的範囲に含まれない供試材を「比較例」とした。
Hereinafter, the present invention will be described more specifically with reference to examples.
1. Preparation of test materials Table 1 also shows the chemical composition of the test materials used this time. The test materials included in the technical scope of the present invention were designated as “Examples”, and the test materials not included in the technical scope of the present invention were designated as “Comparative Examples”.

Figure 2007314858

これらの成分を実験室にて溶製、鋳造し、板厚30mmのスラブを作製した。当該スラブを大気中(1150℃)で1時間に亘って保持し、粗圧延及び仕上圧延に供した。仕上圧延は950℃で行い、大気中にて巻き取り温度を適宜変更して巻き取った。熱延仕上げ厚みは、4.5mmとした。かかる厚みに調整後の鋼板を酸洗後、板厚が1.6mmとなるまで冷間圧延を行った。縦型溶融亜鉛めっき装置を用い、冷間圧延後の鋼板に対して、以下の条件でめっきを施した。
まず、板厚1.6mmの鋼板を75℃のNaOH溶液で脱脂洗浄し、雰囲気ガスがN+20%H(露点−40℃)、雰囲気温度820℃の還元雰囲気中で、1分間に亘って焼鈍した。焼鈍後、めっき浴温近傍(470℃)まで鋼板を冷却し、浴中Al濃度0.070%〜0.16%、浴温460℃の溶融亜鉛めっき浴に1.5秒間浸漬した後、ワイピング方式により、めっき付着量を調整した。その後、赤外線加熱装置を用いて合金化処理温度を適宜変更しながら、鋼板に合金化処理を施した。合金化処理後の片面あたりのめっき付着量は、50g/mであった。そして、合金化処理後に、圧延線荷重1.2MN/mで調質圧延を施した。
上記手順により得られた供試材に対し、以下に示す方法で分析・評価を行った。その結果を、巻き取り温度、浴中Al濃度、及び、合金化温度の値とともに、表2に示す。なお、表2の鋼種欄の数字は、表1の鋼種欄の数字と対応している。すなわち、表2の鋼種欄に「1」と記載されている場合には、表1の鋼種欄に「1」と記載されている供試材を用いて、以下の分析・評価を行ったことを意味している。
上記手順により得られた供試材に対し、以下に示す方法で分析・評価を行った。その結果を表2にあわせて示す。
Figure 2007314858

These components were melted and cast in a laboratory to produce a slab having a thickness of 30 mm. The slab was held in the atmosphere (1150 ° C.) for 1 hour and subjected to rough rolling and finish rolling. Finish rolling was performed at 950 ° C., and winding was performed by appropriately changing the winding temperature in the air. The hot rolled finish thickness was 4.5 mm. After the steel plate adjusted to such thickness was pickled, cold rolling was performed until the plate thickness became 1.6 mm. Using a vertical hot dip galvanizing apparatus, the steel sheet after cold rolling was plated under the following conditions.
First, a steel plate having a plate thickness of 1.6 mm is degreased and washed with a NaOH solution at 75 ° C., and the atmosphere gas is N 2 + 20% H 2 (dew point −40 ° C.) and the atmosphere temperature is 820 ° C. for 1 minute. And annealed. After annealing, the steel sheet is cooled to near the plating bath temperature (470 ° C.), immersed in a hot dip galvanizing bath with an Al concentration of 0.070% to 0.16% and a bath temperature of 460 ° C. for 1.5 seconds, and then wiped. The plating adhesion amount was adjusted by the method. Thereafter, the steel sheet was subjected to alloying treatment while appropriately changing the alloying treatment temperature using an infrared heating device. The plating adhesion amount per one side after the alloying treatment was 50 g / m 2 . After the alloying treatment, temper rolling was performed with a rolling line load of 1.2 MN / m.
The specimens obtained by the above procedure were analyzed and evaluated by the following methods. The results are shown in Table 2 together with the values of the winding temperature, the Al concentration in the bath, and the alloying temperature. The numbers in the steel type column in Table 2 correspond to the numbers in the steel type column in Table 1. That is, when “1” is described in the steel type column of Table 2, the following analysis / evaluation was performed using the test material described as “1” in the steel type column of Table 1. Means.
The specimens obtained by the above procedure were analyzed and evaluated by the following methods. The results are also shown in Table 2.

Figure 2007314858
Figure 2007314858

2.分析、評価
2.1.合金化処理性評価
表2に示す合金化処理温度で30秒間に亘って保持する合金化処理(保持後はエア吹き付けで空冷)を行った後、目視で「明らかにη相が残存(表面外観の金属光沢が高い)」と判断した供試材を「合金化遅延」と評価した。合金化遅延と評価された供試材には表2で「×」と表記するとともに、合金化遅延と評価されなかった供試材には表2で「○」と表記し、「合金化遅延」と判断した供試材に対しては、後述する分析、評価を行わなかった。なお、表2のNo.25は、合金化処理時間を短くし、あえてη相が残存するサンプルを作成したものであるため、合金化処理性については評価せず、「−」と記載した。
2. Analysis and evaluation 2.1. Evaluation of alloying treatment property After alloying treatment (air cooling by air blowing after holding) held for 30 seconds at the alloying treatment temperature shown in Table 2, the η phase remained clearly (surface appearance The specimens judged to have a high metallic luster were evaluated as “alloying delay”. The test material evaluated as alloying delay is indicated by “x” in Table 2, and the test material not evaluated as alloying delay is indicated by “◯” in Table 2. The analysis and evaluation described below were not performed on the specimens that were judged as “.” In Table 2, No. No. 25 is a sample in which the alloying treatment time was shortened and a sample in which the η phase remained was prepared, so the alloying processability was not evaluated and “−” was described.

2.2.めっき層の組成分析
合金化処理後の供試材から、25mmφの試料片を採取し、0.50体積%インヒビター(商品名「イビット710N」、朝日化学工業株式会社製)を含有した10%HCl水溶液でめっき層を溶解し、これを、誘導結合プラズマ(ICP)法で分析することにより、めっき層の組成を分析した。分析結果(「Fe濃度(%)」及び「Al濃度(%)」)を表2に示す。
2.2. Composition analysis of plating layer A sample piece of 25 mmφ was collected from the test material after alloying treatment, and contained 10% HCl containing 0.50% by volume inhibitor (trade name “Ibit 710N”, manufactured by Asahi Chemical Industry Co., Ltd.). The composition of the plating layer was analyzed by dissolving the plating layer with an aqueous solution and analyzing this by an inductively coupled plasma (ICP) method. The analysis results (“Fe concentration (%)” and “Al concentration (%)”) are shown in Table 2.

2.3.母材側粒径剥離面積率の測定
合金化処理後の供試材を、長手方向が圧延方向となるように、20mm×100mmに裁断し、一液加熱硬化型接着剤(商品名「EW2020」、住友スリーエム株式会社製)を接着剤として用い、重ね代:12.5mm、接着剤膜厚:200μm、焼付条件:170℃×30分間、引張速度:5.0mm/min、室温下の条件で、長手方向に引張試験を実施した。
この引張試験で、めっき層と母材との界面で剥離に至ったものについて、鋼板側の剥離面を200倍で、走査型電子顕微鏡(SEM)により観察した。母材側粒径剥離面積率は、剥離面のうち、ほぼ結晶粒単位での剥離が観察される部分の面積の視野全体に対する面積比率で表した。一の供試材について、SEM観察を3箇所で行い、3箇所の粒径剥離面積率の平均値を代表値とした。各供試材の代表値を、表2に示す。
2.3. Measurement of base material side particle size peeled area ratio The test material after alloying was cut into 20 mm × 100 mm so that the longitudinal direction was the rolling direction, and a one-component heat-curing adhesive (trade name “EW2020”) , Manufactured by Sumitomo 3M Co., Ltd.) as an adhesive, stacking allowance: 12.5 mm, adhesive film thickness: 200 μm, baking conditions: 170 ° C. × 30 minutes, tensile speed: 5.0 mm / min, at room temperature A tensile test was carried out in the longitudinal direction.
In this tensile test, the peeled surface on the steel sheet side was observed with a scanning electron microscope (SEM) at 200 times with respect to the material that had peeled at the interface between the plating layer and the base material. The base material-side grain size peeled area ratio was expressed as an area ratio of the area of the part of the peeled surface where peeling in crystal grain units was observed to the entire visual field. For one specimen, SEM observation was performed at three locations, and the average value of the particle size peeled area ratios at the three locations was used as a representative value. Table 2 shows representative values of the respective test materials.

2.4.皮膜剥離試験
合金化処理後の供試材を、長手方向が圧延方向となるように、30mm×100mmに裁断したサンプルに、防錆油(商品名「550HN」、日本パーカライジング株式会社製)を刷毛塗りし、ブランクホルダー圧フリー(ダイスとポンチとの間に板厚以上のスペースを確保)のハット成形試験を室温で行った。ハット成形試験の模式図を図4に示す。ここで、「ハット成形試験」とは、図4(a)に試験装置の一部を拡大して示すように、所定の間隔を開けて備えられるダイ41、41の上に、成形前の供試材42を載せ、当該供試材42の上方からポンチ43を下方へ移動させることにより、成形された供試材44(図4(b)参照)とする試験を意味する。このようにして供試材44へ成形した後、供試材44の縦壁部45にテープ(JIS Z−1522に準ずる、ニチバン株式会社製のセロテープ。「セロテープ」はニチバン株式会社の登録商標。)を貼り、その後、当該テープを剥離して、テープ剥離後の成形品の質量を測定した。そして、テープ剥離後の成形品の質量と、成形前の供試材41の質量とを比較することにより、1サンプルあたりのめっき層の剥離量を算出した。その他の条件は、ポンチ平行部:28mm、ダイス平行部:30mm、ポンチ肩R:3.0mm、ダイス肩R:5.0mm、成形速度:60mm/minとした。めっき層の剥離量の結果を、表2に示す。
2.4. Film peeling test The sample after alloying treatment was brushed with rust preventive oil (trade name “550HN”, manufactured by Nihon Parkerizing Co., Ltd.) on a sample cut into 30 mm × 100 mm so that the longitudinal direction is the rolling direction. A hat forming test was performed at room temperature with coating and blank holder pressure free (a space greater than the plate thickness was ensured between the die and the punch). A schematic diagram of the hat forming test is shown in FIG. Here, the “hat forming test” means that a part of the test apparatus is enlarged and shown on a die 41, 41 provided at a predetermined interval as shown in FIG. It means a test in which a specimen 42 is placed and the punch 43 is moved downward from above the specimen 42 to form a molded specimen 44 (see FIG. 4B). After forming into the test material 44 in this way, tape (the cello tape made by Nichiban Co., Ltd. according to JIS Z-1522 is applied to the vertical wall portion 45 of the test material 44. “Cello tape” is a registered trademark of Nichiban Co., Ltd. Then, the tape was peeled off, and the mass of the molded product after the tape peeling was measured. And the peeling amount of the plating layer per sample was computed by comparing the mass of the molded product after tape peeling, and the mass of the test material 41 before shaping | molding. Other conditions were: punch parallel part: 28 mm, die parallel part: 30 mm, punch shoulder R: 3.0 mm, die shoulder R: 5.0 mm, molding speed: 60 mm / min. The results of the amount of peeling of the plating layer are shown in Table 2.

3.結果
母材側粒径剥離面積率を測定する際の引張試験では、No.25を除き、めっき層−母材界面での剥離が認められた。一方、No.25では、めっき層と接着剤とが剥離した。
3. Result In the tensile test when measuring the base material side particle size peeling area ratio, No. Except for 25, peeling at the plating layer-base material interface was observed. On the other hand, no. In 25, the plating layer and the adhesive peeled off.

母材中のSi含有量が0.030%未満、又は、sol.Al含有量が0.10%未満であることにより、本発明の技術的範囲に含まれないスラブ(鋼種No.1、10、11)を用いた供試材(No.1、10、11)は、いずれも、粒径剥離面積率が2%程度であった。さらに、表2に示すように、これらは、めっき層が25mg以上剥離し、耐フレーキング性が劣っていた。また、母材中のSi含有量が0.15%を超える(鋼種No.6)、又は、P含有量が0.050%を超える(鋼種No.9)ことにより、本発明の技術的範囲に含まれないスラブを用いた供試材(No.6、9)は、所定の合金化度を得るために長い合金化処理時間が必要とされ、合金化遅延と評価された。なお、Si含有量又はP含有量が多いと、成形性も低下すると考えられる。
これに対し、本発明の技術的範囲に含まれるスラブ(鋼種No.2〜5、7〜8、12〜15)を用いた供試材(No.2〜5、7〜8、12〜15)は、母材側の剥離面の粒径剥離面積率が5.0%以上であり、めっき層の剥離量は概ね20mg程度、又は、20mg以下と良好な結果が得られた。なお、sol.Al含有量が0.80%であるスラブ(鋼種No.15)を用いた供試材(No.15)は、性能上の悪影響、又は、製造面での悪影響は認められないものの、sol.Al含有量を増加させることにより得られる効果(界面密着強度向上効果)が飽和する傾向が認められた。
Si content in the base material is less than 0.030%, or sol. When the Al content is less than 0.10%, specimens (No. 1, 10, 11) using slabs (steel types No. 1, 10, 11) not included in the technical scope of the present invention. In either case, the particle size peeled area ratio was about 2%. Furthermore, as shown in Table 2, in these, the plating layer was peeled off by 25 mg or more, and the anti-flaking property was inferior. Further, when the Si content in the base material exceeds 0.15% (steel type No. 6) or the P content exceeds 0.050% (steel type No. 9), the technical scope of the present invention. The specimens (Nos. 6 and 9) using slabs not included in the sample required a long alloying time to obtain a predetermined degree of alloying, and were evaluated as being delayed in alloying. In addition, if there is much Si content or P content, it will be thought that a moldability also falls.
On the other hand, specimens (No. 2-5, 7-8, 12-15) using slabs (steel types No. 2-5, 7-8, 12-15) included in the technical scope of the present invention. ) Had a particle size peeled area ratio of the peeled surface on the base material side of 5.0% or more, and the peeled amount of the plating layer was about 20 mg or 20 mg or less, and a good result was obtained. Note that sol. Although the test material (No. 15) using the slab (steel type No. 15) having an Al content of 0.80% does not show an adverse effect on performance or an adverse effect on the production, There was a tendency to saturate the effect obtained by increasing the Al content (the effect of improving the interfacial adhesion strength).

表2のNo.16〜20は、本発明の技術的範囲に含まれるスラブ(鋼種No.3)を用い、めっき浴中Al濃度を変更して製造した供試材である。浴中Al濃度が0.080%未満であることにより、本発明の製造方法の技術的範囲に含まれないNo.16は、めっき層の剥離量が41mgであり、耐フレーキング性が劣っていた。また、浴中Al濃度が0.14%を超えることにより、本発明の製造方法の技術的範囲に含まれないNo.19、20は、所定の合金化度を得るために長い合金化処理時間が必要とされ、合金化遅延と評価された。これに対し、浴中Al濃度が0.080%以上0.14%以下であり、本発明の製造方法の技術的範囲に含まれるNo.17、18は、粒径剥離面積率が5.0%以上であるとともに、めっき層の剥離量が20mg以下であり、良好な結果が得られた。   No. in Table 2 Nos. 16 to 20 are test materials manufactured by changing the Al concentration in the plating bath using a slab (steel type No. 3) included in the technical scope of the present invention. Since the Al concentration in the bath is less than 0.080%, No. not included in the technical scope of the production method of the present invention. In No. 16, the peeled amount of the plating layer was 41 mg, and the flaking resistance was inferior. Moreover, when the Al concentration in the bath exceeds 0.14%, No. not included in the technical scope of the production method of the present invention. Nos. 19 and 20 were evaluated as being delayed in alloying because a long alloying time was required to obtain a predetermined degree of alloying. On the other hand, the Al concentration in the bath is 0.080% or more and 0.14% or less, and No. 1 included in the technical scope of the production method of the present invention. Nos. 17 and 18 had a particle size peeling area ratio of 5.0% or more and a plating layer peeling amount of 20 mg or less, and good results were obtained.

表2のNo.21〜24は、本発明の技術的範囲に含まれるスラブ(鋼種No.3)を用い、合金化処理温度を変更して製造した供試材である。合金化処理温度が530℃を超えることにより、本発明の製造方法の技術的範囲に含まれないNo.23、24は、粒径剥離面積率が5%未満となった。これに対し、合金化処理温度が530℃以下であり、本発明の製造方法の技術的範囲に含まれるNo.21、22は、粒径剥離面積率が5.0%以上であるとともに、めっき層の剥離量が20mg以下であり、良好な結果が得られた。   No. in Table 2 21-24 are the test materials manufactured by changing the alloying process temperature using the slab (steel type No. 3) included in the technical scope of the present invention. When the alloying temperature exceeds 530 ° C., No. not included in the technical scope of the production method of the present invention. In Nos. 23 and 24, the particle size peeled area ratio was less than 5%. On the other hand, the alloying treatment temperature is 530 ° C. or lower, and No. included in the technical scope of the production method of the present invention. Nos. 21 and 22 had a particle size exfoliation area ratio of 5.0% or more, and a plating layer exfoliation amount of 20 mg or less, and good results were obtained.

表2のNo.25〜29は、本発明の技術的範囲に含まれるスラブ(鋼種No.3)を用いて、合金化度の影響を調査したものである。上述のように、No.25は、めっき層と接着剤との間で剥離が生じたものであるが、めっき層をX線回折で分析すると、η相のスペクトルが観察された。なお、合金化度の目安となる、No.25の供試材における、めっき層のFe含有量は、7.0%であった。一方、めっき層のFe含有量が15%を超える16%まで合金化処理を行ったNo.29の供試材は、耐パウダリング性が低下し、めっき層の剥離量が多かった。これに対し、めっき層のFe含有量が15%以下であり、本発明の製造方法の技術的範囲に含まれるNo.26〜28は、粒径剥離面積率が5.0%以上であるとともに、めっき層の剥離量が20mg以下、又は、20mgをやや超える程度であり、良好な結果が得られた。   No. in Table 2 25-29 investigates the influence of an alloying degree using the slab (steel type No. 3) included in the technical scope of the present invention. As described above, no. In No. 25, peeling occurred between the plating layer and the adhesive. When the plating layer was analyzed by X-ray diffraction, a spectrum of η phase was observed. In addition, No. which becomes a standard of the degree of alloying. In 25 specimens, the Fe content of the plating layer was 7.0%. On the other hand, when the alloying treatment was performed up to 16% in which the Fe content of the plating layer exceeded 15%, No. 1 was obtained. In the sample material 29, the powdering resistance was lowered, and the amount of peeling of the plating layer was large. On the other hand, the Fe content of the plating layer is 15% or less, and No. included in the technical scope of the production method of the present invention. In Nos. 26 to 28, the particle size peeling area ratio was 5.0% or more, and the peeling amount of the plating layer was 20 mg or less, or a little over 20 mg, and good results were obtained.

表2のNo.30〜34は、本発明の技術的範囲に含まれるスラブ(鋼種No.16〜20)を用い、本発明の製造方法の技術的範囲に含まれる条件で製造した供試材である。表2に示すように、これらの供試材は、いずれも、粒径剥離面積率が5.0%以上であるとともに、めっき層の剥離量が20mg以下であり、良好な結果が得られた。   No. in Table 2 30 to 34 are test materials manufactured using the slab (steel type Nos. 16 to 20) included in the technical scope of the present invention under the conditions included in the technical scope of the manufacturing method of the present invention. As shown in Table 2, all of these test materials had a particle size peeling area ratio of 5.0% or more and a plating layer peeling amount of 20 mg or less, and good results were obtained. .

表2のNo.35〜37は、本発明の技術的範囲に含まれるスラブ(鋼種No.3)を用いて、巻き取り温度の影響を調査したものである。巻き取り温度が高くなると、粒径剥離面積率が低下するとともに、めっき層の剥離量が増加する傾向が認められ、巻き取り温度が600℃を超えることにより、本発明の製造方法の技術的範囲に含まれないNo.37は、粒径剥離面積率がほぼゼロであった。これに対し、巻き取り温度が600℃以下であり、本発明の製造方法の技術的範囲に含まれるNo.35〜36は、粒径剥離面積率が5.0%以上であるとともに、めっき層の剥離量が20mg以下、又は、20mgをやや超える程度であり、良好な結果が得られた。   No. in Table 2 35-37 investigates the influence of coiling temperature using the slab (steel type No. 3) included in the technical scope of the present invention. When the winding temperature is increased, the particle size peeling area ratio is decreased and the amount of peeling of the plating layer tends to increase, and the winding temperature exceeds 600 ° C., so that the technical scope of the production method of the present invention is increased. No. not included in No. 37 had a particle size peeled area ratio of almost zero. On the other hand, the winding temperature is 600 ° C. or lower, and No. included in the technical scope of the production method of the present invention. In 35-36, the particle size peeling area ratio was 5.0% or more, and the peeling amount of the plating layer was 20 mg or less, or a little over 20 mg, and good results were obtained.

強制的にめっき層−母材界面で剥離させた時の、母材側剥離面のSEM像である。It is a SEM image of a base material side peeling surface when it is made to peel forcibly at a plating layer-base material interface. めっき層と母材との界面で強制的に剥離させる際の形態を示す図である。It is a figure which shows the form at the time of making it peel forcibly at the interface of a plating layer and a base material. めっき層と母材との界面の断面を概略的に示す図である。It is a figure which shows roughly the cross section of the interface of a plating layer and a base material. 図4(a)は、ハット成形試験装置の一部を拡大して示す模式図である。図4(b)は、成形後の供試材を示す側面図である。Fig.4 (a) is a schematic diagram which expands and shows a part of hat formation test apparatus. FIG.4 (b) is a side view which shows the test material after shaping | molding.

符号の説明Explanation of symbols

1 母材(鋼板母材)
2 めっき層(合金化亜鉛めっき層)
10 合金化溶融亜鉛めっき鋼板
1 Base material (steel plate base material)
2 Plating layer (alloyed zinc plating layer)
10 Alloyed hot-dip galvanized steel sheet

Claims (6)

鋼板母材の表面に合金化溶融亜鉛めっき層を備える合金化溶融亜鉛めっき鋼板であって、
前記鋼板母材が、質量%で、C:0.25%以下、Si:0.030%以上0.15%以下、Mn:0.030%以上3.0%以下、P:0.050%以下、S:0.010%以下、N:0.0060%以下、及び、sol.Al:0.10%以上0.80%以下、残部がFe及び不可避的不純物からなる化学組成を有し、
前記合金化溶融亜鉛めっき層に、質量%で、Fe:8.0%以上15%以下、及び、Al:0.080%以上0.50%以下、が含有されるとともに、η相が存在せず、
前記合金化溶融亜鉛めっき層と前記鋼板母材との界面剥離部における、前記鋼板母材側の粒径剥離面積率が5.0%以上であることを特徴とする、合金化溶融亜鉛めっき鋼板。
An alloyed hot-dip galvanized steel sheet provided with an alloyed hot-dip galvanized layer on the surface of a steel sheet base material,
The steel plate base material is mass%, C: 0.25% or less, Si: 0.030% or more and 0.15% or less, Mn: 0.030% or more and 3.0% or less, P: 0.050% Hereinafter, S: 0.010% or less, N: 0.0060% or less, and sol. Al: 0.10% or more and 0.80% or less, the balance having a chemical composition consisting of Fe and inevitable impurities,
The alloyed hot dip galvanized layer contains Fe: 8.0% or more and 15% or less and Al: 0.080% or more and 0.50% or less in mass%, and η phase does not exist. Without
An alloyed hot-dip galvanized steel sheet characterized by having a grain size peeled area ratio of 5.0% or more on the steel sheet base metal side in an interface peel portion between the alloyed hot-dip galvanized layer and the steel sheet base material .
鋼板母材の表面に合金化溶融亜鉛めっき層を備える合金化溶融亜鉛めっき鋼板であって、
前記鋼板母材が、質量%で、C:0.010%以下、Si:0.030%以上0.15%以下、Mn:0.030%以上1.5%以下、P:0.050%以下、S:0.010%以下、N:0.0060%以下、及び、sol.Al:0.10%以上0.80%以下、残部がFe及び不可避的不純物からなる化学組成を有し、
前記合金化溶融亜鉛めっき層に、質量%で、Fe:8.0%以上15%以下、及び、Al:0.080%以上0.50%以下、が含有されるとともに、η相が存在せず、
前記合金化溶融亜鉛めっき層と前記鋼板母材との界面剥離部における、前記鋼板母材側の粒径剥離面積率が5.0%以上であることを特徴とする、合金化溶融亜鉛めっき鋼板。
An alloyed hot-dip galvanized steel sheet provided with an alloyed hot-dip galvanized layer on the surface of a steel sheet base material,
The steel plate base material is mass%, C: 0.010% or less, Si: 0.030% or more and 0.15% or less, Mn: 0.030% or more and 1.5% or less, P: 0.050%. Hereinafter, S: 0.010% or less, N: 0.0060% or less, and sol. Al: 0.10% or more and 0.80% or less, the balance having a chemical composition consisting of Fe and inevitable impurities,
The alloyed hot dip galvanized layer contains Fe: 8.0% or more and 15% or less and Al: 0.080% or more and 0.50% or less in mass%, and η phase does not exist. Without
An alloyed hot-dip galvanized steel sheet characterized by having a grain size peeled area ratio of 5.0% or more on the steel sheet base metal side in an interface peel portion between the alloyed hot-dip galvanized layer and the steel sheet base material .
前記鋼板母材に含有される前記Feの一部に代えて、質量%で、Ti:0.0040%以上0.50%以下、及び/又は、Nb:0.0040%以上0.50%以下、並びに、B:0.0050%以下、の添加元素が含有されることを特徴とする、請求項1又は2に記載の合金化溶融亜鉛めっき鋼板。 Instead of a part of the Fe contained in the steel plate base material, in mass%, Ti: 0.0040% to 0.50% and / or Nb: 0.0040% to 0.50% The alloyed hot-dip galvanized steel sheet according to claim 1, wherein B: 0.0050% or less of an additive element is contained. 質量%で、C:0.25%以下、Si:0.030%以上0.15%以下、Mn:0.030%以上3.0%以下、P:0.050%以下、S:0.010%以下、N:0.0060%以下、及び、sol.Al:0.10%以上0.80%以下、残部がFe及び不可避的不純物からなる化学組成を有するスラブを、熱間圧延して鋼板とする、熱間圧延工程と、
前記熱間圧延工程後に、前記鋼板を600℃以下の温度で巻き取る、巻き取り工程と、
前記巻き取り工程後に、鋼板を酸洗する、酸洗工程と、
前記酸洗工程後に、鋼板を冷間圧延する、冷間圧延工程と、
前記冷間圧延工程後に、鋼板を還元雰囲気中で焼鈍する、還元焼鈍工程と、
前記還元焼鈍工程後に、鋼板を、質量%で、0.080%以上0.14%以下のAlを含有する溶融亜鉛めっき浴へ浸漬する、浸漬工程と、
前記浸漬工程後に、鋼板表面の亜鉛付着量を制御する、付着量制御工程と、
前記付着量制御工程後に、鋼板を、530℃以下の温度で合金化処理する、合金化処理工程と、を備え、
前記合金化処理工程において、質量%で、Fe:8.0%以上15%以下、及び、Al:0.080%以上0.50%以下、を含有するとともに、η相が残存しない合金化溶融亜鉛めっき層、が形成されることを特徴とする、合金化溶融亜鉛めっき鋼板の製造方法。
In mass%, C: 0.25% or less, Si: 0.030% or more and 0.15% or less, Mn: 0.030% or more and 3.0% or less, P: 0.050% or less, S: 0.00. 010% or less, N: 0.0060% or less, and sol. Al: 0.10% or more and 0.80% or less, a slab having a chemical composition composed of Fe and unavoidable impurities in the balance, hot rolled into a steel plate,
After the hot rolling step, winding the steel sheet at a temperature of 600 ° C. or less, and a winding step,
After the winding step, pickling the steel plate, pickling step,
After the pickling step, cold rolling the steel sheet, a cold rolling step,
After the cold rolling step, annealing the steel sheet in a reducing atmosphere, a reduction annealing step,
After the reduction annealing step, the steel plate is immersed in a hot dip galvanizing bath containing 0.080% or more and 0.14% or less Al in mass%,
After the dipping step, control the zinc adhesion amount on the steel sheet surface,
An alloying treatment step of alloying the steel sheet at a temperature of 530 ° C. or less after the adhesion amount controlling step;
In the alloying treatment step, by mass%, Fe: 8.0% or more and 15% or less and Al: 0.080% or more and 0.50% or less, and alloying and melting without η phase remaining A method for producing an galvannealed steel sheet, wherein a galvanized layer is formed.
質量%で、C:0.010%以下、Si:0.030%以上0.15%以下、Mn:0.030%以上1.5%以下、P:0.050%以下、S:0.010%以下、N:0.0060%以下、及び、sol.Al:0.10%以上0.80%以下、残部がFe及び不可避的不純物からなる化学組成を有するスラブを、熱間圧延して鋼板とする、熱間圧延工程と、
前記熱間圧延工程後に、前記鋼板を600℃以下の温度で巻き取る、巻き取り工程と、
前記巻き取り工程後に、鋼板を酸洗する、酸洗工程と、
前記酸洗工程後に、鋼板を冷間圧延する、冷間圧延工程と、
前記冷間圧延工程後に、鋼板を還元雰囲気中で焼鈍する、還元焼鈍工程と、
前記還元焼鈍工程後に、鋼板を、質量%で、0.080%以上0.14%以下のAlを含有する溶融亜鉛めっき浴へ浸漬する、浸漬工程と、
前記浸漬工程後に、鋼板表面の亜鉛付着量を制御する、付着量制御工程と、
前記付着量制御工程後に、鋼板を、530℃以下の温度で合金化処理する、合金化処理工程と、を備え、
前記合金化処理工程において、質量%で、Fe:8.0%以上15%以下、及び、Al:0.080%以上0.50%以下、を含有するとともに、η相が残存しない合金化溶融亜鉛めっき層、が形成されることを特徴とする、合金化溶融亜鉛めっき鋼板の製造方法。
In mass%, C: 0.010% or less, Si: 0.030% or more and 0.15% or less, Mn: 0.030% or more and 1.5% or less, P: 0.050% or less, S: 0.00. 010% or less, N: 0.0060% or less, and sol. Al: 0.10% or more and 0.80% or less, a slab having a chemical composition composed of Fe and unavoidable impurities in the balance, hot rolled into a steel plate,
After the hot rolling step, winding the steel sheet at a temperature of 600 ° C. or less, and a winding step,
After the winding step, pickling the steel plate, pickling step,
After the pickling step, cold rolling the steel sheet, a cold rolling step,
After the cold rolling step, annealing the steel sheet in a reducing atmosphere, a reduction annealing step,
After the reduction annealing step, the steel plate is immersed in a hot dip galvanizing bath containing 0.080% or more and 0.14% or less Al in mass%,
After the dipping step, control the zinc adhesion amount on the steel sheet surface,
An alloying treatment step of alloying the steel sheet at a temperature of 530 ° C. or less after the adhesion amount controlling step;
In the alloying treatment step, by mass%, Fe: 8.0% or more and 15% or less and Al: 0.080% or more and 0.50% or less, and alloying and melting without η phase remaining A method for producing an galvannealed steel sheet, wherein a galvanized layer is formed.
前記スラブに含有される前記Feの一部に代えて、質量%で、Ti:0.0040%以上0.50%以下、及び/又は、Nb:0.0040%以上0.50%以下、並びに、B:0.0050%以下、の添加元素が含有されることを特徴とする、請求項4又は5に記載の合金化溶融亜鉛めっき鋼板の製造方法。 Instead of a part of the Fe contained in the slab, by mass%, Ti: 0.0040% or more and 0.50% or less, and / or Nb: 0.0040% or more and 0.50% or less, and B: The additive element of 0.0050% or less is contained, The manufacturing method of the galvannealed steel plate of Claim 4 or 5 characterized by the above-mentioned.
JP2006148278A 2006-05-29 2006-05-29 Alloyed hot-dip galvanized steel sheet and method for producing the same Active JP4720618B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006148278A JP4720618B2 (en) 2006-05-29 2006-05-29 Alloyed hot-dip galvanized steel sheet and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006148278A JP4720618B2 (en) 2006-05-29 2006-05-29 Alloyed hot-dip galvanized steel sheet and method for producing the same

Publications (2)

Publication Number Publication Date
JP2007314858A true JP2007314858A (en) 2007-12-06
JP4720618B2 JP4720618B2 (en) 2011-07-13

Family

ID=38848990

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006148278A Active JP4720618B2 (en) 2006-05-29 2006-05-29 Alloyed hot-dip galvanized steel sheet and method for producing the same

Country Status (1)

Country Link
JP (1) JP4720618B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010222674A (en) * 2009-03-25 2010-10-07 Sumitomo Metal Ind Ltd Hot dip galvannealed steel sheet and method for producing the same
JP2010222676A (en) * 2009-03-25 2010-10-07 Sumitomo Metal Ind Ltd Hot dip galvannealed steel sheet and method for producing the same
JP2011246744A (en) * 2010-05-24 2011-12-08 Sumitomo Metal Ind Ltd Galvannealed cold rolled steel sheet and method for producing the same
JP2012188676A (en) * 2011-03-08 2012-10-04 Sumitomo Metal Ind Ltd Galvannealed steel sheet, and method for manufacturing the same
JP2012241211A (en) * 2011-05-17 2012-12-10 Nippon Steel Corp Method for manufacturing p-containing high-strength hot-dip galvanized steel sheet

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04103749A (en) * 1990-08-22 1992-04-06 Kawasaki Steel Corp Manufacture of galvannealed steel sheet excellent in galvannealing appearance and film workability
JP2002047535A (en) * 2000-07-31 2002-02-15 Sumitomo Metal Ind Ltd Hot dip galvannealed steel sheet and its production method
JP2002235146A (en) * 2001-02-05 2002-08-23 Kawasaki Steel Corp Galvannealed steel sheet and production method therefor
JP2003253416A (en) * 2002-02-27 2003-09-10 Jfe Steel Kk Hot-dip zincing steel sheet
JP2005048254A (en) * 2003-07-30 2005-02-24 Sumitomo Metal Ind Ltd Galvanized steel having excellent film peeling resistance for hot forming
JP2006097102A (en) * 2004-09-30 2006-04-13 Sumitomo Metal Ind Ltd High-tensile galvannealed steel sheet and its manufacturing method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04103749A (en) * 1990-08-22 1992-04-06 Kawasaki Steel Corp Manufacture of galvannealed steel sheet excellent in galvannealing appearance and film workability
JP2002047535A (en) * 2000-07-31 2002-02-15 Sumitomo Metal Ind Ltd Hot dip galvannealed steel sheet and its production method
JP2002235146A (en) * 2001-02-05 2002-08-23 Kawasaki Steel Corp Galvannealed steel sheet and production method therefor
JP2003253416A (en) * 2002-02-27 2003-09-10 Jfe Steel Kk Hot-dip zincing steel sheet
JP2005048254A (en) * 2003-07-30 2005-02-24 Sumitomo Metal Ind Ltd Galvanized steel having excellent film peeling resistance for hot forming
JP2006097102A (en) * 2004-09-30 2006-04-13 Sumitomo Metal Ind Ltd High-tensile galvannealed steel sheet and its manufacturing method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010222674A (en) * 2009-03-25 2010-10-07 Sumitomo Metal Ind Ltd Hot dip galvannealed steel sheet and method for producing the same
JP2010222676A (en) * 2009-03-25 2010-10-07 Sumitomo Metal Ind Ltd Hot dip galvannealed steel sheet and method for producing the same
JP2011246744A (en) * 2010-05-24 2011-12-08 Sumitomo Metal Ind Ltd Galvannealed cold rolled steel sheet and method for producing the same
JP2012188676A (en) * 2011-03-08 2012-10-04 Sumitomo Metal Ind Ltd Galvannealed steel sheet, and method for manufacturing the same
JP2012241211A (en) * 2011-05-17 2012-12-10 Nippon Steel Corp Method for manufacturing p-containing high-strength hot-dip galvanized steel sheet

Also Published As

Publication number Publication date
JP4720618B2 (en) 2011-07-13

Similar Documents

Publication Publication Date Title
KR102301116B1 (en) Method for producing a steel component having a metal coating protecting it against corrosion, and steel component
KR101707984B1 (en) HOT-DIP Al-Zn COATED STEEL SHEET
CA3020663C (en) Hot stamped steel
KR101636443B1 (en) HOT-DIP Al-Zn COATED STEEL SHEET AND METHOD FOR MANUFACTURING THE SAME
WO2016072479A1 (en) Hot-dip galvanized steel sheet
JP6004102B2 (en) Hot stamp molded body and method for producing hot stamp molded body
JP6009438B2 (en) Method for producing austenitic steel
TWI507535B (en) Alloyed molten galvanized steel sheet
TWI511875B (en) Molten galvanized steel sheet
JP4837604B2 (en) Alloy hot-dip galvanized steel sheet
KR101679159B1 (en) Hot-dip galvanized steel sheet
WO2003074751A1 (en) Surface treated steel plate and method for production thereof
WO2013103117A1 (en) Hot-dip galvannealed steel sheet
KR20150093227A (en) Hot-dip-galvanized steel sheet
JP6406475B1 (en) Al-plated welded pipe for quenching, Al-plated hollow member and method for producing the same
JP4555738B2 (en) Alloy hot-dip galvanized steel sheet
WO2018142849A1 (en) High-strength molten zinc plating hot-rolled steel sheet, and production method therefor
JP4720618B2 (en) Alloyed hot-dip galvanized steel sheet and method for producing the same
JP4889212B2 (en) High-strength galvannealed steel sheet and method for producing the same
JP5589269B2 (en) Alloyed hot-dip galvanized steel sheet and method for producing alloyed hot-dip galvanized steel sheet
JP5228722B2 (en) Alloyed hot-dip galvanized steel sheet and method for producing the same
JP2014240510A (en) Galvanized steel sheet and production method thereof
JP5644059B2 (en) Alloyed hot-dip galvanized steel sheet and method for producing the same
JP4846550B2 (en) Steel plate for galvannealed alloy and galvannealed steel plate
JP3921101B2 (en) Manufacturing method of high strength and high ductility hot dip galvanized steel sheet with excellent shape freezing property

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080523

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080922

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100615

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100813

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101005

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20101101

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101206

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20101222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110308

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110321

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140415

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4720618

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140415

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140415

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350