JP2001073164A - Metallic material in which oxidized passive film has been formed, formation of the oxidized passive film and die and parts in which the oxidized passive films have been formed - Google Patents

Metallic material in which oxidized passive film has been formed, formation of the oxidized passive film and die and parts in which the oxidized passive films have been formed

Info

Publication number
JP2001073164A
JP2001073164A JP24441499A JP24441499A JP2001073164A JP 2001073164 A JP2001073164 A JP 2001073164A JP 24441499 A JP24441499 A JP 24441499A JP 24441499 A JP24441499 A JP 24441499A JP 2001073164 A JP2001073164 A JP 2001073164A
Authority
JP
Japan
Prior art keywords
chromium
chromium plating
plating layer
chromium oxide
oxide film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24441499A
Other languages
Japanese (ja)
Inventor
Masayuki Kiuchi
正進 木内
Mutsumi Funai
睦 船井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP24441499A priority Critical patent/JP2001073164A/en
Publication of JP2001073164A publication Critical patent/JP2001073164A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/322Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • C23C28/3455Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer with a refractory ceramic layer, e.g. refractory metal oxide, ZrO2, rare earth oxides or a thermal barrier system comprising at least one refractory oxide layer

Abstract

PROBLEM TO BE SOLVED: To improve the corrosion resistance, releasing properties, gas releasability, surface hardness, wear resistance or the like in the material and to repeately reuse the same by applying the surface of a metallic base material with chromium plating, thereafter executing heating in an oxidizing atmosphere and oxidizing and passivating the surface of the chromium plating layer at a specified thickness. SOLUTION: The surface of a metallic material is applied with chromium plating of about 1 to 50 μm, is, if required, subjected to degreasing cleaning, is thereafter heated at 20 to 400 deg.C in reactive gas, preferably, contg. halogen such as fluorine or a halogen compd. such as ClF3 to clean and activate the surface of the chromium plating layer. Next, the chromium plated metallic material is held under heating at <=700 deg.C, preferably, at about 400 to 700 deg.C for about 2 to 48 hr in an oxidizing atmosphere having an O2 concn. of about 10 ppm to 100% and is subsequently subjected to heat treatment, preferably, in an inert gas. In this way, the surface of the chromium plating layer is oxidized and passivated at a thickness of >=0.01 μm to improve its chemical and mechanical properties, by which the parts excellent in cost effectiveness and general applicability and having a long life can be obtd.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、金属基材の表面に
クロムメッキ層を具備し、さらにその表面に酸化不動態
膜が形成された金属材料、これを用いた金型及び部品、
並びにクロムメッキを施した金属基材の表面に酸化クロ
ム被膜を形成して、表面硬度、耐摩耗性、耐食性、離形
性等を向上させる酸化クロム被膜の形成方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a metal material having a chromium plating layer on the surface of a metal substrate and further having an oxidation passivation film formed on the surface, a mold and parts using the same,
Also, the present invention relates to a method for forming a chromium oxide film on a surface of a chromium-plated metal substrate to improve the surface hardness, abrasion resistance, corrosion resistance, releasability, and the like.

【0002】[0002]

【従来の技術】金属材料の表面硬度、耐摩耗性、耐食
性、疲労強度、離形性等の化学的・機械的性質を向上さ
せ、製品の表面特性強化、高寿命化、材料表面への高負
荷化を目的に、従来から各種の方法が提案されてきた。
すなわち、従来の金属材料の表面改質方法は、材料表面
自体を変化させる方法と表面被膜を付与する方法に大別
される。
2. Description of the Related Art Metal materials have improved surface hardness, wear resistance, corrosion resistance, fatigue strength, releasability, and other chemical and mechanical properties to enhance the surface characteristics of products, prolong the service life, and improve the material surface. Various methods have conventionally been proposed for the purpose of increasing the load.
That is, conventional methods for modifying the surface of a metal material are roughly classified into a method of changing the material surface itself and a method of providing a surface coating.

【0003】前者の方法は、材料の表面自体を直接変化
させて、新しい目的機能を付与して材料表面を改質する
方法である。これに属する方法としては、機械的処理
法、化学変化法、レーザー表面処理、表面熱処理、表面
拡散熱処理、イオン窒化・イオン浸炭、ホウ化処理、金
属拡散処理、イオン注入法などが挙げられる。しかし、
これらの方法を用いる際に留意しなければならないの
は、変質層の密着性は優れているがその改質表面が磨耗
などや機能変化により使用不能となったときには寸法変
化との関係で再処理の困難な場合が多いということであ
る。
The former method is a method of modifying the surface of a material by directly changing the surface itself of the material to give a new target function. Methods belonging to this include a mechanical treatment method, a chemical change method, a laser surface treatment, a surface heat treatment, a surface diffusion heat treatment, an ion nitriding / carburizing treatment, a boring treatment, a metal diffusion treatment, and an ion implantation method. But,
When using these methods, it is important to note that the deteriorated layer has excellent adhesion, but when the modified surface becomes unusable due to wear or functional change, it must be reprocessed in relation to dimensional changes. It is often difficult.

【0004】また、後者の方法は、材料表面に目的改質
の性質を持つ、素地とは異なる被膜(金属、化合物、セ
ラミックス、合金など)をコートして目的を達する方法
である。これに属する方法としては、溶射法、メッキ
法、メッキコンポジット法、化学的蒸着法(CVD
法)、物理的蒸着法(PVD法、真空蒸着法、スパッタ
リング法、イオンプレーティング法)などが挙げられ
る。しかし、これらの方法を用いる際も留意しなくては
ならないことは、目的被膜の素地材料との密着性が問題
となり、良好な密着性を得るための工夫が必要となるこ
とである。
[0004] The latter method is a method in which the surface of a material is coated with a film (metal, compound, ceramics, alloy, or the like) having a property of a desired property and different from the base material to achieve the desired purpose. Methods belonging to this include thermal spraying, plating, plating composite, and chemical vapor deposition (CVD).
Method), physical vapor deposition method (PVD method, vacuum vapor deposition method, sputtering method, ion plating method) and the like. However, when using these methods, it should be noted that the adhesion of the target coating to the base material becomes a problem, and it is necessary to devise a method for obtaining good adhesion.

【0005】両者の表面改質法の問題点を改善するため
に、比較的密着性の高いメッキ被膜を、更にガス拡散熱
処理により、機能性を付加させる方法も提案されてい
る。特に、硬質クロムメッキは、良好な耐摩耗性や耐食
性に優れていることでよく知られているが、これはクロ
ム被膜が高硬度であること、表面酸化物である酸化クロ
ムも高硬度であり、かつクロム被膜との密着性のよいこ
と、耐食性にすぐれていることによると考えられてい
る。この酸化クロムの優れた物性に着目して、酸化クロ
ム被膜の形成方法が種々提案されている。
[0005] In order to improve the problems of both surface modification methods, a method has been proposed in which a plating film having relatively high adhesion is further added with functionality by a gas diffusion heat treatment. In particular, hard chromium plating is well known for its excellent wear resistance and corrosion resistance, but this is because the chromium coating has high hardness and the surface oxide chromium oxide has high hardness. It is believed that this is due to the good adhesion to the chromium film and the excellent corrosion resistance. Focusing on the excellent physical properties of chromium oxide, various methods for forming a chromium oxide film have been proposed.

【0006】酸化クロム被膜の形成方法で古くから知ら
れている方法として、化成処理のひとつであるクロメー
ト処理がある。化成処理とは、ある金属を特定な条件で
調整された腐食液(化成浴)と化学反応させ、その金属
の表面に固着性のある水に不溶性の腐食生成物を作る方
法である。その腐食生成物被膜の物理的または化学的性
質を利用して、防錆、塗装下地、塑性加工用潤滑下地な
どに利用されている。
As a method of forming a chromium oxide film which has been known for a long time, there is a chromate treatment which is one of chemical conversion treatments. The chemical conversion treatment is a method in which a certain metal is chemically reacted with a corrosive solution (chemical conversion bath) adjusted under specific conditions to produce a water-insoluble corrosion product that is fixed to the surface of the metal. Utilizing the physical or chemical properties of the corrosion product film, it is used for rust prevention, paint base, lubrication base for plastic working, etc.

【0007】クロメート処理は、主として亜鉛及びアル
ミニウムの表面処理に適用されている。一例として、ア
ルミニウムのクロム酸塩被膜の被膜生成機構を示すと、
化成浴はクロム酸、フッ化物を含むpH1.8〜3.8
の酸性水溶液であり、(a)フッ化水素酸によるアルミニ
ウムの腐食(b)重クロム酸イオンの解離とクロムの還元
(c)3価クロムと6価クロムの析出(d)アルミニウム酸化
物の析出により、非晶質被膜、Cr(OH2)2・HCrO4・Al(O
H3)・2H2Oが生成すると言われている。アルミニウムのク
ロメート被膜は塗装の下地処理として、塗料密着性が良
く、長期耐久性が期待できる。
[0007] Chromate treatment is mainly applied to surface treatment of zinc and aluminum. As an example, showing the film formation mechanism of a chromate film of aluminum,
The chemical conversion bath contains chromic acid and fluoride at a pH of 1.8 to 3.8.
(A) Corrosion of aluminum by hydrofluoric acid (b) Dissociation of dichromate ion and reduction of chromium
(c) Precipitation of trivalent chromium and hexavalent chromium (d) Amorphous film, Cr (OH 2 ) 2 .HCrO 4 .Al (O
It is said that H 3 ) · 2H 2 O is produced. The aluminum chromate film is expected to have good paint adhesion and long-term durability as a base treatment for coating.

【0008】また、亜鉛のクロメート処理により得られ
る被膜成分は、Cr(OH)3・Cr(OH)CrO4といわれている。被
膜成分の一部は更に酸化クロムになっていると考えられ
るが、純粋な酸化クロム層の形成は見られない。従って
クロメート処理では防錆、塗装下地程度の期待はできる
が、高耐食性や耐摩耗性といった効果は見られない。ま
た、クロメート被膜は熱に対する安定性が劣り、処理に
は廃水処理設備が必要になることも大きな障害となる。
[0008] The coating component obtained by chromate treatment of zinc is said to be Cr (OH) 3 · Cr (OH) CrO 4 . It is considered that some of the coating components are further converted to chromium oxide, but no formation of a pure chromium oxide layer is observed. Therefore, in the chromate treatment, rust prevention and a paint base can be expected, but effects such as high corrosion resistance and wear resistance are not observed. In addition, the chromate film is inferior in heat stability, and the treatment requires a wastewater treatment facility, which is a major obstacle.

【0009】また、プラズマ吹き着けにより施着した酸
化クロム含有セラミック質被膜にレーザーを照射するこ
とによりセラミック質被膜を全体的または部分的に溶融
する方法が提案されている(特開昭63−24077号
公報)。これは、プラズマ吹き着けした酸化クロム被膜
は、微細粒子が施着した多孔質であり、これをレーザー
照射により溶解固化させて均質化させる方法であるが、
硬度、耐摩耗性はある程度改善するが、完全な均質化は
難しく、高耐食性を得るような被膜はできない。
Further, a method has been proposed in which a ceramic coating containing chromium oxide applied by plasma spraying is irradiated with a laser to melt the ceramic coating entirely or partially (JP-A-63-24077). No.). This is a method in which the plasma-sprayed chromium oxide coating is porous with fine particles applied, and this is melted and solidified by laser irradiation to homogenize it.
Although the hardness and abrasion resistance are improved to some extent, it is difficult to completely homogenize the film, and it is not possible to form a coating having high corrosion resistance.

【0010】また、化学緻密化法が提案されている。こ
れは、基板表面において、化合物の化学分解、熱分解反
応により、表面改質成分を析出させ、コーティングまた
は緻密化する方法である。現在は、酸化クロムによるコ
ーティング及び緻密化が利用されている。クロム酸や無
水クロム酸は加熱すると熱分解がおこり、次のように変
化することが知られている。 CrO3→Cr23+3/2O2 化学緻密化法では、この反応により生成する酸化クロム
を表面にデポジットさせ、目的の機能を付加しようとす
るものである。
[0010] Further, a chemical densification method has been proposed. This is a method of precipitating and coating or densifying a surface modifying component on a substrate surface by a chemical decomposition or thermal decomposition reaction of a compound. At present, chromium oxide coating and densification are used. It is known that chromic acid or chromic anhydride undergoes thermal decomposition when heated, and changes as follows. In the CrO 3 → Cr 2 O 3 + 3 / 2O 2 chemical densification method, chromium oxide produced by this reaction is deposited on the surface to add a desired function.

【0011】例えば、母材表面に塗布や浸漬によってク
ロム酸を主成分とする液を付着させ、ついで母材を50
0〜600℃で焼成処理を実施し、母材表面に酸化クロ
ムを主成分とする層を形成させる.この処理を複数回繰
り返すことで、強固な酸化クロム層を形成させる方法
(特開昭62−60766号公報)がある。また、金属
母材表面を平滑化することにより、クロム酸の付着と焼
成処理の繰り返し回数を減らし、クロム酸化物を主成分
とする厚さ1〜2μmの被膜を形成する方法が提案され
ている(特開平11−29876号公報)。しかしなが
ら、これらの方法で得られる被覆層を形成するクロム酸
化物は、平均粒径が0.1〜1.0μmの微細粒子状で
あるため、高耐食性を期待することはできない。
For example, a liquid containing chromic acid as a main component is applied to the surface of the base material by coating or dipping, and then the base material is coated with 50%.
A baking treatment is performed at 0 to 600 ° C. to form a layer mainly composed of chromium oxide on the surface of the base material. There is a method of forming a strong chromium oxide layer by repeating this process a plurality of times (Japanese Patent Application Laid-Open No. 62-60766). Also, a method has been proposed in which the surface of a metal base material is smoothed to reduce the number of repetitions of chromic acid deposition and firing treatment, and to form a film having a thickness of 1 to 2 μm containing chromium oxide as a main component. (JP-A-11-29876). However, since the chromium oxide forming the coating layer obtained by these methods is in the form of fine particles having an average particle size of 0.1 to 1.0 μm, high corrosion resistance cannot be expected.

【0012】また、圧力勾配型プラズマガンを使用し
て、イオンプレーティング法により窒化クロム膜を形成
し、その上に耐摩耗性に優れた酸化クロム膜を形成する
ことで、母材との密着性の優れた酸化クロム膜の形成方
法が提案されている(特開平8−29603号公報)。
しかし、イオンプレーティング法等の気相コーティング
は、高真空雰囲気が必須条件となるため、処理コストが
高く、処理物の形状寸法に制約が生じるという問題点が
ある。
Further, a chromium nitride film is formed by an ion plating method using a pressure gradient plasma gun, and a chromium oxide film having excellent wear resistance is formed on the chromium nitride film so as to adhere to the base material. A method for forming a chromium oxide film having excellent properties has been proposed (JP-A-8-29603).
However, gas-phase coating such as an ion plating method has a problem that a high vacuum atmosphere is an indispensable condition, so that the processing cost is high and the shape and size of a processed object are restricted.

【0013】また、ステンレス鋼表面に酸化クロム膜を
主成分とする酸化不動態膜を形成する方法が種々提案さ
れている。例えば、ステンレス鋼母材表面に微結晶から
なる加工歪層を形成し、低酸素分圧、弱酸化性雰囲気下
において熱処理を施すことによって、ステンレス鋼内部
から表面にクロムを選択的に拡散させ、酸化することで
Feをまったく含まない酸化クロム不動態膜を形成する方
法が提案されている(特開平6−116632号公
報)。また、ステンレス表面を酸化することで形成され
る、鉄系酸化物を主成分とする着色酸化被膜を溶解除去
することで、50〜100Åの厚みのクロム系酸化物を
主成分とする被膜を形成する方法(特開平10−140
323号公報)、高濃度オゾンを使用して低温度で高純
度ガス用配管に不動態膜を形成する方法(特開平9−1
95031号公報)、ステンレス鋼を脱脂洗浄した後、
不活性ガスと水素と一酸化炭素と二酸化炭素と酸素との
混合ガス雰囲気で1000〜1200℃で熱処理する方
法(特開平10−237651号公報)などが提案され
ている。
Various methods have been proposed for forming an oxidized passivation film having a chromium oxide film as a main component on the surface of stainless steel. For example, by forming a work-strained layer made of microcrystals on the surface of a stainless steel base material and performing a heat treatment under a low oxygen partial pressure and a weakly oxidizing atmosphere, chromium is selectively diffused from the inside of the stainless steel to the surface, By oxidizing
A method for forming a chromium oxide passivation film containing no Fe has been proposed (JP-A-6-116632). In addition, by dissolving and removing a colored oxide film mainly composed of an iron-based oxide formed by oxidizing a stainless steel surface, a film mainly composed of a chromium-based oxide having a thickness of 50 to 100 mm is formed. (Japanese Unexamined Patent Application Publication No. 10-140)
323), a method of forming a passivation film in a high-purity gas pipe at a low temperature using high-concentration ozone (Japanese Patent Laid-Open No. 9-1)
95031), after degreasing and cleaning stainless steel,
A method in which heat treatment is performed at 1000 to 1200 ° C. in a mixed gas atmosphere of an inert gas, hydrogen, carbon monoxide, carbon dioxide, and oxygen (Japanese Patent Application Laid-Open No. 10-237651) has been proposed.

【0014】ステンレス鋼表面に形成された酸化鉄の含
有が少ない酸化クロムを主成分とする酸化膜は、耐腐食
性、ガス放出性の向上、金属イオンの溶出低下などの特
性を持つことが報告されているが、これらの方法では、
クロムの表面への拡散を利用しているため、酸化クロム
層として数Åから数百Å程度の薄膜しか形成することが
できない。従って、高硬度、耐摩耗性等の機械的な機能
性を向上させることは不可能である。また、当然のこと
ながら、クロムを含まない材料には適用できない。更
に、クロムメッキを施した後に、強制的にクロムの酸化
被膜を形成させ、その酸化被膜の干渉色で発色させた時
計用文字板が提案されている(特開昭60−82677
号公報)が、この方法はあくまで装飾用途が目的で、非
常に薄膜であり、機械的な物性向上は認められない。
[0014] It has been reported that an oxide film formed on the surface of stainless steel and containing chromium oxide as a main component and having a low content of iron oxide has properties such as corrosion resistance, improved gas release, and reduced elution of metal ions. But with these methods,
Since the diffusion of chromium to the surface is used, only a few to several hundreds of thin films can be formed as the chromium oxide layer. Therefore, it is impossible to improve mechanical functionality such as high hardness and wear resistance. Naturally, it cannot be applied to a material containing no chromium. Further, there has been proposed a timepiece dial in which a chromium oxide film is forcibly formed after chromium plating, and the color is developed with the interference color of the oxide film (JP-A-60-82677).
However, this method is intended only for decorative use, is very thin, and does not show any improvement in mechanical properties.

【0015】[0015]

【発明が解決しようとする課題】本発明はこのような背
景の下になされたものであって、本発明が解決しようと
する課題は、特にステンレス鋼に限定されることなく、
金属基材の表面にクロムメッキ層を具備し、さらにその
表面に酸化不動態膜が形成された金属材料、これを用い
た金型及び部品、並びにクロムメッキを施した金属材料
の表面に酸化クロム不動態膜を形成させる方法におい
て、耐食性、離型性、ガス放出性が優れた不動態被膜で
あり、かつ高硬度、耐摩耗性等の機械的物性を具備する
ために厚膜化がはかれ、更に金属材料素地との密着性に
優れた、繰り返し再処理が容易な酸化クロム被膜が形成
された金属材料、これを用いた金型及び部品、並びに該
酸化クロム不動態膜を形成させる方法の提供にある。
The present invention has been made under such a background, and the problem to be solved by the present invention is not particularly limited to stainless steel.
A metal material having a chromium plating layer on the surface of a metal substrate, and further having an oxidized passivation film formed on the surface thereof, a mold and parts using the same, and chromium oxide on a surface of a chromium-plated metal material. In the method of forming a passivation film, a passivation film having excellent corrosion resistance, mold release properties, and gas release properties, and having a mechanical property such as high hardness and abrasion resistance is provided with a thick film. And a metal material having a chromium oxide film which is excellent in adhesion to a metal material substrate and which can be easily reprocessed repeatedly, a mold and a part using the same, and a method for forming the chromium oxide passivation film. On offer.

【0016】[0016]

【課題を解決するための手段】本発明者らは、前記課題
を解決すべく鋭意検討を重ねた結果、金属基材の表面に
クロムメッキ層を具備し、さらにその表面に酸化不動態
膜が形成された金属材料、これを用いた金型及び部品、
並びに金属基材の表面にクロムメッキを施した後に、酸
化雰囲気中で加熱して酸化クロム不動態膜を形成する方
法を用いれば前記課題を解決できることを見出し、本発
明を完成するに至った。本発明は以下の(1)〜(1
3)に示される金属基材の表面にクロムメッキ層を具備
し、さらにその表面に酸化不動態膜が形成された金属材
料、これを用いた金型及び部品、並びにクロムメッキを
施した金属材料の表面に酸化クロム不動態膜を形成させ
る方法に関する。
Means for Solving the Problems As a result of intensive studies to solve the above problems, the present inventors have provided a chromium plating layer on the surface of a metal substrate, and further provided an oxidation passivation film on the surface. Formed metal materials, molds and parts using the same,
Further, the present inventors have found that the above problem can be solved by using a method of forming a chromium oxide passivation film by applying chromium plating to the surface of a metal substrate and then heating in a oxidizing atmosphere to complete the present invention. The present invention provides the following (1) to (1)
Metal material having a chromium plating layer on the surface of the metal substrate shown in 3) and further having an oxidation passivation film formed on the surface, molds and parts using the same, and chromium-plated metal material And a method for forming a chromium oxide passivation film on the surface of the substrate.

【0017】(1)金属基材の表面にクロムメッキ層を
具備し、該クロムメッキ層表面が0.01μm以上の厚
さで酸化不動態化されてなることを特徴とする金属材
料。 (2)金属基材表面にクロムメッキを施した後、該金属
基材を酸化雰囲気中で加熱してクロムメッキ層表面を酸
化させることを特徴とする酸化クロム被膜の形成方法。 (3)前記酸化クロム被膜の厚さが0.01μm以上で
ある上記(2)に記載の酸化クロム被膜の形成方法。 (4)前記表面にクロムメッキを施した金属基材を、酸
化雰囲気中で加熱する前にハロゲン化合物またはハロゲ
ンを含む反応性ガス中で加熱する上記(2)または
(3)に記載の酸化クロム被膜の形成方法。 (5)前記ハロゲン化合物またはハロゲンを含む反応性
ガスがフッ素化合物または含フッ素反応性ガスである上
記(4)に記載の酸化クロム被膜の形成方法。 (6)前記含フッ素反応性ガスがClF3を含む反応性
ガスである上記(5)に記載の酸化クロム被膜の形成方
法。
(1) A metal material having a chromium plating layer on the surface of a metal substrate, wherein the chromium plating layer has a thickness of 0.01 μm or more and is passivated by oxidation. (2) A method for forming a chromium oxide film, which comprises applying chromium plating to the surface of a metal substrate and heating the metal substrate in an oxidizing atmosphere to oxidize the surface of the chromium plating layer. (3) The method for forming a chromium oxide film according to the above (2), wherein the thickness of the chromium oxide film is 0.01 μm or more. (4) The chromium oxide according to the above (2) or (3), wherein the metal substrate having the surface subjected to chromium plating is heated in a halogen compound or a reactive gas containing halogen before being heated in an oxidizing atmosphere. The method of forming the coating. (5) The method for forming a chromium oxide film according to (4), wherein the halogen compound or the reactive gas containing halogen is a fluorine compound or a fluorine-containing reactive gas. (6) The method for forming a chromium oxide film according to the above (5), wherein the fluorine-containing reactive gas is a reactive gas containing ClF 3 .

【0018】(7)前記ハロゲン化合物またはハロゲン
を含む反応性ガス中で加熱する温度が20〜400℃で
ある上記(4)〜(6)のいずれかに記載の酸化クロム
被膜の形成方法。 (8)前記クロムメッキ層表面を酸化させる温度が、7
00℃以下である上記(2)〜(7)のいずれかに記載
の酸化クロム被膜の形成方法。 (9)クロムメッキ層表面を酸化させた後、さらに不活
性ガス中で熱処理をする上記(2)〜(8)のいずれか
に記載の酸化クロム被膜の形成方法。 (10)金属基材の表面にクロムメッキ層を具備し、該
クロムメッキ層表面が酸化不動態化されてなることを特
徴とするゴム成形用金型。 (11)前記クロムメッキ層表面が、0.01μm以上
の厚さで酸化不動態化されてなる上記(10)に記載の
ゴム成形用金型。 (12)金属基材の表面にクロムメッキ層を具備し、該
クロムメッキ層表面が酸化不動態化されてなることを特
徴とする射出成形部品。 (13)前記クロムメッキ層表面が、0.01μm以上
の厚さで酸化不動態化されてなる上記(12)に記載の
射出成形部品。
(7) The method for forming a chromium oxide film according to any one of the above (4) to (6), wherein the heating temperature in the halogen compound or the reactive gas containing halogen is 20 to 400 ° C. (8) The temperature at which the surface of the chromium plating layer is oxidized is 7
The method for forming a chromium oxide film according to any one of (2) to (7), wherein the temperature is not higher than 00 ° C. (9) The method for forming a chromium oxide film according to any one of the above (2) to (8), wherein after the surface of the chromium plating layer is oxidized, heat treatment is further performed in an inert gas. (10) A rubber molding die comprising a chromium plating layer on the surface of a metal substrate, wherein the chromium plating layer surface is passivated by oxidation. (11) The rubber molding die according to the above (10), wherein the surface of the chromium plating layer is passivated by oxidation to a thickness of 0.01 μm or more. (12) An injection-molded part comprising a chromium plating layer on the surface of a metal substrate, wherein the chromium plating layer surface is passivated by oxidation. (13) The injection molded part according to the above (12), wherein the surface of the chromium plating layer is passivated by oxidation to a thickness of 0.01 μm or more.

【0019】すなわち、本発明は、金属基材の表面にク
ロムメッキ層を具備し、さらにその表面に酸化不動態膜
が形成された金属材料、これを用いた金型及び部品、並
びに金属基材表面に迅速かつ均一な酸化クロム被膜を形
成することができる方法において、経済性に優れ、汎用
性が高く、耐食性、離型性にすぐれた金属材料、これを
用いた金型及び部品であり、高硬度、耐摩耗性を向上さ
せるためある程度の厚膜化がはかれ、更に金属材料素地
との密着性に優れかつ繰り返し再処理が容易な酸化クロ
ム被膜の形成方法である。
That is, the present invention provides a metal material having a chromium plating layer on the surface of a metal substrate and further having an oxidation passivation film formed on the surface, a mold and parts using the same, and a metal substrate. In a method capable of quickly and uniformly forming a chromium oxide film on the surface, a metal material excellent in economy, versatility, corrosion resistance, and excellent releasability, molds and parts using the same, This is a method of forming a chromium oxide film that has a certain thickness to improve high hardness and abrasion resistance, has excellent adhesion to a metal material base, and is easy to repeat reprocessing.

【0020】[0020]

【発明の実施の形態】以下、本発明の金属基材の表面に
クロムメッキ層を具備し、さらにその表面に酸化不動態
膜が形成された金属材料、、これを用いた金型及び部
品、並びにクロムメッキを施した金属基材の表面に酸化
クロム不動態膜を形成させる方法について説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, a metal material having a chromium plating layer on the surface of a metal substrate of the present invention and further having an oxidation passivation film formed on the surface, a mold and a part using the same, A method of forming a chromium oxide passivation film on the surface of a chromium-plated metal substrate will be described.

【0021】先ず、金属基材の表面にクロムメッキ層を
具備し、さらにその表面に酸化不動態膜が形成された金
属材料について説明する。本発明で用いられる金属基材
は、クロムメッキが施せる材料であれば特に限定される
ものではなく、例えば鉄、鋼、非鉄金属が利用可能であ
る。クロムメッキ層の厚みは特に限定されないが、1〜
50μmが好ましく、1〜20μmがさらに好ましい。
また、酸化クロム不動態膜の厚みは0.01μm以上で
あることがよく、好ましくは0.1μm以上であること
がよく、耐食性、離型性に優れ、高硬度、耐摩耗性を改
善することができる。
First, a description will be given of a metal material in which a chromium plating layer is provided on the surface of a metal base material and an oxidation passivation film is formed on the surface. The metal substrate used in the present invention is not particularly limited as long as it is a material that can be subjected to chrome plating. For example, iron, steel, and non-ferrous metals can be used. Although the thickness of the chrome plating layer is not particularly limited,
It is preferably 50 μm, more preferably 1 to 20 μm.
Further, the thickness of the chromium oxide passivation film is preferably 0.01 μm or more, and more preferably 0.1 μm or more, and it is excellent in corrosion resistance and releasability, and has high hardness and improved wear resistance. Can be.

【0022】次に、クロムメッキを施した金属材料の表
面に酸化クロム不動態膜を形成させる方法について説明
する。本発明で用いられる金属基材は、クロムメッキが
施せる材料であれば特に限定されるものではなく、例え
ば鉄、鋼、非鉄金属が利用可能であり、クロムメッキと
しては、通常の工業用クロムメッキおよび割れ目なし高
耐食性クロムメッキ、マイクロポーラスクロムメッキ、
2〜4%炭素を含有したアモルファスクロムメッキ等の
特殊クロムメッキが利用可能である。クロムメッキ層の
厚みは特に限定されないが、1〜50μmが好ましく、
1〜20μmがさらに好ましい。また、メッキ処理は2
つの方法を組み合わせて行うことも可能である。
Next, a method for forming a chromium oxide passivation film on the surface of a chromium-plated metal material will be described. The metal substrate used in the present invention is not particularly limited as long as it is a material that can be subjected to chromium plating.For example, iron, steel, and non-ferrous metals can be used. And high corrosion resistance chrome plating, micro-porous chrome plating,
Special chrome plating such as amorphous chrome plating containing 2-4% carbon is available. The thickness of the chromium plating layer is not particularly limited, but is preferably 1 to 50 μm,
1-20 μm is more preferred. The plating process is 2
It is also possible to carry out the combination of the two methods.

【0023】クロムメッキを施した金属材料の表面に酸
化クロム不動態膜を形成させる方法を具体的に説明する
と、クロムメッキを施した被処理物を脱脂洗浄した後
に、加熱炉に挿入する。クロムメッキを施した被処理物
は、メッキ後、連続的に脱脂洗浄した後に、加熱炉に挿
入することが望ましいが、時間が経過した保存品を使用
しても本発明の方法では差し支えない。次に加熱炉をN
2、アルゴン等の不活性ガスで置換する。更に、必要な
らば、400℃程度まで昇温する。この場合は、不活性
ガスの流通を継続してもよく、不活性ガスの流通を止め
て真空ポンプにより加熱炉を真空状態にすることも可能
である。この操作は、その後のハロゲン前処理あるいは
酸化クロム被膜形成処理に妨害をおよぼす水分および酸
素を十分に除去・脱離させることを目的とするものであ
る。
More specifically, a method of forming a chromium oxide passivation film on the surface of a chromium-plated metal material will be described. A chromium-plated workpiece is degreased and cleaned and then inserted into a heating furnace. It is desirable that the chromium-plated object is continuously degreased and cleaned after plating, and then inserted into a heating furnace. However, the method of the present invention does not impede the use of a stored product that has passed time. Next, set the heating furnace to N
2. Replace with an inert gas such as argon. Further, if necessary, the temperature is raised to about 400 ° C. In this case, the flow of the inert gas may be continued, or the flow of the inert gas may be stopped, and the heating furnace may be evacuated by a vacuum pump. This operation is intended to sufficiently remove and desorb water and oxygen which interfere with the subsequent halogen pretreatment or chromium oxide film formation treatment.

【0024】ここで、前記ハロゲン前処理について説明
する。クロムメッキを施した金属基材は、脱脂洗浄した
後に、酸化雰囲気中で加熱する前にハロゲン化合物また
はハロゲンを含む反応性ガスで処理し、クロムメッキ層
表面を浄化して活性化するハロゲン前処理を行ってもよ
い。これは、液相、気相どちらでもよいが、好ましくは
酸化クロム被膜形成前の被処理物を、ハロゲン化合物ま
たはハロゲンを含む反応性ガス雰囲気中に、20〜40
0℃に保持して実施する。この前処理によりクロムメッ
キ表面層に付着していた無機・有機の汚染物が破壊除去
されて表面が浄化され、更に、クロムメッキ表面層に存
在している数十Åの自然酸化被膜及びO 2吸着被膜を除
去し、クロムメッキ表面は活性化された状態となる。酸
化クロム被膜形成において、この活性化されたクロムメ
ッキ表面は、未処理のクロムメッキ表面に比べ酸素原子
が吸着・浸透・拡散しやすく、より低温でも迅速かつ均
一な酸化クロム被膜が形成される。このように、低温で
も迅速に酸化クロム被膜が形成されることは、被処理物
が耐熱性の問題から、ゆがみ・ひずみのない500℃以
下での処理が望ましい場合に特に有効である。
Here, the halogen pretreatment will be described.
I do. The chrome-plated metal substrate was degreased and washed
Later, before heating in an oxidizing atmosphere, the halogen compound or
Is treated with a reactive gas containing halogen,
Halogen pretreatment to clean and activate the surface
No. This may be either a liquid phase or a gas phase, but is preferably
Before processing the chromium oxide film, remove the workpiece
Or 20 to 40 in a reactive gas atmosphere containing halogen.
It is carried out while maintaining at 0 ° C. This pretreatment allows
Destruction and removal of inorganic and organic contaminants adhering to the surface layer
To clean the surface, and furthermore,
Dozens of natural oxide films and O TwoRemove adsorbent coating
The chrome-plated surface is activated. acid
In forming the chromium oxide film, the activated chrome
The surface of the jack has oxygen atoms compared to the untreated chrome-plated surface.
Easily adsorbs, penetrates, and diffuses.
A uniform chromium oxide film is formed. Thus, at low temperatures
Even if the chromium oxide film is formed quickly,
However, due to the problem of heat resistance, there is no distortion or distortion
This is particularly effective when the following processing is desired.

【0025】ハロゲン化合物またはハロゲンを含む反応
性ガスとしては、例えばCl2、HCl、CH3Cl等の
塩素系ガス、F2、HF、ClF3、NF3、BF3、CF
4、SF6等のフッ素系ガスが利用でき、フッ素系ガスが
好ましく用いられる。これらのハロゲン化合物またはハ
ロゲンを含む反応性ガスはN2、アルゴン等の不活性ガ
スによって希釈され、ハロゲン化合物またはハロゲンを
含む反応性ガスの濃度としては、0.1〜100%が利
用でき、処理温度としては20〜400℃、処理時間と
しては、10〜480分が一般的に使われる。さらに詳
しく言えば、上記化合物の中でも、低温でも反応性が高
く、より低濃度での処理が可能であることから、ClF
3が好適に用いられる。
Examples of the halogen compound or a reactive gas containing a halogen include chlorine-based gases such as Cl 2 , HCl and CH 3 Cl, F 2 , HF, ClF 3 , NF 3 , BF 3 and CF.
4 , a fluorine-based gas such as SF 6 can be used, and a fluorine-based gas is preferably used. The halogen compound or the reactive gas containing a halogen is diluted with an inert gas such as N 2 or argon, and the concentration of the reactive gas containing the halogen compound or the halogen can be 0.1 to 100%. A temperature of 20 to 400 ° C. and a processing time of 10 to 480 minutes are generally used. More specifically, among the above compounds, ClF is highly reactive even at a low temperature and can be treated at a lower concentration.
3 is preferably used.

【0026】このハロゲン前処理は、必要に応じて、加
熱炉を前処理温度(20〜400℃)に調整した後に、
ハロゲン化合物またはハロゲンを含む反応性ガス、例え
ばCl2とN2の混合ガスあるいはClF3とN2の混合ガ
ス等を導入する。Cl2またはClF3は活性基のClや
Fを発生し、表面に残存する汚れを除去するとともに、
クロムメッキ表面に存在する酸化被膜や吸着O2と迅速
に反応し、表面を活性化する。このようにして、前処理
した被処理物は、残存するハロゲン化合物またはハロゲ
ンを含む反応性ガスをN2、Ar等の不活性ガスの非酸
化性雰囲気で置換した後に酸化クロム被膜形成処理を実
施する。
In this halogen pretreatment, the heating furnace is adjusted to a pretreatment temperature (20 to 400 ° C.) if necessary.
A halogen compound or a reactive gas containing halogen, for example, a mixed gas of Cl 2 and N 2 or a mixed gas of ClF 3 and N 2 is introduced. Cl 2 or ClF 3 generates Cl and F as active groups, and removes dirt remaining on the surface.
Reacts quickly with the oxide film and adsorbed O 2 present on the chromium plating surface to activate the surface. In this way, the pretreated object is subjected to a chromium oxide film forming treatment after replacing the remaining halogen compound or the reactive gas containing halogen with a non-oxidizing atmosphere of an inert gas such as N 2 or Ar. I do.

【0027】酸化クロム被膜形成処理は、400〜70
0℃の処理温度で、好ましくは500℃程度に2〜48
時間加熱保持し、O2またはH2Oを含む酸化雰囲気ガ
ス、例えばO2とN2の混合ガスを導入することで行う。
2濃度としては、10ppm〜100%の範囲とする
ことができ、好ましくは0.1〜20%の範囲がよい。
また、H2O濃度としては、1ppm〜1%の範囲が好
適に用いられる。O2とH 2Oは共存させることも可能で
ある。
The chromium oxide film forming process is performed at 400 to 70
At a processing temperature of 0 ° C, preferably at about 500 ° C
Hold for some timeTwoOr HTwoOxidizing atmosphere containing O
For example, OTwoAnd NTwoIs carried out by introducing a mixed gas of
OTwoThe concentration is in the range of 10 ppm to 100%
And preferably in the range of 0.1 to 20%.
Also, HTwoThe O concentration is preferably in the range of 1 ppm to 1%.
Appropriately used. OTwoAnd H TwoO can coexist
is there.

【0028】ここで、効率よく活性なクロム層を形成さ
せるために、ハロゲン前処理の後にさらにH2もしくは
NH3を含む還元雰囲気ガスで処理し、酸化クロム被膜
形成処理をすることも可能である。クロムメッキ表面は
活性なクロム層が形成されているため、O2が分解して
発生する活性基のOが吸着され、金属内に侵入・拡散し
やすく、被処理物表面に厚い酸化クロム被膜が形成され
る。また、加圧下において酸化雰囲気を維持することに
より深く酸化クロム被膜を形成することも可能である。
Here, in order to efficiently form an active chromium layer, it is also possible to carry out a treatment with a reducing atmosphere gas containing H 2 or NH 3 after the halogen pretreatment to form a chromium oxide film. . Since an active chromium layer is formed on the chromium plating surface, O, which is an active group generated by the decomposition of O 2 , is adsorbed and easily penetrates and diffuses into the metal. It is formed. It is also possible to form a deep chromium oxide film by maintaining an oxidizing atmosphere under pressure.

【0029】更に、本発明では、酸化クロム被膜形成
後、結晶化を進めより強固な不動態膜を形成させるため
に、酸化クロム被膜形成後に不活性雰囲気あるいは弱還
元性雰囲気において、熱処理することも可能である。
Further, in the present invention, after the chromium oxide film is formed, heat treatment may be performed in an inert atmosphere or a weakly reducing atmosphere after the chromium oxide film is formed in order to promote crystallization and form a stronger passive film. It is possible.

【0030】本発明において、被処理物の形状・寸法等
は特に限定されないが、工業的には、半導体封止材用金
型、ゴム成形用金型、射出成形部品、シリンダー及びラ
イナー、ピストン及びピストンロッド、ピストンリン
グ、工具、シャフト及びジャーナル、ロール、機械部品
等に利用可能である。
In the present invention, the shape and size of the object to be treated are not particularly limited. However, industrially, a mold for a semiconductor sealing material, a mold for rubber molding, an injection molded part, a cylinder and a liner, a piston and It can be used for piston rods, piston rings, tools, shafts and journals, rolls, mechanical parts, etc.

【0031】このようにして得られた本発明の酸化クロ
ム被膜は、金属材料素地と酸化クロム被膜の間に1〜5
0μmのクロムメッキ層を有する積層構造をとり、表層
に0.01μm以上の厚さの酸化クロム被膜を形成した
構造をとる。この構造は、金属素地材料と酸化クロム層
の強固な密着性を得るために有効となる。また、強固で
安定な不動態酸化クロム被膜を形成するため、高い耐食
性を示し、樹脂あるいはゴムとの良好な離型性を示す。
さらに、従来にない厚膜が形成可能であること、および
金属材料素地との高い密着性を示すため、表面硬度、耐
摩耗性といった機械的な物性の向上も可能である。
The thus obtained chromium oxide film of the present invention has a thickness of 1 to 5 between the metal material base and the chromium oxide film.
A laminated structure having a chromium plating layer of 0 μm is formed, and a chromium oxide film having a thickness of 0.01 μm or more is formed on the surface layer. This structure is effective for obtaining strong adhesion between the metal base material and the chromium oxide layer. In addition, since a strong and stable passive chromium oxide film is formed, it exhibits high corrosion resistance and good releasability from resin or rubber.
Further, since an unprecedented thick film can be formed and high adhesion to a metal material substrate can be exhibited, mechanical properties such as surface hardness and abrasion resistance can be improved.

【0032】[0032]

【実施例】以下に実施例を用いてさらに詳しく説明する
が、本発明はこれら実施例に限定されるものではない。 (実施例1)テストピースSKD61(15×30×2
mm)に10μmの工業用クロムメッキを施したサンプ
ルを、アセトン中で60秒間超音波処理し、脱脂を行っ
た。脱脂したサンプルを、反応炉(30mmφ×400
mm)に挿入し、N2ガスで2回置換した後、50℃に
昇温した。その後、N2で希釈した1%ClF3を導入
し、1時間保持した。次に、残存するClF3含有ガス
をN2を流通することで置換した後に、N2で希釈した2
0%O2ガスを導入し、500℃まで昇温し、500℃
で24時間酸化クロム被膜形成処理を行った。その後、
残存するO2ガスをN2を流通することで置換した後に、
500℃で12時間保持することで、酸化クロム被膜の
安定化処理を行った。処理終了後、空冷してサンプルを
取り出した。得られたサンプルの酸化クロム被膜は均一
で2μmであり、SKD61素地と酸化クロム被膜の間
に8μmのクロムメッキ層が構成された。得られたサン
プルの硬度は1500〜1600Hvであり、母材SK
D61は500〜600Hv、クロムメッキ処理のみの
ものは900〜1000Hvであった。また、往復運動
摩耗試験の結果は740ds/μmであり、クロムメッ
キ処理のみのものは360ds/μmであった。さら
に、アクリル樹脂との離型性試験の結果は30N/cm2
であり、クロムメッキ処理のみのものの離型力95N/
cm2に対して良好な離型性を示した。また、塩酸雰囲
気下での耐食試験でもクロムメッキ処理のみのサンプル
の2倍の耐食性を示し、50g荷重での繰り返しスクラ
ッチ試験(100サイクル)の結果では、膜の剥離はみ
られなかった。
The present invention will be described in more detail with reference to the following Examples, but the present invention is not limited to these Examples. (Example 1) Test piece SKD61 (15 × 30 × 2
mm) was subjected to ultrasonic treatment in acetone for 60 seconds to degrease it. The degreased sample is placed in a reaction furnace (30 mmφ × 400
mm), and the atmosphere was replaced twice with N 2 gas, and then the temperature was raised to 50 ° C. Thereafter, 1% ClF 3 diluted with N 2 was introduced and kept for 1 hour. Then, the remaining ClF 3 containing gas was replaced by flowing N 2, diluted with N 2 2
0% O 2 gas was introduced, the temperature was raised to 500 ° C, and 500 ° C
For 24 hours. afterwards,
After replacing the remaining O 2 gas by flowing N 2 ,
By holding at 500 ° C. for 12 hours, a stabilization treatment of the chromium oxide film was performed. After the treatment, the sample was taken out by air cooling. The chromium oxide film of the obtained sample was uniform and 2 μm, and an 8 μm chromium plating layer was formed between the SKD61 substrate and the chromium oxide film. The hardness of the obtained sample is 1500 to 1600 Hv and the base material SK
D61 was 500 to 600 Hv, and that of only chromium plating was 900 to 1000 Hv. In addition, the result of the reciprocating motion wear test was 740 ds / μm, and that of only the chromium plating treatment was 360 ds / μm. Furthermore, the result of the releasability test with the acrylic resin was 30 N / cm 2
And a release force of 95 N /
Good releasability was shown for cm 2 . In addition, a corrosion resistance test in a hydrochloric acid atmosphere showed twice the corrosion resistance of the sample subjected to the chromium plating treatment alone, and no peeling of the film was observed in the result of a repeated scratch test (100 cycles) under a load of 50 g.

【0033】(実施例2)実施例1と同様に、テストピ
ースSKD61(15×30×2mm)に10μmの工
業用クロムメッキを施したサンプルを、アセトン中で6
0秒間超音波処理し、脱脂を行った。脱脂したサンプル
を、反応炉(30mmφ×400mm)に挿入し、N2
ガスで2回置換した後、100℃に昇温した。その後、
2で希釈した10%Cl2を導入し、1時間保持した。
次に、残存するCl2含有ガスをN2を流通することで置
換した後に、N2で希釈した1%H2を導入し、500℃
まで昇温し、その後N2で希釈された1%O2ガスを導入
し、500℃で24時間酸化クロム被膜形成処理を行っ
た。その後、残存するO2ガスをN2を流通することで置
換した後に、500℃で12時間保持することで、酸化
クロム被膜の安定化処理を行った。処理終了後、空冷し
てサンプルを取り出した。得られたサンプルの酸化クロ
ム被膜は均一で1.8μmであり、SKD61素地と酸
化クロム被膜の間に8.2μmのクロムメッキ層が構成
された。得られたサンプルの硬度は1400〜1600
Hvであり、往復運動摩耗試験の結果は720ds/μ
mであった。また、50g荷重での繰り返しスクラッチ
試験(100サイクル)の結果では、膜の剥離はみられ
なかった。
Example 2 In the same manner as in Example 1, a test piece SKD61 (15 × 30 × 2 mm) plated with 10 μm of industrial chromium was coated with acetone in acetone for 6 hours.
Ultrasonic treatment was performed for 0 seconds to perform degreasing. The degreased sample is inserted into a reaction furnace (30 mmφ × 400 mm), and N 2
After the gas was replaced twice, the temperature was raised to 100 ° C. afterwards,
10% Cl 2 diluted with N 2 was introduced and held for 1 hour.
Then, the Cl 2 containing gas remaining after substitution by flowing N 2, introducing 1% H 2 diluted with N 2, 500 ° C.
Then, 1% O 2 gas diluted with N 2 was introduced, and a chromium oxide film forming treatment was performed at 500 ° C. for 24 hours. Then, after the remaining O 2 gas was replaced by flowing N 2 , the chromium oxide film was stabilized by holding at 500 ° C. for 12 hours. After the treatment, the sample was taken out by air cooling. The chromium oxide film of the obtained sample was uniform and 1.8 μm, and a 8.2 μm chromium plating layer was formed between the SKD61 substrate and the chromium oxide film. The hardness of the obtained sample is 1400-1600
Hv, and the result of the reciprocating motion wear test was 720 ds / μ.
m. Further, in the result of the repeated scratch test (100 cycles) under a load of 50 g, no peeling of the film was observed.

【0034】(実施例3)実施例1と同様に、テストピ
ースSKD61(15×30×2mm)に10μmの工
業用クロムメッキを施したサンプルを、アセトン中で6
0秒間超音波処理し、脱脂を行った。脱脂したサンプル
を、反応炉(30mmφ×400mm)に挿入し、N2
ガスで2回置換した後、N2で希釈した20%O2ガスを
導入し、500℃まで昇温し、500℃で24時間酸化
クロム被膜形成処理を行った。その後、残存するO2
スをN2を流通することで置換した後に、500℃で1
2時間保持することで、酸化クロム被膜の安定化処理を
行った。処理終了後、空冷してサンプルを取り出した。
得られたサンプルの酸化クロム被膜は均一で1.3μm
であり、SKD61素地と酸化クロム被膜の間に8.7
μmのクロムメッキ層が構成された。得られたサンプル
の硬度は1300〜1500Hvであり、往復運動摩耗
試験の結果は、700ds/μmであった。また、50
g荷重での繰り返しスクラッチ試験(100サイクル)
の結果では、膜の剥離はみられなかった。
Example 3 In the same manner as in Example 1, a test piece SKD61 (15 × 30 × 2 mm) plated with 10 μm of industrial chromium was treated with acetone in acetone for 6 hours.
Ultrasonic treatment was performed for 0 seconds to perform degreasing. The degreased sample is inserted into a reaction furnace (30 mmφ × 400 mm), and N 2
After the gas was replaced twice, a 20% O 2 gas diluted with N 2 was introduced, the temperature was raised to 500 ° C., and a chromium oxide film forming treatment was performed at 500 ° C. for 24 hours. After that, the remaining O 2 gas was replaced by flowing N 2 ,
By holding for 2 hours, the chromium oxide coating was stabilized. After the treatment, the sample was taken out by air cooling.
The chromium oxide film of the obtained sample was uniform and 1.3 μm.
8.7 between the SKD61 substrate and the chromium oxide coating.
A μm chromium plating layer was formed. The hardness of the obtained sample was 1300 to 1500 Hv, and the result of the reciprocating wear test was 700 ds / μm. Also, 50
Repeated scratch test with g load (100 cycles)
As a result, no peeling of the film was observed.

【0035】(実施例4)実施例1と同様に、テストピ
ースSKD61(15×30×2mm)に10μmの工
業用クロムめっきを施したサンプルを、アセトン中で6
0秒間超音波処理し、脱脂を行った。脱脂したサンプル
を、反応炉(30mmφ×400mm)に挿入し、N2
ガスで2回置換した後、10ppmのH2Oを含むN2
スを導入し、500℃まで昇温し、500℃で12時間
酸化クロム被膜形成処理を行った。その後、残存するH
2OをN2を流通することで置換した後に、12時間保持
することで、酸化クロム被膜の安定化処理を行った。処
理終了後、空冷してサンプルを取り出した。得られたサ
ンプルの酸化クロム被膜は均一で1.0μmであり、S
KD61素地と酸化クロム被膜の間に9.0μmのCr
メッキ層が構成された。得られたサンプルの硬度は13
00〜1400Hvであり、往復運動摩耗試験の結果は
600ds/μmであった。また、50g荷重での繰り
返しスクラッチ試験(100サイクル)の結果では、膜
の剥離はみられなかった。
Example 4 In the same manner as in Example 1, a test piece SKD61 (15 × 30 × 2 mm) plated with 10 μm of industrial chromium was treated with acetone in acetone for 6 hours.
Ultrasonic treatment was performed for 0 seconds to perform degreasing. The degreased sample is inserted into a reaction furnace (30 mmφ × 400 mm), and N 2
After the gas was replaced twice, N 2 gas containing 10 ppm of H 2 O was introduced, the temperature was raised to 500 ° C., and a chromium oxide film forming treatment was performed at 500 ° C. for 12 hours. Then, the remaining H
After replacing 2 O by flowing N 2 , the chromium oxide film was stabilized by holding for 12 hours. After the treatment, the sample was taken out by air cooling. The chromium oxide film of the obtained sample was uniform and 1.0 μm, and S
9.0 μm Cr between KD61 substrate and chromium oxide film
A plating layer was formed. The hardness of the obtained sample is 13
00 to 1400 Hv, and the result of the reciprocating motion wear test was 600 ds / μm. Further, in the result of the repeated scratch test (100 cycles) under a load of 50 g, no peeling of the film was observed.

【0036】(比較例1)実施例1と同様に、テストピ
ースSKD61(15×30×2mm)に2μmの工業
用クロムめっきを施したサンプルを、アセトン中で60
秒間超音波処理し、脱脂を行った。脱脂したサンプル
を、反応炉(30mmφ×400mm)に挿入し、N2
ガスで2回置換した後、50℃に昇温した。その後、N
2で希釈した1%ClF3を導入し、1時間保持した。次
に、残存するClF3含有ガスをN2を流通することで置
換した後に、N2で希釈した20%O2ガスを導入し、5
00℃まで昇温し、500℃で24時間酸化クロム被膜
形成処理を行った。その後、残存するO2ガスをN2を流
通することで置換した後に、500℃で12時間保持す
ることで、酸化クロム被膜の安定化処理を行った。処理
終了後、空冷してサンプルを取り出した。得られたサン
プルの酸化クロム被膜は均一で2μmであり、SKD6
1素地と酸化クロム被膜の間にのクロムメッキ層は残存
しなかった。得られたサンプルの硬度は1500〜16
00Hvであり、往復運動摩耗試験の結果は640ds
/μmであったが、50g荷重での繰り返しスクラッチ
試験(100サイクル)の結果では、膜の剥離ががみら
れた。
Comparative Example 1 In the same manner as in Example 1, a test piece SKD61 (15.times.30.times.2 mm) plated with 2 .mu.m of industrial chromium was cast in acetone for 60 hours.
Ultrasonic treatment was performed for 2 seconds to perform degreasing. The degreased sample is inserted into a reaction furnace (30 mmφ × 400 mm), and N 2
After the gas was replaced twice, the temperature was raised to 50 ° C. Then N
1% ClF 3 diluted in 2 was introduced and kept for 1 hour. Then, the remaining ClF 3 containing gas was replaced by flowing N 2, to introduce 20% O 2 gas diluted with N 2, 5
The temperature was raised to 00 ° C., and a chromium oxide film forming treatment was performed at 500 ° C. for 24 hours. Then, after the remaining O 2 gas was replaced by flowing N 2 , the chromium oxide film was stabilized by holding at 500 ° C. for 12 hours. After the treatment, the sample was taken out by air cooling. The chromium oxide film of the obtained sample was uniform and 2 μm, and SKD6
1 No chromium plating layer remained between the substrate and the chromium oxide film. The hardness of the obtained sample is 1500 to 16
00Hv, and the result of the reciprocating motion wear test is 640 ds.
/ μm, but as a result of a repeated scratch test (100 cycles) under a load of 50 g, peeling of the film was observed.

【0037】(比較例2)テストピースSKD61(1
5×30×2mm)にイオンプレーティング法により2
μmの酸化クロム被膜を施した。SKD61素地と酸化
クロム被膜の間にのクロムメッキ層は存在しなかった。
得られたサンプルの硬度は1400〜1600Hvであ
り、往復運動摩耗試験の結果は650ds/μmであっ
たが、50g荷重での繰り返しスクラッチ試験(100
サイクル)の結果では、膜の剥離がみられた。
(Comparative Example 2) Test piece SKD61 (1
5 × 30 × 2 mm) by ion plating.
A μm chromium oxide coating was applied. There was no chromium plating layer between the SKD61 substrate and the chromium oxide coating.
The hardness of the obtained sample was 1400 to 1600 Hv and the result of the reciprocating motion wear test was 650 ds / μm, but the repeated scratch test (100
As a result of the (cycle), peeling of the film was observed.

【0038】(実施例5)射出成形用押し出しスクリュ
ー(20mmφ×600mm)に20μmの工業用クロ
ムメッキを施し、アセトン中で60秒間超音波処理して
脱脂を行った。脱脂したスクリューを、反応炉(700
mmφ×2000mm)に挿入し、N 2ガスで2回置換
した後、50℃に昇温した。その後、N2で希釈した1
%ClF 3を導入し、1時間保持した。次に、残存する
ClF3含有ガスをN2を流通することで置換した後に、
10ppmH2O及び10ppmO2を含有するN2を導
入し、500℃まで昇温し、500℃で12時間酸化ク
ロム被膜形成処理を行った。その後、残存するH2O及
びO2ガスをN2を流通することで置換した後に、500
℃で12時間保持することで、酸化クロム被膜の安定化
処理を行った。処理終了後、空冷してサンプルを取り出
した。得られたスクリューを用いて単軸押し出し機ラボ
プラストミルで200℃の50rpmの条件で難燃性A
BS樹脂の押し出し試験を行った結果、20μmの工業
用クロムめっき施工スクリューを使用した場合の吐出量
及びトルクのばらつきが±10%に対して、酸化クロム
処理スクリューでは、吐出量及びトルクともにばらつき
が±4%以下の安定性を示した。
Example 5 Extrusion Screw for Injection Molding
ー (20mmφ × 600mm) 20μm industrial black
And then sonicate in acetone for 60 seconds.
Degreasing was performed. The degreased screw is placed in a reaction furnace (700
mmφ × 2000mm) and N TwoReplace with gas twice
After that, the temperature was raised to 50 ° C. Then NTwo1 diluted with
% ClF ThreeWas introduced and held for 1 hour. Then survive
ClFThreeGas containing NTwoAfter replacing by circulating,
10 ppmHTwoO and 10 ppm OTwoContaining NTwoLed
And raise the temperature to 500 ° C.
A rom film formation process was performed. Then, the remaining HTwoO and
And OTwoGas NTwoAfter being replaced by distribution, 500
Stabilization of chromium oxide film by holding at 12 ℃ for 12 hours
Processing was performed. After processing, remove sample by air cooling
did. Single screw extruder lab using the obtained screw
Flame-retardant A in a plast mill at 200 ° C. and 50 rpm
As a result of the extrusion test of BS resin, it was found that
Volume when using a chrome plating screw
Chromium oxide with ± 10% variation in torque and torque
Discharge volume and torque vary with processing screw
Showed a stability of ± 4% or less.

【0039】[0039]

【発明の効果】本発明により形成した酸化不動態膜は、
耐食性、離型性、ガス放出性が優れ、高硬度、耐磨耗性
等の機械的物性を具備するために厚膜化することができ
る。更に金属材料素地と酸化不動態膜の間にクロムメッ
キ層を有することで、金属材料との密着性に優れ、繰り
返し処理が容易である。本発明で用いられる金属材料
は、クロムメッキが施せる材料であれば特に限定され
ず、形状や寸法等も限定されないので、ゴム成形用金型
や射出成形部品等に広く利用可能である。
The oxidation passivation film formed according to the present invention is
It is excellent in corrosion resistance, release property and gas release property, and can be formed into a thick film in order to have mechanical properties such as high hardness and abrasion resistance. Further, by having a chromium plating layer between the metal material base and the oxidation passivation film, the adhesion to the metal material is excellent, and the repetitive treatment is easy. The metal material used in the present invention is not particularly limited as long as it can be subjected to chromium plating, and its shape and dimensions are not limited. Therefore, it can be widely used for rubber molding dies, injection molded parts, and the like.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C23G 5/00 C23G 5/00 Fターム(参考) 4K044 BA02 BA15 BB03 BC01 BC02 BC06 CA02 CA04 CA12 CA18 CA62 CA64 4K053 PA09 QA04 RA02 RA42 TA06 4K057 DA01 DB08 DB11 DD10 DE01 DE06 DE08 DK10 WA01 WB08 WB11 WK10 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI theme coat ゛ (reference) C23G 5/00 C23G 5/00 F term (reference) 4K044 BA02 BA15 BB03 BC01 BC02 BC06 CA02 CA04 CA12 CA18 CA62 CA64 4K053 PA09 QA04 RA02 RA42 TA06 4K057 DA01 DB08 DB11 DD10 DE01 DE06 DE08 DK10 WA01 WB08 WB11 WK10

Claims (13)

【特許請求の範囲】[Claims] 【請求項1】 金属基材の表面にクロムメッキ層を具備
し、該クロムメッキ層表面が0.01μm以上の厚さで
酸化不動態化されてなることを特徴とする金属材料。
1. A metal material comprising a chromium plating layer on a surface of a metal substrate, wherein the chromium plating layer has a thickness of 0.01 μm or more and is passivated by oxidation.
【請求項2】 金属基材表面にクロムメッキを施した
後、該金属基材を酸化雰囲気中で加熱してクロムメッキ
層表面を酸化させることを特徴とする酸化クロム被膜の
形成方法。
2. A method for forming a chromium oxide film, comprising: applying chromium plating to a surface of a metal substrate; and heating the metal substrate in an oxidizing atmosphere to oxidize the surface of the chromium plating layer.
【請求項3】 前記酸化クロム被膜の厚さが0.01μ
m以上である請求項2に記載の酸化クロム被膜の形成方
法。
3. The chromium oxide film has a thickness of 0.01 μm.
The method for forming a chromium oxide film according to claim 2, wherein the thickness is not less than m.
【請求項4】 前記表面にクロムメッキを施した金属基
材を、酸化雰囲気中で加熱する前にハロゲン化合物また
はハロゲンを含む反応性ガス中で加熱する請求項2また
は3に記載の酸化クロム被膜の形成方法。
4. The chromium oxide film according to claim 2, wherein the metal substrate whose surface is subjected to chromium plating is heated in a halogen compound or a reactive gas containing halogen before being heated in an oxidizing atmosphere. Formation method.
【請求項5】 前記ハロゲン化合物またはハロゲンを含
む反応性ガスがフッ素化合物または含フッ素反応性ガス
である請求項4に記載の酸化クロム被膜の形成方法。
5. The method for forming a chromium oxide film according to claim 4, wherein the halogen compound or the reactive gas containing halogen is a fluorine compound or a fluorine-containing reactive gas.
【請求項6】 前記含フッ素反応性ガスがClF3を含
む反応性ガスである請求項5に記載の酸化クロム被膜の
形成方法。
6. The method according to claim 5, wherein the fluorine-containing reactive gas is a reactive gas containing ClF 3 .
【請求項7】 前記ハロゲン化合物またはハロゲンを含
む反応性ガス中で加熱する温度が20〜400℃である
請求項4〜6のいずれかに記載の酸化クロム被膜の形成
方法。
7. The method for forming a chromium oxide film according to claim 4, wherein the heating temperature in the halogen compound or the reactive gas containing halogen is 20 to 400 ° C.
【請求項8】 前記クロムメッキ層表面を酸化させる温
度が、700℃以下である請求項2〜7のいずれかに記
載の酸化クロム被膜の形成方法。
8. The method according to claim 2, wherein a temperature at which the surface of the chromium plating layer is oxidized is 700 ° C. or less.
【請求項9】 クロムメッキ層表面を酸化させた後、さ
らに不活性ガス中で熱処理をする請求項2〜8のいずれ
かに記載の酸化クロム被膜の形成方法。
9. The method for forming a chromium oxide film according to claim 2, wherein after the surface of the chromium plating layer is oxidized, heat treatment is further performed in an inert gas.
【請求項10】 金属基材の表面にクロムメッキ層を具
備し、該クロムメッキ層表面が酸化不動態化されてなる
ことを特徴とするゴム成形用金型。
10. A rubber molding die comprising a chromium plating layer on the surface of a metal substrate, wherein the chromium plating layer surface is oxidized and passivated.
【請求項11】 前記クロムメッキ層表面が、0.01
μm以上の厚さで酸化不動態化されてなる請求項10に
記載のゴム成形用金型。
11. The chromium plating layer has a surface of 0.01
The rubber molding die according to claim 10, which is passivated by oxidation to a thickness of at least μm.
【請求項12】 金属基材の表面にクロムメッキ層を具
備し、該クロムメッキ層表面が酸化不動態化されてなる
ことを特徴とする射出成形部品。
12. An injection-molded part comprising a chromium plating layer on the surface of a metal substrate, wherein the surface of the chromium plating layer is oxidized and passivated.
【請求項13】 前記クロムメッキ層表面が、0.01
μm以上の厚さで酸化不動態化されてなる請求項12に
記載の射出成形部品。
13. The chromium plating layer having a surface of 0.01
The injection-molded part according to claim 12, which is passivated by oxidation to a thickness of at least μm.
JP24441499A 1999-08-31 1999-08-31 Metallic material in which oxidized passive film has been formed, formation of the oxidized passive film and die and parts in which the oxidized passive films have been formed Pending JP2001073164A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24441499A JP2001073164A (en) 1999-08-31 1999-08-31 Metallic material in which oxidized passive film has been formed, formation of the oxidized passive film and die and parts in which the oxidized passive films have been formed

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24441499A JP2001073164A (en) 1999-08-31 1999-08-31 Metallic material in which oxidized passive film has been formed, formation of the oxidized passive film and die and parts in which the oxidized passive films have been formed

Publications (1)

Publication Number Publication Date
JP2001073164A true JP2001073164A (en) 2001-03-21

Family

ID=17118319

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24441499A Pending JP2001073164A (en) 1999-08-31 1999-08-31 Metallic material in which oxidized passive film has been formed, formation of the oxidized passive film and die and parts in which the oxidized passive films have been formed

Country Status (1)

Country Link
JP (1) JP2001073164A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005021227A1 (en) * 2003-08-28 2005-03-10 Zeon Corporation Apparatus for producing polymer
JP2006095989A (en) * 2004-09-30 2006-04-13 Hitachi Metals Ltd Screw excellent in abrasion resistance and corrosion resistance
JP2007056282A (en) * 2005-08-22 2007-03-08 Toyota Auto Body Co Ltd Method of manufacturing chromium plated product
JP2010209458A (en) * 2009-02-16 2010-09-24 Nippon Steel & Sumikin Stainless Steel Corp Chromium-plated stainless steel sheet superior in corrosion resistance after having been worked
US7955540B2 (en) * 2007-01-19 2011-06-07 Exxonmobil Chemical Patents Inc. Extrusion of thermoplastic elastomers
JP7419983B2 (en) 2020-06-11 2024-01-23 株式会社デンソー Mold surface treatment method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005021227A1 (en) * 2003-08-28 2005-03-10 Zeon Corporation Apparatus for producing polymer
JPWO2005021227A1 (en) * 2003-08-28 2006-10-26 大見 忠弘 Polymer production equipment
JP2006095989A (en) * 2004-09-30 2006-04-13 Hitachi Metals Ltd Screw excellent in abrasion resistance and corrosion resistance
JP2007056282A (en) * 2005-08-22 2007-03-08 Toyota Auto Body Co Ltd Method of manufacturing chromium plated product
US7955540B2 (en) * 2007-01-19 2011-06-07 Exxonmobil Chemical Patents Inc. Extrusion of thermoplastic elastomers
JP2010209458A (en) * 2009-02-16 2010-09-24 Nippon Steel & Sumikin Stainless Steel Corp Chromium-plated stainless steel sheet superior in corrosion resistance after having been worked
JP7419983B2 (en) 2020-06-11 2024-01-23 株式会社デンソー Mold surface treatment method

Similar Documents

Publication Publication Date Title
CN1070538C (en) Method of carburizing austenitic metal and austentitic metal products obtained thereby
KR930003030B1 (en) Method of pretreating metallic works
KR20110104631A (en) Colored austenitic stainless steel article and manufacturing method of the same with excellent corrosion resistance and high surface hardness
WO2001075190A1 (en) Surface treatment method for magnesium alloys and magnesium alloy members thus treated
KR101346014B1 (en) Surface treating method of internal/external metal material, and internal/external metal material comprising surface structure manufactured using the same
JP2001073164A (en) Metallic material in which oxidized passive film has been formed, formation of the oxidized passive film and die and parts in which the oxidized passive films have been formed
WO1996003278A1 (en) Metal finishing process
KR100990723B1 (en) Method for treating a surface of a magnesium alloy and magnesium alloy provided with a treated surface
JP3388510B2 (en) Corrosion-resistant and wear-resistant steel and its manufacturing method
Higashi et al. Low temperature palsonite salt bath nitriding of austenitic stainless steel SUS304
Toroghinezhad et al. The effect of precarburizing treatment on morphology of the boride layer
JPH04143263A (en) Hard austenitic stainless steel screw and production thereof
JPH1129848A (en) Chromium nitride coating film and its forming method
WO2015015524A1 (en) Surface treatment method and electroless nickel plating of magnesium alloy
JP7147772B2 (en) Method for manufacturing plated black core malleable cast iron member, and plated black core malleable cast iron member and pipe joint
JPH09249959A (en) Method for carburizing treatment to austenitic metal and austenitic metal product obtained thereby
KR100855358B1 (en) Chemical Coating Solutions for Magnesium Alloys, Environmental-affinitive Surface Treating Methods Using the Same, and Magnesium Alloy Substrates thereby
JPH08158035A (en) Carburizing treatment for austenitic metal and austenitic metal product using the same
JP2881111B2 (en) Steel nitriding method
KR101181421B1 (en) Surface treatment method for magnesium alloy
CN102861915A (en) Surface coating technique of powder metallurgical parts
JP2007196227A (en) Coating method for aluminum base material and aluminum alloy base material, and coated article
JP5049692B2 (en) Method for producing iron sulfide film
JP3711510B2 (en) Manufacturing method of aluminum material plated with iron-based alloy containing chromium and aluminum material
Loh Plasma nitriding